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ABSTRACT

The rapidly developing field of large multimodal models (LMMs) has led to the
emergence of diverse models with remarkable capabilities. However, existing
benchmarks fail to comprehensively, objectively and accurately evaluate whether
LMMs align with the diverse needs of humans in real-world scenarios. To bridge
this gap, we propose the Multi-Dimensional Insights (MDI) benchmark, which
includes over 500 images covering six common scenarios of human life. Notably,
the MDI-Benchmark offers two significant advantages over existing evaluations:
(1) Each image is accompanied by two types of questions: simple questions to
assess the model’s understanding of the image, and complex questions to evaluate
the model’s ability to analyze and reason beyond basic content. (2) Recogniz-
ing that people of different age groups have varying needs and perspectives when
faced with the same scenario, our benchmark stratifies questions into three age cat-
egories: young people, middle-aged people, and older people. This design allows
for a detailed assessment of LMMs’ capabilities in meeting the preferences and
needs of different age groups. With MDI-Benchmark, the strong model like GPT-
4o achieve 79% accuracy on age-related tasks, indicating that existing LMMs still
have considerable room for improvement in addressing real-world applications.
Looking ahead, we anticipate that the MDI-Benchmark will open new pathways
for aligning real-world personalization in LMMs.

Figure 1: The overview of the MDI Benchmark’s six real-world multimodal scenarios, each com-
prising three sub-domains.

1 INTRODUCTION

Developing personalized artificial intelligence (AI) assistants to address the diverse needs of dif-
ferent users has long been a significant pursuit for humanity (Kobsa & Schreck, 2003; Xiao et al.,
2018; Kocaballi et al., 2019; Rafieian & Yoganarasimhan, 2023; Pesovski et al., 2024). In real-
world scenarios, an ideal AI assistant should be capable of precisely meeting the specific demands
of individuals across various age groups, cultural backgrounds, and professional fields.
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Recently, the field of artificial intelligence has undergone a significant paradigm shift, transitioning
from specialized small models designed for specific simple tasks (Rawat & Wang, 2017; Zhao et al.,
2019; Minaee et al., 2021; Singh et al., 2017) to unified large multimodal models (LMMs) capable
of handling complex tasks (Zhang et al., 2024). This paradigm shift marks a crucial step toward
achieving Artificial General Intelligence (AGI) and underscores the potential for LMMs to become
personalized human assistants.

To comprehensively evaluate the capabilities of LMMs, researchers have constructed several com-
mon visual question-answering benchmarks (Goyal et al., 2017; Chen et al., 2015; Marino et al.,
2019; Mishra et al., 2019; Biten et al., 2019) that assess general image-text comprehension and
dialogue capabilities of LMMs. However, these benchmarks merely compare answers to standard
solutions, offering limited insights into the fine-grained capabilities of models. To address this limi-
tation, subsequent multimodal understanding benchmarks are developed (Yu et al., 2023; Liu et al.,
2023; Fu et al., 2024a; Ying et al., 2024), covering a broader range of tasks and a larger number of
test samples. This refinement enables a more precise evaluation of model capabilities, fostering the
development of more robust LMMs. Nevertheless, current benchmarks focus primarily on technical
metrics for specific tasks, neglecting two critical research questions:

Q1: Can these LMMs truly align with the actual needs of humans in real-world scenarios?

Q2: Can these LMMs subsequently address the diverse needs of distinct groups?

To tackle these challenges, we introduce a novel ”Multi-Dimensional Insights” (MDI) benchmark,
which encompasses various real-world scenarios, different problem complexities, and diverse age
groups. In detail, the MDI-Benchmark consists of more than 500 real-world images and 1.2k human-
posed questions. As shown in Figure 1, it covers six major scenarios of human life: Architecture,
Education, Housework, Social Services, Sport, and Transport. Furthermore, MDI-Benchmark fo-
cuses on evaluating LMMs from the following two dimensions:

Question Complexity Dimension. This dimension categorizes human-posed problems into two
levels of complexity. The first level assesses the basic capabilities of LMMs, such as object detection
and optical character recognition (OCR), etc. The second level evaluates more complex capabilities,
including logical reasoning, mathematical calculation, and knowledge application.

Age Dimension. Age is a fundamental criterion for evaluating individual differences, as people of
different ages have diverse needs. We categorize individuals into three age groups: young people,
middle-aged people, and older people, to assess the effectiveness of LMMs in addressing the varying
needs and preferences across these groups. Our goal is to comprehensively assess whether LMMs
can meet the diverse needs of humans in practical situations.

In summary, our major contributions are listed:

• To align with the actual needs of humans for Large Multimodal Models, we are the first to
propose a multi-modal benchmark for providing a thorough assessment of the capacities of
LMMs in practical, real-world scenarios.

• The MDI-Benchmark includes over 500 real-world images and 1.2k human-posed ques-
tions, spanning six real-world multimodal scenarios. Each scenario is divided into 3 sub-
domains with 2 levels of complexity. Additionally, we incorporate age factors into the eval-
uation to guide LMMs in personalizing their responses for different demographic groups.

• With the MDI-Benchmark, we conduct a comprehensive evaluation of several mainstream
LMMs. Specifically, GPT-4o achieved the best results across all indicators, but there is
still significant room for improvement in addressing the needs of different age groups.
Further analysis across dimensions such as Scenario, Complexity and Age provides valuable
insights for developing reliable, personalized human assistants.

We hope our research will advance the application of multimodal large models in real-world scenar-
ios and pave the way for the development of multi-dimensional personalization.
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2 RELATED WORK

2.1 MULTIMODAL DATASET AND BENCHMARK

To evaluate the capabilities of LMMs, a variety of benchmarks from past research have been applied.
Among them, Flickr30k (Young et al., 2014), COCO Captions (Chen et al., 2015), and Nocaps
(Agrawal et al., 2019) are utilized to evaluate LMMs’ text generation and image description abilities.
Vizwiz (Bigham et al., 2010), VQA (Goyal et al., 2017), GQA (Hudson & Manning, 2019), and
OK-VQA (Marino et al., 2019) are used to assess LMMs’ comprehension of image information
and question-answering abilities. For evaluating OCR capabilities, benchmarks like ST-VQA (Biten
et al., 2019) and OCR-VQA (Mishra et al., 2019) are employed. DocVQA (Mathew et al., 2021) is
specifically used to evaluate a model’s ability to understand and identify documents.

To further explore the fine-grained capabilities of LMMs, recent benchmarks have significantly ex-
panded the types of tasks assessed. Examples of such benchmarks include LVLM-eHub (Xu et al.,
2023), MM-Vet (Yu et al., 2023), MMBench (Liu et al., 2023), SEED-Bench (Li et al., 2023), MME
(Fu et al., 2024a), MMT-Bench (Ying et al., 2024), Video-MME (Fu et al., 2024b), MMMU (Yue
et al., 2023), MMMU-Pro (Yue et al., 2024), MathVista (Lu et al., 2024b), Contextual (Wadhawan
et al., 2024), We-Math(Qiao et al., 2024), and MMEvol(Luo et al., 2024). Nevertheless, it should
be noted that these benchmarks have not fully explored the capability of LMMs to address the di-
verse needs of different individuals. Therefore, we hope to better explore this ability through the
MDI-Benchmark.

2.2 LARGE MULTIMODAL MODELS

Building on the success of many large language models (LLMs) (Brown et al., 2020; Touvron et al.,
2023; Chiang et al., 2023), recent research has combined large language models with visual encoders
to form LMMs with powerful visual understanding and semantic generation capabilities. Many
excellent open-source (Hong et al., 2023; Wang et al., 2023; Hu et al., 2024; Lu et al., 2024a; Liu
et al., 2024b; Ye et al., 2023; Abdin et al., 2024) and closed-source (Team et al., 2023; Bai et al.,
2023; OpenAI, 2023; 2024) projects have been developed. This development has further enhanced
the potential for realizing personalized AI assistants.

2.3 PERSONALIZED RESEARCH

To achieve personalized AI assistants, large language models (LLMs) are currently attempting to
combine with users’ personalized outputs to enhance their personalization capabilities and enable
them to generate outputs that conform to users’ preferences (Woźniak et al., 2024; Zhuang et al.,
2024; Baek et al., 2024; Tan et al., 2024). Simultaneously, to further expand the understanding ability
of LLMs in the face of different needs, personalized data generation is also crucial(Chan et al., 2024).
In this work, we utilize the MDI-Benchmark to evaluate the ability of existing large multimodal
models to address personalized needs and provide our insights for future LMMs research.

3 MDI-BENCHMARK

The benchmark sample design emphasizes the real-world complexity of information, scene vari-
ability, and age differences. People’s information concerns often vary by scenario. As shown in
Figure 2, a family buying a new house may focus on practical issues that are closely related to
them, such as kitchen type, garage capacity, and bedroom amenities. Spectators at sports events
may concern themselves with game details, player achievements, and game progress.

3.1 EVALUATION DIMENSION

In contrast to existing work, MDI-Benchmark emphasizes the model’s performance on real-world
problems across various ages and complexities within specific task scenarios, it is structured along
three different dimensions: scenario, age, and problem complexity.

3
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Figure 2: The MDI-Benchmark includes real needs of different age groups in six major real-world
scenarios.

Scenario Dimension. From the perspective of the scenario, the MDI-Benchmark aims to closely
align with the real needs of human life. Unlike the capability evaluation focus of previous LMMs
evaluation benchmarks, the MDI-Benchmark is constructed based on real-life scenarios.

In response to the various scenarios that humans face in real life, we have drawn on the definitions
provided in sociological literature (Tajfel, 1979; Birmingham et al., 2008; Spears, 2021) and ex-
panded upon them to identify 30 sub-domain scenarios. On this basis, we conducted a one-month
questionnaire survey covering people of different ages, genders, and occupations. A total of 2,500
questionnaires were distributed, and 2,374 valid responses were collected. Based on the frequency
of sub-domain selection in the questionnaires, we selected the top 18 sub-domains, which were ul-
timately summarized into six main scenarios: architecture, education, housework, social service,
sports, and transport. We collected images from these subdomains to ensure this benchmark is rich
in scenario information. Examples are in the Appendix B.1.

Problem Complexity Dimension. In the realm of everyday human activities, the level of com-
plexity varies significantly, and the definition of difficulty is often subjective. To streamline this
definition, we have quantified the problems hierarchically based on the fundamental capabilities
of the model as the atomic units. Based on this criterion, we have filtered survey questions and
refined previous evaluation standards. Furthermore, the MDI-Benchmark is categorized into two
levels: (1) The first level involves relatively straightforward problem types that mainly evaluate the
model’s ability to extract scenario information. This includes tasks such as detection, optical char-
acter recognition, position recognition, color recognition, and other fundamental capacities. (2) The
second level demands that the model skillfully analyze both scenario information and user seman-
tic information with logical acuity while integrating relevant knowledge to effectively meet user
requirements. Examples are in the Appendix B.2.

Age Dimension. Age is a universal and specific criterion for group classification, making it more
objective compared to classifications based on culture and religious beliefs. As a fundamental at-
tribute possessed by everyone, age is easy to quantify and compare. By using age as a classification
dimension, we can better understand the needs of various groups and assess the capability of LMMs
to meet these diverse needs. For the purposes of assessment and quantification, we identified three
distinct age groups: young people (ages 10-25), middle-aged people (ages 35-50), and old peo-
ple (ages 60-75). We engaged individuals from these age brackets in real-life scenarios to inquire
about their needs. The results of these surveys informed the creation of the initial version of the
MDI-Benchmark. Examples are in the Appendix B.3.
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3.2 DATA COLLECTION

Data Source. Existing LMMs evaluation benchmarks have been widely used to evaluate and train
new models. To ensure the accuracy of the evaluation results, we collected over 500 new images
that were not included in existing datasets and recruited 120 volunteers from three age groups. From
each group, we sampled 10 volunteers to form a 30-person data construction team. The main data
collection process was as follows: First, after determining the scenario dimension information, the
data construction team wrote detailed scenario information based on their interests. Meanwhile,
we input the scenario dimension information into open-source models (e.g., GPT-4o, Gemini 1.5
Pro) and closed-source models (e.g., LLaVA-Next, MiniCPM) to generate more personalized, di-
verse, and detailed scenario descriptions. Furthermore, the descriptions created by both humans and
models were used as keywords to search for relevant images on the Internet. Meanwhile, We paid
volunteers a sufficient wage, approximately seven dollars per hour. These volunteers were tasked
with categorizing the images into six scenario dimensions. To ensure data balance and minimize
bias, we ensured diversity within each age group in terms of gender, occupation, and other factors.
Detailed classification standards and guidelines were provided to ensure consistency in categoriza-
tion. We employed a cross-validation approach, whereby each group of volunteers screened the
images, and we retained only those images that were categorized identically by all three groups.
Additionally, multiple iterations of validation were conducted. This comprehensive process helped
to construct a balanced and reliable data source.

Question and Answer Generation. After obtaining the collected images, we used a heuristic
method to manually generate questions and problems. The specific process is as follows: (1) Con-
struction of Knowledge Base. Specifically, multiple open-source and closed-source models are first
used to describe the scenario content in the image and are summarized by human experts. Subse-
quently, additional information related to the scenario content was found through an Internet search,
and the image and this information were combined to form a knowledge base. (2) Generation of
Difficult Multi-Choice Questions. To ensure the consistency of the generated questions with the
image content, we invited volunteers from three different age groups who participated in the data
collection phase to submit questions. These volunteers posed questions of varying complexity based
on the image scenarios and knowledge base content and created confusing incorrect options. (3)
Question Format. The image-question pairs provided by the volunteers had to follow the format:
[Level]-[Age]-[Scenario]. Here, Level includes level 1 and level 2; Age includes old, mid, and
young; Scenario includes architecture, education, housework, social services, sports, and transport.
Finally, a team of experts screened and evaluated the questions submitted by the volunteers to final-
ize the construction of the questions.

Data Statistics. The MDI-Benchmark is collected from three different dimensions: scenarios, age
groups, and abilities. It includes a total of 514 images and 1298 questions, all newly collected.
Meanwhile, we strived to ensure a balance of data across different scenarios, ages, and question
complexities. The detailed information is presented in the Table 1. As shown in Figure 2, the
dataset covers six domains, each with three sub-domains, providing a comprehensive and structured
construction of data across various fields.

Table 1: Statistical details of MDI-Benchmark.

Scenarios Number of images Number of L1 questions Number of L2 questions Number of old questions Number of mid questions Number of young questions

Architecture 85 121 112 77 74 82

Education 85 114 115 80 79 70

Housework 86 103 109 71 74 67

Social services 86 95 108 65 66 72

Sports 86 107 103 70 73 67

Transport 86 109 102 73 70 68

Total 86 649 649 436 436 426

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

Evaluation Protocols. To effectively evaluate the model’s output, we require the model to provide
the correct answer in its response. The specific prompt information is shown in the Table 3. Based
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Table 2: LMMs Performance on MDI-Benchmark in Terms of Level and Scenario. Vertically, the
table is composed of a model score and two Level sub-tables, where the model score is obtained
from Formula 1. Each sub-table consists of seven columns showing the accuracy rates of LMMs in
different scenarios. The first column of each sub-table represents the mean value of the subsequent
six columns, reflecting the overall performance at different levels. The annotations for Level and
Scenario are as follows: Level 1: assessment questions that focus only on basic perceptual ability;
Level 2: assessment questions that involve logical reasoning. The scenarios are abbreviated as
follows: Arc (architecture), Edu (education), Hou (housework), Soc (social service), Spo (sport),
Tra (transport). Horizontally, the table is divided into two blocks. For better statistics and analysis,
we will display the blocks as closed-source model statistics and open-source model statistics. The
best performance in each block is highlighted in blue and green.

Model Final Score
Level 1 Level 2

Avg Arc Edu Hou Soc Spo Tra Avg Arc Edu Hou Soc Spo Tra

Closed-source

GPT-4o 78.46 87.46 76.47 94.12 92.16 90.20 86.27 94.12 69.45 70.59 70.59 78.43 82.35 54.90 66.67

GPT-4V 74.92 87.46 86.27 92.16 86.27 90.20 88.24 90.20 62.38 72.55 70.59 74.51 60.78 45.10 56.86

Gemini 1.5 Pro 69.13 82.32 68.63 92.16 76.47 88.24 86.27 90.20 55.95 52.94 56.86 54.90 74.51 43.14 58.82

Qwen-VL-Plus 43.57 56.59 43.14 64.71 62.75 78.43 50.98 45.10 30.55 35.29 41.18 37.25 25.49 23.53 23.53

Open-source

LLaVA-NeXT-110B 65.59 79.10 60.78 92.16 78.43 84.31 78.43 88.24 52.09 66.67 56.86 54.90 64.71 31.37 43.14

LLaVA-NeXT-72B 63.67 76.21 68.63 88.24 80.39 82.35 70.59 74.51 51.13 66.67 54.90 52.94 60.78 33.33 43.14

MiniCPM-LLaMA3-V 2.5 55.95 72.67 52.94 86.27 70.59 82.35 70.59 80.39 39.23 45.10 49.02 49.02 31.37 27.45 37.25

mPLUG-Owl2-7B 52.57 64.63 49.02 70.59 74.51 70.59 58.82 70.59 40.51 41.18 41.18 47.06 39.22 29.41 49.02

DeepSeek-VL-7B 52.09 68.49 49.02 70.59 74.51 80.39 62.75 80.39 35.69 41.18 33.33 39.22 41.18 21.57 41.18

Phi3-Vision-4.2B 50.80 67.20 50.98 76.47 60.78 80.39 62.75 78.43 34.41 37.25 33.33 41.18 43.14 21.57 33.33

CogVLM-chat 49.84 60.77 49.02 72.55 62.75 56.86 68.63 60.78 38.91 49.02 33.33 43.14 41.18 27.45 43.14

DeepSeek-VL-1.3B 46.30 58.20 45.10 56.86 66.67 56.86 66.67 62.75 34.41 35.29 29.41 29.41 39.22 27.45 49.02

CogAgent-vqa 41.16 49.52 35.29 45.10 66.67 54.90 56.86 43.14 32.80 31.37 35.29 35.29 37.25 25.49 35.29

LLaVA-NeXT-7B 33.60 43.09 31.37 52.94 43.14 49.02 39.22 47.06 24.12 35.29 13.73 37.25 23.53 9.80 27.45

Table 3: Prompt templates for response generations.

Type Prompt Template

Multiple
Choice

Now, we require you to solve a multiple-choice real-world question. Please briefly
describe your thought process and provide the final answer(option).
Question: <Question>
Option: <Option>
Regarding the format, please answer following the template below, and be
sure to include two <> symbols:
<Thought process>: <<your thought process>><Answer>: <<your option>>

on this, the accuracy of the response was calculated. This means that if the model articulates the cor-
rect concept but fails to produce the precise answer, it will be classified as incorrect. This approach
underscores the model’s ability to follow instructions accurately, highlighting any deficiencies in
this capacity. In addition, since the prompt input format varies across different models, we investi-
gated the input format for each model. We then endeavored to maintain consistency in the prompts,
adhering to the official input format provided by each model. This approach aims to minimize the
impact of prompt differences on model performance.

Prompt Template. Table 3 report the prompt templates in our experiments.

Evaluation Models. We studied the performance of two different categories of base models
on the MDI-Benchmark. (a) Closed-source models: GPT-4o(OpenAI, 2024), GPT-4V(OpenAI,
2023), Qwen-VL-Plus(Bai et al., 2023), Gemini 1.5 Pro(Team et al., 2023) (b) Open-source
models: LLaVA-NeXT-110B(Liu et al., 2024a), LLaVA-NeXT-70B(Liu et al., 2024a), LLaVA-
NeXT-7B(Liu et al., 2024b), DeepSeek-VL-7B, DeepSeek-VL-1.3B(Lu et al., 2024a), Phi3-Vision-
4.2B(Abdin et al., 2024), MiniCPM-LLaMA3-V 2.5(Hu et al., 2024), CogVLM-chat(Wang et al.,
2023), CogAgent-vqa(Hong et al., 2023), mPLUG-Owl2-7B(Ye et al., 2023)
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Scoring Metric. Table 2 shows the overall performance of different LMMs under two levels of
problem complexity and across six scenarios. To better assess the capabilities demonstrated by the
model, we defined the scoring metric:

Scorefinal = α · ScoreL1 + (1− α) · ScoreL2 (1)

where ScoreL1, ScoreL2 denotes the average performance of LMMs in various fields at the first and
second tiers, respectively and we set the default value of α to 0.5.

4.2 MAIN RESULTS

Table 2 illustrates the overall performance of different LMMs on MDI-benchmark. We find out the
following insights:

GPT family demonstrate an absolute advantage. GPT-4o leads all models and receives the high-
est performance score. It can also be observed that closed-source models generally outperform
open-source models. However, some powerful open-source models are struggling to catch up with
closed-source models. For example, the LLaVA-NeXT-110B, and LLaVA-NeXT-72B performed
slightly worse than the Gemini 1.5 Pro and better than the Qwen-VL-Plus.

Scaling phenomenon of model performance. Furthermore, due to the limited data available for
the closed-source models, we observed some interesting trends among the open-source models.
We selected the best-performing open-source models in various sizes, from LLaVA-NeXT-110B
and LLaVA-NeXT-72B to MiniCPM-LLaMA3-V 2.5, DeepSeek-VL-7B, Phi3-Vision-4.2B and
DeepSeek-VL-1.3B. As shown in Figure 4 (the Leaderboard of different LMMs), the final scores
for these models showed that the larger the model parameters, the better its ability to solve prob-
lems in real scenarios. This is consistent with human experience: larger language model parameters
mean more text logic training samples and less model distillation. When faced with more complex
logical reasoning tasks, these models can leverage more underlying knowledge and fundamental
capabilities.

4.3 SCENARIO DIMENSION ANALYSIS

The performance of LMMs in daily scenarios still has great room for improvement. To ob-
serve the specific performance of different models in various scenarios, as shown in Figure 3, we
calculated the accuracy of different models across different fields. We found that these 14 LMMs
achieved good performance in Level 1 for the education scenario. The performance is more bal-
anced in the architecture, housework, transport and social service scenarios. However, there are
some shortcomings in the performance of sports scenarios, which we believe are closely related to
the current training data of LMMs. At present, LMMs research groups focus more on achieving
better training and testing levels using existing Internet text data and high-quality textbook data, but
they neglect the improvement of datasets and capabilities in everyday life fields. This is where the
MDI-Benchmark comes into play. We believe that the types of problems related to logical reasoning
and the required background knowledge in the fields of sport and transport are richer and broader
than those in architecture, resulting in increased problem difficulty and a significant gap in reasoning
performance.

4.4 COMPLEXITY DIMENSION ANALYSIS

Decreased performance with increased complexity. As the complexity of the problems increases,
the model’s performance in every scenario noticeably decreases. The accuracy of answering ques-
tions in the same scenario can also change significantly for the same model. For instance, in the case
of GPT-4o, the accuracy in the best-performing educational scenario dropped from 94.12 to 70.59.
This highlights the significant impact of problem complexity on model performance.

The complexity of questions presents a rich diversity in generalization when it comes to dif-
ferent scenarios. To analyze the detailed performance of these LMMs across multiple levels, we
create radar charts (Figure 4) that display the performance of 14 LMMs in various scenarios under
Level 1 and Level 2. To illustrate macro performance changes due to varying problem complexity,
we also generate statistics of performance variance and summation, plotting average and variance
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Figure 3: The average performance of different LMMs on different difficulty levels of the MDI-
Benchmark.

Figure 4: Performance of the model at different difficulty levels and the overall performance results
of the model under the score metric.

data on different axes to highlight macro trends (Figure 5). Generally, models with high averages
and low variances exhibit better and more comprehensive capabilities.

We find that under Level 1, most models maintain relatively balanced performance—radar maps
show a normal hexagon shape—with exceptions like CogAgent-vqa and LLaVA-NeXT-7B. Under
Level 2, GPT-4o’s variance increases significantly, with only the GPT series and Gemini 1.5 Pro
maintaining balanced performance. Observing the radar maps, only the GPT series shows slight
performance degradation, while other LMMs exhibit a steep decline in the sports scenario.

Model Avg old middle-aged young

Closed-source

GPT-4o 79.74 77.94 78.43 82.84
GPT-4V 76.14 75.49 75.49 77.45

Gemini 1.5 Pro 70.26 70.10 68.63 72.06
Qwen-VL-Plus 44.28 41.67 40.20 50.98

Open-source

LLaVA-NeXT-110B 66.67 69.12 63.24 67.65
LLaVA-NeXT-72B 64.71 66.67 63.73 63.73

MiniCPM-LLaMA3-V 2.5 56.86 55.88 54.90 59.80
mPLUG-Owl2-7B 53.43 55.39 50.98 53.92
DeepSeek-VL-7B 52.94 53.43 51.96 53.43
Phi3-Vision-4.2B 51.63 53.43 49.02 52.45
CogVLM-chat 50.65 52.94 51.96 47.06

DeepSeek-VL-1.3B 47.06 49.02 39.71 52.45
CogAgent-vqa 41.83 44.12 42.65 38.73

LLaVA-NeXT-7B 34.15 37.75 33.82 30.88

Table 4: Performance of Various Models Across
Different Age Groups.The best performance in
each block is highlighted in blue and green.

Compared to advanced closed-source LMMs,
open-source LMMs require further research
on specific daily life capabilities and complex
problem scenarios to bridge the significant gap.
Notably, LLaVA-NeXT-72B performs similarly
to the optimal model LLaVA-NeXT-110B at
Level 2 but with decreased variance, suggest-
ing that effective distillation to achieve better
performance with smaller parameters is a wor-
thy area for further investigation.

We believe that the research community’s lack
of focus on enhancing LMMs datasets and ca-
pabilities in these areas, along with the di-
verse and extensive types of problems associ-
ated with logical reasoning and required back-
ground knowledge, is more pronounced com-
pared to simpler tasks. This diversity results in
significant gaps in the model’s inference perfor-
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Figure 5: The average accuracy and variance of LLMs across six domains at Level 1 and Level 2

mance as the complexity of the problems increases. Therefore, further research is needed to address
these gaps and improve LMM performance in complex problem scenarios.

4.5 AGE DIMENSION ANALYSIS

For a more direct and macro-level performance analysis, we only presented the average performance
statistics in the main table, as shown in Table 4 , which primarily represents the performance of
LMMs across three age stratification. Furthermore, we analyzed the model’s performance in detail
based on age groups and scenario dimensions, as shown in the Appendix C. We have the following
observations.

All the models to follow under the level evaluation dimensions, but there are differences in per-
formance between different age. As shown in Table 4, GPT-4o remains the top-performing model
in the age dimension, demonstrating a performance advantage of 13 points over the highest-ranked
open-source model and 35 points over the lowest-ranked closed-source model. This dominant per-
formance in the age-stratified evaluation highlights GPT-4o’s strong generalization ability and its
leadership in daily use scenarios. However, when evaluating the model’s capabilities from the per-
spective of the age dimension, it provides insights into the model’s effectiveness across different
groups in various real-world scenarios. Given the multitude of situations individuals encounter in
daily life, a model’s capabilities must be comprehensive to address diverse human needs. The ob-
served decline in accuracy across age groups indicates that there is significant room for improvement
in the overall performance of all models within this dimension. This finding underscores the need
for further research focusing on age-related issues and highlights both the necessity and innovation
of our work.

Models exhibit insufficient overall generalization across different age dimensions. As shown
in Figure 6, we further visualize the model’s performance across different age group, including old,
middle-aged, young. By summing the model’s results across age dimensions, we find that the old
group achieves a total of 856.38, the middle-aged group 764.72, and the young group 902.94. This
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distribution highlights the actual difficulty order of questions across age levels: middle-aged >old
>young. In real-world scenarios, questions posed by middle-aged individuals tend to encompass
more aspects and require greater logical reasoning and background knowledge than those from older
or younger individuals. Therefore, multi-modal LMMs need to have robust and comprehensive
capabilities to effectively handle such questions. GPT-4o demonstrates strong performance in this
aspect, exhibiting smaller performance gaps across all three age-related categories. Interestingly,
the Cog-series model, despite having the largest visual encoder, shows a noticeable performance
drop in the young group, suggesting that its large visual encoder does not generalize as effectively
as CLIP-ViT/L14.

0 50 100 150 200 250
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CogAgent-vqa

DeepSeek-VL-1.3B

CogVLM-chat

Phi3-Vision-4.2B
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63.73%
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77.45%
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Middle
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Figure 6: Performance of different LMMs across the age dimension.

In the age dimension, the scaling performance of language models is evident, but model compression
shows great potential. We find that at each model layer, the model with the largest language model
parameters achieved the best performance. Empirically, we believe that language models play a
more important role in LMMs than visual encoders. Additionally, we are surprised to find that Phi3-
Vision-4.2B exceed the macro performance of the closed-source model Qwen-VL-Plus using only
about 4.2B parameters. This indicates that LMMs still have significant room for exploration in terms
of model parameter compression.

5 CONCLUSION

In this paper, we propose the MDI-Benchmark, a tool designed to evaluate the capability of Large
Multimodal Models (LMMs) in addressing real-world human demands within multi-dimensional
scenarios. The MDI-Benchmark comprises over 500 images and 1.2k corresponding requirements,
encompassing six major aspects of human life. Additionally, we introduce the concept of age strat-
ification and sampling questions based on the needs of elderly, middle-aged, and young individuals
to ensure comprehensive evaluation. Using the MDI-Benchmark, we evaluated 14 existing LMMs,
revealing their performance preferences in different scenarios. While GPT-4o performed best across
a variety of metrics, there were gaps in performance across all age groups and scenarios. Therefore,
we suggest that future studies should focus on improving the adaptability of LMM to human needs
and its ability to generalize across different domains and age groups. This will pave the way for the
next generation of LMMs that can effectively meet human needs.
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LIMITATIONS

In this paper, we introduce MDI-Benchmark, the first benchmark to incorporate personalized pref-
erence requirements, represented by age, into LMM evaluation. However, there are still some limi-
tations to this paper.
(1) Scope Coverage: Given the infinite possibilities of real-world scenarios, MDI-Benchmark can-
not cover all domains. MDI-Benchmark focuses on 18 fine-grained subfields within 6 key domains.
(2) Task Format: To achieve automated evaluation, similar to many other benchmarks, we use
multiple-choice questions as the sole task format in MDI-Benchmark.
(3) Data Scale: MDI-Benchmark consists of 500 meticulously hand-collected and processed images
and 1,298 questions. How to automatically construct large-scale, high-quality customized prefer-
ence data remains to be explored.
(4) Preference Dimensions: MDI-Benchmark selects the most common preference dimension, age,
to evaluate LMM. We leave the exploration of other customized preference dimensions in future
work.

A MORE DETAILS ON EXPERIMENT SETUP

A.1 DETAILS OF THE EVALUATED MODELS

Table 5 shows the release times and model sources of the LMMs we evaluated at MDI-Benchmark.

Table 5: The release time and model source of LMMs used in MDI-Benchmark
Model Release Time Source

GPT-4o (OpenAI, 2024) 2024-05 https://gpt4o.ai/

GPT-4V (OpenAI, 2023) 2024-04 https://openai.com/index/gpt-4v-system-card/

Gemini 1.5 Pro (Team et al., 2023) 2024-05 https://deepmind.google/technologies/gemini/pro/

Qwen-VL-Plus (Bai et al., 2023) 2024-01 https://huggingface.co/spaces/Qwen/Qwen-VL-Plus/

LLaVA-NeXT-110B (Liu et al., 2024a) 2024-05 https://huggingface.co/lmms-lab/llava-next-110b/

LLaVA-NeXT-72B (Liu et al., 2024a) 2024-05 https://huggingface.co/lmms-lab/llava-next-72b/

MiniCPM-LLaMA3-V 2.5 (Hu et al., 2024) 2024-05 https://huggingface.co/openbmb/MiniCPM-Llama3-V-2_5/

mPLUG-Owl2-7B (Ye et al., 2023) 2023-11 https://huggingface.co/MAGAer13/mplug-owl2-llama2-7b

DeepSeek-VL-7B (Lu et al., 2024a) 2024-03 https://huggingface.co/deepseek-ai/deepseek-vl-7b-chat/

Phi3-Vision-4.2B (Abdin et al., 2024) 2024-05 https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/

CogVLM-chat (Wang et al., 2023) 2023-12 https://huggingface.co/THUDM/cogvlm-chat-hf/

DeepSeek-VL-1.3B (Lu et al., 2024a) 2024-03 https://huggingface.co/deepseek-ai/deepseek-vl-1.3b-chat/

CogAgent-vqa (Hong et al., 2023) 2023-12 https://huggingface.co/THUDM/cogagent-vqa-hf/

LLaVA-NeXT-7B (Liu et al., 2024a) 2024-03 https://huggingface.co/llava-hf/llava-v1.6-vicuna-7b-hf/

B MORE DETAIL ON MDI-BENCHMARK

B.1 EXAMPLE OF SCENARIO DIMENSION

In this section, we present a selection of images from the MDI-Benchmark for visual demonstration
purposes.

1. Architecture: Including house planning, work scenes, measuring, etc. As shown in Fig-
ure 7.

2. Education: Including campus facilities, studying activities, teaching, etc. As shown in
Figure 8.

3. Housework: Including home arrangements, housework activities, household appliances,
etc. As shown in Figure 9.

4. Social service: Including travel, shopping, communal facilities, etc. As shown in Fig-
ure 10.

5. Sport: Including ball sports, racing sports, powerlifting, etc. As shown in Figure 11.
6. Transport: including signpost, rail transit, airport, etc. As shown in Figure 12.
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Figure 7: Examples of Architecture Scenario.

Figure 8: Examples of Education Scenario.

Figure 9: Examples of Housework Scenario.
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Figure 10: Examples of Social Service.

Figure 11: Examples of Sport Scenario.

Figure 12: Examples of Transport Scenario.
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B.2 EXAMPLE OF PROBLEM COMPLEXITY DIMENSION

In this section, we present questions of varying difficulties across six scenario dimensions, as shown
in Figures 13 to Figure 18. It is evident that Level 1 questions are relatively simple, while Level 2
questions require LMMs to use more advanced abilities to answer.

Figure 13: Examples of Architecture Scenario Questions.

Figure 14: Examples of Education Scenario Questions.
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Figure 15: Examples of Housework Scenario Questions.

Figure 16: Examples of Social Service Scenario Questions.
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Figure 17: Examples of Sport Scenario Questions.

Figure 18: Examples of Transport Scenario Question.
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B.3 EXAMPLE OF AGE DIMENTION

In this section, we have sampled various concerns and issues from people across three different age
groups within the six major scenarios. These concerns have been categorized by scenario and are
visually presented in Figures 19 through 24.

Figure 19: Example of Architecture Scenario Age Questions.

Figure 20: Example of Education Scenario Age Questions.
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Figure 21: Example of Housework Scenario Age Questions.

Figure 22: Example of Social Service Scenario Age Questions.
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Figure 23: Example of Sport Scenario Age Questions.

Figure 24: Example of Transport Scenario Age Questions.
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C MORE DETAILS ON EXPERIMENT RESULTS

We present the performance of models across different age groups in Table 6.

Table 6: Performance of models across different age groups. The best performance in each block is
highlighted in blue and green.

Model Avg Arc Edu Hou Soc Spo Tra

Old Mid Young Old Mid Young Old Mid Young Old Mid Young Old Mid Young Old Mid Young Old Mid Young

Closed-source

GPT-4o 77.94 78.43 82.84 79.41 67.65 73.53 85.29 79.41 82.35 82.35 82.35 91.18 88.24 79.41 91.18 64.71 76.47 70.59 67.65 85.29 88.24
GPT-4V 75.49 75.49 77.45 79.41 76.47 82.35 82.35 76.47 85.29 76.47 85.29 79.41 76.47 73.53 76.47 67.65 61.76 70.59 70.59 79.41 70.59

Gemini 1.5 Pro 70.10 68.63 72.06 58.82 47.06 76.47 73.53 79.41 70.59 67.65 64.71 64.71 85.29 70.59 88.24 55.88 67.65 70.59 79.41 82.35 61.76
Qwen-VL-Plus 41.67 40.20 50.98 38.24 32.35 47.06 44.12 52.94 61.76 50.00 38.24 61.76 50.00 47.06 58.82 32.35 38.24 41.18 35.29 32.35 35.29

Open-source

LLaVA-NeXT-110B 69.12 63.24 67.65 73.53 52.94 64.71 76.47 76.47 70.59 70.59 67.65 61.76 76.47 64.71 82.35 50.00 55.88 58.82 67.65 61.76 67.65
LLaVA-NeXT-72B 66.67 63.73 63.73 73.53 58.82 70.59 73.53 73.53 67.65 67.65 67.65 64.71 73.53 61.76 79.41 52.94 55.88 47.06 58.82 64.71 52.94

MiniCPM-LLaMA3-V 2.5 55.88 54.90 59.80 50.00 44.12 52.94 64.71 67.65 70.59 58.82 52.94 67.65 55.88 50.00 64.71 47.06 50.00 50.00 58.82 64.71 52.94
mPLUG-Owl2-7B 55.39 50.98 53.92 47.06 38.24 50.00 73.53 44.12 50.00 58.82 64.71 58.82 58.82 52.94 52.94 38.24 47.06 47.06 55.88 58.82 64.71
DeepSeek-VL-7B 53.43 51.96 53.43 41.18 41.18 52.94 61.76 50.00 44.12 55.88 55.88 58.82 61.76 44.12 76.47 41.18 52.94 32.35 58.82 67.65 55.88
Phi3-Vision-4.2B 53.43 49.02 52.45 44.12 41.18 47.06 58.82 52.94 52.94 52.94 44.12 55.88 64.71 58.82 61.76 50.00 38.24 38.24 50.00 58.82 58.82
CogVLM-chat 52.94 51.96 47.06 44.12 58.82 44.12 61.76 50.00 47.06 52.94 55.88 50.00 50.00 50.00 47.06 41.18 52.94 50.00 67.65 44.12 44.12

DeepSeek-VL-1.3B 49.02 39.71 52.45 41.18 29.41 50.00 50.00 32.35 47.06 50.00 47.06 47.06 58.82 35.29 50.00 29.41 52.94 58.82 64.71 41.18 61.76
CogAgent-vqa 44.12 42.65 38.73 32.35 41.18 26.47 38.24 47.06 35.29 50.00 52.94 50.00 52.94 35.29 50.00 41.18 47.06 35.29 50.00 32.35 35.29

LLaVA-NeXT-7B 37.75 33.82 30.88 32.35 32.35 35.29 35.29 38.24 26.47 44.12 47.06 29.41 41.18 26.47 41.18 32.35 26.47 14.71 41.18 32.35 38.24

D CORRECT RESPONDS FROM GPT-4O

In view of GPT-4o’s leading position in each scene and age dimension, we selected the correct
answers and their reasoning processes for each scenario to display. The results are shown in Figures
25 through 30.

Figure 25: Example of GPT-4o Architecture Scenario Correct Answers.
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Figure 26: Example of GPT-4o Education Scenario Correct Answers.

Figure 27: Example of GPT-4o Housework Scenario Correct Answers.
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Figure 28: Example of GPT-4o Social Service Scenario Correct Answers.

Figure 29: Example of GPT-4o Sport Scenario Correct Answers.
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Figure 30: Example of GPT-4o Trans Scenario Correct Answers.
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E BAD CASE

In this section, we will conduct a case study of the types of errors that different models make in each
dimension of MDI-Benchmark. We classify errors into three categories: information extraction
errors, lack of knowledge errors, and reasoning errors. Errors are highlighted in red.

Information Extraction Error. As shown in Figure 31. It occurs most frequently. This is because
the visual encoder of LMMs often fails to correctly capture the content information in the images,
leading to incorrect answers.

Figure 31: Example of Information Extraction Error.
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Knowledge Deficiency Error. As shown in Figure 32. Because LMMs lack the ability to associate
and search for relevant knowledge within certain contexts. For example, when presented with an
image of a past sports event, the model fails to provide the final score.

Figure 32: Example of Knowledge Deficiency Error.
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Reasoning Error. As shown in Figure 33. LMMs correctly extract relevant visual information from
the image but make mistakes during the reasoning process, leading to incorrect answers.

Figure 33: Example of Reasoning Error.
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