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ABSTRACT

Contrastive learning (CL) represents one of the most successful paradigms for
self-supervised representation learning, which has been applied to SOTA multi-
modal learning applications. One overlooked limitation of standard contrastive
learning, however, is that it is not designed for robust learning in the presence of
noisy data pairs. For example, not all negative samples are truly negative, e.g.,
within a mini-batch there can be negative samples that are semantically as pos-
itive as the positive sample. This is common in most web-sourced multi-modal
datasets such as CC3M and YFCC that are frequently used for CL, due to the
noisy nature when crawling the datasets. Consequently, the noise in the datasets
could significantly impair the power of CL. To remedy this issue, we propose a
novel solution by reformulating the standard CL into a probability framework,
and introducing learnable random weights to associate with data pairs, so as to
allow automatic inference of the degree of noisiness for each data pair. Within
our probability framework, posterior inference of the random weights can be done
efficiently with Bayesian data augmentation. Consequently, the model can be
effectively optimized by a novel learning algorithm based on stochastic expecta-
tion maximization. We demonstrate the effectiveness of our approach on several
standard multi-modal contrastive learning benchmarks, which significantly out-
performs standard contrastive learning.

1 INTRODUCTION

Contrastive learning has become increasingly popular in multi-modal representation learning due
to its effectiveness in aligning representations from different modalities. In the context of vision-
language representation learning, the model aims to learn generic representations from images and
texts that could benefit multi-modal downstream applications such as zero-shot image classification
and image-text retrieval. Recent advances (Radford et al., 2021; Jia et al., 2021; Li et al., 2021; Zhou
et al., 2022; Gao et al., 2023; Guo et al., 2023) have scaled up vision language representation learn-
ing by applying contrastive loss to pre-train the model with a substantial volume of web-sourced
paired image-text data such as Conceptual Caption (Sharma et al., 2018), YFCC (Thomee et al.,
2016), Laion (Schuhmann et al., 2022). While some studies combine the representations of two
modalities into a single encoder (Wang et al., 2021a; 2022b;c; 2021b), it is more prevalent to repre-
sent the image and text modalities separately using modality-specific encoders similar to the CLIP
framework (Mokady et al., 2021; Shen et al., 2021; Jia et al., 2021; Li et al., 2021; Duan et al., 2022;
Yang et al., 2022; Shukor et al., 2022). After pre-training, the model can produce general represen-
tations of both image and text inputs, demonstrating exceptional performance in subsequent tasks.
Recent advances show that these high-quality representations can be adapted to text-guided genera-
tion of natural images (Ramesh et al., 2021; Crowson et al., 2022; Xu et al., 2023; Ruiz et al., 2023;
Liu et al., 2023), videos (Kwon et al., 2022; Lin et al., 2022; Rasheed et al., 2023), 3D shape (Sanghi
et al., 2023; Wang et al., 2022a; Sanghi et al., 2022), point clouds (Zhu et al., 2022), and semantic
segmentation (Park et al., 2022; Zhou et al., 2023; Liang et al., 2023), etc.

In multi-modal representation learning, standard contrastive loss seeks to maximize the similarity
between corresponding image-text pairs (termed “positive pairs”) while distinguishing them from
all the non-matching image-text pairs (termed “negative pairs”). Such an objective aligns the true
image-text pairs together to build meaningful representations. Although contrastive loss has proven
effective in empirical applications for multi-modal representation learning, there remain two open

1



Under review as a conference paper at ICLR 2024

man and woman hold hands, 
walk to the ocean

loving couple on a beach

Noisy negative pairs: contain similar
contents but treated as negative

Positive

Positive

Negative

Get ready for the worlds

Eastern bunny?
I feel sorry for him

Positive

Positive

Noisy positive pairs: contain dissimilar/vague
contents but treated as positive

Figure 1: Examples from CC3M (Sharma et al., 2018) dataset that contain noisy pairs.

questions that have been largely ignored in previous works. First, are the ground truth labels of
“positive” and “negative” from the web-sourced dataset truly reliable? Most common web-sourced
datasets consider images and their corresponding descriptions as the only true positive pairs. Yet
in those datasets there can be multiple image-text pairs containing similar contents while being
labeled as negative pairs. In other words, web-sourced datasets, due to their large volume and
automated collection processes without human labeling, naturally contain substantial noisy pairs.
For example, in Figure 1, the first image is considered as a true positive to the text ”man and woman
hold hands, walk to the beach”. Both the other texts in the same batch would be considered as
negative samples that should be pushed away from the representation of the image. However, the
second text ”loving couple on a beach” can also be considered semantically positive to reflect the
content of the first image, while being labeled as ”negative” during training. In addition, there also
can be other positive pairs in the dataset that contain dissimilar or vague descriptions such as the
right example in Figure 1. Such noisy data pairs could potentially lead to mixed training signals and
loss of accuracy in performance.

The second open question is whether contrastive learning can handle such noisy pairs. The design of
conventional contrastive learning amplifies the importance of true positive pairs within every mini-
batch and pushes away all the negative pairs equally. Thus it could be susceptible to inconsistent
training signals. For instance, in Figure 1, although the second text contains more similar content to
the image, it is treated equally ”negative” as other texts in the same batch. Without the flexibility to
adjust the importance of each data pair, contrastive learning could overfit into the noisy data pairs
within the web-source dataset, leading to sub-optimal solutions.

To address these limitations, we propose a fundamental approach to incorporate stochastic weighting
into contrastive learning. Specifically, we augment the contrastive loss by assigning a probability
weight to each data pair to allow automatic inference on the degree of nosiness level of the pair. By
doing so, we can imbue the system with a degree of flexibility, allowing it to better discern and adapt
to the inherent uncertainties in the data. This ensures that data pairs are treated more accurately based
on their likelihood of being genuine positive or negative pairs, rather than relying on potentially
erratic batch-specific determinations. For efficient learning and inference, we first reformulate the
problem into a probability framework with Bayesian data augmentation. The formulation allows
us to efficiently infer the weight of each data pair in contrastive learning, such that the learned
representation is robust towards noisy training data. Finally, we develop a stochastic expectation
maximization algorithm to incorporate the inferred random weights for efficient learning of model
parameters. To summarize, our paper has the following major contributions:

• For the first time, we identify the inherent noise problem for some most commonly-used
datasets for contrastive learning, and formulate the problem as contrastive learning with
noisy data pairs.

• We propose a principled method to solve the problem by reformulating it into a probability
framework with Bayesian data augmentation techniques. Based on the reformulation, a
novel stochastic expectation maximization algorithm is developed to effectively learn the
robust model while simultaneously inferring the stochastic data-pair weights.

• With extensive and large-scale experiments, we demonstrate improved performance on sev-
eral public benchmarks for multi-modal contrastive learning.
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2 METHOD

We start by describing the basic setup and notation in contrastive learning, where a back-
bone network, parameterized by θ, is used to generate generalized representations, written as
z = enc(x;θ) for input data x. The multi-modal data is represented in terms of positive and
negative data pairs. Specifically, given a multi-modal dataset D ≜ {(x1

i ,x
2
i )} where the su-

perscript indexes different modalities and subscript indexes data samples, each (x1
i ,x

2
i ) repre-

sents a positive pair and each (x1
i ,x

2
j ) with i ̸= j represents a negative pair. Denote si+ ≜

sim(enc(x1
i ;θ),enc(x2

i ;θ)) as the similarity score between the positive pair (x1
i ,x

2
i ) after the

encoder; and sik− ≜ sim(enc(xm1
i ;θ),enc(xm2

k ;θ)) as the similarity score between the negative
pair (xm1

i ,xm2

k ), where m1,m2 ∈ {1, 2} and sim(·, ·) denotes a similarity metric (positive value).
We adopt the exponential cosine similarity used in most contrastive learning methods in this paper,
i.e., sim(x1,x2) ≜ ex

T
1 x2 . Note the similarity scores depend on the model parameter θ, but we

omit it in our development for notation simplicity.

2.1 PROBABILITY WEIGHTED CONTRASTIVE LEARNING

As discussed in the Introduction, contrastive learning is designed specifically for the ideal case of
clean pair data. Specifically, consider the standard setup with one positive pair and K negative pairs
for each data sample. The contrastive loss is defined as:

Lcon(D;θ) = −
1

|D|
∑
xi∈D

log(Lxi), with Lxi ≜
si+

si+ +
∑K

k=1 sik−

.

However, real data usually come with noisy pairs, rendering directly applying contrastive learning
problematic. In the following, we describe our fundamental method to deal with such a noisy pair
data setting for contrastive representation learning. Our basic idea is intuitive, which is to generalize
the standard contrastive loss by adding learnable stochastic weights for all the data pairs. Specifi-
cally, we introduce local learnable weights {w+

i , w
−
ik} associated with the data pairs, and define the

following noise-robust weighted contrastive loss:

Lr
con(D;θ) = −

1

|D|
∑
xi∈D

log(Lr
xi
), with Lr

xi
≜

w+
i si+

w+
i sij+ +

∑K
k=1 w

−
iksik−

, (1)

where {w+
i } represents weights for positive pairs, and {w−

ik} for negative pairs. Note when consid-
ering all weights to be equal to one, the loss reduces to the standard contrastive loss.

One challenge with such a loss, however, is that these auxiliary random weights are local random
variables that grow quadratically w.r.t. the training data size (including augmented data), which is
essentially infinite and thus infeasible to be stored in the setting of continuous data augmentation.
To overcome the challenge, inspired by the recent probability reformulation of contrastive learning
(Chen et al., 2022), we propose a scalable Bayesian-learning mechanism to efficiently sample the
local weights in each iteration, which are then integrated into the contrastive loss to optimize the
global model parameter.

Specifically, we reformulate the problem from a Bayesian inference perspective, where we assign
appropriate priors for the weights. We can consider either Bernoulli priors to model weights as
binary random variables, or Gamma priors to model them as positive values. For modeling conve-
nience, we consider Gamma priors, i.e.,

w+
i ∼ Gamma(a+, b+), w−

ik ∼ Gamma(a−, b−) ,

where a+ and a− are the shape parameters, and b+ and b− are the rate parameters. This gives a joint
posterior distribution over the global model parameter and local random weight variables w+

i and
w−

ik, as

p({w+
i }, {w

−
ik},θ;D) ∝

∏
xi∈D

w+
i si+

w+
i sij+ +

∑K
k=1 w

−
iksik−

p({w+
i })p({w

−
ik})p(θ) .

3



Under review as a conference paper at ICLR 2024

This probability weighting mechanism can be seen as a measure of confidence in the pairing, offering
a more flexible and adaptive learning process. It can accommodate the variations and possible
inconsistencies in the data, allowing the model to better adapt to real-world complexities.

Another challenge, however, is that directly performing Bayesian inference on such a posterior
distribution is infeasible, due to the non-conjugacy between the priors and likelihood. Fortu-
nately, we can borrow ideas from Chen et al. (2022) to introduce an augmented random variable
ui to associate to each data point, giving us an augmented joint posterior distribution equivalent to
p({w+

i }, {w
−
ik},θ|D)*, as

p(θ,u,w |D) ∝
∏

i:xi∈D
w+

i si+e
−ui w

+
i si+

∏
k

e−uiw
−
iksik−p({w+

i })p({w
−
ik})p(θ) , (2)

where u ≜ {u1, u2, · · · , u|D|} and w ≜ {w+
i } ∪ {w

−
ik}. Consequently, we can perform learning

and inference based on the augmented posterior of p(θ,u,w |D). In the following, we propose an
efficient algorithm based on stochastic expectation maximization (stochastic EM) to alternatively
infer the local random variables and optimize the global model parameter.

2.2 EFFICIENT INFERENCE AND LEARNING WITH STOCHASTIC EXPECTATION
MAXIMIZATION (STOCHASTIC EM)

Based on the idea in Chen et al. (2022), we propose a stochastic EM algorithm for efficient inference
and learning of our model. Stochastic EM is a stochastic variant of the popular EM algorithm, which
alternatively infers local random variables and optimizes global model parameters for a latent vari-
able model (Allassonnière & Chevallier, 2021; Chen et al., 2018; Delyon et al., 1999). It consists
of three steps: simulation, stochastic approximation, and maximization. In our setting, simulation
corresponds to sampling local random variables for a batch of data, e.g., u and w; stochastic ap-
proximation then uses the sampled auxiliary random variables to update a stochastic objective Q(θ)
at each iteration t as: Qt+1(θ) = Qt(θ)+λt(log p(θ,u,w |D)−Qt(θ)), where {λt} is a sequence
of decreasing weights; Finally, in maximization, we optimize the model parameter θ by maximizing
the stochastic objective Qt+1(θ). We describe more details below:

Simulation Given the joint posterior distribution in equation 2 and the current batch of data, one
can easily sample the local random variables u and w, which simply follow Gamma distributions of
the following forms:

ui|{w+
i ,w

−
ik,θ} ∼ Gamma(au, bu + w+

i si+ +
∑
k

w−
iksik−), ∀i, and (3)

w+
i |{u,θ} ∼ Gamma(1 + a+, uisi+ + b+), and w−

ik|{u,θ} ∼ Gamma(a−, uisik− + b−),∀i, k

These sampled random variables for the current batch of data will then be used in the stochastic
approximation step described below. Optionally, to make the algorithm more stable, we propose
to update ui’s with moving averages after sampling, e.g., we maintain {ui} in the memory and
update them as: ui ← αui + (1 − α)ũi, where ũi ∼ Gamma(au, bu + w+

i si+ +
∑

k w
−
iksik−)

and α ∈ [0, 1] is a hyper-parameter to balance old and new values. This strategy only requires
limited storage overhead as we only need extra memory proportional to the training data size, which
is considered negligible compared to other parameters.

Stochastic approximation We then proceed to calculate the stochastic approximation based on
the simulated local random variables above. For notation simplicity, we define Q0(θ) = 0. Then
we can reformulate Qt+1(θ) by decomposing the recursion, resulting in

Qt+1(θ) =

t∑
τ=0

λ̃τ log p(θ,uτ ,wτ |Dτ ), where λ̃τ ≜ λτ

t∏
t′=τ+1

(1− λt′) , (4)

where τ indexes the minibatch and the corresponding local random variables at the current time τ .

*In the sense that marginalizing over the augmented random variables {w+
i } and {w−

ik} in
p(θ,U, {w+

i }, {w
−
ik}|D) gives back to the original p({w+

i }, {w
−
ik},θ;D). Thus, learning and inferences on

the two forms are equivalent.
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Algorithm 1 Noise-Robust Contrastive Learning with Stochastic EM

1: Initialize θ; set t = 1
2: for x1,x2 in loader do ▷ load a minibatch (x1,x2) with B samples
3: Calculate positive/negative similarity scores {si+} and {sik−}
4: Initialize all the weights {w+

i } and {w−
ik} to be one

5: for k = 1 · · · iter [2 in practice] do
6: Sample u according to equation 3
7: Sample w according to equation 3
8: end for
9: Calculate the weighted contrastive loss in equation 1 with the sampled w on the current

batch of data
10: Update the model parameter by stochastic gradient descent with the calculated weighted

contrastive loss
11: t = t+ 1
12: end for

Maximization The stochastic approximation objective in equation 4 provides a convenient form
for stochastic optimization over time, similar to online optimization (Bent & Van Hentenryck, 2005).
Specifically, at each time t, we can initialize the parameter θ from the last step, and update it by
stochastic gradient descent calculated from the current batch of data. To reduce variance, we propose
to optimize a marginal version of p(θ,uτ ,wτ |Dτ ) by integrating out uτ , which essentially reduces
to our original weighted contrastive loss in equation 1.

With the above steps, it is ready to optimize the model by stochastic EM. The details are provided
in Algorithm 1.

3 RELATED WORKS

Vision-Language Representation Learning: Recent advances in vision-language representation
learning can be broadly classified based on the manner in which information from two modalities is
utilized for joint learning. The first category leverages unified models (Wang et al., 2021a; 2022b;c;
2021b) to process both images and texts. Typically, these inputs are tokenized into sequences (Peng
et al., 2022; Bao et al., 2022). The latter methods deploy separate encoders (Radford et al., 2021;
Mokady et al., 2021; Shen et al., 2021; Li et al., 2021; Duan et al., 2022; Yang et al., 2022; Shukor
et al., 2022; Kwon et al., 2022; Jia et al., 2021) for images and texts. To align the different modalities,
they utilize the contrastive loss (Oord et al., 2018; He et al., 2020; Chen et al., 2020). It’s noteworthy
that these techniques have been demonstrated to achieve state-of-the-art (SOTA) results on multiple
downstream tasks. How to obtain robust and representational embeddings from CL is vital to benefit
downstream tasks. Specifically, we focus on how to cope with noisy positive-negative pairs for CL.

Noisy Pairs in Contrastive Learning: While most works directly utilize large scale dataset for
contrastive learning, some argue the noisy dataset issue. Noisy contrastive learning is an advanced
technique that addresses the challenges of standard contrastive learning when faced with inconsis-
tencies or ”noise” within paired data. Traditional contrastive methods often struggle with mislabeled
or ambiguous pairs, leading to decreased accuracy and efficiency. Noisy contrastive learning, on the
other hand, incorporates mechanisms, often probabilistic in nature, to accommodate these uncer-
tainties. By assigning confidence or probability weights to each pair, this approach allows for more
adaptive and flexible learning. Rather than being limited by the binary classification of pairs, it em-
braces the inherent complexities and variations in real-world data, enhancing the model’s robustness
and performance. NLIP (Huang et al., 2023) enforces the pairs with larger noise probability to have
fewer similarities in embedding space to improve the model training. Han et al. (2022) apply noise
estimation component to adjust the consistency between different modalities for the action recog-
nition task. RINCE (Hoffmann et al., 2022) uses a ranked ordering of positive samples to improve
InfoNCE loss. Another recent work (Chen et al., 2022) studies the gradient bias issue in contrastive
learning and proposes a stochastic approach to levitate it. To combat the gradient bias, the authors
introduce a Bayesian data augmentation approach. This new method transforms the contrastive loss
into a decomposable form. Consequently, conventional stochastic optimization can be applied with-
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out inducing gradient bias. Our approach uses a stochastic approach from a different perspective to
address the noisy data issue. To combat this challenge, we are introducing a probability extension.
This innovative approach assigns a probability weight to each pair, whether positive or negative. By
doing so, the model is no longer rigidly committed to a binary classification of the pairs but can now
take into consideration the uncertainties or noise present in the data. This not only provides more
nuanced information to the model but also enhances its robustness.

Stochastic Expectation Maximization Stochastic EM (Nielsen, 2000) stands as a pivotal algorithm
in machine learning and probabilistic modeling. Building upon the foundations of the classical
Expectation-Maximization (EM) algorithm (Lin, 2011), Stochastic EM offers an efficient solution
for parameter estimation in situations involving vast datasets or latent variables, e.g., to maximize
the log-likelihood of p(z,D|θ), where D is the dataset, z is the local random variable and θ is the
global model parameter. By leveraging the power of mini-batch sampling, Stochastic EM strikes a
balance between computational scalability and estimation accuracy. It has found widespread utility
in various domains, including clustering (Allassonnière & Chevallier, 2021), topic modeling (Zaheer
et al., 2016), and latent variable modeling (Zhang & Chen, 2020), making it an indispensable tool to
cope with complex probabilistic models and extensive data and a natural fit to our problem.

4 EXPERIMENTS

We conduct experiments focused on image-text contrastive learning using CLIP-based models,
wherein two distinct encoders are trained to align features between image and text modalities. We
then evaluate on standard benchmarks including zero-shot, distribution shift, and linear probing
tasks. We also provide ablation study and analysis on the sampling hyper-parameters and sampled
weights.

4.1 EXPERIMENTS SETUP

For encoders, our CLIP model adopts ResNet-50 (He et al., 2016) as the image encoder and
BERT (Devlin et al., 2018) as the text encoder. We adopt the official code from OpenCLIP (Il-
harco et al., 2021) and DeCL (Chen et al., 2022) to reproduce the baselines and our methods. Our
reproduced CLIP results are consistent with the recent works (Mu et al., 2021; Gao et al., 2021;
Duan et al., 2022; Jiang et al., 2023), although their results are slightly lower than reported in the
original CLIP paper. One possible reason is that we use fewer GPUs, thus leading to a smaller effec-
tive batch size. It is important to highlight that all the methods adopt the same OpenCLIP codebase
and identical hyper-parameter configurations, thus ensuring a fair comparison.

Pre-training: We follow the standard practice and pre-train the model with the CC3M (Sharma
et al., 2018) dataset with 3M unique images and 4M image-text pairs.

Evaluation: For zero-shot image classification evaluation, we take the pre-trained image encoder to
obtain image representation, as well as the pre-trained text encoder and prompts to construct class
descriptions to obtain class representations. We evaluate on ImageNet for embedding quality and its
distribution shifted benchmarks to evaluate the robustness of our methods. We further evaluate linear
probing performance, where the encoders are fixed and one linear layer is trained with additional
supervision to evaluate the quality of the learned representations

Implementation Details: We follow the same code base and hyper-parameters setting as OpenCLIP
except for the number of GPUs. We train the model from scratch on 8 NVIDIA V100 GPUs for 32
epochs. Our batch size is set to 128 per GPU and the feature dimension is 1024. We use an initial
learning rate of 5e−4. We warm up the learning rate for 10000 iterations and follow the cosine decay
scheduling. AdamW (Loshchilov & Hutter, 2019) optimizer is used along with a weight decay of
0.2. To further demonstrate the effectiveness of our approach for noisy datasets, we add a random
noise of 10% into the training data by randomly selecting 10% of data pairs within every batch and
re-sample the positive labels such that 10% of the training data has incorrect positive pairs. For all
the baselines we use the same codebase to train from scratch with fixed random seed and the same
hyper-parameters for fair comparisons. After pre-training, we evaluate the model trained on the last
epoch for all baselines and our approach.
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Table 1: Zero-Shot Transfer Learning Classifiction Accuray (%) on ImageNet1K.

Method Top1 Accuracy ↑ Top5 Accuracy ↑
CLIP 17.71 35.87
DeCL 17.55 36.46
OURS 20.96 38.24

Table 2: Zero-Shot Natural Distribution Shift Classifiction Accuray (%).

Method ImageNetV2 ImageNetSketch ImageNet-A ImageNet-R
Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑ Top1 ↑ Top5 ↑

CLIP 16.44 34.15 10.23 24.21 5.05 17.71 24.75 46.30
DeCL 15.58 33.11 10.1 22.57 3.94 15.66 22.68 44.26
OURS 17.63 33.25 12.36 25.76 4.21 14.76 25.85 46.42

4.2 ZERO-SHOT TRANSFER LEARNING EVALUATION

We conduct zero-shot transfer on standard image classification tasks using the ImageNet1K
dataset (Russakovsky et al., 2015). We employ the standard evaluation strategy of prompt engineer-
ing. For each dataset, we construct text prompts using the name of the class with some templates,
for example, ”a photo of the [class name]” and ”a sketch of the [class name]”. We obtain
the normalized class text embedding for each class with multiple standard prompts. We obtain the
image embeddings from the pre-trained encoder. During evaluation, the class whose text embed-
ding has the highest similarity score to the image embedding is used as the prediction of the label.
Consistent with previous works, we report Top-K classification accuracy with K = 1, 5.

We show in Table 1 the zero-shot transfer learning performance, we include other baselines for
reference while we mainly focus on comparing with CLIP and DeCL. DeCL improves the clip
baseline performance by 1% on Top5 accuracy by solving the gradient bias issue, while our approach
can improve over CLIP by 3% on both Top1 and Top5 accuracy with stochastic training pairs re-
weighting. Note that both DeCL and our method do not require additional computing except for the
sampling processes compared to the original CLIP baseline, which is negligible relative to the total
training cost.

4.3 NATURAL DISTRIBUTION SHIFT EVALUATION

We also assess variations of the ImageNet1K datasets with featuring shifted distributions (Recht
et al., 2019; Wang et al., 2019; Hendrycks et al., 2021b;a). These datasets incorporate sketches, car-
toons, and adversarially generated images. They are usually considered as domain-shifted versions
of ImageNet and are frequently utilized to evaluate the generalizability and robustness of models,
as they usually contain harder or less common data samples. We perform the zero-shot evaluation
using the same processes mentioned in the previous section and report classification accuracy on
Top-1 and Top-5.

We show in Table 2 the zero-shot transfer learning performance on the Natural Distribution Shift
benchmark. We can see that DeCL performs the worst on all four benchmarks, while CLIP baseline
demonstrates the best performance on ImageNet-A. CLIP also features decent performance on Top5
accuracy for ImageNetV2. Our method improves the clip baseline performance by 1-2% on Top1
accuracy for three out of four benchmarks (ImageNet-V2, ImageNetSketch, and ImageNet-R), and
by around 1% on two out of four benchmarks (ImageNetSketch and ImageNet-R). This indicates
that by using our approach to weight training pairs with stochastic approximation we are able to
improve the robustness and generalizability of the learned embeddings. Interestingly, our method
under-performs CLIP on ImageNet-A, a dataset with adversarial noise. We hypothesize the reason
is that correcting noisy pairs in training does not help to combat adversarial noise in data.

4.4 LINEAR PROBING EVALUATION

We further perform evaluations on linear probing classification tasks, wherein we fit a linear classi-
fier with a downstream training dataset by leveraging the fixed learned visual encoder. The finetuned
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Table 3: Linear Probing Top1 Classification Cccuracy (%) on Vision Benchmarks.
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Figure 2: Visualization of model performance. Every axis denotes the performance on a particular
dataset measured using wither Top1 or Top5 accuracy metric. Distinct colors signify different meth-
ods or approaches. An approach that spans a larger area demonstrates superior overall performance.

model is then evaluated on the testing dataset. This setting is used to evaluate how well the learned
embeddings can generalize to new tasks with further supervision that requires only minimum fine-
tuning effort. Following standard setup, we test on 14 standard benchmarks (Krizhevsky, 2009;
Russakovsky et al., 2015; Fei-Fei et al., 2006; Netzer et al., 2011; Coates et al., 2011; Cimpoi et al.,
2014; Maji et al., 2013; Parkhi et al., 2012; Socher et al., 2013; Bossard et al., 2014; Houben et al.,
2013; Krause et al., 2013; Nilsback & Zisserman, 2008).

As shown in Table 3, our method outperforms both CLIP and DeCL on all the datasets, leading to
an average gain of 3-4%. This further validates that our approach enables more flexible training
with a higher tolerance for noisy data pairs, which can improve the model performance for better
representations.

We visualize the model performance in Figure 2 where each color represents a different approach
and the larger the area one approach covers indicates the better performance. We can see that our
method outperforms baselines on both tasks with more advantage on linear probing tasks.

4.5 ANALYSIS

We perform analysis to further investigate our approach. We first test the sensitivity of our method
on different sampling parameters. As shown in Section 2.2 and Algorithm 1, there are several hyper-
parameters of the two Gamma distributions that need to be determined. Following the same setting
as in DeCL we introduce a Gamma prior for ui’s with the shape and rate parameters being au = 1
and bu = 0. We then choose the parameters for the prior Gamma distribution for w, where we need
to determine a− and b− for the negative pairs as well as a+ and b+ for positive pairs. For simplicity
and without loss of generality we set b− and b+ to be 0. To reduce the search space, we simply fix
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(d) a− = 20

Figure 3: Posterior sample distribution of pair weights w with different prior choices, where a+ = 5.
a− = 10 features the best performance.

Table 4: Effect of Changing Sampling Parameters on ImageNet zero-Shot Classification (%).

a− = 1 a− = 5 a− = 10 a− = 20
Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

a+ = 5 18.00 34.57 18.02 34.55 20.96 38.24 18.39 35.38

a+ and grid search for the best value of a−. We set a+ = 5 and search over {1, 5, 10, 20} for a−,
where a higher value prefers higher weight in prior on negative pairs.

The corresponding results are shown in Table 4. As we can see, the optimal value for a− is twice of
a+ with the trend that neither higher or lower value brings greater gain. This indicates that slightly
higher weights on negative pairs are preferable in the noisy dataset training scenarios while paying
too much attention to negative pairs is not desirable as it might mitigate the learning signal from
positive pairs. We also visualize the learned distribution sample results in Figure 3. We can observe
that by properly setting the hyper-parameters, most of the sampled weights lie around 1 and there are
pairs that are associated with much higher weights or lower weights. This observation is expected as
our goal is to enable the model to have extra adaptation to automatically determine to lower weights
for noisy training pairs.

5 CONCLUSION

In this paper, we investigate an important yet unnoticeable limitation of standard contrastive learn-
ing, where data come with noisy positive-negative pairs. Standard CL cannot handle this problem as
it treats each pair equally. As a remedy, we propose a principled solution to CL by reformulating it
into a probability framework and introducing random weights for data pairs. With a Bayesian data
augmentation technique, the random weights can be efficiently inferred via sampling, and the model
parameter can be effectively optimized via stochastic expectation maximization. The effectiveness
of our innovative approach has been proven through rigorous evaluations on standard benchmarks,
including applications in multi-modal contrastive learning based on the CLIP framework. The re-
sults also showcase the wide-ranging applicability and improved robustness of our proposed method.
We believe our method is a valuable addition to the literature on contrastive representation learn-
ing, which can further boost the performance of state-of-the-art representation learning foundation
models with larger datasets.
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