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Abstract

Temporal Knowledge Graph Reasoning (TKGR) is the process of utilizing temporal
information to capture complex relations within a Temporal Knowledge Graph
(TKG) to infer new knowledge. Conventional methods in TKGR typically depend
on deep learning algorithms or temporal logical rules. However, deep learning-
based TKGRs often lack interpretability, whereas rule-based TKGRs struggle to
effectively learn temporal rules that capture temporal patterns. Recently, Large
Language Models (LLMs) have demonstrated extensive knowledge and remarkable
proficiency in temporal reasoning. Consequently, the employment of LLMs for
Temporal Knowledge Graph Reasoning (TKGR) has sparked increasing interest
among researchers. Nonetheless, LLMs are known to function as black boxes,
making it challenging to comprehend their reasoning process. Additionally, due to
the resource-intensive nature of fine-tuning, promptly updating LLMs to integrate
evolving knowledge within TKGs for reasoning is impractical. To address these
challenges, in this paper, we propose a Large Language Models-guided Dynamic
Adaptation (LLM-DA) method for reasoning on TKGs. Specifically, LLM-DA
harnesses the capabilities of LLMs to analyze historical data and extract temporal
logical rules. These rules unveil temporal patterns and facilitate interpretable
reasoning. To account for the evolving nature of TKGs, a dynamic adaptation
strategy is proposed to update the LLM-generated rules with the latest events. This
ensures that the extracted rules always incorporate the most recent knowledge and
better generalize to the predictions on future events. Experimental results show that
without the need of fine-tuning, LLM-DA significantly improves the accuracy of
reasoning over several common datasets, providing a robust framework for TKGR
tasks3.

1 Introduction

Temporal Knowledge Graphs (TKGs) [1, 2] are the structured representations of the real world,
which incorporate the temporal dimension to analyze how relations between entities evolve over time.
Temporal Knowledge Graph Reasoning (TKGR) focuses on leveraging historical information within
TKGs to forecast future events. Prior research [3, 4] on TKGR has primarily relied on temporal
logical rules [5] or deep learning algorithms, such as graph neural networks [6–8] and reinforcement
learning techniques [9]. However, the deep learning-based TKGRs often suffer from the lack of
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Figure 1: A brief description of LLM-DA. Specifically, LLM-DA harnesses LLMs to formulate
general rules on historical data. Subsequently, LLM-DA dynamically guides the LLMs to update
these rules based on current data, ensuring they more accurately reflect the objective distribution.

interpretability [10] and are difficult to dynamically update to accommodate new data in TKGs. While
rule-based methods offer great interpretability and flexibility, effectively learning temporal logical
rules and adapting them to new knowledge remains a huge challenge.

Large Language Models (LLMs) [11], pretrained on large-scale text corpora, have exhibited extensive
knowledge and reasoning ability. LLMs is able to effectively grasp intricate semantic and logical
relationships within natural language, making them show remarkable performance across a wide
range of tasks [12–14]. Recently, LLMs have also demonstrated surprising ability in temporal
reasoning [15–17]. By utilizing their powerful contextual processing and pattern recognition abilities,
LLMs can extract meaningful temporal patterns and complex temporal dependencies from historical
data within TKGs [17–19], thereby significantly enhancing their temporal reasoning capabilities.
Thus, leveraging the capabilities of LLMs [20] holds great promise for enhancing the performance of
TKGR tasks.

Previous research on LLMs for TKGRs has primarily focused on prompting the LLMs with historical
events and asking the LLMs to infer new facts [21–23]. Despite these accomplishments, LLMs are
known to be black boxes, leaving it unclear which temporal patterns contribute to the reasoning
results. Besides, LLMs suffer from the issue of hallucinations [24], which further undermines the
trustfulness of the results. Moreover, it is impractical to promptly update LLMs to incorporate the
evolving knowledge within TKGs for reasoning.

Due to the evolving nature, the knowledge within TKGs would continuously update over time, which
results in a temporal distribution shift from the initial observations to the future facts [25, 26]. As
illustrated in Figure 1, the distribution of the relations in TKG changes dramatically over longer
intervals. Despite LLMs possessing abundant knowledge via pre-training, it is still essential to
accommodate up-to-date knowledge for reasoning. However, continually updating LLMs is highly
impractical due to the intensive resources required for fine-tuning [27]. Additionally, TKGs usually
contain significant noise, necessitating an efficient process to extract relevant information for LLMs
to discern the underlying temporal patterns.

To address these challenges, this paper proposes a Large Language Model-guided Dynamic
Adaptation (LLM-DA) method for TKGR tasks, which dynamically adapts to the new knowledge and
conduct interpretable reasoning powered by LLMs. Specifically, LLM-DA leverages the capabilities
of LLMs to analyze historical data and extract temporal logical rules, unveiling temporal patterns and
facilitating interpretable reasoning. To efficiently adapt to the new distribution of TKGs, LLM-DA
introduces an innovative dynamic adaptation strategy. This strategy iteratively updates the rules
generated by LLMs instead of updating the LLMs themselves with the latest events. The extracted
rules are dynamically updated and ranked to ensure they consistently incorporate the most recent
knowledge and improve predictions for future events, all without the resource-intensive process of
LLM fine-tuning.
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In order to facilitate the rule generation and update, LLM-DA employs a contextual relation selector to
meticulously filter the relations in TKG. The selector identifies the top-k most important relations for
each rule head based on their semantic similarities. For example, given a rule head “president_of”,
the relevant relations might be “occupation_of” and “politician_of”. These selected relations
are fed into the LLMs as context to ensure LLMs are aligned with the temporal data, enhancing their
abilities in uncovering the underlying temporal patterns.

The main contributions of this paper are summarized as follows:

• This paper attempts to harness the ability of Large Language Models (LLMs) for rule-based
Temporal Knowledge Graph Reasoning (TKGR) to unveil temporal patterns and facilitate
interpretable reasoning;

• This paper proposes an innovative dynamic adaptation strategy that iteratively updates the
LLM-generated rules with the latest events, allowing for better adaptation to the constantly
changing dynamics within TKGs;

• This paper introduces the contextual relation selector to identify the top k relevant relations,
ensuring higher contextual relevance and enhancing the ability of LLMs to understand
complex temporal patterns;

• Experimental results on several widely used datasets show that LLM-DA significantly
enhances TKGs reasoning accuracy without requiring fine-tuning LLMs.

2 Related Work

2.1 Temporal Knowledge Graph Reasoning

Temporal Knowledge Graph Reasoning (TKGR) [28–34] aims to leverage historical information
within TKGs to forecast future events, which can be roughly categorized into two groups: Rules-based
TKGR methods and Deep learning-based TKGR methods.

Rules-based TKGR methods [35] enhance TKGs inference by leveraging temporal logical rules to
accurately predict future events. TLmod [36] introduces a sophisticated pruning strategy to derive
rules and selects the high-confidence rules for TKGR tasks. TLogic [5] learns temporal logical rules
from TKGs based on temporal random walks, and subsequently feeds these rules into a symbolic
reasoning module for predicting future events. TILP [37] proposes a differentiable framework for
temporal logical rule learning, utilizing constrained random walks to enhance the learning process.
TFLEX [38] advances beyond learning simplistic chain-like rules by proposing a temporal feature-
logic embedding framework. Although temporal logical rules can reveal hidden temporal patterns
within TKGR, effectively extracting these rules from TKG still remains a significant challenge.

Deep learning-based TKGR methods [39–42] employ the deep learning techniques to capture
the hidden temporal patterns to predict the future events in TKGs. RE-NET [43] uses a recurrent
event encoder and a neighborhood aggregator to encode historical facts and model their connections,
enhancing future event predictions in TKGs. Based on RE-NET, RE-GCN [44] further employs
RGCN and GRU to aggregate neighboring messages and model the temporal dependency. CyGNet
[45] employs a copy-generation mechanism for capturing global repetition frequencies. TiRGN
[46] integrates both local and global historical data to capture the sequential, repetitive, and cyclical
patterns inherent in historical data. However, the deep neural networks adopted by these methods
often lack interpretability, making it difficult to verify the predictions.

2.2 Large Language Models for TKGR

Large Language Models (LLMs) for TKGR generally leverage the sufficient knowledge and reasoning
ability of LLMs to conduct reasoning on TKGs. TIMEBENCH [47] proposes a comprehensive
hierarchical temporal reasoning benchmark to provide a thorough evaluation for investigating the
temporal reasoning capabilities of LLMs. Luo et al. [23] performs fine-tuning on known data and then
leverage a sequence of established factual information to predict and generate the subsequent event in
the series. PPT [21] converts the TKGC task into a masked token prediction task using a Pre-trained
Language Model and designs specific prompts for various types of intervals between timestamps to
enhance the extraction of semantic information from temporal data. GPT-NeoX [48] implements a
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Figure 2: The Framework of LLM-DA. Specifically, LLM-DA first analyzes historical data to extract
temporal rules and utilizes the powerful generative capabilities of LLMs to generate general rules.
Subsequently, LLM-DA updates these rules using current data. Finally, the updated rules are applied
to predict future events.

method that utilizes GPT for TKGs forecasting through in-context learning without any fine-tuning.
Similarly, Mixtral-8x7B-CoH [22] also does not require fine-tuning and adopts a “chain-of-history”
reasoning method to effectively generate high-order historical information step-by-step. Nevertheless,
existing methods only prompt the LLMs with historical events from TKG, which are limited by the
quality of input data and interpretability of LLMs.

Different from the aforementioned LLM for TKGRs, the proposed LLM-DA is LLMs for rule-based
TKGR method. By utilizing explicit rules, LLM-DA ensures the interpretability of the LLM-
generated processes and dynamically updates the rules to adapt to new data, thereby addressing a
major limitation of LLMs-enhanced deep learning-based TKGRs.

3 Preliminary

Temporal Knowledge Graph (TKG). TKG G = {E , R, T , Q} is a collection of entity set E ,
relation setR and timestamp set T . Specifically, each quadruplet is denoted as (es, r, eo, t) ∈ Q,
where es, eo ∈ E represent the entities, r ∈ R denotes the relation and t ∈ T is the timestamp.

Temporal Logical Rule. Temporal logical rules ρ define the relation between two entities es and eo
at timestamp tl,

ρ : = r(es, eo, tl)← ∧l−1
i=1r

∗(es, eo, ti), (1)

where the left-hand side denotes the rule head with relation r that can be induced by (←) the right-
hand rule body. The rule body is represented by the conjunction (∧) of a series of body relations
r∗ ∈ {r1, ..., rl−1} [49].

Different Data Types. Historical data refers to data that have occurred in the past, reflecting the
state of things in the past period of time. Current data reflects the latest state of things in the present,
from a more recent point in time. Future data refers to data that will occur, reflecting the possible
future trend of things. Specifically, the historical data, current data and future data correspond to the
training, validation, and test datasets of prior research [46, 22].

4 Methodology

In this section, we propose a novel Large Language Model-guided Dynamic Adaptation (LLM-
DA) method for TKGR tasks. LLM-DA contains four main stages: Temporal Logical Rules
Sampling explores the constrained Markovian random walks to extract temporal logical rules from
the historical data; Rule Generation utilizes the powerful generative capabilities of LLMs to extract
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Figure 3: The constraints of the constrained Markovian random walks. “#” denotes this path does
not exist, “Pi” indicates the transition probability.

meaningful temporal patterns and complex temporal dependencies from historical data within TKGs;
Dynamic Adaptation leverages LLMs to update the LLM-generated general rules using current
data; Candidate Reasoning combines rules-based reasoning and graphs-based reasoning to generate
candidates. The whole framework is illustrated in Figure 2.

4.1 Temporal Logical Rules Sampling

Temporal logical rules sampling is a constrained Markovian random exploration process, which
explores the Timestamp-Entity joint level weighted temporal random walks. Generally, the constrained
Markovian random exploration process is not only strictly constrained by the graph structure but also
deeply influenced by the temporal dimension when choosing the next node.

Constrained Markovian Random Walks. Compared to traditional Markov random walks, con-
strained Markovian random walks primarily reflect in two key factors such as temporal order and
temporal intervals when choosing the next node. As shown in Figure 3, edges of the next state are
selected based on the temporal order, and edges are weighted by the temporal interval. Specifically,
edges with shorter interval receive higher weights, thus making the random walk more inclined to
choose nodes that are temporally closer.

To maximize the performance of random walks, LLM-DA needs to ensure that the random walks
simultaneously satisfy the Markov property and additional constraints. Given the edge r(ex, ey, tl),
LLM-DA employs the Markovian random walks to search the closed temporal paths, further obtaining
the set of candidatesMr. To ensure the efficiency of our framework, LLM-DA introduces the filtering
operator χ(t), which explores the temporal order to filter these candidate paths. The filtering operator
χ(t) can be denoted as:

χ(t) =

{
1, if t < tl,
0, otherwise. (2)

After filtering these candidate paths, LLM-DA further introduces the temporal interval as the another
constraint. This constraint selects the next node based on the transition probability P . For a temporal
logical rule, the edge r(ex, ey, t) represents a connection from node ex to node ey at timestamp t.
Thus, the transition probability of the constrained Markovian random walks is expressed as:

Pxy(t) =
exp(−λ(t− T ))∑

(ex,ey,t′)∈G exp(−λ(t′ − T ))
, (3)

where Pxy(t) is the probability of transitioning from node ex to node ey at time t, and w(t) =
exp(−λ(t − T )) denotes an exponential decay function that weights the edges based on the time
difference, T is the current time, t is the timestamp of the edge, and λ is the decay rate parameter,
which controls the weight given to more recent times. In this way, more recent times (i.e., t closer to
T ) are assigned greater weight. The detailed theoretical analysis is shown in Appendix B. Through
the constrained Markovian random walks on the historical data, LLM-DA extracts the temporal rules
S from the sampled temporal paths.

4.2 Rule Generation

Rule generation typically utilizes the powerful generative capabilities of LLMs to improve the
insufficient coverage and low quality of the extracted temporal rules S. Specifically, LLM-DA first
employs the contextual relation selector to identify the top k relevant relations. Additonally, LLMs
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generally have powerful generative capabilities, allowing them to extract meaningful temporal patterns
and complex temporal dependencies from historical data within TKGs. Thus, LLM-DA inputs the
extracted rules S and the top k relevant contextual relations into LLMs to generate high-coverage
and high-quality general rules.

Firstly, LLM-DA filters the input contextual information through a contextual relation selector. TKGs
generally contain rich temporal relations, requiring the processing of a substantial amount of context
when LLMs conduct TKGR tasks. Contextual relation selector aims to filter the relation pool to
identify the top k most relevant relations. For a temporal rule ρ := r(es, eo, tl)←

∧l−1
i=1 r

∗(es, eo, ti),
LLM-DA leverages the pre-trained Sentence-Bert [50] to embed rule head r and each of its corre-
sponding candidate relations cj into a common space, obtaining embedding vectors cj and r:

cj , r = Sentence-Bert(cj , r). (4)

Following, LLM-DA calculates the relevance score S(r, cj) through the cosine similarity function:

S(r, cj) =
r · cj
∥r∥∥cj∥

, (5)

where · denotes the dot product operation, and ∥ · ∥ denotes the norm of the vector.

Finally, LLM-DA sorts the relevance scores in descending order and selects the top k candidate
relations as effective candidate relations, ensuring that the selected relations are semantically closely
aligned with the rule head r:

{cj1 , cj2 , . . . , cjk} = Top-k{S(r, cj)}, (6)

where {cj1 , cj2 , . . . , cjk} are the top k most relevant relations.

After the above contextual relation selector, LLM-DA inputs the extracted temporal rules and the top
k most relevant candidate relations {cj1 , cj2 , . . . , cjk} corresponding to the rule head r into LLMs to
achieve the generation of the high-coverage and high-quality general rules Sg . A simple example of
prompt is shown in the following prompt box:

Prompt for Rule Generation

You are an expert in TKGR, and please generate as many temporal logical rules as possible
related to ‘r’ based on extracted temporal rules.

For the relations in rule body, you are going to choose from the candidate relations:
“{cj1 , cj2 , . . . , cjk}”.

The detailed instruction for Rule Generation can be found in the Appendix A.1.

4.3 Dynamic Adaptation

Dynamic adaptation generally leverages LLMs to update the LLMs-generated general rules using
current data. Due to the evolving nature of TKGs, the LLMs-generated rules Sg become less suitable
for new data, causing high-quality rules to gradually degrade into low-quality rules. To address this,
LLM-DA extracts temporal rules from the current data and uses these rules as a standard to update
the low-quality rules. This ensures that these rules always incorporate the most recent knowledge and
better generalize to the predictions on future events.

As shown in the Prompt for Dynamic Adaptation prompt box, the input of LLMs for dynamic
adaptation mainly contains two parts, including the update of low-quality rules and extracted rules
from current data.

Prompt for Dynamic Adaptation

You are an expert in TKGR, and please analyze these LLMs-generated rules and update the
low-quality rules based on the extracted rules from current data.

For the relations in rule body, you are going to choose from the candidate relations:
“{cj1 , cj2 , . . . , cjk}”.
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Low-Quality Rules. As TKGs evolve over time, the LLM-generated rule set Sg may become
increasingly difficult to fit to the current data, eventually turning into low-quality rules. Thus, LLM-
DA applies the Confidence [51] metric to score each temporal rule ρ on the current data. Confidence
generally measures the reliability of the temporal rule ρ, which can be defined as the proportion of
temporal fact pairs that satisfy the rule body rule_body(ρ) and also satisfy the whole rule(ρ):

cρ =
Number of temporal fact pairs satisfying rule_body(ρ)

Number of temporal fact pairs satisfying rule(ρ)
, (7)

where cρ denotes the confidence of rule ρ. The higher the confidence, the greater the reliability of the
rule. In other words, when the rule body is true, the likelihood of the rule head being true is higher.
Subsequently, we select the subset of rules with low confidence Sg(low) = {ρ ∈ Sg | cρ < θ}, where
θ denotes the threshold of the low confidence.

Extracted Rules from Current Data. To address the issue of the broad range of rules generated by
LLMs, LLM-DA explores constrained Markovian random walks to extract temporal logical rules
from current data, which serves as a standard to constrain the scope of dynamic adaptation. Through
iteratively invoking LLMs, the accuracy of LLMs in predicting future events can be enhanced. The
detailed prompt for Dynamic Adaptation refers to Appendix A.2.

Finally, LLM-DA updates these LLMs-generated low-quality rules through the extracted rules from
current data, further obtaining the rules set Sd.

4.4 Candidate Reasoning

Candidate reasoning aims to infer potential answers for the query by integrating the above LLMs-
generated rules and GNNs-based predictions. Specifically, LLM-DA mainly consists of two key
modules: Rule-based Reasoning and Graph-based Reasoning.

Rule-based Reasoning. Rule-based reasoning typically utilizes the above LLMs-generated high-
scoring rules to conduct in-depth logical reasoning within TKGs, deducing new entities as potential
answers [5]. Given a query (es, r, ?, tl), LLM-DA scores the rule through the Equation 7, and then
select the high-scoring rules:

S ′d = {ρ | cρ > γ, ρ ∈ Sd}, (8)
where Sd is the rule set obtained after the Dynamic Adaptation process, S ′d is the high-confidence
rule set, in which the score cρ of the rule ρ is greater than the threshold γ. Following the rule ρ ∈ S ′d,
we can find the reasoning paths and further derive the entity e′o:

(es, r, e
′
o, tl) ← ∧l−1

i=1(es, ri, e
′
o, ti), (9)

where e′o is the candidate derived based on the rule ρ, and tl−1 ≥ · · · ≥ t1. Considering the time
decay property of temporal data, we further select candidates that are most relevant to the query:

Score(ρ,e′o) =
∑
ρ∈R′

s

∑
body(r)(es,e′o,tl)∈G

(cρ + exp(−λ(tl − to))), (10)

where Score(ρ,e′o) indicates the score of the candidate e′o obtained through the searched path in TKGs
based on rule ρ at the time point to, cρ denotes the confidence of the temporal rule ρ, λ represents the
decay rate, and body(ρ)(es, e

′
o, tl) ∈ G denotes the path in TKGs that satisfies the rule body.

Graph-based Reasoning. Due to inconsistent data distribution, candidates generated solely based on
rules may not fully match all query answers. Thus, we introduce the graph-based reasoning function
fg(Query) to further predict the candidates of the query, and the score can be computed through the
inner product operation:

Score(graph,e′o) = ⟨fg(Query), e′o⟩. (11)

Since the candidates of Rule-based Reasoning E(ρ,e′o) and Graph-based Reasoning E(graph,e′o) have
the overlap and difference, we assign the score Score(ρ,e′o) as 0 where e′o ∈ E(graph,e′o), e

′
o /∈ E(ρ,e′o),

and vice versa. The whole score of the candidate can be computed as follows:
Scoref = α · Score(ρ,e′o) + (1− α) · Score(graph,e′o), (12)

where Scoref represents the final score of the candidate e′o from rule-based reasoning and graph-based
reasoning modules, and α is used to assign weights to different scores. Finally, LLM-DA aggregates
all candidates, and then sorts these candidates to select those that best meet the query requirements.
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Table 1: Link prediction results on ICEWS14 and ICEWS05-15. The best results are in bold and -
means the result is unavailable. ♠ denotes the TKGR methods, ♣ represents the LLMs-based TKGR,
and LLM-DA (·) indicates replacing the graph-based reasoning module fg(Query) with TKGRs (♠).

Type Models Train ICEWS14 ICEWS05-15
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

♠

RE-NET ! 0.388 0.290 0.436 0.576 0.441 0.332 0.512 0.650
RE-GCN ! 0.425 0.320 0.476 0.627 0.478 0.371 0.535 0.682
TiRGN ! 0.441 0.341 0.497 0.650 0.495 0.389 0.559 0.703
TLogic ! 0.390 0.295 0.437 0.573 0.459 0.360 0.518 0.646

♣

PPT ! 0.384 0.289 0.425 0.570 0.389 0.286 0.434 0.586
Llama-2-7b-CoH ! – 0.349 0.470 0.591 – 0.386 0.541 0.699
Vicuna-7b-CoH ! – 0.328 0.457 0.656 – 0.392 0.546 0.707

GPT-NeoX % – 0.334 0.460 0.565 – – – –
Mixtral-8x7B-CoH % 0.439 0.331 0.496 0.649 0.497 0.380 0.564 0.713

LLM-DA (RE-GCN) % 0.461 0.356 0.515 0.662 0.501 0.394 0.568 0.710
LLM-DA (TiRGN) % 0.471 0.369 0.526 0.671 0.521 0.416 0.586 0.728

5 Experiments

5.1 Experimental Settings

Datasets. ICEWS14 [52] and ICEWS05-15 [52] are the subset of Integrated Crisis Early Warning
System (ICEWS), which is a TKG of international political events and social dynamics. ICEWS14
contains events that occurred in 2014, while ICEWS05-15 contains events that occurred between
2005 and 2015. Details of datasets can be referred to Appendix C.1.

Baselines. The proposed LLM-DA is compared with several classic TKGR methods, including 1)
TKGR methods: RE-NET [43], RE-GCN [44], TiRGN [46] and TLogic [5]; 2) LLMs-based TKGRs:
GPT-NeoX [48], Llama-2-7b-CoH, Vicuna-7b-CoH [23], Mixtral-8x7B-CoH [22] and PPT [21].
Here, LLM-DA selects RE-GCN and TiRGN as the graph-based reasoning function fg(Query). The
detail of each baseline is described in Appendix C.2.

Parameter Setting. The proposed LLM-DA uses the ChatGPT4 as the LLM for Rules Generation and
Dynamic Adaptation. LLM-DA chooses Mean Reciprocal Rank (MRR) and Hit@N (N = 1, 3, 10)
as evaluation metrics, and presents the filtered results (Appendix C.3). Additionally, LLM-DA sets
the decay rate λ in Temporal Logical Rules Sampling and Candidate Generation, the threshold θ in
Dynamic Adaptation, the min-confidence γ and the parameter α in Candidate Generation on both
datasets as follows: λ = 0.1, θ = 0.01, α = 0.9 and γ = 0.01, except for α = 0.8 on ICEWS05-15.
The number of iterations for the Dynamic Adaptation is set as 5. All experiments are implemented on
a NVIDIA RTX 3090 GPU with i9-10900X CPU.

5.2 Performance Comparison

The link prediction experimental results are displayed of ICEWS14 and ICEWS05-15 in Table 1, and
the ICEWS18 is shown in Appendix C.4. The experimental analyses are listed as follows:

(1) Experimental results indicate that even without fine-tuning, the proposed LLM-DA can still surpass
all LLM-based TKGR methods. This phenomenon demonstrates that the dynamic adaptation strategy
can effectively update LLMs-generated general rules with latest events to capture the evolving nature
of TKGs, thereby significantly improving the accuracy of future event predictions. Additionally, we
present the visualization experiment in Appendix C.6, which validates the superiority of the dynamic
adaptation strategy.

(2) Some LLMs-based TKGC methods such as PPT [21] and GPT-NeoX [48], are not always superior
to traditional TKGR methods. This is primarily because the rules generated by LLMs are too broad
and sometimes fail to precisely adapt to specific data. However, the proposed LLM-DA outperforms
the existing state-of-the-art benchmarks on all metrics. This phenomenon proves that LLM-DA can
effectively guide LLMs in adjusting rules to the target distribution.

4We use the snapshot of ChatGPT taken from February 15th 2024 (gpt-3.5-turbo-0215) to ensure the
reproducibility.
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(3) GPT-NeoX [48] is an important baseline as it also incorporates GPT as an LLM in TKGC tasks.
However, LLM-DA shows significant improvement. This phenomenon indicates that the dynamic
adaptation strategy can effectively update LLMs-generated rules to adapt to future data.

(4) Furthermore, replacing the graph-based reasoning module fg(Query) with RE-GCN (“LLM-DA
(RE-GCN)”) and TiRGN (“LLM-DA (TiRGN)”), the MRR performance shows a slight variation.
This variation highlights the importance of incorporating graph-based reasoning function in enhancing
the ability to predict future events.

5.3 Analysis of Dynamic Adaptation

In LLM-DA, dynamic adaptation aims to continuously update the generated rules to capture temporal
patterns and facilitate future predictions. To further investigate its impact, we aim to answer the
following questions: RQ1: Can the dynamic adaptation better extract the temporal patterns from
TKGR for reasoning? RQ2: Can the dynamic adaptation adapt to different distributions over time?
RQ3: Can the iterative dynamic adaptation improve the performance?

Table 2: Ablation study on different data without dynamic adaptation on both datasets. The best
results are in bold. “LLM-DA w H” indicates “only using the historical data”, “LLM-DA w C” is
“only using the current data”, and “LLM-DA w H+C” denotes “using the historical and current data”.

Models ICEWS14 ICEWS05-15
MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10

LLM-DA (TiRGN) w H 0.450 0.345 0.502 0.656 0.503 0.395 0.563 0.709
LLM-DA (TiRGN) w C 0.454 0.350 0.507 0.657 0.508 0.400 0.570 0.714

LLM-DA (TiRGN) w H+C 0.457 0.352 0.510 0.659 0.511 0.402 0.573 0.718
LLM-DA (TiRGN) 0.471 0.369 0.526 0.671 0.521 0.416 0.586 0.728

RQ1: The ablation study on different data without dynamic adaptation aims to evaluate the impact
of dynamic adaptation on performance. Dynamic adaptation typically employs the current data to
update the rules generated by LLMs based on historical data. To demonstrate the superiority, we
compare three variations, including “LLM-DA w H”, “LLM-DA w C” and “LLM-DA w H+C”, and the
experimental results are shown in Table 2. Specifically, the “LLM-DA w H+C” outperforms “LLM-DA
w H” and “LLM-DA w C”, indicating that large-scale historical data can provide general knowledge,
while current data offers relevant knowledge. The combination of both enhances the prediction
of future events. Furthermore, compared to “LLM-DA w H+C”, LLM-DA shows a significant
improvement. This phenomenon demonstrates that the dynamic adaptation strategy can effectively
integrate historical data and current data, leveraging the current data to update the rules generated by
LLMs on historical data.

RQ2: The temporal data has the time decay property, causing the issue of distributional shift.
Specifically, the longer the time interval between the data, the more pronounced the shift be-
comes. To verify whether the dynamic adaptation can adapt to different distributions over time, we

Figure 4: Time interval segmented prediction: MRR perfor-
mance on both datasets compared to different baselines.

conduct the time interval segmented
prediction experiment, which typi-
cally segments the future data into
multiple time intervals based on
chronological order, and then con-
ducts the link prediction experiment
for each time interval. As shown in
Figure 4, the proposed LLM-DA ex-
hibits a significant performance im-
provement in the MRR metric over
RE-GCN and TiRGN in each time
interval. This indicates that the pro-
posed LLM-DA can accurately capture the temporal dependencies in TKGs and adapt to the continu-
ously changing temporal data. Furthermore, in Appendix C.5, we conduct long-term horizontal link
prediction to forecast events occurring at future time points.

RQ3: To further verify whether the number of iterations of the dynamic adaptation module affects
the performance, we conduct the different numbers of iterations experiment on both datasets. As
shown in Figure 5, the MRR performance exhibits an increasing trend as the number of iterations

9



Figure 5: Comparison with different number of iterations on
both datasets.

increases. These observations in-
dicate that the dynamic adaptation
strategy can continuously update the
LLMs-generated rules with the latest
events through iterations, thereby bet-
ter adapting to the dynamic changes of
TKGs. This further demonstrates the
effectiveness and necessity of the dy-
namic adaptation strategy in handling
the evolving nature of TKGs. More-
over, we conduct the parameter anal-
ysis experiment to validate the impact
of the weight α in Appendix C.7.

6 Conclusion

In this paper, we propose a novel Large Language Model-guided Dynamic Adaptation (LLM-DA)
method to enhance TKGR tasks. Specifically, LLM-DA leverages a contextual relation selector
to identify the top k most relevant relations, thereby selecting pertinent contextual information.
Subsequently, LLM-DA harnesses the generative capabilities of LLMs to analyze historical data and
derive general rules. Furthermore, LLM-DA proposes a dynamic adaptation strategy to update the
LLM-generated rules with latest events, further capturing the evolving nature of TKGs. Experimental
results on several datasets unequivocally demonstrate that LLM-DA achieves competitive performance
compared to state-of-the-art methods. Appendix D further analyzes the limitations of LLM-DA and
provides an outlook for future work.
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Appendix

A Prompt for LLMs

A.1 Prompt for Rule Generation

Prompt for Rule Generation

Temporal Logical Rules “Rl(X,Y, Tl)← ∧l−1
i=1Ri(X, Y, Ti)” typically describe how the

relation ‘Rl’ between entities ‘X’ and ‘Y ’ evolves from past time steps ‘Ti (i = {1, · · · , (l−
1)})’ (Rule body) to the next timestamp ‘Tl’ (Rule head), and please follow the constraint
“T1 ≤ · · · ≤ Tl−1 < Tl”.

You are an expert in temporal knowledge graph reasoning, and please generate as many
temporal logical rules as possible related to ‘Rl’ based on extracted temporal rules.

Here are a few examples:
Example 1:

Rule Head:
Cooperate_economically (X , Y , T )

Extracted Rules:
Cooperate_economically (X , Y , T2)← Provide_aid (X , Y , T1)
Cooperate_economically (X , Y , T3)← Host_a_visit (X , Z1, T1) & Negotiate (Z1,

Y , T2)
···

Generated Temporal Logical Rules:
Cooperate_economically (X , Y , T2)← Engage_in_negotiation (X , Y , T1)
Cooperate_economically (X , Y , T3)← inv_Engage_in_negotiation (X , Z1, T1) &

Make_a_visit (Z1, Y , T2)
···

Example 2:
Rule Head:

Appeal_for_economic_aid (X , Y , T )
Extracted Rules:

Appeal_for_economic_aid (X , Y , T2)← inv_Reduce_or_stop_military_assistance
(X , Y , T1)

Appeal_for_economic_aid (X , Y , T3)← inv_Express_intent_to_cooperate (X , Z1,
T1) & Make_statement (Z1, Y , T2)

···
Generated Temporal Logical Rules:

Appeal_for_economic_aid (X , Y , T2)←Make_an_appeal_or_request (X , Y , T1)
Appeal_for_economic_aid (X , Y , T3)← inv_Make_an_appeal_or_request (X , Z1,

T1) & Make_statement (Z1, Y , T2)
···

Extracted Rules from Historical Data:
······

Let’s think step-by-step, please generate as many as possible most relevant temporal rules
that are relative to "{head_rule(X,Y, T )}" based on the above extracted rules from historical
data.

For the relations in rule body, you are going to choose from the candidate relations:
“{cj1 , cj2 , . . . , cjk}”.

Return the rules only without any explanations.
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A.2 Prompt for Dynamic Adaptation

Prompt for Dynamic Adaptation

Temporal Logical Rules “Rl(X,Y, Tl)← ∧l−1
i=1Ri(X, Y, Ti)” typically describe how the

relation ‘Rl’ between entities ‘X’ and ‘Y ’ evolves from past time steps ‘Ti (i = {1, · · · , (l−
1)})’ (Rule body) to the next timestamp ‘Tl’ (Rule head), and please follow the constraint
“T1 ≤ · · · ≤ Tl−1 < Tl”.

You are an expert in temporal knowledge graph reasoning, and please analyze these
LLMs-generated rules and update the low-quality rules based on the extracted rules from
current data.

Here are a few examples:
Example 1:

Rule Head:
inv_Provide_humanitarian_aid (X , Y , T )

Low Quality Temporal Logical Rules:
Make_a_visit (X , Y , T2)← Provide_military_protection_or_peacekeeping (X , Y ,

T1)
Make_a_visit (X , Y , T4)← Appeal_for_diplomatic_cooperation_(such_as_policy_

support) (X , Z1, T1) & inv_Consult (Z1, Z2, T2) & inv_Make_statement (Z2, Y , T3)
Generated High Quality Temporal Logical Rules:

Make_a_visit (X , Y , T2)← Express_intent_to_meet_or_negotiate (X , Z1, T1) &
Make_a_visit (Z1, Y , T2)

Make_a_visit (X , Y , T3)← Consult (X , Z1, T1) & Engage_in_negotiation (Z1, Z2,
T2) & Make_a_visit (Z2, Y , T3)

···
Example 2:

Rule Head:
inv_Provide_humanitarian_aid (X , Y , T )

Low Quality Temporal Logical Rules:
inv_Provide_humanitarian_aid (X , Y , T2)← inv_Investigate (X , Y , T1)
inv_Provide_humanitarian_aid (X , Y , T2)← inv_Engage_in_diplomatic_ coopera-

tion (X , Y , T1)
Generated High Quality Temporal Logical Rules:

inv_Provide_humanitarian_aid (X , Y , T2)← inv_Provide_aid (X , Y , T1)
inv_Provide_humanitarian_aid (X , Y , T3)← Criticize_or_denounce (X , Z1, T1) &

Sign_formal_agreement (Z1, Y , T2)
...

Low-quality Temporal Logical Rules:
······

Extracted Rules from Current Data:
······

Let’s think step-by-step, and please update the low-quality temporal logic rules related to
“{head_rule(X,Y, T )}” based on the extracted rules from current data.

For the relations in rule body, you are going to choose from the candidate relations:
“{cj1 , cj2 , . . . , cjk}”.

Return the rules only without any explanations.
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B Theoretical Analysis of the Constrained Markovian Random Walks

In conducting a theoretical analysis of constrained Markovian random walks, we can examine their
characteristics and effects from several key aspects:

• Impact of Time Weighting: By using weighted transition probabilities Pxy(tl), constrained
Markovian random walks can assign different importance to neighboring nodes at different
time points. In particular, through the exponential decay function w(t) = exp(−λ(tl − T )),
we can control the extent to which time influences the transition probabilities. The larger the
parameter λ, the stronger the preference for recent events, which helps capture short-term
dynamic changes.

• Traversal Properties: An important feature of constrained Markovian random walks is
their ability to traverse different paths in TKGs. Since the transition probabilities consider
time information, constrained Markovian random walks are more likely to explore paths
with temporal continuity compared to traditional random walks, thereby better reflecting
temporal relationships.

C Experiments

C.1 Datasets

Table 3 provides a comprehensive overview of the statistical information for the entire datasets used
in our experiments. This includes key metrics such as the number of entities, the number of relations,
the number of temporal facts, and the granularity of each dataset. This statistical information is
crucial for understanding the scale and complexity of the datasets, as well as for evaluating the
performance of LLM-DA under different experimental conditions.

Integrated Crisis Early Warning System (ICEWS) is a TKG for international crisis early warning and
analysis, which collects and integrates data on political events, social dynamics, and international
relations worldwide. Specifically, ICEWS14 [52] contains events that occurred from 1/1/2014 to
12/31/2014; ICEWS05-15 [52] includes events that occurred between the years 2005 and 2015;
ICEWS18 [22] covers events from 1/1/2018 to 10/31/2018.

Table 3: Statistic information of whole datasets.

Datasets #Entities #Relations #Historical Data #Current Data #Future Data #Granularity
ICEWS14 6,869 230 74,845 8,514 7,371 24 hours

ICEWS05-15 10,094 251 368,868 46,302 46,159 24 hours
ICEWS18 23,033 256 373,018 45,995 49,545 24 hours

C.2 Baselines

The proposed model LLM-DA is compared with some classic TKGR methods, including TKGR
methods and LLMs-based TKGR methods.

TKGR methods

• RE-NET [43]: RE-NET first TKGC method for predicting future events, which employs a
recurrent event encoder and a neighborhood aggregator to encode historical facts;

• RE-GCN [44]: RE-GCN is an extension of RE-NET, which introduces RGCN and GRU to
encode historical facts;

• TiRGN [46]: TiRGN employs constrained random walks for temporal logical rule learning;
• TLogic [5]: TLogic learns the temporal logical rules from TKGs based on temporal random

walks;

LLMs-based TKGR methods

• GPT-NeoX [48]: GPT-NeoX introduces in-context learning with GPT for TKG forecasting;
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• Llama-2-7b-CoH, Vicuna-7b-CoH [23]: Llama-2-7b-CoH, Vicuna-7b-CoH fine-tune Llama-
2-7b and Vicuna-7b on historical data for TKG prediction;

• Mixtral-8x7B-CoH [22]: Mixtral-8x7B-CoH leverage Mixtral-8x7B to explore high-order
histories step-by-step for the TKG prediction;

• PPT [21]: PPT introduces the Pre-trained Language Model to predict future events.

C.3 Link Prediction Metrics

We evaluate our model using Mean Reciprocal Rank (MRR) and Hit@N metrics, where N is set to
1, 3, and 10. Higher scores indicate better performance. Lastly, we present the final experimental
results, termed as filtered, which exclude all corrupted quadruplets from the TKG.

• Mean Reciprocal Rank (MRR): MRR measures the average accuracy of ranking predictions
made by a model. It is calculated by taking the reciprocal of the rank of the correct answer
for each query and then averaging these reciprocal ranks across all queries. Mathematically,
for each query, if the rank of the correct answer is r, then the MRR score for that query is 1

r .
The overall MRR score is the average of these reciprocal ranks. MRR values range between
0 and 1, where a higher value indicates better performance in ranking predictions.

• Hit@N : Hit@N measures the proportion of correct predictions within the top N ranked
results. For example, when N = 1, we are interested in whether the correct answer is
predicted within the top-ranked result. When N = 3, we evaluate whether the correct
answer is within the top three predictions. The value of N can be chosen based on the
specific task and dataset characteristics, commonly set to 1, 3, or 10. Hit@N values also
range between 0 and 1, representing the proportion of correct predictions.

C.4 Link Predication on ICEWS18

The link prediction experimental results of ICEWS18 are displayed in Table 4. The proposed LLM-
DA outperforms existing state-of-the-art benchmarks on ICEWS18 across all metrics. Moreover,
GPT-NeoX [48] is an important baseline because it also introduces GPT as LLMs. However, our
proposed method still improves all metrics on ICEWS18. For example, the proposed method obtains
15.6% improvement under Hit@10 on ICEWS18. These phenomena demonstrate that the dynamic
adaptation strategy can effectively update LLM-generated rules with current data, ensuring that the
rules consistently incorporate the most recent knowledge and better generalize predictions for future
events.

Table 4: Link prediction results on ICEWS18 dataset. The best results are in bold and - means the
result is unavailable. ♠ denotes the TKGR methods, ♣ represents the LLMs-based TKGR. The
results of the models with † are derived from [22], and ‡ is from [23].

Type Models Train ICEWS18
MRR Hit@1 Hit@3 Hit@10

♠
RE-NET† [43] ! 0.287 0.188 0.327 0.482
RE-GCN [44] ! 0.326 0.223 0.367 0.526
TLogic‡ [5] ! – 0.205 0.340 0.485
TiRGN [46] ! 0.336 0.232 0.379 0.542

♣

PPT [21] ! 0.266 0.169 0.306 0.454
Llama-2-7b-CoH‡ [23] ! – 0.223 0.363 0.522
Vicuna-7b-CoH‡ [23] ! – 0.209 0.347 0.536

GPT-NeoX [48] % – 0.192 0.313 0.414
Mixtral-8x7B-CoH† [22] % 0.330 0.218 0.378 0.549

LLM-DA (TiRGN) % 0.357 0.255 0.403 0.570
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C.5 Long Horizontal Link Prediction

Long horizontal link prediction generally predict the events happening at time point t + k ∗ △T ,
where △T denotes the interval between time points and k controls how far we will predict. To
perform the long horizontal link prediction, we adjust the integral length △T on ICEWS14 and
ICEWS05-15 datasets. As described in Figure 6 and Figure 7, we report the results corresponding to
different△T on ICEWS14 and ICEWS05-15 and compare the proposed LLM-DA with the strongest
baselines RE-GCN [44] and TiRGN [46]. Experimental results shows that LLM-DA can achieve
the best performance on different △T both datasets. This phenomenon demonstrates that LLMs
can effectively learn meaningful rules, and the dynamic adaptation strategy can fully update the
LLM-generated rules, allowing for better adaptation to the constantly changing dynamics within
TKGs.

Figure 6: Long horizontal link forecasting: time-aware filtered MRR on ICEWS14 with respect to
different time points.

Figure 7: Long horizontal link forecasting: time-aware MRR performance on ICEWS05-15 with
respect to different time points.

18



C.6 Visualization Experiment

To visually present the changes of rule and candidate rankings during the Rule Generation and
Dynamic Adaptation, we conducted a visualization experiment in Table 5. For the query (China,
Consult, ?, 2014-12-05), the actual answer Japan ranked fifth during the Rule Generation stage,
but after the Dynamic Adaptation, it advanced to the top position. Meanwhile, the sequencing of
rules in two phases also exhibits significant changes. For instance, the ranking of the rule "Consult
← inv_Make_an_appeal_or_request & Express_· · · _meet_or_negotiate" changes from fifth to first
position. This highlights the efficacy of the dynamic adaptation strategy, which can update the
LLM-generated rules with latest events to capture the evolving nature of TKGs.

Table 5: Visualization experiment for query (China, Consult, ?, 2014-12-05). Rules for Rule
Generation and Rules for Dynamic Adaptation represent the dynamic changes of the rules during
the Rule Generation and Dynamic Adaptation. Candidates for Rule Generation and Candidates for
Dynamic Adaptation indicate the changes in the corresponding candidate rankings. “Japan”is the
actual answer.

Query (China, Consult, ?, 2014-12-05)

Rules for Rule Generation

① inv_Host_a_visit & Host_a_visit & inv_Discuss_by_telephone
② Meet_at_a_‘third’_location

③ Express_intent_to_engage_in_diplomatic_cooperation & inv_Host_a_visit & inv_Consult
④ Consult & Express_intent_to_cooperate & Consult

⑤ inv_Make_an_appeal_or_request & Express_intent_to_meet_or_negotiate

Candidates for Rule Generation

① Malaysia
② Cambodia

③ China
④ South_Korea

⑤ Japan
Query (China, Consult, ?, 2014-12-05)

Rules for Dynamic Adaptation

① inv_Make_an_appeal_or_request & Express_intent_to_meet_or_negotiate
② Consult & Express_intent_to_cooperate & Consult

③ Meet_at_a_‘third’_location
④ Express_intent_to_engage_in_diplomatic_cooperation & inv_Host_a_visit & inv_Consult

⑤ inv_Host_a_visit & Host_a_visit & inv_Discuss_by_telephone

Candidates for Dynamic Adaptation

① Japan
② France

③ South_Korea
④ South_Africa

⑤ Malaysia
1 Express_intent_to_engage_in_diplomatic_cooperation represents Express_intent_to_engage_in_diplomatic_cooperation_(such_as_policy_support).

C.7 Parameter Analysis

Figure 8: Comparison with different weight α on both datasets.

To experimentally study the effect of the weight α on ICEWS14 and ICEWS05-15, we tune the
weight in a range {0, 0.1, · · · , 1} and observe the link prediction experimental results. As shown in
Figure 8, the MRR performance exhibits a trend of initially increasing and then decreasing, reaching
the peak at α = 0.9 for ICEWS14, and α = 0.8 for ICEWS05-15. These observations underscore that
the weight α plays a crucial role in influencing the performance of LLM-DA. Specifically, the weight
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α shows better performance at higher values, highlighting the importance of rule-based reasoning
module.

Moreover, when α = 1, indicating that only rules are used to generate candidates, the MRR
performance decreases. This demonstrates that although LLMs can learn meaningful rules, the rules
generated based on historical data cannot fully fit the future data due to the difference in distribution.
This results in a few queries failing to find matching candidates when relying solely on rules for
candidate generation.

D Limitations

Our limitations can be summarized as follows: (1) LLM-DA does not consider the semantics of
nodes, which may reduce the quality of the sampled rules. (2) LLM-DA does not generate rules
based on queries, which may result in the rules generally lacking specificity. (3) LLM-DA requires
manually constructed prompts, which means that prompts need to be redesigned for different datasets.
Moreover, manual construction of prompts also incurs significant costs. In the future, we will employ
automated prompt learning to generate query-dependent rules through LLMs. Furthermore, we
integrate the semantics of nodes during the temporal logical rules sampling stage.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have made the main claims in the abstract and introduction, which can
accurately reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of the work in Section 7.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have disclosed all the information needed to reproduce the main experi-
mental results of the paper in Section 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have uploaded the anonymous code in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have listed all experimental settings in Subsection 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All the experimental results are acquired by multiple trails of experiments,
andwe report the average and standard deviation results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have provided sufficient information on the computer resources in Subsec-
tion 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper complies with the NeurIPS Code of
Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have ensured that all code, data, and models used in our research are cited
appropriately, and we have adhered to the licensing agreements and terms of use specified
by the original authors.
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• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The details of the dataset/code/model is created by the anonymized URL in
ABSTRACT.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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