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Abstract
Modern online advertising systems usually involve a large amount

of advertisers in each auction, causing scalability issues. To miti-

gate the problem, two-stage auctions are designed and deployed in

practice, enabling efficient allocations of ad slots among numerous

candidate advertisers within a short response time. Such a design

uses a fast but coarse model to select a small subset of advertisers

in the first stage, and a slow yet refined model to finally decide the

winners. However, existing two-stage auction mechanisms primar-

ily focus on optimizing welfare, ignoring other crucial objectives

of the platform, such as revenue.

In this paper, we propose ad-wise selection metrics (namely

Max-Wel and Max-Rev) that are based on an ad’s contribution to

the platform’s objective (welfare or revenue). Then we provide

theoretical guarantees for the proposed metrics. Our method is

applicable to both welfare and revenue optimizations and can be

easily implemented using neural networks. We conduct extensive

experiments on both synthetic and industrial data to demonstrate

the advantages of our proposed selection metrics over existing

baselines.

CCS Concepts
• Theory of computation → Algorithmic game theory and
mechanism design; • Computing methodologies → Neural
networks.
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Mechanism design, Online advertising, Neural networks
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1 Introduction
Online advertising plays a vital role in modern Internet companies

and serves as their primary source of revenue [9]. In modern adver-

tising systems, when a user makes a request, the platform allocates

multiple ad slots to candidate advertisers through ad auctions [9, 25].

Since these auctions are in real-time, the final allocation of ad slots

must be determined within tens of milliseconds [12]. Moreover, to

ensure efficient and effective allocation, auction outcomes often

rely not only on the advertisers’ bids but also on indicators of the
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relevance of the ad to the current user, such as click-through rate

(CTR) and conversion rate (CVR), which we collectively refer to as

the ad quality. In real-world scenarios, the platform often utilizes a

refined but heavy machine learning model to predict the quality of

each ad [16, 28]. However, with the growing number of candidate

advertisers, this heavy model can only be applied to a subset of the

entire ad set due to time constraints.

To address this scalability issue, the platform turns to use a two-

stage auction architecture: in the first stage, it swiftly selects a

small subset of ads to enter the next stage using a lightweight but

coarse MLmodel; while in the second stage, it employs a refined ML

model on the remaining advertisers to determine the final auction

outcome. In recent years, the two-stage auction design problem has

attracted attention from numerous researchers and can be broadly

categorized into two lines. One line of research focuses on an un-

derlying optimization problem: given rough estimates of advertiser

quality, such as its distribution, how to select a subset of advertisers

to maximize the objective, also known as the bidder selection prob-

lem [2, 11, 20, 23]. However, the strong and unrealistic assumption

about known distribution informationmakes it challenging to apply

these algorithms to real-world scenarios. Another line of research

studies this problem from a machine learning perspective [26]: as-

suming that only partial features can be used in the first stage, how

to rapidly and efficiently select high-quality advertisers to proceed

to the second stage by a machine learning model. Our main focus

in this paper lies in the latter. Existing work in this line mainly falls

short in the following aspects: 1) Due to the difficulties involved,

most research addresses a related, albeit different, problem rather

than directly tackling the original optimization problem. 2) Much

of the existing work lacks theoretic foundations and guarantees. 3)

only the welfare is considered as the optimization objective while

overlooking other important goals of the platform including the

revenue.

To address the aforementioned limitations, we propose novel

selection metrics for the advertiser selection problem. First, we for-

mulate the two-stage auction as an optimization problem with both

welfare and revenue as the objectives. We derive ad-wise selection

metrics based on theoretic analysis of the auctions. We rank the

ads according to their expected contributions to the objective func-

tions, where the top𝑚 ads are selected to proceed to the next stage.

Since the proposed metrics are based on auction theory, we are able

to provide approximation bounds for each metric under different

degrees of assumptions. We also design a learning-based implemen-

tation of our method, which can be trained using existing auction

data. Finally, we conduct extensive experiments to demonstrate

the effectiveness of our proposed method. Specifically, we compare

the performance of our proposed methods and existing two-stage

baselines in terms of both welfare and revenue, using both synthetic

and industrial data. We find that our proposed method consistently

outperforms baselines. Moreover, we compare the performance of

different methods across different selection sizes and find that the

margin of improvement tends to be larger when the number of

1
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advertisers selected in the first stage is smaller. This indicates that

our metrics excel in prioritizing high-quality advertisers.

1.1 Related Work
Learning-based auction design [8, 13, 24] has received consider-

able attention recently, particularly in the online advertising sce-

nario [17, 19]. However, to our knowledge, there is limited research

on two-stage auctions. One of the most relevant works to ours is the

study by Wang et al. [26], who propose a selection metric for wel-

fare maximization by maximizing the expected recall. In contrast,

our approach considers both welfare and revenue maximization,

using each ad’s contribution to the objective as the selection metric.

We also provide theoretical guarantees for our method.

Another related topic is the subset selection problem under un-

certainty, which has been investigated across various scenarios,

including search engine [4], voting theory [21], team selection [15],

and procurement auctions [22]. In the realm of online advertising,

this problem is often referred to as the bidder selection problem

(BSP). Previous work by Chen et al. [5] can be viewed as the BSP for

maximizing welfare in a VCG setting. Mehta et al. [20] extend this

by considering both welfare and revenue maximization. Bei et al.

[2] studies the BSP for maximizing revenue under multiple auction

formats with a single item. These studies assume knowledge of the

distribution of participants’ values. In contrast, our focus in this

paper is to leverage data-driven advantages to aid bidder selection

from a machine-learning perspective.

2 Preliminaries
We consider the two-stage auction problem for an online advertising

platform (e.g., a search engine). When a user of such a platform

performs a specific action (for example, entering a query in a search

engine), the platform displays several ads along with the organic

content. The space that contains the ads is called the slots, and

these slots are usually sold through auctions. Once an ad auction

is triggered, the platform asks the advertisers to submit their bids

and then decides the winners based on their bids.

Throughout this paper, we assume that there are 𝑛 potential

advertisers competing for 𝐾 slots and each advertiser has only

one ad. We sometimes use “ad” and “advertiser” interchangeably.

Denote by 𝑁 = {1, · · · , 𝑛} the set of all possible advertisers. Each
advertiser 𝑖 ∈ 𝑁 has a private value 𝑣𝑖 ∈ R+ that captures their

payoff for an ad click. Based on their private value, each advertiser

submits a bid 𝑏𝑖 ∈ R+. We use 𝒃 = (𝑏1, . . . , 𝑏𝑛) to represent the

bid vector of all advertisers. Aside from 𝒃 , the ad auction results

also depend on the quality of the ad itself, which we denote by 𝑞𝑖 .

The quality of an ad can reflect the current user’s interest in the ad.

Similar to most existing works, we use the click-through rate (CTR)

as our quality index, i.e., 𝑞𝑖 is the probability of the user clicking

on the ad. We use 𝒒 = (𝑞1, 𝑞2, . . . , 𝑞𝑛) to denote the CTR profile of

all advertisers for the current user.

An ad auction mechanism consists of two components: an alloca-

tion rule𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) and a payment rule 𝑝 = (𝑝1, 𝑝2, . . . , 𝑝𝑛).
The allocation rule 𝑥𝑖 (𝒃, 𝒒) is a function that outputs an integer

indicating which slot is allocated to advertiser 𝑖 , i.e., 𝑥𝑖 (𝒃, 𝒒) = 𝑗

represents that advertiser 𝑖 wins the 𝑗-th slot, and 𝑗 = 0 means that

the advertiser loses this auction. The payment rule 𝑝𝑖 (𝒃, 𝒒) is also

a function that outputs a real number representing the fee that the

advertiser 𝑖 needs to pay when his ad is clicked by the user. When

we refer to𝐾 slots, it indicates that a total of𝐾 winners will win the

auction. In this paper, we view 𝐾 as a given constant and consider

one of the most widely used auction mechanisms: the generalized

second-price auction (GSP). The GSP auction first ranks all the ads

by a score 𝑠𝑖 = 𝑏𝑖𝑞𝑖 , and then allocates the 𝑗-th slot to the 𝑗-th

highest advertiser. If the 𝑗-th ad is clicked by the user, he pays the

least amount that would retain his slot 𝑗 . Formally:

𝑥𝑖 (𝒃, 𝒒) =
{
𝑗 if 𝑠𝑖 = 𝑠 ( 𝑗 )
0 otherwise

, 𝑝𝑖 (𝒃, 𝒒) =
{
𝑠 ( 𝑗+1)
𝑞𝑖

if 𝑥𝑖 (𝒃, 𝒒) = 𝑗

0 otherwise

,

(1)

where the subscript ( 𝑗) refers to the advertiser that has the 𝑗-th

highest score.

2.1 CTR Prediction and Two-stage Auctions
In real-world applications, the CTR of an ad is usually predicted

by machine learning models. Therefore, the performance of the ad

auction depends not only on the mechanism itself but also on the

accuracy of the ad CTR estimator. In the last decade, a variety of

learning models have been proposed to estimate the CTR of ads

relative to the user, and different learning models may use different

inputs.

A naive and straightforward two-stage auction usually makes

use of two CTR models: a lightweight but coarse model M𝑐
and a

heavy but refined modelM𝑟
. In the first stage, it uses the coarse

model M𝑐
to select potential winners to enter the next stage. And

in the second stage, it uses the refined model M𝑟
to determine the

final winners. Compared with the refined model, the coarse model

uses fewer features and thus is computationally more efficient but

less accurate. Formally, let 𝑎𝑖 and 𝑢 be the features of ad 𝑖 and the

user that is used by the refined model. We sometimes call them

the full features. The coarse model only uses partial features (i.e., a

subset of full features) which we denote by 𝑎𝑖 and �̃�, respectively.

Therefore, the CTRs predicted by the two models are

𝑞𝑖 = M𝑟 (𝑎𝑖 , 𝑢), 𝑞𝑖 = M𝑐 (𝑎𝑖 , �̃�) . (2)

We assume that two models are trained using the same set of data

D. Let D(★,⋄) ⊆ D be the set of data that contains feature (★,⋄).
As mentioned in [26], a well-trained CTR model should satisfy:

𝑞𝑖 =
|𝐷+ (𝑎𝑖 , 𝑢) |
|𝐷 (𝑎𝑖 , 𝑢) |

, 𝑞𝑖 =
∑︁

𝑎𝑖 |�̃�𝑖 ,𝑢 |�̃�
𝑞𝑖 × 𝑃𝑟 [𝑎𝑖 , 𝑢 |𝑎𝑖 , �̃�] = E

𝑎𝑖 |�̃�𝑖 ,𝑢 |�̃�
[𝑞𝑖 ],

whereD+
is the set of positive data, i.e., the clicked data. Obviously,

the naive two-stage mechanism fails to consider the relationship

between the two CTR estimators, rendering it an ineffective solu-

tion. Next, we delve into the two-stage auction design problems

based on this relationship.

In line with prior works [11, 26], we adopt the GSP mechanism

for the second stage. Consequently, our primary focus lies in the

design of the first stage, where we are constrained to use only

partial features to select a subset of advertisers. We consider two

kinds of objectives commonly used in the literature: the welfare

and the revenue. The welfare of an auction is defined as the total
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1
realized through the auction. Formally, the welfare can be

written as follows:

Wel =
∑︁
𝑖∈𝑁

𝑏𝑖𝑞𝑖 I {𝑥𝑖 (𝒃, 𝒒) > 0} ,

where I{·} is the indicator function. The revenue of an auction is

the total payment received by the platform. Under a GSP auction,

the revenue can be written as:

Rev =
∑︁
𝑖∈𝑁

𝑝𝑖𝑞𝑖 I {𝑥𝑖 (𝒃, 𝒒) > 0} .

The objective of the first stage is to select a subset 𝑀 ⊆ 𝑁 of ads

with size |𝑀 | = 𝑚 ≥ 𝐾 to enter the second stage such that the

objective is maximized, given partial feature (�̃�, �̃�) and bid profile 𝒃 .
Denote by𝑇𝑜𝑝𝐾

𝑀
(𝒃, 𝒒) the set of 𝐾 ads with the highest 𝑠𝑖 in subset

𝑀 . Thus the optimization problem in the first stage can be phrased

as:

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑏𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑀 (𝒃, 𝒒)

}]
or

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑝𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑀 (𝒃, 𝒒)

}]
,

depending on whether the final goal of the platform is to maximize

the welfare or the revenue. In the above optimization problems,

𝑞𝑖 is computed by M𝑟
in Equation (2), and �̃� = (𝑎1, 𝑎2, . . . , 𝑎𝑛),

𝒂 = (𝑎1, 𝑎2, . . . , 𝑎𝑛) are the profiles of the partial and full features

of all the ads, respectively.

Incentive Issues. We also need to take into account the advertis-

ers’ incentives to misreport their values when designing a two-stage

auction. Incentive compatibility (or simply IC) is one of the most

important economic properties in auction design. An auction mech-

anism is IC if it is in their best interest to report their true valuations.

Fortunately, it is known from [27] that for value-maximizing ad-

vertisers, truthfully reporting is the best strategy if the mechanism

satisfies the following conditions: (i) Monotonicity: an advertiser

would win the same ad slot or a higher one if she reports a higher

bid. (ii) Critical price: the payment for a winning advertiser is the

minimum bid that she needs to maintain the same ad slot. We as-

sume all advertisers are value maximizers since this model captures

the goals of most advertisers in the advertising scenario. The GSP

auction already satisfies these two conditions, and the first stage has

nothing to do with payment. Therefore, to ensure the IC property of

a two-stage mechanism, we only need to ensure the monotonicity

of allocation in the first stage.

3 First-stage Ad Selection Metric for Welfare
Maximization

Intuitively, the objective in the first stage is to select as many “good”

ads as possible from the whole ad set 𝑁 . An ad can be regarded as

a “good” ad if the inclusion of the ad makes a fair amount of contri-

bution to the welfare of the auction. The following theorem gives

1
A more rigorous definition of the social welfare should use the advertisers’ values 𝑣

instead of their bids 𝑏. However, according to Wilkens et al. [27], value-maximizing

advertisers use the strategy 𝑏𝑖 = 𝑣𝑖 in the GSP auction. Thus, we do not distinguish

between the value 𝑣𝑖 and the bid 𝑏𝑖 and just use 𝑏𝑖 hereafter.

the contribution of each advertiser to the welfare of the platform.

For simplicity, define:

Wel(𝑀 |𝒃, �̃�, �̃�) = E
𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑏𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑀 (𝒃, 𝒒)

}]
.

Theorem 1. Given any bid profile 𝒃 and partial feature �̃�, �̃�, the
expected contribution of advertiser 𝑖 to the welfare objective function
is:

𝑓𝑖 (𝒃, �̃�, �̃�) = E
𝑞𝑖 |�̃�𝑖

[
𝑏𝑖𝑞𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

��� 𝒃, �̃�}] . (3)

Proof. If we can select a subset 𝑀 with a size equal to 𝑛 (i.e.,

set 𝑀 = 𝑁 ), then all ads can enter into the second stage. This

essentially reduces the problem to single-stage auctions, thereby

achieving optimal welfare. Then we have:

max

𝑀⊆𝑁
Wel(𝑀 |𝒃, �̃�, �̃�) ≤ E𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑁

𝑏𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

}]
.

The right-hand side of the above equation can also be written as:

E
𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑁

𝑏𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

}]
=
∑︁
𝑖∈𝑁

E
𝒒 |�̃�

[
𝑏𝑖𝑞𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

}]
=
∑︁
𝑖∈𝑁

E
𝑞𝑖 |�̃�𝑖

[
𝑏𝑖𝑞𝑖E𝒒−𝒊 |�̃�−𝒊

[
I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

}] ]
=
∑︁
𝑖∈𝑁

E
𝑞𝑖 |�̃�𝑖

[
𝑏𝑖𝑞𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

���𝒃, �̃�}] .
Define function 𝑓𝑖 (𝒃, �̃�, �̃�) as follows:

𝑓𝑖 (𝒃, �̃�, �̃�) = E
𝑞𝑖 |�̃�𝑖

[
𝑏𝑖𝑞𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

��� 𝒃, �̃�}] .
Then the right-hand side of the above equation is a summation of

𝑓𝑖 (𝒃, �̃�, �̃�) over all ads. Therefore, the ranking index 𝑓𝑖 (𝒃, �̃�, �̃�) can
be viewed as the expected contribution of ad 𝑖 to the objective. In

fact, if ad 𝑖 is a winner, its contribution is 𝑏𝑖𝑞𝑖 by definition. Thus,

𝑓𝑖 (𝑏, 𝑎, �̃�) is indeed the expected contribution of ad 𝑖 to the objective
and can serve as an ad-wise selection metric for the bidder selection

problem in the first stage. □

Tomaximizewelfare, we can rank ads according to their expected

contributions and select top𝑚 ads to proceed to the next stage. Thus

𝑀 is in fact a set-valued function with input 𝒃, �̃�, �̃�. We show that

the expected welfare contribution of set𝑀 is a lower bound of the

actual welfare of set𝑀 , that is:

Wel(𝑀 |𝒃, �̃�, �̃�) ≥
∑︁
𝑖∈𝑀

𝑓𝑖 (𝒃, �̃�, �̃�) .

Lemma 1. For any selected set𝑀 ⊆ 𝑁 , the expected welfare con-
tribution of set𝑀 is a lower bound of the actual welfare of choosing
set𝑀 .

In real-world advertising systems, the ranking index 𝑓𝑖 (𝒃, �̃�, �̃�)
can be approximated by a neural network. However, the input

of the network includes the bids and features of all participating

advertisers. The dimension of the input can be very high and even

variable, making it difficult to design and train the network. In fact,

3
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a typical online ad platform can have more than 100,000 advertisers.

The set of active advertisers may be different for different users

and the benefit of including the feature of inactive advertisers may

not be able to compensate for the difficulties posed by them in the

training of the network. Therefore, from now on, we will consider

the following simplified version of 𝑓𝑖 (𝒃, �̃�, �̃�) that only depends on

the features of ad 𝑖 itself:

¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) = E
𝒃−𝒊,�̃�−𝒊

[𝑓𝑖 (𝒃, �̃�, �̃�)] .

3.1 Ranking Score Monotonicity
Recall that the refined CTR 𝑞𝑖 is a random variable with mean 𝑞𝑖 .

As a result, the score 𝑠𝑖 = 𝑏𝑖𝑞𝑖 is also a random variable. Suppose

that all the random scores are independently conditioned on the

bid profile 𝒃 and the partial features �̃� and �̃�. We show that the

expected contribution
¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) of ad 𝑖 is larger than that of ad 𝑗 ,

if the score 𝑠𝑖 of ad 𝑖 stochastically dominates the score 𝑠 𝑗 of ad 𝑗 ,

where the relation of stochastic dominance is defined as follows:

Definition 1 (Stochastic Dominance). Random variable 𝑋
stochastically dominates random variable 𝑌 , if 𝐹𝑋 (𝑡) ≤ 𝐹𝑌 (𝑡),∀𝑡 ,
where 𝐹𝑋 (𝑡) and 𝐹𝑌 (𝑡) are the cumulative distribution functions of
𝑋 and 𝑌 , respectively.

An alternative and equivalent definition is that 𝑋 stochastically
dominates 𝑌 , if E𝑋 [𝑢 (𝑋 )] ≥ E𝑌 [𝑢 (𝑌 )] for any increasing function
𝑢 : R ↦→ R.

Denote by𝐺𝑖 (𝑡) and𝐺 𝑗 (𝑡) the cumulative distribution functions

of the random scores 𝑠𝑖 and 𝑠 𝑗 , and by 𝑔𝑖 (𝑡) and 𝑔𝑖 (𝑡) their cor-
responding density function. Here, we assume that all scores are

continuous random variables to avoid the complication of point

masses and tie-breaking rules. Formally, we have the following

result.

Theorem 2. Given any bid profile 𝒃 and partial feature �̃� and �̃�,
if the resulting random scores are independent and 𝑠𝑖 stochastically
dominates 𝑠 𝑗 , then ¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) ≥ ¯𝑓𝑗 (𝑏 𝑗 , 𝑎 𝑗 , �̃�).

Proof. Fix 𝑠𝑙 for all 𝑙 ∈ 𝑁 with 𝑙 ≠ 𝑖, 𝑗 . For ease of presentation,

denote by 𝑐𝑘 the 𝑘-th largest score in the set {𝑠𝑙 | 𝑙 ∈ 𝑁, 𝑙 ≠ 𝑖, 𝑗}.
Clearly, we have 𝑐𝐾−1 ≥ 𝑐𝐾 . Now consider the following three

cases.

Case 1. 𝑠𝑖 ≥ 𝑐𝐾−1. In this case, no matter what the actual value

of 𝑠 𝑗 is, ad 𝑖 is always among the top 𝐾 ads, i.e., 𝑖 ∈ 𝑇𝑜𝑝𝐾
𝑁
(𝒃, 𝒒).

Therefore, the contribution of ad 𝑖 to the welfare is simply 𝑠𝑖 , and

the expected contribution of ad 𝑖 in this case is:∫ ∞

𝑐𝐾−1

𝑠𝑖𝑔𝑖 (𝑠𝑖 )𝑠𝑖 .

Case 2. 𝑐𝐾 ≤ 𝑠𝑖 < 𝑐𝐾−1. In this case, there are already 𝐾 − 1 ads

with scores higher than 𝑠𝑖 . So ad 𝑖 can contribute to the welfare only

if 𝑠 𝑗 ≤ 𝑠𝑖 . Since 𝑠 𝑗 and 𝑠𝑖 are independent given 𝒃 , �̃�, and �̃�, 𝑠 𝑗 ≤ 𝑠𝑖
happens with probability𝐺 𝑗 (𝑠𝑖 ). Therefore, the total contribution
of ad 𝑖 in this case is:∫ 𝑐𝐾−1

𝑐𝐾

𝑠𝑖𝑔𝑖 (𝑠𝑖 )𝐺 𝑗 (𝑠𝑖 )𝑠𝑖 .

Case 3. 𝑠𝑖 < 𝑐𝐾 . In this case, we already have 𝐾 ads with scores

exceeding 𝑠𝑖 . Thus, ad 𝑖 cannot make a non-zero contribution even

if 𝑠 𝑗 < 𝑠𝑖 . So the total contribution is simply 0.

Combining the contributions in the three cases together, the

total contribution of ad 𝑖 is:∫ ∞

𝑐𝐾−1

𝑠𝑖𝑔𝑖 (𝑠𝑖 )𝑠𝑖 +
∫ 𝑐𝐾−1

𝑐𝐾

𝑠𝑖𝑔𝑖 (𝑠𝑖 )𝐺 𝑗 (𝑠𝑖 )𝑠𝑖 .

Define:

�̃� 𝑗 (𝑠𝑖 ) =


0 if 0 ≤ 𝑠𝑖 ≤ 𝑐𝐾
𝑠𝑖𝐺 𝑗 (𝑠𝑖 ) if 𝑐𝐾 < 𝑠𝑖 ≤ 𝑐𝐾−1

𝑠𝑖 if 𝑠𝑖 > 𝑐𝐾−1

,

and

�̃�𝑖 (𝑠 𝑗 ) =


0 if 0 ≤ 𝑠 𝑗 ≤ 𝑐𝐾
𝑠 𝑗𝐺𝑖 (𝑠 𝑗 ) if 𝑐𝐾 < 𝑠 𝑗 ≤ 𝑐𝐾−1

𝑠 𝑗 if 𝑠 𝑗 > 𝑐𝐾−1

.

Then the total contribution of ad 𝑖 can be re-written as:∫ ∞

0

�̃� 𝑗 (𝑠𝑖 )𝑔𝑖 (𝑠𝑖 )𝑠𝑖 .

Similarly, the contribution of ad 𝑗 can be obtained by switching the

role of 𝑖 and 𝑗 : ∫ ∞

0

�̃�𝑖 (𝑠 𝑗 )𝑔 𝑗 (𝑠 𝑗 )𝑠 𝑗 .

Since 𝑠𝑖 stochastically dominates 𝑠 𝑗 , by definition, we have𝐺𝑖 (𝑡) ≤
𝐺 𝑗 (𝑡),∀𝑡 , which implies �̃� 𝑗 (𝑡) ≥ �̃�𝑖 (𝑡),∀𝑡 . Consequently,

E
𝑠𝑖

[
�̃� 𝑗 (𝑠𝑖 )

]
=

∫ ∞

0

�̃� 𝑗 (𝑡)𝑔𝑖 (𝑡)𝑡

≥
∫ ∞

0

�̃�𝑖 (𝑡)𝑔𝑖 (𝑡)𝑡

= E
𝑠𝑖

[
�̃�𝑖 (𝑠𝑖 )

]
≥ E
𝑠 𝑗

[
�̃�𝑖 (𝑠 𝑗 )

]
,

where the last inequality is due to the alternative definition of

stochastic dominance.

Through the above analysis, we know that the contribution of

ad 𝑖 is always larger than that of ad 𝑗 for any fixed scores of other

ads. Taking expectation over the scores of other ads immediately

leads to the conclusion that the expected contribution of ad 𝑖 to the

welfare is larger than that of ad 𝑗 , or equivalently, ¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) ≥
¯𝑓𝑗 (𝑏 𝑗 , 𝑎 𝑗 , �̃�). □

3.2 Welfare Approximation
We derive approximation results for the selection metric. Based on

the approximation results, we are able to calculate the size of �̄�

needed to guarantee a certain fraction of the optimal welfare.

The above analyses are based on any given bid 𝒃 and partial

features �̃� and �̃�. The total expected welfare of the platform can

be obtained by taking expectations over them. To analyze the per-

formance of the ranking index
¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�), we further assume that

bid 𝑏𝑖 and partial feature 𝑎𝑖 are independent across the ads. Thus

the ranking index
¯𝑓𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) is also a random variable for any user

feature �̃� and is also independent across all ads.
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3.2.1 Uniform Distribution. We start with the simplest case where

the ranking indices
¯𝑓𝑖 of all ads are i.i.d. random variables that

follow the uniform distribution over the interval [𝑎, 𝑏].

Lemma 2. Suppose the ranking indices ¯𝑓𝑖 are i.i.d random variables
that follow uniform distribution𝑈 [𝑎, 𝑏] with 0 ≤ 𝑎 < 𝑏. Then always
including the ads with top𝑚 ranking indices achieves an 𝛼 fraction
of the optimal welfare if:

𝑚 >
𝑏

2(𝑏 − 𝑎)

[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
.

3.2.2 General Distribution. In addition to uniform distributions, we

also give results for general distributions with mean 𝜇 and variance

𝜎2
. We still assume that the ranking indices are i.i.d. random vari-

ables. Our welfare approximation result for general distributions is

as follows.

Lemma 3. Suppose the ranking indices ¯𝑓𝑖 are random variables
that follow a distribution with mean 𝜇 and variance 𝜎2. Then always
including the ads with top𝑚 ranking indices achieves an 𝛼 fraction
of the optimal welfare if:

𝑚 > 𝛼𝑛 − 𝜎

2𝜇
𝑛 +

√
2

4

(2𝑛 + 1)
√︂
𝜎

𝜇
.

4 First-stage Ad Selection Metric for Revenue
Maximization

In revenue-maximizing scenarios, the objective of the first stage

is also to select advertisers who contribute more to revenue. Here,

the revenue contribution of an ad is the expected payment made

by the advertiser.

Firstly, we give the equivalent form of the objective function of

revenue.

Lemma 4. The objective function for maximizing revenue can be
equivalently expressed as:

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}
−
∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]
.

(4)

Proof. Recall that the revenue optimization problem in the first

stage can be phrased as:

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑝𝑖𝑞𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑀 (𝒃, 𝒒)

}]
.

Combined with the definition of payment function 𝑝𝑖 , the optimiza-

tion problem can be rewritten as:

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�


∑︁
𝑖∈𝑀

𝐾∑︁
𝑗=1

𝑠
( 𝑗+1)
𝑀

I
{
𝑠𝑖 = 𝑠

( 𝑗 )
𝑀

} ,

where 𝑠
( 𝑗 )
𝑀

denotes the 𝑗-th highest score in the ad set𝑀 . Note that

given 𝒂 and 𝑢, we have:∑︁
𝑖∈𝑀

𝐾∑︁
𝑗=1

𝑠
( 𝑗+1)
𝑀

I
{
𝑠𝑖 = 𝑠

( 𝑗 )
𝑀

}
=

𝐾∑︁
𝑗=1

𝑠
( 𝑗+1)
𝑀

=

𝐾+1∑︁
𝑗=1

𝑠
( 𝑗 )
𝑀

− 𝑠 (1)
𝑀

=
∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀

}
−
∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀

}
.

Then we obtain an alternative objective:

max

𝑀⊆𝑁
E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}
−
∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]
.

□

Then we derive each ad’s contribution to the revenue objective.

For simplicity, we define:

Rev(𝑀 |𝒃, �̃�, �̃�) = E
𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}

−
∑︁
𝑖∈𝑀

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]
.

Theorem 3. Given any bid profile 𝒃 and partial feature �̃�, �̃�, the
expected contribution of advertiser 𝑖 to the revenue objective function
is:

𝑟𝑖 (𝒃, �̃�, �̃�) = E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
���𝒃, �̃�}]

− E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
��𝒃, �̃�}] . (5)

Proof. If we can select a subset 𝑀 with a size equal to 𝑛 (i.e.,

set 𝑀 = 𝑁 ), then all ads can enter into the second stage. This

essentially reduces the problem to single-stage auctions, thereby

achieving optimal revenue. Then we have:

max

𝑀⊆𝑁
Rev(𝑀 |𝒃, �̃�, �̃�) ≤ E

𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑁

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
}

−
∑︁
𝑖∈𝑁

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]
. (6)

The right-hand side of the above inequality can be written as:

E
𝒂 |�̃�,𝑢 |�̃�

[∑︁
𝑖∈𝑁

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
}
−
∑︁
𝑖∈𝑁

𝑠𝑖 I
{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑁

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑁

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑁

E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
���𝒃, �̃�}]

−
∑︁
𝑖∈𝑁

E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
��𝒃, �̃�}] .
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We define function 𝑟𝑖 (𝒃, �̃�, �̃�) as follows:

𝑟𝑖 (𝒃, �̃�, �̃�) = E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
���𝒃, �̃�}]

− E
𝑞𝑖 |�̃�𝑖

[
𝑠𝑖 Pr

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
��𝒃, �̃�}]

=𝑓
(𝐾+1)
𝑖

(𝒃, �̃�, �̃�) − 𝑓 (1)
𝑖

(𝒃, �̃�, �̃�) .
Then the right-hand side of the inequality (6) is a summation of

𝑟𝑖 (𝒃, �̃�, �̃�) over all ads. Thenwe can regard 𝑟𝑖 (𝒃, �̃�, �̃�) as the expected
revenue contribution of ad 𝑖 . □

Note that, combined with Equation (3), Equation (5) can also be

written as:

𝑟𝑖 (𝒃, �̃�, �̃�) = 𝑓 (𝐾+1)
𝑖

(𝒃, �̃�, �̃�) − 𝑓 (1)
𝑖

(𝒃, �̃�, �̃�),
where the superscript (𝐾 + 1) denotes the number of ad slots.

4.1 Refined Selection Metric for Revenue
Maximizing

If there is a bidder who is significantly superior to other bidders (for

example, both bid and ctr are high), then the probability that he is

in 𝑇𝑜𝑝𝐾+1

𝑁
is very close to the probability that he is in 𝑇𝑜𝑝1

𝑁
(both

close to 1). However, in this case, the revenue contribution of the

bidder calculated by 𝑟𝑖 is very low, which is obviously unreasonable.

In general second price auction, without the highest bidder, all the

other bidder’s payments have to go down. This happens because

there is a subtraction in the revenue contribution 𝑟𝑖 . To address this

issue, we define a surrogate ranking index as follows:

𝑅𝑖 (𝒃, �̃�, �̃�) = 𝑓 (𝐾+1)
𝑖

(𝒃, �̃�, �̃�),
which is equivalent to the bidder 𝑖’s welfare contribution when

there is 𝐾 + 1 slots. Then we determine the candidate set 𝑀 by

selecting the ads with the highest refined revenue ranking indices

𝑅𝑖 . The actual revenue of choosing set𝑀 is:

Rev(𝑀 |𝒃, �̃�, �̃�) =
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]
.

Next, we show that Rev(𝑀 |𝒃, �̃�, �̃�) ≥ ∑
𝑖∈𝑀 𝑟𝑖 (𝒃, �̃�, �̃�).

Lemma 5. For any selected 𝑀 ⊆ 𝑁 , the expected revenue con-
tribution of 𝑀 is a lower bound of the actual revenue of choosing
𝑀 .

Here, we also define the simplified ranking index and simplified

refined index that only depends on the features of ad 𝑖 as follows:

𝑟𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) = ¯𝑓
(𝐾+1)
𝑖

(𝑏𝑖 , 𝑎𝑖 , �̃�) − ¯𝑓
(1)
𝑖

(𝑏𝑖 , 𝑎𝑖 , �̃�),

𝑅𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�) = E
𝒃−𝒊,�̃�−𝒊

[𝑅𝑖 (𝒃, �̃�, �̃�)] = ¯𝑓
(𝐾+1)
𝑖

(𝑏𝑖 , 𝑎𝑖 , �̃�) .

We abuse notation and employ �̄� to denote the set of ads selected

using metric 𝑅𝑖 (𝑏𝑖 , 𝑎𝑖 , �̃�).

4.2 Revenue Approximation
Next, we derive approximation results for the revenue ranking

index. Based on the approximation results, we can calculate the size

of �̄� needed to guarantee a certain fraction of the optimal revenue.

4.2.1 Uniform Distribution. We start with the case where
¯𝑓
(𝐾+1)
𝑖

and
¯𝑓
(1)
𝑖

are i.i.d random variables that follow the uniform distri-

bution over intervals [𝑎 (𝐾+1) , 𝑏 (𝐾+1) ] and [𝑎 (1) , 𝑏 (1) ] respectively,
for all ads.

Lemma 6. Suppose ¯𝑓
(𝐾+1)
𝑖

and ¯𝑓
(1)
𝑖

are i.i.d random variables that
follow uniform distributions 𝑈 [𝑎 (𝐾+1) , 𝑏 (𝐾+1) ] and 𝑈 [𝑎 (1) , 𝑏 (1) ].
Then always including the ads with top𝑚 ranking indices achieves
an 𝛼 fraction of the optimal revenue if:

𝑚 ≥ 𝑏 (𝐾+1) − 𝑏 (1)

2(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )

[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
.

4.2.2 General Distribution. In addition to uniform distributions,

we also give results for general distributions under the assumption

that
¯𝑓
(𝐾+1)
𝑖

and
¯𝑓
(1)
𝑖

are i.i.d. random variables.

Lemma 7. Suppose ¯𝑓
(𝐾+1)
𝑖

and ¯𝑓
(1)
𝑖

are random variables that fol-
low distributions with means 𝜇 (𝐾+1) , 𝜇 (1) and variances 𝜎2

(𝐾+1) , 𝜎
2

(1) .
Then always including the ads with top𝑚 ranking indices 𝑟𝑖 achieves
an 𝛼 fraction of the optimal revenue if:

𝑚 > 𝛼𝑛 −
𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝜇 (1)

𝜇 (𝐾+1)
.

5 Learning Based Selection Metrics
In previous sections, we proposed the ad selection metric based on

their contribution to the objectives. In practice, we use a neural

network to approximate the actual contribution of each advertiser,

denoted by
¯𝑓 𝜃 (𝑏𝑖 , 𝑎𝑖 , �̃�𝑖 ). We use supervised learning to update the

model’s parameter 𝜃 . For each auction sample, the input of the learn-

ing model includes the advertiser’s bid 𝑏𝑖 , the partial ad features 𝑎𝑖 ,

and partial user �̃�. The label is 𝑦𝑖 = 𝑏𝑖 × 𝑞𝑖 × I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾

𝑁
(𝒃, 𝒒)

}
or

𝑦𝑖 = 𝑏𝑖 × 𝑞𝑖 × I
{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁
(𝒃, 𝒒)

}
, depending on the objective is

welfare or revenue. Note that during the training process, we can

obtain the accurate CTR 𝑞𝑖 of each ad from the refined CTR model

M𝑟
. Thus for any auction sample, we can also determine whether

an advertiser is in the top 𝐾 .

Given a set of auction samplesD𝑓 , we minimize the mean square

error (MSE) between the prediction of
¯𝑓 𝜃 and the label 𝑦𝑖 , so the

loss function is:

L =
1

|D𝑓 |
∑︁
𝑗∈D𝑓

∑︁
𝑖∈𝑁

(
¯𝑓 𝜃 (𝑏 𝑗

𝑖
, 𝑎
𝑗
𝑖
, �̃�
𝑗
𝑖
) − 𝑦 𝑗

𝑖

)
2

,

where the superscript 𝑗 means the 𝑗-th auction sample in D𝑓 .

6 Experiments
In this section, we conduct extensive experiments on both synthetic

and industrial data to evaluate the effectiveness of our proposed

selection metrics Max-Wel and Max-Rev.

Synthetic Data. We generate synthetic auction data based on

the iPinYou [18] dataset, the only publicly available dataset on

display advertising released by a major demand-side platform. This

dataset comprises logs of bidding, impressions, clicks, and final

conversions from 3 campaign seasons, including 78 million bid

records and 24 million impression records. As the data from the
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Table 1: Experiment results of different methods on synthetic data. 𝑛 = 5,𝑚 = 4.

Method Wel@1 Wel@2 Wel@3 Method Rev@1 Rev@2 Rev@3

REG-CTR 0.9661 0.9534 0.9372 REG-CTR 0.9301 0.9056 0.8715

REG 0.9972 0.9907 0.9752 REG 0.9827 0.9543 0.9157

PAS 0.9997 0.9995 0.9909 PAS 0.9389 0.9568 0.9226

Max-Wel (ours) 0.99980.99980.9998 0.99950.99950.9995 0.99840.99840.9984 Max-Rev 0.99800.99800.9980 0.99700.99700.9970 0.98510.98510.9851

Table 2: Experiment results of different methods on industrial data. 𝑛 = 400,𝑚 = 10.

Method Wel@1 Wel@3 Wel@5 Method Rev@1 Rev@3 Rev@5

REG-CTR 0.9434 0.8684 0.8298 REG-CTR 0.8400 0.8076 0.7627

REG 0.9661 0.8740 0.8343 REG 0.8236 0.7938 0.7703

PAS 0.9161 0.8810 0.8346 PAS 0.8747 0.8186 0.7817

Max-Wel (ours) 0.97200.97200.9720 0.90180.90180.9018 0.87380.87380.8738 Max-Rev 0.92170.92170.9217 0.84310.84310.8431 0.80280.80280.8028

first season lacks Advertiser ID and user profile information, and the

bidding log lacks paying price data, we select one day’s impression

log data from the second season to conduct our experiments. The

data includes 5 distinct Advertiser IDs (5 bidders), 1.6 million users,

and 1.8 million bid records. The full feature of a user𝑢 encompasses

iPinYou ID, Region ID, City ID, and User Profile ID, while the full

ad feature 𝑎𝑖 includes Advertiser ID and Creative ID. We assume

that the partial user feature �̃� comprises iPinYou ID and Region ID,

whereas the partial ad feature 𝑎𝑖 includes only Advertiser ID. As

the bidding prices were scaled before the release, we regard the

paying price as their bids and fit a log-normal distribution to them,

thereby simulating the advertisers’ bidding strategy. Based on these

data, we generate 100,000 auction instances, each comprising a

randomly selected user and 5 advertisers. Each advertiser’s bid is

independently drawn from the fitted log-normal distribution. To

ensure alignment between the highest bidding advertiser and the

original impression winner in the data, we swap the highest bid

within a sampled bid vector with the bid of the winner.

To obtain the allocation outcome of these instances, we need to

simulate the GSP auction in the second stage. Before that, we must

first train a refined CTR estimator M𝑟
to generate 𝑞𝑖 using the full

features of the ad 𝑎𝑖 and user 𝑢. Then, we use 𝑏𝑖 ×𝑞𝑖 as the ranking
score in the second stage GSP auction. We put detailed descriptions

of the training data for the CTR model in Appendix B.1.

Industrial Data. The industrial data is sourced from the ad auc-

tion log within a major auction platform. We extract a sample of

80,000 ad requests from the logged data in April 2024. In each ad

request from a user, about 400 ads compete for exposure. The fea-

tures for each ad include: 1) attributes specific to the ad itself, such

as bid price 𝑏𝑖 , task type, corporation type, etc.; 2) cross features of

the ad and user, like the click-through rate (CTR), the conversion

rate (CVR). We regard CTR as 𝑞𝑖 and use it to generate the label

𝑏𝑖 × 𝑞𝑖 for each ad. As cross features may encompass information

from the full features, we opt to only consider attribute features

when selecting ad features.

Evaluation. We evaluate the performance of different two-stage

methods from the perspectives of welfare and revenue respectively.

• Welfare rate: Wel@𝐾 =
∑𝐾
𝑖=1

𝑠
(𝑖 )
𝑀

/∑𝐾𝑗=1
𝑠
( 𝑗 )
𝑁

.

• Revenue rate: Rev@𝐾 =
∑𝐾
𝑖=1

𝑠
(𝑖+1)
𝑀

/∑𝐾𝑗=1
𝑠
( 𝑗+1)
𝑁

.

Recall that 𝑠
(𝑖 )
𝑀

represents the 𝑖-th highest score in the selected ad set

𝑀 , while 𝑠
( 𝑗 )
𝑁

denotes the 𝑗-th highest score in the entire set𝑁 . Note

that revenue is computed under the GSP auction, hence the revenue

of a specific set 𝑇 can be expressed as 𝑅𝐸𝑉 (𝑇 ) = ∑𝐾
𝑘=1

𝑠
(𝑘+1)
𝑇

.

Baseline Methods. To show the effectiveness of our proposed

Max-Wel and Max-Rev, we introduce the following two-stage meth-

ods as baselines.

• REG-CTR, which trains a regression model with 𝑎𝑖 , �̃� as

input, 𝑞𝑖 as the label and the rank score is bid times the

output of the regression model.

• REG, which trains a regression model with 𝑏𝑖 , 𝑎𝑖 , �̃� as input,

𝑏𝑖 × 𝑞𝑖 as the label, and the rank score is the output of the

model.

• PAS [26], which uses 𝑏𝑖 , 𝑎𝑖 , �̃� as input and outputs the prob-

ability of each ad being in TopK.

All these baselines are also restricted to use the same partial features

⟨𝑎𝑖 , �̃�⟩. The neural network architecture remains consistent across

all methods, with nearly identical input. The only distinction lies

in the REG-CTR network, which lacks the bid input.

Performance Comparison. Results of different methods on syn-

thetic data and industrial data are given in Table 1 and 2. All the

results are obtained by averaging across 10 runs with distinctive

seeds. We omit to record the standard deviation as it consistently

remains below 1% across various evaluation metrics for all methods

in our experiments.

It is evident from Table 1 and 2 that our method outperforms all

baseline methods in both data settings, and in terms of both welfare

and revenue. For instance, in the experiments with industrial data,

our Max-Wel improves the welfare rate by 0.59%, 2.08%, 3.92% com-

pared to the best performance among other baseline methods for

𝐾 = 1, 3, 5, respectively. The reasons why our methods outperform

baseline methods are two-fold: 1) compared to PAS, which predicts

the probability of each ad being among the top 𝐾 , our method takes
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Figure 1: Experiment results of different methods on industrial data with different𝑚.

Table 3: Violation rate of perturbation test, with unit ×10
−4.

REG-CTR REG PAS Max-Wel Max-Rev

Violation Rate 0 11.04 ± 4.04 8.12 ± 3.18 3.31 ± 2.36 4.78 ± 1.87

into account not only whether each ad is in the top 𝐾 , but also how

much each ad contributes to the objective; 2) compared to REG-CTR

and REG, our methods focus on advertisers who contribute more

to the objective, hence can more accurately screen out high-quality

advertisers.

Moreover, we compare the performance of different methods

with different𝑚 under the industrial data, and results are shown in

Figure 1. The experimental results demonstrate the superiority of

our proposed method over other baselines in terms of both welfare

and revenue metrics across various values of𝑚. Particularly note-

worthy is the observation that the margin of improvement tends

to be greater with smaller𝑚. This indicates that our methods ex-

cel in prioritizing high-quality advertisers, further validating their

effectiveness in selecting top-performing advertisers.

IC Testing. The IC property requires the allocation for each ad 𝑖

to be monotone increasing to bid 𝑏𝑖 . To test to what extent different

methods satisfy the IC condition, we employ the commonly used IC

test in ad auctions [6, 7] by perturbating each advertiser’s bid and

evaluating the violation rate. Specifically, for each ad, all features

remain the same, except that 𝑏𝑖 is replaced by 𝑏𝑖 × 𝛼 , where 𝛼 ∈
S𝑝 = {0.2𝑥 | 𝑥 = 1, . . . , 10} is a perturbation factor. All features

of other ads remain unchanged. A test does not violate IC test if

∃𝛼0 ∈ S𝑝 such that ad 𝑖 can enter the second stage with 𝑏𝑖 × 𝛼 for

all 𝛼 ≥ 𝛼0; or if ad 𝑖 cannot enter the second stage for any 𝛼 ∈ S𝑝 .
We sample 1000 auctions from the test set and conduct the IC

test on each ad in each auction for all methods. The results are

shown in Table 3. The results indicate that our methods exhibit low

violation rates, which means that even without using specialized

structures to ensure the monotonicity of the learning model, our

proposed metrics guarantee approximate monotonicity. Notably,

the REG-CTR method ranks ads by multiplying the bid with the

learned model’s output, inherently preserving monotonicity.

7 Conclusion
We study the design of two-stage auctions from the angle of op-

timizing welfare and revenue respectively. We explicitly derive

each ad’s contribution to each objective function, and use this as

a selection metric for bidder selection in the first stage. We pro-

vide theoretical guarantees for our metrics under both uniform and

general distributions. We demonstrate that these metrics can be

effectively learned using neural networks. Experimental results on

both synthetic and industrial data show that our methods signifi-

cantly outperform existing approaches, highlighting the advantages

of selecting top-performing advertisers.
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Appendix
A Omitted Proofs
A.1 Proof of Lemma 1

Proof. It suffices to show that:

Wel(𝑀 |𝒃, �̃�, �̃�) =
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑏𝑖𝑞𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑀 (𝒃, 𝒒)

}]
≥
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑏𝑖𝑞𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾𝑁 (𝒃, 𝒒)

}]
=
∑︁
𝑖∈𝑀

𝑓𝑖 (𝒃, �̃�, �̃�) .

The inequality comes from that for any ad 𝑖 in the selected set

𝑀 , (1) if 𝑖 is originally in 𝑇𝑜𝑝𝐾
𝑁
(𝒃, 𝒒), then it must also in the set

𝑇𝑜𝑝𝐾
𝑀
(𝒃, 𝒒); (2) if 𝑖 is not in 𝑇𝑜𝑝𝐾

𝑁
(𝒃, 𝒒), then I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾

𝑁
(𝒃, 𝒒)

}
must equal to 0, but it may still be in the 𝑇𝑜𝑝𝐾

𝑀
(𝒃, 𝒒). Therefore,

the expected welfare contribution of set𝑀 is a lower bound of the

actual welfare of choosing set𝑀 . □

A.2 Proof of Lemma 2
Proof. Let

¯𝑓(𝑖 ) be the 𝑖-th order statistic (i.e., the 𝑖-th smallest

value) of { ¯𝑓𝑖 }𝑛𝑖=1
.

It is known that if a random variable 𝑋𝑖 follows𝑈 [0, 1], then the

𝑗-th order statistic of 𝑛 independent samples {𝑋𝑖 }𝑛𝑖=1
follows a Beta

distribution Beta( 𝑗, 𝑛− 𝑗 +1) with mean
𝑗

𝑛+1
. Each

¯𝑓𝑗 = (𝑏−𝑎)𝑋 𝑗 +𝑎
can be viewed as an affine transformation of 𝑋 𝑗 . So the expectation

of
¯𝑓( 𝑗 ) is:

E
[

¯𝑓( 𝑗 )
]
= (𝑏 − 𝑎) 𝑗

𝑛 + 1

+ 𝑎.

If we include the top𝑚 ads in �̄� , we have:

E


𝑛∑︁
𝑗=𝑛−𝑚+1

¯𝑓( 𝑗 )

 =
𝑛∑︁

𝑗=𝑛−𝑚+1

E
[

¯𝑓( 𝑗 )
]

=(𝑏 − 𝑎)𝑚(2𝑛 −𝑚 + 1)
2(𝑛 + 1) +𝑚𝑎. (7)

If we are allowed to include all ads in the first stage, we can still

obtain the optimal social welfare by setting𝑀 = 𝑁 :

E

𝑛∑︁
𝑗=1

¯𝑓( 𝑗 )

 =E

𝑛∑︁
𝑗=1

¯𝑓𝑗


=

𝑛∑︁
𝑗=1

E
[

¯𝑓𝑗
]

=
𝑛(𝑏 + 𝑎)

2

. (8)

Therefore, to guarantee an 𝛼 fraction of the optimal welfare, we

need to ensure that:

E


𝑛∑︁
𝑗=𝑛−𝑚+1

¯𝑓( 𝑗 )

 ≥ 𝛼 E

𝑛∑︁
𝑗=1

¯𝑓( 𝑗 )

 ,
which is equivalent to:

−(𝑏 − 𝑎)𝑚2 + 𝜂𝑚 − 𝜁 ≥ 0, (9)

where 𝜂 = (𝑏 − 𝑎) (2𝑛 + 1) + 𝑎(2𝑛 + 2) and 𝜁 = 𝛼𝑛(𝑛 + 1) (𝑏 + 𝑎).
Solving the quadratic inequality (9), we obtain:

𝑚 ≥
𝜂 −

√︁
𝜂2 − 4(𝑏 − 𝑎)𝜁
2(𝑏 − 𝑎) .

Now it suffices to show that the above inequality can be implied by

inequality (2), i.e.,

𝜂 −
√︃
𝜂2 − 4(𝑏 − 𝑎)𝜁 ≤ 𝑏

[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
.

To prove the above inequality, note that:

𝜂 < (𝑏 − 𝑎) (2𝑛 + 2) + 𝑎(2𝑛 + 2) = 𝑏 (2𝑛 + 2)
𝜂 > (𝑏 − 𝑎) (2𝑛 + 1) + 𝑎(2𝑛 + 1) = 𝑏 (2𝑛 + 1),

and

4(𝑏 − 𝑎)𝜁 = 4𝛼 (𝑏 − 𝑎) (𝑏 + 𝑎)𝑛(𝑛 + 1) < 𝛼𝑏2 (2𝑛 + 1)2 .

Therefore,

𝜂 −
√︃
𝜂2 − 4(𝑏 − 𝑎)𝜁 ≤𝑏 (2𝑛 + 2) −

√︁
𝑏2 (2𝑛 + 1)2 − 𝛼𝑏2 (2𝑛 + 1)2

=𝑏 (2𝑛 + 2) − 𝑏 (2𝑛 + 1)
√

1 − 𝛼

=𝑏

[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
.

□

A.3 Proof of Lemma 3
The proof of Lemma 3 makes use of the following result:

Lemma 8 ([1, 3]). Let {𝑋𝑖 }𝑛𝑖=1
be 𝑛 i.i.d. random variables each

with mean 𝜇 and variance 𝜎2. The 𝑗-th order statistic 𝑋 ( 𝑗 ) satisfies:

E
[
𝑋 ( 𝑗 )

]
≤ 𝜇 + 𝜎

√︂
𝑗 − 1

𝑛 − 𝑗 + 1

. (10)

Proof of Lemma 3. We consider the welfare loss for only in-

cluding the top 𝑚 ads. According to Lemma 8, the loss can be

bounded as:

E

𝑛−𝑚∑︁
𝑗=1

¯𝑓( 𝑗 )

 =
𝑛−𝑚∑︁
𝑗=1

E
[

¯𝑓( 𝑗 )
]

≤(𝑛 −𝑚)𝜇 + 𝜎
𝑛−𝑚∑︁
𝑗=1

√︂
𝑗 − 1

𝑛 − 𝑗 + 1

.

Using the Taylor expansion of

√
𝑥 at 𝑥 = 1, one can easily verify

that

√
𝑥 ≤ 𝑥+1

2
for all 𝑥 ≥ 0. Plugging into the above equation

gives:

E

𝑛−𝑚∑︁
𝑗=1

¯𝑓( 𝑗 )

 ≤(𝑛 −𝑚)𝜇 + 𝜎𝑛
2

𝑛−𝑚∑︁
𝑗=1

1

𝑛 − 𝑗 + 1

≤(𝑛 −𝑚)𝜇 + 𝜎𝑛
2

𝑛−𝑚∑︁
𝑗=1

1

𝑚 + 1

=(𝑛 −𝑚)𝜇 + 𝜎𝑛(𝑛 −𝑚)
2(𝑚 + 1) .

10
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Similarly, if we are allowed to include all ads in the first stage, we

can achieve the optimal welfare, which is:

E

𝑛∑︁
𝑗=1

¯𝑓( 𝑗 )

 =E

𝑛∑︁
𝑗=1

¯𝑓𝑗


=

𝑛∑︁
𝑗=1

E
[

¯𝑓𝑗
]

=𝑛𝜇.

To achieve an𝛼 fraction of the optimal welfare, we need to ensure

that the loss is no more than 1 − 𝛼 fraction of the optimal welfare,

i.e.,

(𝑛 −𝑚)𝜇 + 𝜎𝑛(𝑛 −𝑚)
2(𝑚 + 1) ≤ (1 − 𝛼)𝑛𝜇,

or equivalently,

−2𝜇𝑚2 + 𝜂𝑚 + 𝜁 ≤ 0,

where 𝜂 = 2𝛼𝑛𝜇 − 2𝜇 − 𝜎𝑛 and 𝜁 = 𝜎𝑛2 + 2𝛼𝑛𝜇. The solution to the

quadratic inequality is:

𝑚 ≥
𝜂 +

√︁
𝜂2 + 8𝜇𝜁

4𝜇
.

To prove the lemma, we need to show that inequality (3) implies

the above inequality, i.e.,

𝜂 +
√︁
𝜂2 + 8𝜇𝜁

4𝜇
< 𝛼𝑛 − 𝜎

2𝜇
𝑛 +

√
2

4

(2𝑛 + 1)
√︂
𝜎

𝜇
.

Notice that

𝜂2 + 8𝜇𝜁 =(2𝛼𝑛𝜇 − 2𝜇 − 𝜎𝑛)2 + 8𝜇 (𝜎𝑛2 + 2𝛼𝑛𝜇)
=[(2𝛼𝜇 − 𝜎)𝑛 + 2𝜇]2 + 8𝜇𝜎𝑛2 + 8𝜇𝜎𝑛

<[(2𝛼𝜇 − 𝜎)𝑛 + 2𝜇]2 + 8𝜇𝜎

(
𝑛 + 1

2

)
2

<

[
(2𝛼𝜇 − 𝜎)𝑛 + 2𝜇 +

√︁
8𝜇𝜎

(
𝑛 + 1

2

)]
2

.

Therefore,

𝜂 +
√︁
𝜂2 + 8𝜇𝜁

4𝜇
<

𝜂 + (2𝛼𝜇 − 𝜎)𝑛 + 2𝜇 + √
8𝜇𝜎

(
𝑛 + 1

2

)
4𝜇

=𝛼𝑛 − 𝜎

2𝜇
𝑛 +

√
2

4

(2𝑛 + 1)
√︂
𝜎

𝜇
.

□

A.4 Proof of Lemma 5
Proof. It suffices to show:

Rev(𝑀 |𝒃, �̃�, �̃�)

=
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]

≥
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑀

𝑟𝑖 (𝒃, �̃�, �̃�) .

Note that the actual revenue is the sum of scores from 𝑠
(2)
𝑀

to

𝑠
(𝐾+1)
𝑀

. Thus we have:

∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)
}
− 𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)&𝑖 ∉ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]
.

For any ad 𝑖 in the selected set𝑀 , (1) if 𝑖 is originally in𝑇𝑜𝑝𝐾+1

𝑁
(𝒃, 𝒒)−

𝑇𝑜𝑝1

𝑁
(𝒃, 𝒒), then it must also in the set𝑇𝑜𝑝𝐾+1

𝑀
(𝒃, 𝒒) −𝑇𝑜𝑝1

𝑀
(𝒃, 𝒒);

(2) if 𝑖 is not in𝑇𝑜𝑝𝐾+1

𝑁
(𝒃, 𝒒) −𝑇𝑜𝑝1

𝑁
(𝒃, 𝒒), it may still be in the set

𝑇𝑜𝑝𝐾+1

𝑀
(𝒃, 𝒒) −𝑇𝑜𝑝1

𝑁
(𝒃, 𝒒). Then we have:

∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑀 (𝒃, 𝒒)&𝑖 ∉ 𝑇𝑜𝑝1

𝑀 (𝒃, 𝒒)
}]

≥
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)&𝑖 ∉ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝𝐾+1

𝑁 (𝒃, 𝒒)
}]

−
∑︁
𝑖∈𝑀

E
𝒒 |�̃�

[
𝑠𝑖 I

{
𝑖 ∈ 𝑇𝑜𝑝1

𝑁 (𝒃, 𝒒)
}]

=
∑︁
𝑖∈𝑀

𝑟𝑖 (𝒃, �̃�, �̃�) .

Then we complete our proof. □

A.5 Proof of Lemma 6
Proof. Let

¯𝑓
(𝐾+1)
(𝑖 ) be the 𝑖-th order statistic, that is, the 𝑖-th

smallest value of { ¯𝑓
(𝐾+1)
𝑖

}𝑛
𝑖=1

, and
¯𝑓
(1)
(𝑖 ) be the 𝑖-th order statistic

of { ¯𝑓
(1)
𝑖

}𝑛
𝑖=1

.

It is known that if a random variable 𝑋𝑖 follows 𝑈 [0, 1], then
the 𝑗-th order statistic of 𝑛 independent samples {𝑋𝑖 }𝑛𝑖=1

follows a

Beta distribution Beta( 𝑗, 𝑛 − 𝑗 + 1) with mean
𝑗

𝑛+1
. Each

¯𝑓
(𝐾+1)
𝑗

=

(𝑏 (𝐾+1) − 𝑎 (𝐾+1) )𝑋 𝑗 + 𝑎 (𝐾+1)
can be viewed as an affine transfor-

mation of 𝑋 𝑗 . So the expectation of
¯𝑓
(𝐾+1)
( 𝑗 ) is:

E
[

¯𝑓
(𝐾+1)
( 𝑗 )

]
= (𝑏 (𝐾+1) − 𝑎 (𝐾+1) ) 𝑗

𝑛 + 1

+ 𝑎 (𝐾+1) .

Similarly, the expectation of
¯𝑓
(1)
( 𝑗 ) is:

E
[

¯𝑓
(1)
( 𝑗 )

]
= (𝑏 (1) − 𝑎 (1) ) 𝑗

𝑛 + 1

+ 𝑎 (1) .
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If we include top𝑚 ads in �̄� , we have:

E


𝑛∑︁
𝑗=𝑛−𝑚+1

𝑟 ( 𝑗 )


=E


𝑛∑︁

𝑗=𝑛−𝑚+1

¯𝑓
(𝐾+1)
( 𝑗 ) − ¯𝑓

(1)
( 𝑗 )


=

𝑛∑︁
𝑗=𝑛−𝑚+1

E
[

¯𝑓
(𝐾+1)
( 𝑗 )

]
−

𝑛∑︁
𝑗=𝑛−𝑚+1

E
[

¯𝑓
(1)
( 𝑗 )

]
=(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )𝑚(2𝑛 −𝑚 + 1)

2(𝑛 + 1) +𝑚(𝑎 (𝐾+1) − 𝑎 (1) ) .
(11)

If we are allowed to include all ads in the first stage, we can obtain

the optimal revenue by setting𝑀 = 𝑁 :

E

𝑛∑︁
𝑗=1

𝑟 ( 𝑗 )

 =E

𝑛∑︁
𝑗=1

¯𝑓
(𝐾+1)
( 𝑗 ) − ¯𝑓

(1)
( 𝑗 )


=

𝑛∑︁
𝑗=1

E
[

¯𝑓
(𝐾+1)
( 𝑗 )

]
−

𝑛∑︁
𝑗=1

E
[

¯𝑓
(1)
( 𝑗 )

]
=
𝑛(𝑏 (𝐾+1) + 𝑎 (𝐾+1) − 𝑏 (1) − 𝑎 (1) )

2

. (12)

Therefore, to guarantee an 𝛼 fraction of the optimal welfare, we

need to ensure that:

E


𝑛∑︁
𝑗=𝑛−𝑚+1

𝑟 ( 𝑗 )

 ≥ 𝛼 E

𝑛∑︁
𝑗=1

𝑟 ( 𝑗 )

 ,
which is equivalent to:

−(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )𝑚2 + 𝜂𝑚 − 𝜁 ≥ 0, (13)

where 𝜂 = (𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) ) (2𝑛 + 1) + (𝑎 (𝐾+1) −
𝑎 (1) ) (2𝑛 + 2) and 𝜁 = 𝛼𝑛(𝑛 + 1) (𝑏 (𝐾+1) + 𝑎 (𝐾+1) − 𝑏 (1) − 𝑎 (1) ).
Solving the quadratic inequality (13), we obtain:

𝑚 ≥ 𝜂 −
√︁
𝜂2 − 4(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )𝜁
2(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )

.

Note that:

𝜂 <(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) ) (2𝑛 + 2) + (𝑎 (𝐾+1) − 𝑎 (1) ) (2𝑛 + 2)

=(𝑏 (𝐾+1) − 𝑏 (1) ) (2𝑛 + 2)

𝜂 >(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) ) (2𝑛 + 1) + (𝑎 (𝐾+1) − 𝑎 (1) ) (2𝑛 + 1)

=(𝑏 (𝐾+1) − 𝑏 (1) ) (2𝑛 + 1),

and

4(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )𝜁

=4𝛼

[
𝑏 (𝐾+1) − 𝑎 (𝐾+1) − (𝑎 (𝐾+1) − 𝑎 (1) )

]
·
[
𝑏 (𝐾+1) − 𝑎 (𝐾+1)

+(𝑎 (𝐾+1) − 𝑎 (1) )
]
· 𝑛(𝑛 + 1)

<𝛼

[
𝑏 (𝐾+1) − 𝑏 (1)

]
2

· (2𝑛 + 1)2 .

Therefore,

𝜂 −
√︃
𝜂2 − 4(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )𝜁

≤(𝑏 (𝐾+1) − 𝑏 (1) ) (2𝑛 + 2) − (𝑏 (𝐾+1) − 𝑏 (1) ) (2𝑛 + 1)
√

1 − 𝛼

=(𝑏 (𝐾+1) − 𝑏 (1) )
[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
.

Then we obtain:

𝑚 ≥ 𝑏 (𝐾+1) − 𝑏 (1)

2(𝑏 (𝐾+1) − 𝑎 (𝐾+1) − 𝑏 (1) + 𝑎 (1) )

[
2𝑛 + 2 −

√
1 − 𝛼 (2𝑛 + 1)

]
,

which proves the lemma. □

A.6 Proof of Lemma 7
Proof. The revenue upper bound can be achieved by allowing

to include all ads in the first stage, that is:

E

𝑛∑︁
𝑗=1

𝑟 ( 𝑗 )

 =
𝑛∑︁
𝑗=1

E
[

¯𝑓
(𝐾+1)
( 𝑗 )

]
−

𝑛∑︁
𝑗=1

E
[

¯𝑓
(1)
( 𝑗 )

]
=

𝑛∑︁
𝑗=1

E
[

¯𝑓
(𝐾+1)
𝑗

]
−

𝑛∑︁
𝑗=1

E
[

¯𝑓
(1)
𝑗

]
=𝑛(𝜇 (𝐾+1) − 𝜇 (1) ).

To achieve an 𝛼 fraction of the optimal revenue, we need to ensure

that the actual revenue of selecting set𝑀 is greater than 𝛼 fraction

of the optimal revenue, that is:

Rev(𝑀 |𝒃, �̃�, �̃�) ≥ 𝛼 ©«
𝑛∑︁
𝑗=1

E
[

¯𝑓
(𝐾+1)
𝑗

]
−

𝑛∑︁
𝑗=1

E
[

¯𝑓
(1)
𝑗

]ª®¬ ,
or equivalently, we ensure the revenue loss is less than 1−𝛼 fraction

of the optimal revenue.

According to Lemma 5, we have:

Rev(𝑀 |𝒃, �̃�, �̃�) ≥
∑︁
𝑖∈𝑀

𝑟𝑖 (𝒃, �̃�, �̃�)

=
∑︁
𝑖∈𝑀

𝑓
(𝐾+1)
𝑖

−
∑︁
𝑖∈𝑀

𝑓
(1)
𝑖

≥
∑︁
𝑖∈𝑀

𝑓
(𝐾+1)
𝑖

−
∑︁
𝑖∈𝑁

𝑓
(1)
𝑖

.

Then the revenue loss is bounded by:∑︁
𝑖∈𝑁−𝑀

𝑟𝑖 (𝒃, �̃�, �̃�) =
∑︁

𝑖∈𝑁−𝑀
𝑓
(𝐾+1)
𝑖

−
∑︁

𝑖∈𝑁−𝑀
𝑓
(1)
𝑖

≤
∑︁

𝑖∈𝑁−𝑀
𝑓
(𝐾+1)
𝑖

=E

𝑛−𝑚∑︁
𝑗=1

𝑓
(𝐾+1)
( 𝑗 )

 .
Therefore, it suffices to show that:

E

𝑛−𝑚∑︁
𝑗=1

𝑓
(𝐾+1)
( 𝑗 )

 ≤ (1 − 𝛼) ©«
𝑛∑︁
𝑗=1

E
[

¯𝑓
(𝐾+1)
𝑗

]
−

𝑛∑︁
𝑗=1

E
[

¯𝑓
(1)
𝑗

]ª®¬ .
12
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According to Lemma 8, we have:

E

𝑛−𝑚∑︁
𝑗=1

𝑓
(𝐾+1)
( 𝑗 )

 =
𝑛−𝑚∑︁
𝑗=1

E
[
𝑓
(𝐾+1)
( 𝑗 )

]
≤(𝑛 −𝑚)𝜇 (𝐾+1) + 𝜎 (𝐾+1)

𝑛−𝑚∑︁
𝑗=1

√︂
𝑗 − 1

𝑛 − 𝑗 + 1

.

Using the Taylor expansion of

√
𝑥 at 𝑥 = 1, we have

√
𝑥 ≤ 𝑥+1

2
for

all 𝑥 ≥ 0. Plugging into the above equation gives:

E

𝑛−𝑚∑︁
𝑗=1

𝑓
(𝐾+1)
( 𝑗 )

 ≤(𝑛 −𝑚)𝜇 (𝐾+1) +
𝑛𝜎 (𝐾+1)

2

𝑛−𝑚∑︁
𝑗=1

1

𝑛 − 𝑗 + 1

≤(𝑛 −𝑚)𝜇 (𝐾+1) +
𝑛𝜎 (𝐾+1)

2

𝑛−𝑚∑︁
𝑗=1

1

𝑚 + 1

=(𝑛 −𝑚)𝜇 (𝐾+1) +
𝑛𝜎 (𝐾+1) (𝑛 −𝑚)

2(𝑚 + 1)
Then we need to ensure:

(𝑛 −𝑚)𝜇 (𝐾+1) +
𝑛𝜎 (𝐾+1) (𝑛 −𝑚)

2(𝑚 + 1) ≤ (1 − 𝛼)𝑛(𝜇 (𝐾+1) − 𝜇 (1) ),

or equivalently,

−2𝜇 (𝐾+1)𝑚
2 + 𝜂𝑚 + 𝜒 ≤ 0.

where 𝜂 = 2𝛼𝑛𝜇 (𝐾+1) − 2𝜇 (𝐾+1) − 𝜎 (𝐾+1)𝑛 + 2𝑛(1 − 𝛼)𝜇 (1) and
𝜒 = 𝜎 (𝐾+1)𝑛

2 + 2𝛼𝜇 (𝐾+1)𝑛 + 2𝑛(1 − 𝛼)𝜇 (1) . The solution to the

quadratic equation is:

𝑚 ≥
𝜂 +

√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)
.

To prove the lemma, we need to show that inequality (7) implies

the above inequality, i.e.,

𝜂 +
√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)

<𝛼𝑛 −
𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝜇 (1)

𝜇 (𝐾+1)
.

Notice that

𝜂2 + 8𝜇 (𝐾+1) 𝜒

=(2𝛼𝑛𝜇 (𝐾+1) − 2𝜇 (𝐾+1) − 𝜎 (𝐾+1)𝑛 + 2𝑛(1 − 𝛼)𝜇 (1) )2

+ 8𝜇 (𝐾+1) [𝜎 (𝐾+1)𝑛
2 + 2𝛼𝑛𝜇 (𝐾+1) + 2𝑛(1 − 𝛼)𝜇 (1) ]

=[(2𝛼𝜇 (𝐾+1) − 𝜎 (𝐾+1) )𝑛 − (2𝜇 (𝐾+1) − 2𝑛(1 − 𝛼)𝜇 (1) )]2

+ 8𝜇 (𝐾+1)𝜎 (𝐾+1)𝑛
2 + 8𝜇 (𝐾+1)𝜎 (𝐾+1)𝑛

+ (8𝑛𝛼𝜇 (𝐾+1) − 4𝑛𝜎 (𝐾+1) + 8𝜇 (𝐾+1) ) (1 − 𝛼)2𝑛𝜇 (1)
<[(2𝛼𝜇 (𝐾+1) − 𝜎 (𝐾+1) )𝑛 + (2𝜇 (𝐾+1) − 2𝑛(1 − 𝛼)𝜇 (1) )]2

+ 8𝜇 (𝐾+1)𝜎 (𝐾+1) (𝑛 +
1

2

)2 + 16𝑛𝜇 (𝐾+1) (𝑛𝛼 + 1) (1 − 𝛼)𝜇 (1)
<
[
(2𝛼𝜇 (𝐾+1) − 𝜎 (𝐾+1) )𝑛 + (2𝜇 (𝐾+1) − 2𝑛(1 − 𝛼)𝜇 (1) )

+
√︁

8𝜇 (𝐾+1)𝜎 (𝐾+1) (𝑛 +
1

2

) +
√︃

16𝑛𝜇 (𝐾+1) (𝑛𝛼 + 1) (1 − 𝛼)𝜇 (1)
]
.

Put the above inequality back, we have

𝜂 +
√︃
𝜂2 + 8𝜇 (𝐾+1) 𝜒

4𝜇 (𝐾+1)

<𝛼𝑛 −
𝜎 (𝐾+1)
2𝜇 (𝐾+1)

𝑛 +
√

2

4

(2𝑛 + 1)
√︄
𝜎 (𝐾+1)
𝜇 (𝐾+1)

+

√︄
(𝑛𝛼 + 1) (1 − 𝛼)𝜇 (1)

𝜇 (𝐾+1)
,

which proves the lemma. □

B Additional Experiment Details
B.1 Training Data For CTR Model
It’s worth noting that directly using the impression log and click

log as training data for M𝑟
isn’t feasible due to the click log’s

limited 1,289 records compared to the impression log’s 1.8 million

records. To address this imbalance between click and impression

data, we partition the impression data into click and non-click data.

We treat every impression and click record as coordinates in a high-

dimensional space. Then, we measure the distance between each

impression point and its nearest click point. Our rationale is that a

closer distance should indicate a higher likelihood of the impression

being clicked. In essence, we partition the impression data based on

the minimum Euclidean distance between each impression point

and its nearest click point. The division ratio is set at 1 : 6.

B.2 Experimental Parameters
Both synthetic and industrial data are split into training and test sets

with an 8:2 ratio. The neural network structure uses a simple multi-

layer perception (MLP) structure with ReLU [10] as the activation

function, and all methods share this network structure. We use

the Adam optimizer [14] to update the parameters of the neural

network. We map discrete features into continuous spaces using

embedding with an embedding size of 64. All the experiments are

run on a Linux machine with NVIDIA GPU cores.
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