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ABSTRACT

Fine-tuning large pretrained language models is a common approach for aligning
them with human preferences, but noisy or off-target examples can dilute super-
vision. While small, well-chosen datasets often match the performance of much
larger ones, systematic and efficient ways to identify high-value training data re-
main underexplored. Many current methods rely on heuristics or expensive re-
training. We present a theoretically grounded, resource-efficient framework for
data selection and reweighting. At its core is an In-Context Approximation (ICA)
that estimates the holdout loss a model would incur after training on a candidate
example by conditioning on a small, curated holdout set in context. ICA requires
no reference model and no additional finetuning. Under a local linearization, ICA
is equivalent to a first-order update toward the holdout optimum, motivating its use
as a proxy for data value. We derive per-example weights from ICA scores, dy-
namically reweighting gradient updates as model parameters evolve. Across SFT,
DPO, and SimPO, and over diverse backbones and datasets, ICA-based reweight-
ing consistently improves model alignment with minimal overhead. We analyze
sensitivity to score update frequency and the choice of k holdout examples for
in-context demonstrations, and note limitations for rapidly drifting on-policy up-
dates, highlighting directions for future work. Code and prompts will be released.

1 INTRODUCTION

Fine-tuning has become the standard approach for adapting large pretrained language models to
downstream applications and aligning them with human intent (Wei et al., 2021; Ouyang et al.,
2022). This process typically starts with supervised fine-tuning (SFT) on instruction-response
pairs (Wei et al., 2021), followed by preference-based alignment using pairwise preference data, e.g.,
RLHF (Christiano et al., 2017; Ouyang et al., 2022), DPO (Rafailov et al., 2023), and simPO (Meng
et al., 2024). Since fine-tuning effectively steers the pretrained model toward desired behaviors, the
quality of training data plays a central role: high-quality examples provide clear alignment signals,
while noisy or inconsistent data can severely degrade performance.

However, training data for fine-tuning, typically collected from human annotators or model-
generated outputs, often contain errors, inconsistencies, or redundancies. For example, Gao et al.
(2024) report that 20–40% of preference pairs in LM alignment are noisy, and that alignment per-
formance is highly sensitive to such noise. In addition, recent studies have shown that smaller but
carefully curated datasets can yield alignment performance comparable to much larger ones (Zhou
et al., 2023; Chen et al., 2023). Despite the recognized importance and promise of effective data
selection for fine-tuning, systematic yet principled approaches remain underexplored.

A central challenge is the absence of consensus on what constitutes “valuable” data. While some
approaches adopt hand-crafted heuristics or leverage large models as judges, a more principled per-
spective is to define data value by its impact on downstream performance, which is the ultimate goal
of fine-tuning. Nevertheless, directly measuring each example’s contribution to downstream perfor-
mance would require retraining (and evaluating) the model across all possible candidates, a process
that is computationally infeasible.

To overcome this challenge, prior work has explored different strategies, including influence-
function-based methods that approximate model performance change using Taylor expan-
sions (Pruthi et al., 2020; Xia et al., 2024; Wang et al., 2024), surrogate models that fit a linear
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approximation of the loss (Engstrom et al., 2024), and bilevel optimization or meta-learning ap-
proaches (Shen et al., 2024; Grangier et al., 2023; Calian et al., 2025). Beyond these analytical and
learning-based approaches, empirical studies examine correlations between hand-picked notions of
data quality and downstream performance to inform heuristic data selection criteria (Liu et al., 2023;
Bukharin & Zhao, 2023; Zhao et al., 2024; Lu et al., 2023; Li et al., 2023a; Cao et al., 2023; Li et al.,
2023b). These methods, while promising, are often computationally expensive or lack theoretical
grounding.

In this work, we propose a computationally efficient and theoretically grounded framework for data
selection in model fine-tuning. Following prior work (Mindermann et al., 2022; Xia et al., 2024;
Calian et al., 2025), we aim to select a subset of training data such that the model trained on it
minimizes the holdout loss, i.e., the loss on this holdout set. Each example’s value is quantified
by the holdout loss the model would incur if trained with that example. Computing this naively is
intractable, so we build on a tractable approximation introduced by RHO-Loss (Mindermann et al.,
2022), which estimates the holdout loss from a Bayesian perspective. Nonetheless, efficiently com-
puting this approximation remains challenging, as it would normally require retraining on updated
training and holdout sets at each step.

RHO-Loss mitigates per-step retraining but requires a reference model trained on the holdout set. We
introduce an in-context approximation (ICA) that eliminates the need for both additional fine-tuning
and a fixed reference model. Building on the insight that in-context learning performs implicit fine-
tuning (Dai et al., 2023), we provide the holdout set as in-context demonstrations at each training
step, simulating one step of fine-tuning. The resulting data values derived from ICA, termed ICA
scores, enable dynamic evaluation of each example’s utility as the model evolves. These scores are
then used to reweight gradient updates during fine-tuning, prioritizing examples that most reduce
holdout loss. Experiments show that training with ICA-based reweighting consistently improves
model alignment for SFT, DPO, and SimPO across diverse datasets and backbone models.

2 RELATED WORK

A central question in data selection is how to determine what makes a training example valuable.
This is often done by quantifying each example’s impact on a downstream proxy, typically measured
as the loss on a small, high-quality holdout set. Methods in this category include influence-function
formulations (Pruthi et al., 2020; Xia et al., 2024; Wang et al., 2024), Data Shapley (Ghorbani &
Zou, 2019; Wang et al., 2025), and learned scorers such as Datamodels (Engstrom et al., 2024),
meta-learning frameworks (Calian et al., 2025), and optimization-based approaches (Grangier et al.,
2023; Shen et al., 2024; Gu et al., 2025; Pan et al., 2025). Particularly relevant to our work is RHO-
Loss (Mindermann et al., 2022), which estimates the holdout loss a model would incur if trained on
a particular example, but requires a separate reference model. Another related approach is One-Shot
Learning (Li et al., 2023b), which also leverages in-context learning, though in a different manner
from our method.

In addition to analytic or learned approaches for quantifying data value, hand-crafted notions of data
quality have been studied, with empirical analyses assessing how these proxies correlate with fine-
tuned model performance and inform data selection (Liu et al., 2023; Bukharin & Zhao, 2023; Zhao
et al., 2024; Lu et al., 2023; Li et al., 2023a; Cao et al., 2023; Huang & Goyal, 2025; Yu et al., 2025;
Deng et al., 2025; Morimura et al., 2024). Beyond quantifying data value with respect to downstream
performance, prior work has also explored selecting data to directly match the target distribution,
using techniques such as gradient alignment (Killamsetty et al., 2021), importance resampling (Xie
et al., 2023; Katharopoulos & Fleuret, 2018), or optimal transport (Kang et al., 2024). In contrast
to these data-centric methods, a separate line adopts an algorithmic perspective, directly modify-
ing learning objectives and proposing extensions to SFT or DPO to account for instance-specific
differences or improve generalization (Wu et al., 2024; D’Oosterlinck et al., 2025; Wu et al.; 2025).

3 PRELIMINARY

In-context learning LLMs have demonstrated strong in-context learning (ICL) capabili-
ties (Brown et al., 2020; Cao et al., 2023). In ICL, a few demonstration examples are concatenated
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with a query to form the model input. The model then identifies patterns from these examples and
makes predictions without any parameter updates.

Formally, given a query x, the model predicts an output y conditioned on a demonstration set C.
In this work, we adopt a demonstration set of the following form, which includes an optional task
instruction I followed by k demonstration examples:

C = {I, s(x1,y1), . . . , s(xk,yk)}.

Supervised fine-tuning SFT adapts pretrained LLMs to produce responses with desired charac-
teristics using instruction–response pairs. Let D = {(xi,y

⋆
i )}

|D|
i=1 denote the instruction dataset,

where y⋆
i is the reference response for query xi. SFT updates the model parameters by minimizing

the sentence-level cross-entropy:

LSFT(θ) = E(x,y⋆)∼D
[
− log πθ(y

⋆ | x)
]

where πθ(y | x) is the probability of generating y given x under the model parameterized by θ.

Preference-based alignment methods RLHF (Christiano et al., 2017; Ouyang et al., 2022) is
a widely used method to align LLMs with human preferences. It uses data of the form D =

{(xi,yw,i,yl,i)}|D|
i=1, where yw,i and yl,i are the preferred and dispreferred responses for a prompt

xi. The standard RLHF pipeline first learns a reward model and then optimizes a policy using RL
algorithms such as PPO.

DPO (Rafailov et al., 2023) provides an off-policy alternative that bypasses the RL step, learning
directly from preference data without training a reward model. Specifically, DPO solves:

LDPO(θ) = −E(x,yw,yl)∼D

[
log σ

(
β
πθ(yw | x)
πref(yw | x)

− β
πθ(yl | x)
πref(yl | x)

)]
where πref is a reference policy, σ is the sigmoid function, and β controls the trade-off between
adhering to the reference and incorporating new preference data.

A recent variant, SimPO (Meng et al., 2024), extends DPO by eliminating the need for a reference
model and introducing a length-normalized implicit reward based on the average log probability of
a sequence. Its objective is:

LsimPO(θ) = −E(x,yw,yl)∼D

[
log σ

( β

|yw|
πθ(yw | x)−

β

|yl|
πθ(yl | x)− γ

)]
where γ > 0 is a target reward margin ensuring that the reward difference between winning and
losing responses exceeds this threshold.

4 HOLDOUT-LOSS-BASED DATA SELECTION VIA IN-CONTEXT LEARNING

In this section, we formally introduce the problem formulation and present a holdout-loss-based data
selection framework that leverages in-context learning for efficient computation.

4.1 PROBLEM FORMULATION

We consider the problem of fine-tuning a pretrained model on a large, but potentially noisy, training
dataset D = {(xi,yi)}|D|

i=1, where (x,y) may represent an instruction–response pair or a preference
pair. The goal is to optimize model performance on a smaller, higher-quality holdout set Dho =

{(xho
i ,yho

i )}|Dho|
i=1 . For example, Dho could be a corrected subset of D generated by a stronger

model or a manually curated set from a target domain.

However, training on all of D may be inefficient and suboptimal due to the presence of noise. While
one could train directly on Dho, its small size often leads to overfitting and fails to leverage the
information in the larger set. Therefore, we aim to select a subset D̄⋆ ⊂ D such that a model trained
on D̄⋆ minimizes the loss on Dho (i.e., the holdout loss). Formally, the problem can be framed as

D̄⋆ = arg min
D̄⊂D

L
(
Dho;θ

⋆(D̄)
)
, where θ⋆(D̄) = argmin

θ
L(D̄;θ). (1)
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We denote by θ⋆(S) the model parameters obtained by training on any dataset S and L(S;θ) the
loss on S under model θ.

Equation 1 would be prohibitively expensive to solve naively, as it requires training on every can-
didate subset D̄ ⊂ D and evaluating the holdout loss. Instead of solving it directly, we recast the
problem in terms of quantifying the contribution of each training example to reducing holdout loss.
Concretely, we assign a score to each example that reflects this contribution. These scores can then
be used either to select the example that most reduces the holdout loss, or to reweight gradient
updates in the optimizer according to each example’s contribution.

In the following section, we detail how to approximate these scores without performing actual train-
ing and how to compute them efficiently using in-context learning.

4.2 COMPUTING APPROXIMATED HOLDOUT LOSS VIA IN-CONTEXT LEARNING

Approximating holdout loss via Bayesian framework Consider sequential (greedy) data se-
lection, where points are added one at a time. Let Dt be the dataset selected up to step t, and
θt := θ⋆(Dt) the model trained on it. Then, the subset selection problem in Equation 1 reduces to
selecting, at each step, the example (x,y) ∈ D that, when added to Dt, minimizes the holdout loss:

(x⋆,y⋆) = arg min
(x,y)∈D

L(Dho;θ
⋆(Dt ∪ {(x,y)})). (2)

Accordingly, each training example’s contribution can be measured by the holdout loss in Equa-
tion 2. To compute this holdout loss without performing actual training, we adopt an approxi-
mation derived by Mindermann et al. (2022) in the general supervised learning setting, based on
probabilistic modeling. Specifically, considering the negative log-likelihood as the loss function
(ℓ(y | x;θ) = − log p(y | x;θ)), and, applying Bayes’ rule under the conditional independence
assumption, the holdout loss of the model trained with a particular example can be approximated as
(see Appendix A for a reproduction of the derivation in Mindermann et al. (2022)) 1 :

L(Dho;θ
⋆(Dt ∪ {(x,y)})) ≈ ℓ(y | x;θ⋆(Dt ∪ Dho))− ℓ(y | x;θt)− L(Dho;θt) (3)

where we use L for losses over a set, and ℓ for the per-example loss. Omitting the term independent
of (x,y) and reversing the sign, we define the remaining expression as the holdout-loss score of
each example at step t:

sho(x,y;θt) = ℓ(y | x;θt)− ℓ(y | x;θ⋆(Dt ∪ Dho)). (4)

The optimal example can then be approximately found by maximizing this score:

(x⋆,y⋆) = arg max
(x,y)∈D

sho(x,y;θt). (5)

The holdout-loss score provides a tractable tool for data selection. However, since Dt is updated
with each newly added example, the model trained on Dt ∪ Dho must also be updated at every
selection step, which still incurs substantial computational overhead. To mitigate this cost, prior
work (Mindermann et al., 2022) approximates the retraining by training a model only on Dho and
reusing it across all selection steps, i.e., ℓ(y | x;θ⋆(Dt ∪ Dho)) ≈ ℓ(y | x;θ⋆(Dho)). This results
in the reducible holdout loss (RHO-Loss) criterion employed for data selection in their work.

However, RHO-Loss uses a fixed reference model rather than re-evaluating each example’s impact
on the holdout loss as the model is updated. This simplification can introduce bias in estimating
each example’s contribution (Wang et al., 2024). To enable an efficient and adaptive data selection
criterion, we introduce an in-context approximation that removes auxiliary training entirely by ap-
proximating ℓ(y | x;θ⋆(Dt ∪ Dho)) via in-context learning. This technique is described in detail
below.

1This Bayesian framework also extends to pairwise preference data (e.g., for DPO and simPO), where y
represents a preference pair (yw,yl) with yw ≻ yl, and the loss is defined correspondingly for the chosen
preference learning model (e.g., Bradley-Terry as used in DPO).
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Efficient computation via in-context learning Motivated by the finding that in-context learning
can implicitly perform gradient-based model updates on the provided demonstrations (Dai et al.,
2023), we avoid retraining on Dt ∪ Dho by using the holdout set as in-context demonstrations.
Specifically, we introduce the following in-context approximation (ICA) to compute the second
term in equation 4 without retraining:

ℓ(y | x;θ⋆(Dt ∪ Dho)) ≈ ℓ(y | x,Dho;θt). (6)

By conditioning on the holdout set Dho, this approximation effectively simulates one step of fine-
tuning on the set, providing a computationally tractable estimate of the model’s state after training
on Dt ∪ Dho.

Applying ICA to equation 4 yields a computationally efficient selection criterion, which we refer to
as the in-context approximation score (ICA score):

sICA(x,y;θt) := ℓ(y | x;θt)− ℓ(y | x,Dho;θt). (7)

We can now use the ICA score in place of the holdout-loss score in equation 5 as the data selection
criterion. This approach is not only more computationally efficient, but also enables dynamic re-
evaluation of each example’s impact on the holdout loss as the model evolves.

In practice, examples are often selected in batches rather than sequentially. We next describe how to
leverage the ICA score for batch selection using a reweighting strategy.

4.3 BATCH SELECTION VIA A REWEIGHTING STRATEGY

ICA score-based reweighting For batch selection, we use a reweighting strategy that up-
weights high-scoring examples and downweights lower-scoring ones. Unlike hard selection, which
only chooses top examples and may reduce batch diversity or ignore interactions among data
points (Wang et al., 2024), reweighting leverages the gradient signal from the entire batch, improv-
ing training stability. We apply ICA score-based reweighting in our main experiments and ablate
this choice in Section 5.3, comparing it to percentile-based filtering.

Concretely, consider gradient-based training (e.g., Adam or SGD) with mini-batch updates. At each
iteration t, a batch Bt ⊂ D of size nB is sampled. For each example in the batch, we compute its
ICA score as defined in equation 7 and convert these scores into continuous weights in the range
[0, 1] via max-min normalization. We adopt max–min instead of the softmax used by Wang et al.
(2024); Calian et al. (2025) because it preserves the relative differences between scores and avoids
the exponential amplification that can distort the contribution of low- and high-scoring examples.
The weights are given by

w(xi,yi;θt) =
s(xi,yi;θt)−minj∈Bt

s(xj ,yj ;θt)

maxj∈Bt
s(xj ,yj ;θt)−minj∈Bt

s(xj ,yj ;θt)
. (8)

These weights, reflecting the relative utility of each example for minimizing the holdout loss, are
used to scale their contributions to the batch gradient:

gt =

|Bt|∑
i=1

w(xi,yi;θt)∇θℓ(xi,yi;θt). (9)

The resulting weighted gradient gt is used to update the model parameters via a standard optimizer.

Because the ICA score, and hence the weights, evolve throughout training, this reweighting strategy
adaptively adjusts each example’s contribution to the gradient updates according to the holdout loss
the model would achieve if trained on that example. Algorithm 1 outlines how the ICA score is
computed and used to reweight gradient updates during fine-tuning.

Practical implementation In practice, we apply the following two techniques to further improve
the efficiency of Algorithm 1.

When computing the in-context approximation (line 6 or equation 6), including the entire holdout set
as demonstrations is often infeasible due to prompt length constraints. One solution is to divide the
full holdout set into multiple subsets, compute the score for each, and average the results; however,
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Algorithm 1 Reweighting training examples using ICA scores for LLM fine-tuning

1: Input: Training set D; Holdout set Dho; Pre-trained model parameters θ; Number of training
steps T ; Batch size nB ; Optimizer OPTIMIZER

2: Initialize θ0 ← θ
3: for t = 0, · · · , T − 1 do
4: Sample candidate set Bt ⊂ D of size nB

5: for i = 1, · · · , nB do
6: ConditionalLossi ← ℓ(yi | xi,Dho;θt)
7: Lossi ← ℓ(yi | xi;θt)
8: Scorei ← Lossi − ConditionalLossi

9: end for
10: Compute per-example weights within the batch using equation 8
11: Compute the reweighted batch gradient gt on Bt using equation 9
12: θt+1 ← OPTIMIZER(θt,gt)
13: end for

Return Finetuned model parameters θT

this can be computationally intensive. Instead, we select the top-k holdout examples most similar
to each candidate via k-nearest neighbor (kNN) search in an embedding space. To further improve
efficiency, we periodically update the scores R times during training, instead of recomputing them
at every iteration. Experimental results show that even with these practical approximations, our
method consistently improves alignment performance.

The complete procedure incorporating these techniques is presented as Algorithm 2 in Ap-
pendix B.4. We ablate the effects of different choices of k and R in Section 5.3 and analyze the
computational overhead of our implementation in Section 5.4.

5 EXPERIMENTAL RESULTS

We apply our method to both SFT and preference-based alignment (DPO and SimPO), comparing
ICA score-based reweighting to standard training (without reweighting) and to reweighting using
scores computed by baseline methods, across multiple models and datasets.

5.1 EXPERIMENTAL SETUP

Evaluation protocol and metrics Since our goal is to select a subset of training data that mini-
mizes holdout loss, which serves as a proxy for downstream performance, we evaluate our method
by measuring how closely the model’s outputs align with the test set targets. To this end, we define
the win rate as the percentage of pairwise comparisons in which a response from a model trained
with our method is judged closer to the target output than that of a model trained with standard
(non-reweighted) or baseline methods. Comparisons are performed by GPT-4o (2024-08-06). Due
to computational constraints, we train and evaluate each model only once. The standard deviation
of evaluation results is small (see Appendix B.2), so reporting a single evaluation run is sufficient.

Datasets We consider two data selection scenarios. High-quality selection prioritizes expert-level
data using a smaller curated holdout set: for SFT, we use Alpaca as training data and sample high-
quality holdout examples from its curated version, Alpaca-cleaned (Taori et al., 2023); for preference
optimization (DPO and SimPO), we use UltraFeedback-binarized (Cui et al., 2023), which provides
preference pairs with scalar quality scores, enabling the construction of high-quality holdout and test
sets. Domain-relevant selection prioritizes examples relevant to a target domain using a domain-
specific holdout set: for SFT, we use Yahoo Answers Topic2, and for preference optimization, we
use SHP-2 (Ethayarajh et al., 2022); both datasets contain domain labels, allowing selection of a

2https://huggingface.co/datasets/community-datasets/yahoo_answers_
topics/viewer?views%5B%5D=train
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Table 1: Win rates of our method for SFT across models and datasets (higher values indicate better
performance), comparing outputs from our method to each baseline.

Alpaca Yahoo Answers Topic

Ours against w/o RHO-Loss One-Shot w/o RHO-Loss One-Shot

LLaMA 3B 77.81 48.96 57.03 78.90 46.73 62.33
LLaMA 8B 80.55 49.92 62.11 85.10 54.03 66.93
Qwen 4B 71.21 50.56 56.82 80.30 49.93 58.73
Qwen 8B 82.92 51.21 58.33 82.93 54.43 63.13

target domain for evaluating out-of-domain alignment. Details of the dataset splits (training, test,
and holdout) are provided in Appendix B.1.

Models and training We evaluate our approach on multiple model families and scales, includ-
ing LLaMA-3-8B-Instruct, LLaMA-3-3B-Instruct, Qwen-3-8B, and Qwen-3-4B. Models are fine-
tuned using two parameter-updating paradigms: full-parameter fine-tuning and parameter-efficient
LoRA (Hu et al., 2021). Due to space constraints, detailed training configurations are provided in
Appendix B.3, and LoRA fine-tuning results with our method are reported in Appendix B.8.

Default setting By default, we perform full-parameter training and use the ICA score to reweight
training examples. We compute ICA scores using the two practical techniques described in Sec-
tion 4.3 (see Appendix B.4 for additional implementation details). Specifically, for each candidate,
we use the top k = 3 holdout examples as in-context demonstrations and update scores for all train-
ing examples R = 1 time (computing scores for all training examples only at the initialization step
t = 0). When selecting the top k holdout examples in embedding space, we adopt all-mpnet-base-
v2 (Reimers & Gurevych, 2019) to compute embeddings.

Baselines We compare our method with standard training (without reweighting) and with
reweighting using scores from the following methods in place of the ICA score: (1) RHO-
Loss (Mindermann et al., 2022), which approximates the holdout loss score using a model trained
on the holdout set; (2) One-shot learning (Li et al., 2023b), which scores each candidate as the
difference between the one-shot loss with the candidate included as context and the zero-shot loss
without it. Detailed formulas for computing scores with these two baseline methods are provided in
Appendix B.5.

5.2 MAIN RESULTS

We report the performance of our method across SFT, DPO, and SimPO, comparing against standard
training and baseline approaches, in Tables 1, 2, and 3.

Comparison to standard training Across all datasets and model families, incorporating our
reweighting method leads to consistently better alignment than standard training without reweight-
ing. The improvements hold for both SFT and preference-based alignment, demonstrating that our
method provides a robust advantage across different learning paradigms.

Comparison to baselines When compared to reweighting using baseline scoring methods, our
approach achieves consistent gains over one-shot learning across all settings, with win rates con-
sistently above 50%, and often exceeding 60%. Against RHO-Loss, which approximates the same
selection criterion in equation 4 but requires training an auxiliary model, our method achieves com-
parable performance, in some cases surpassing it, while avoiding the cost of training a reference
model. These patterns are consistent across both LLaMA and Qwen families and hold for models
of different sizes (3B and 8B).

7
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Table 2: Win rates of our method for DPO across models and datasets (higher values indicate better
performance), comparing outputs from our method to each baseline.

UltraFeedback-binarized StanfordNLP/SHP-2

Ours against w/o RHO-Loss One-Shot w/o RHO-Loss One-Shot

LLaMA 3B 61.05 46.85 57.60 79.90 56.70 60.20
LLaMA 8B 64.00 48.25 58.40 77.20 48.70 55.10
Qwen 4B 64.30 51.90 54.60 79.20 49.90 57.00
Qwen 8B 64.85 49.90 60.45 70.40 47.60 54.40

Table 3: Win rates of our method for simPO across models and datasets (higher values indicate
better performance, comparing outputs from our method to each baseline.

UltraFeedback-binarized StanfordNLP/SHP-2

Ours against w/o RHO-Loss One-Shot w/o RHO-Loss One-Shot

LLaMA 3B 62.20 47.20 55.45 93.90 50.70 55.90
LLaMA 8B 64.70 49.90 57.70 63.30 46.50 51.30
Qwen 3B 64.95 47.65 51.20 66.00 46.80 49.60
Qwen 8B 65.55 50.60 54.35 77.10 45.50 53.60

5.3 ABLATION STUDIES

We perform ablation studies on LLaMA-3B-Instruct trained on Yahoo Answers Topics to exam-
ine the effect of key design choices in our method on model performance, with results detailed in
Appendix B.6. Key findings are presented below.

Large k is not required for good performance To reduce computational cost, we use the top-k
holdout examples selected via kNN in embedding space as in-context demonstrations, rather than
the full holdout set. Using k = 3 as the default, smaller or larger values yield no improvement,
with win rates below 50% relative to the default: 43.5% for k = 1, 48.0% for k = 5, and 46.0%
for k = 10. This indicates that a small number of holdout examples is sufficient to maintain strong
alignment while preserving computational efficiency.

More frequent score updates improve alignment We investigate the effect of the total number
of score computations R on model performance. In the default setting, scores are computed once at
initialization (R = 1). Increasing R to 3, 5, and 9 improves alignment, with win rates of 50.73%,
52.77%, and 51.6%, respectively. This suggests that additional score updates can further enhance
the alignment performance of our method.

Filtering is less effective We compare percentile-based filtering, which retains examples above
a specified percentile, at different thresholds to the default reweighting method. Simple filtering
is generally less effective, with win rates below 50% relative to reweighting. A threshold of the
75th percentile yields a higher win rate (48.67%) than the 50th (40.80%) and 90th (40.07%). These
results indicate that retaining some lower-scoring examples can be beneficial, but too many degrade
performance, so the threshold must be chosen carefully. Adaptive reweighting eliminates this need
for manual selection of filtering threshold by automatically adjusting example importance.

More advanced embeddings improve performance To evaluate the effect of different embed-
ding models for selecting the top-k holdout examples, we test BAAI/bge-m3 (Chen et al., 2024), a
stronger embedding model. BAAI/bge-m3 yields higher win rates (52%) compared to the default
all-mpnet-base-v2, suggesting that more capable embeddings can further improve the alignment
achieved by our method.
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5.4 ANALYSIS

Computational complexity Our method introduces two sources of overhead beyond standard
fine-tuning: (i) a one-time precomputation to obtain embeddings, and (ii) periodic score updates.
The latter is dominated by the in-context approximation term, which involves additional forward
passes and accounts for most of the computational cost. We measure runtime on four NVIDIA
A6000 GPUs (48 GB each) for LLaMA-3B-Instruct fine-tuned on Yahoo Answers Topics. Precom-
putation is negligible, on the order of seconds, and the additional time for score computation and
reweighting is reported as a percentage relative to the runtime of standard fine-tuning. Our method
adds only ∼1.5% overhead, compared to roughly 10% for RHO-Loss and 4% for one-shot learning.
Full results are provided in Appendix B.7.

Score distribution across training examples We analyze SFT on Yahoo Answers Topic to ex-
amine the scores assigned to training examples. Using a holdout set sampled from the Sports topic,
we compute the average score for examples from each domain (Figure 1). Examples from Sports
receive higher scores under both our method and RHO-Loss compared to One-Shot Learning and
other topics, demonstrating that our method achieves strong alignment while requiring less compu-
tational overhead. Additional analyses in Appendix B.10 examine response patterns produced by
models trained with our method, and Appendix B.11 presents instruction-response pairs with high
and low ICA scores, offering further insight into our method’s effectiveness.

Figure 1: Average scores assigned to training examples from each domain (normalized to [0, 1]).
The target domain is highlighted in red, and different colors indicate different scoring methods, with
our method in blue. Higher scores indicate stronger alignment with the target domain.

6 CONCLUSION AND DISCUSSION

We propose a theoretically grounded, resource-efficient framework for data selection in LLM fine-
tuning. Our approach leverages an in-context approximation (ICA) to estimate the holdout loss of
the model after including each candidate example in training, without requiring additional finetuning
or a reference model. The resulting ICA scores are used to dynamically reweight gradient updates
during fine-tuning. Empirical results show that ICA score-based reweighting consistently improves
model alignment across SFT, DPO, and SimPO over diverse datasets and backbone architectures,
with only marginal computational overhead (∼ 1.5%).

We also note limitations and directions for future work. Our method relies on a high-quality holdout
set as a proxy for the test distribution; noisy or unrepresentative holdouts may reduce generaliza-
tion to unseen data, even if alignment appears strong. Additionally, ICA is inherently off-policy,
so applying it to on-policy methods such as PPO would require frequent recomputation of scores
for all examples as new data is generated and model parameters continuously evolve, creating a
computational bottleneck. Addressing these challenges is a promising direction for future work.
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ETHICS STATEMENT

All authors have read, adhere to, and explicitly acknowledge the ICLR Code of Ethics. This work
does not involve human subjects or private user data, and all datasets used in our experiments are
publicly available and appropriately cited, with full details of data processing and holdout/test splits
provided in the appendix to ensure transparency and reproducibility.

All experimental procedures and analyses adhere to accepted research integrity standards, and we
disclose any potential conflicts of interest: none exist. This work does not involve applications that
directly pose safety or legal risks beyond standard LLM use.

The assistive use of LLMs in preparing this paper, to refine grammar and improve the clarity of the
text, is documented in Appendix C, and the authors take full responsibility for all content.

REPRODUCIBILITY STATEMENT

All code and materials used in our experiments are available at https://anonymous.4open.
science/r/datawork. To facilitate reproducibility, we provide detailed descriptions of all
datasets used, including holdout and test set construction and dataset splits, in Appendix B.1. The
algorithm used in our experiments is detailed in Appendix B.4, with full training parameters, LoRA
configurations, and evaluation settings provided in Appendix B.3. Prompts used for querying LLMs
when computing ICA scores, as well as prompts used for GPT to judge win rates, are provided in
Appendix B.9.

For theoretical results, our method builds on the holdout loss approximation introduced in Min-
dermann et al. (2022), and we reproduce the complete derivation in Appendix A. Together, these
materials allow others to reproduce our experiments and verify our results.
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A DERIVATION OF HOLDOUT LOSS APPROXIMATION UNDER A BAYESIAN
FRAMEWORK

We reproduce here the derivation from Mindermann et al. (2022) for completeness. Let θt :=
θ⋆(Dt) denote the model trained on Dt, and define the loss as the negative log-likelihood ℓ(y |
x;θ) = − log p(y | x;θ). We use xho and yho to denote the collections of inputs and outputs of the
holdout examples, respectively.

The holdout loss of the model trained with a particular example included in the training set is ap-
proximated as follows:

log p(yho | xho;Dt ∪ (x,y)) = log
p(y | x;xho,yho,Dt) p(y

ho | xho,x;Dt)

p(y | x,xho;Dt)

= log
p(y | x;yho,xho,Dt) p(y

ho | xho;Dt)

p(y | x;Dt)

∝ ℓ(y | x;θt)− ℓ(y | x;θ⋆(Dt ∪ Dho))

where the first equality applies Bayes’ rule, the second uses a conditional independence assumption,
and the last line drops the candidate-independent term.

B DETAILS OF EXPERIMENTS

B.1 DATASET SPLITS

We provide details on the construction of the training, holdout, and test sets for all datasets used in
our experiments.

• Alpaca and Alpaca-cleaned (Taori et al., 2023) Alpaca-cleaned is a curated version of
Alpaca. The holdout set consists of the first 10,000 examples from Alpaca-cleaned, and
the test set consists of the last 10,000 examples. For training, we use all Alpaca examples
except those whose corresponding examples in Alpaca-cleaned have been reserved for the
test set, resulting in 84,022 training examples.

• Yahoo Answers Topics The holdout and test sets each contain 3,000 examples from the
Sports domain. The training set consists of 1,000 examples from each of the remaining
domains, together with the holdout examples, totaling 12,000 training examples.

• UltraFeedback-binarized (Cui et al., 2023) The dataset is split into a training set (66,282
examples) and a test set (2,000 examples). From the training set, a holdout set of 5,147
pairs is selected, consisting of examples where the chosen response has a quality score≥ 9
and the rejected response has a quality score ≥ 7. All examples in the training set are used
for training.
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• StanfordNLP/SHP-2 (Ethayarajh et al., 2022) We use the Baking domain as the target
domain. From the official test split, we rank Baking examples by (score A + score B),
selecting the top 1,000 as the holdout set and the next 1,000 as the test set. For training, we
use the official train split, selecting 1,000 examples from each domain and including the
holdout set.

B.2 EVALUATION STABILITY ACROSS RUNS

Each model in the main experiments is trained and evaluated only once. To verify evaluation
stability, we repeated the GPT-based evaluation multiple times for LLaMA-3-8B-Instruct on Ya-
hoo Answers Topics. Table 4 reports the average win rates and standard deviations across these
runs. Higher win rates indicate better alignment, and the small standard deviations show that the
evaluation results are stable across runs.

Table 4: Win rates of our method against each baseline for LLaMA-3-8B-Instruct on Ya-
hoo Answers Topics, averaged over multiple GPT-based evaluations, with corresponding standard
deviations reported.

Ours against w/o RHO-Loss One-shot

Win Rate (% ↑) 85.10 54.03 66.93
Std. (% ↓) 0.3 0.2 0.5

B.3 DETAILS OF TRAINING AND EVALUATION CONFIGURATIONS

We summarize the training and testing configurations for full fine-tuning, LoRA fine-tuning, and
evaluation in Table 5.

B.4 IMPLEMENTATION DETAILS OF ALGORITHM 1

We provide details of the two techniques introduced in the main text for improving the computational
efficiency of Algorithm 1.

Selecting in-context demonstrations via kNN Instead of using the full holdout set Dho for in-
context learning, we condition on a smaller, more relevant subset of Dho selected using embedding
similarity.

Specifically, we first precompute and store embeddings of the inputs for all training and holdout
examples:

hi = f(xi,yi) for i = 1, . . . , |D|,

hho
i = f(xho

i ,yho
i ) for i = 1, . . . , |Dho|,

where f denotes the embedding function (by default, we use all-mpnet-base-v2 (Reimers &
Gurevych, 2019)).

For each candidate (x,y) ∈ D with embedding h, we select the top-k holdout examples whose
embeddings are closest to h to form a demonstration subset Ck. We replace the full Dho with this
subset when computing the ICA score (line 6 of Algorithm 1). Then the ICA score can be computed
as

s(x,y;θt) ≈ ℓ(y | x;θt)− ℓ(y | x, Ck;θt),

where
Ck := {(xho,yho) ∈ Dho

∣∣ hho is among the k nearest to h}.

Although in our experiments we recompute the kNN search at each scoring step, the demonstration
subsets can be precomputed once and reused across iterations to further amortize the cost.
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Table 5: Detailed training parameters for full fine-tuning, LoRA, and evaluation.

Full Fine-tuning Parameters SFT DPO SimPO

torch dtype bfloat16 bfloat16 bfloat16
attn implementation flash attention 2 flash attention 2 flash attention 2
lr scheduler type cosine cosine cosine
gradient accumulation steps 16 16 16
learning rate 1× 10−5 1× 10−6 1× 10−6

max length 1024 - -
max prompt length - 1024 1024
max seq length - 1024 1024
num train epoch 1 1 1
optim adamw torch adamw torch adamw torch
per device train batch size 1 1 1
per device eval batch size 4 4 4
seed 42 42 42
warmup ratio 0.1 0.1 0.1
loss type nll sigmoid sigmoid
beta - - 2.5
gamma beta ratio - - 0.55
sft weight - - 0.0
disable dropout - - True

LoRA Fine-tuning Parameters

learning rate 1× 10−4 1× 10−4 1× 10−4

lora r 8 8 8
lora alpha 16 16 16
lora dropout 0.1 0.1 0.1
lora target modules [q proj, k proj, v proj, up proj, down proj, o proj, gate proj]
lora task type CAUSAL LM CAUSAL LM CAUSAL LM

Evaluation Parameters

tester azure GPT
api version 2025-01-01-preview
model gpt-4o 2024-08-06
temperature 0
top p 0.95
seed None
max tokens 1600

Periodic score updates In Algorithm 1, scores are computed at every training step. To improve
efficiency, we instead perform score computation only R times during training. At each recomputa-
tion point, scores for all training examples are updated and stored; in the intervening steps, the most
recent scores are reused to determine weights.

The reweighting algorithm incorporating these two techniques is presented in Algorithm 2, where
the score update frequency is determined from the training set size, batch size, and the total number
of score computations R.

B.5 IMPLEMENTATION DETAILS OF BASELINES

We provide additional details on how the scores are computed for each baseline. These scores are
used in place of the ICA score within our reweighting framework.

• RHO-Loss (Mindermann et al., 2022) approximates the holdout loss score in equation 4
by replacing the second term with a separate model trained once on the holdout set. For
each candidate, the resulting score is

sRHO-Loss(x,y) = ℓ(y | x;θt)− ℓ(y | x;θ⋆(Dho)).

To replicate this method, we train the target model on the holdout set Dho to obtain
θ⋆(Dho).
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Algorithm 2 Enhanced Algorithm 1 with Computational Efficiency Techniques

1: Input: Training set D; Holdout set Dho; Pre-trained model parameters θ; Number of training
steps T ; Total number of score computations R; kNN hyperparameter k; Embedding function
f ; Batch size nB ; Optimizer OPTIMIZER

2: Initialize θ0 ← θ
3: D,Dho ← PREPROCESSING(D,Dho, f, k)
4: for t = 0, · · · , T − 1 do

5: if t mod |D|
nBR = 0 then // Recompute scores every F steps

6: for (xi,yi,hi,Scorei) ∈ D do
7: Ck

i ← GETDEMONSTRATIONSET(hi,Dho, k)
8: ConditionalLossi ← ℓ(yi | xi, C

k
i ;θt)

9: Lossi ← ℓ(yi | xi;θt)
10: Scorei ← Lossi − ConditionalLossi

11: end for
12: end if

13: Sample batch Bt ⊂ D of size nB

14: Compute per-example weights within the batch using equation 8
15: Compute the reweighted batch gradient gt on Bt using equation 9
16: θt+1 ← OPTIMIZER(θt,gt)
17: end for

Return Finetuned model parameters θT

18: function PREPROCESSING(D,Dho, f, k)
19: for (xi,yi) in D do
20: Compute hi ← f(xi,yi) // Embedding for training example i
21: Initialize Scorei ← 0
22: end for
23: Update training set D ← {(xi,yi,hi,Scorei)}|D|

i=1

24: for (xho
i ,yho

i ) in Dho do
25: Compute hho

i ← f(xho
i ,yho

i ) // Embedding for holdout example i
26: end for
27: Update holdout set Dho ← {(xho

i ,yho
i ,hho

i )}|Dho|
i=1

28: end function

29: function GETDEMONSTRATIONSET(h,Dho, k) // Select top k holdout examples using
embedding similarity

30: Ck ← {(xho,yho) ∈ Dho

∣∣ hho is among the k nearest to h}
31: Return Ck

32: end function

• One-shot learning (Li et al., 2023b) computes a score for each candidate as the difference
between the one-shot loss with the candidate included as context and the zero-shot loss
without it:

sone-shot(x,y) = L(Dho;θ0)− L(Dho | (x,y);θ0)
where, for consistency with our setting, we use the pretrained model θ0 to perform this
one-shot evaluation and compute losses on the holdout set Dho instead of the predefined
subtasks used in the original paper.

B.6 ABLATION STUDIES

Tables 6–9 summarize the ablation studies on LLaMA-3B-Instruct trained on Ya-
hoo Answers Topics. Win rates indicate the percentage of responses preferred compared to
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the default setting (k = 3, R = 1, using all-mpnet-base-v2 as the embedding model). Each table
corresponds to one ablation dimension: Top-k (Table 6); total number of score computations
R during training (Table 7); percentile threshold for filtering (Table 8); and embedding model
(Table 9). Higher win rates indicate better performance.

Table 6: Effect of Top-k on win rates; higher values indicate better performance.

Top-k 1 3 5

Win rate (% ↑) 43.50 48.03 46.07

Table 7: Effect of total number of score computations R on win rates; higher values indicate better
performance.

R 3 5 9

Win rate (% ↑) 50.73 52.77 51.60

Table 8: Effect of percentile threshold for filtering on win rates; higher values indicate better perfor-
mance. Here, ≥ x indicates retaining examples with scores above the x-th percentile.

Filtering ≥ x 50 75 90

Win rate (% ↑) 40.80 48.67 40.07

B.7 COMPUTATIONAL OVERHEAD

We report the computational overhead of our method compared to baseline methods. Table 10
presents the runtime for embedding precomputation, score computation, and total additional runtime
relative to standard fine-tuning (computed as additional time divided by the runtime of standard fine-
tuning). We train LLaMA-3B-Instruct on Yahoo Answers Topics using the default settings of our
method, and measure runtime on four NVIDIA A6000 GPUs (48 GB each).

B.8 ADDITIONAL RESULTS USING LORA

To assess the effectiveness of our method across different parameter updating paradigms, we conduct
LoRA training using LLaMA-3-8B-Instruct. Table 11 reports win rates for LoRA with our reweight-
ing method relative to regular LoRA training across various alignment methods and datasets. Each
value represents the percentage of responses judged closer to the target by GPT-4o 2024-08-06, with
higher values indicating better performance. The results demonstrate that our method consistently
improves alignment, even under the LoRA parameter updating setting.

B.9 PROMPTS FOR IN-CONTEXT APPROXIMATION AND MODEL EVALUATION

Table 12 shows the prompts we use. The first section provides a standard query, the second includes
the query with holdout examples as in-context demonstrations used for computing ICA scores via
ICA approximation, and the third shows prompts used for evaluation, where GPT judges which
candidate response is closer to the target output.

B.10 RESPONSE LENGTH AS AN ALIGNMENT INDICATOR

Our method effectively captures the characteristics of the holdout dataset. In Ya-
hoo Answers Topics, which consists of daily conversational data collected from internet users, the
Sports category contains notably shorter responses, with an average token length of 62.07 compared
to 86.01 in other categories. Moreover, the proportion of extremely short answers (token length≤ 5)
is substantially higher in the Sports category (16%) than in others (4%). The model trained using our
approach reflects these patterns, producing similarly concise responses to sports-related questions,
as shown in Table 13.
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Table 9: Effect of embedding model on win rates; higher values indicate better performance.

Embedding Model Win rate (% ↑)

BAAI/bge-m3 52.13

Table 10: Runtime for embedding precomputation and score computation (seconds), and total ad-
ditional runtime relative to standard training (percentage). Higher values indicate greater computa-
tional cost.

Metric Ours RHO-Loss One-shot

Precomputation (s) 2 5400 2
Score Computation (s) 800 800 2000
Additional Runtime (%) 1.5 10 4

B.11 EXAMPLES OF HIGH- AND LOW-SCORING RESPONSES

To provide intuition for the effectiveness of our scoring method, we select two example pairs and
present them in Table 14. In each pair, the prompt is the same, but the responses differ: one is from
Alpaca and the other from Alpaca-cleaned. For each response, we show the score assigned by our
method. We observe that responses receiving higher scores tend to exhibit clearer structure, more
complete coverage of the instruction’s intention, and more precise or domain-relevant content, while
low-scoring responses often display redundancy, incomplete answers, or missing key details. These
examples illustrate that our method prioritizes clearer structure and precise content, helping explain
why it improves model alignment.

C USE OF LARGE LANGUAGE MODELS

In adherence to ICLR 2026 policy, we disclose the assistive use of Large Language Models (LLMs)
in the preparation of this paper. The models were employed to refine grammar and improve the
clarity of the text. The authors have reviewed all LLM-generated contributions and take full respon-
sibility for the content and integrity of this work.
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Table 11: Win rates of LoRA trained with our method relative to LoRA trained without our method
using LLaMA-3-8B-Instruct. Higher values indicate better performance.

Alignment Method SFT DPO SimPO

Alpaca Yahoo UltraFeedback SHP-2 UltraFeedback SHP-2

Win rate (% ↑) 71.55 68.13 61.23 57.33 56.03 60.13

Table 12: Prompts for ICA computation and model evaluation

Query
You are an expert assistant.
Answer the following question:
{question}

Query with In-Context Demonstrations
You are an expert assistant. Follow the examples:
Q: {example question 1}
A: {example answer 1}
Q: {example question 2}
A: {example answer 2}
...
Answer the following question:
{question}

Evaluation
You are an expert assistant. Given a question, a standard answer,
and two candidate answers, indicate which candidate is closer to the
standard.
Instructions:

1. Choose the candidate closer to the standard, not necessarily the
higher quality.

2. Consider content, length, and style relative to the standard
answer.

3. Be concise; output only a JSON object with the winner.

Question: {question}
Standard answer: {standard answer}
Candidate 1: {candidate answer 1}
Candidate 2: {candidate answer 2}

Output format:
If candidate 1 is closer: {"winner": 1}
If candidate 2 is closer: {"winner": 2}
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Table 13: Example responses from the Sports category showing alignment of model outputs with
target domain response length.

Response Example
Question: Are there any sports where it’s an advantage to be little?
Answer from dataset: A Jockey.
Answer from model after SFT: Yes, I would say that wrestling is one of
them.
Answer from model after Ours+SFT: Polo.
Answer from LLaMA-3B-Instruct before fine-tuning: While being tall
can be an advantage in some sports, there are indeed some sports
where being shorter can be beneficial. Examples include: gymnastics,
wrestling, boxing, table tennis, fencing, weightlifting, and cycling.
Shorter athletes can benefit from a lower center of gravity, faster
movement, or easier maneuverability, though technique, strength, and
endurance remain crucial.
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Table 14: Example pairs from Alpaca and Alpaca-cleaned with scores assigned by our method

Example 1
Instruction: Analyze the following document and group the topics it
talks about.

Response (score = 1.99): Uber being a leading company in the
ride-sharing industry since its launch in 2009. It has disrupted
the transportation industry, creating a business model in which it
acts as a middleman between two parties: the rider and the driver.
Uber’s main service offering includes a mobile app and website, which
allows riders to request a ride from an available driver. This ride
can be paid for using Uber’s payment system, which was developed in
partnership with a variety of third-party processors. The company also
offers various add-on services, such as \UberPool", which allows riders
to share a ride with other riders to save money, and \UberRush", which
allows riders to schedule a ride for a future time.

Response (score = 7.45): Topic 1: Ride-sharing industry
Topic 2: Uber’s business model
Topic 3: Mobile App/Website
Topic 4: Payment System
Topic 5: Add-on services (UberPool & UberRush)

Example 2
Instruction: Describe the types of facial recognition technology used
in security systems.

Response (score = 5.56): Facial recognition technology is used in
various security systems to identify and verify individuals based
on their facial features. Some common types of facial recognition
technologies used in security systems include:
1. 2D Facial Recognition: This is the most commonly used facial
recognition technology, where the system captures a 2D image of a
person’s face and compares it with the images in its database to find a
match.
2. 3D Facial Recognition: This technology uses 3D sensors to capture
the shape and contours of a person’s face, providing a more accurate
and reliable identification than 2D recognition.
3. Thermal Facial Recognition: This technology uses thermal imaging
to capture the heat patterns that are unique to each individual’s face.
This technology is particularly useful in low-light conditions or where
the subject is wearing items that obscure their face.
4. Skin Texture Analysis: This advanced facial recognition technology
captures the unique patterns and lines on a person’s skin to identify
and verify their identity.
These are some of the common types of facial recognition technologies
that are used in security systems, and they offer varying levels of
accuracy and reliability in identifying individuals.

Response (score = 15.40): Facial recognition technology used in
security systems can come in many forms, such as biometrics-based
authentication, 3-D face recognition, or the use of algorithms to
detect facial features. Biometrics-based authentication requires users
to provide physical attributes such as fingerprints, iris scans, and
facial recognition for access. 3-D face recognition is more secure and
uses more than two-dimensional image recognition to identify a person.
Algorithms can detect the shape, size, and position of facial features,
allowing for more accurate verification.
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