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ABSTRACT

Feature augmentation in neural networks is an effective regularization method
to adjust the margin in feature space. However, a similar approach in terms of
directly repositioning features, contrastive learning, has reported collapse prob-
lems of inter-class and intra-class features. The augmentation approaches are
also related to the issues, but have been barely analyzed. In this paper, we
show that feature augmentation methods are also affected by the collapse prob-
lems and address them by proposing a novel method to generate augmented
features gradually approaching the midpoint of inter-class feature pairs, called
asymptotic midpoint augmentation (AMA). The method induces two effects: 1)
balancing the margin for all classes and 2) only moderately broadening the mar-
gin until it holds maximal confidence. We empirically analyze alignment and
uniformity to show vulnerability to the problems in a toy task. Then, we validate
its impacts in original, long-tailed, and coarse-to-fine transfer tasks on CIFAR-10
and CIFAR-100. To enhance generality, we additionally analyze its relation to a
representative input-level augmentation such as Mixup.

1 INTRODUCTION

Augmenting features in neural networks has been effective in regularization by handling margin in
feature space( Verma et al. (2019)). The approach generates a feature, which indicates a hidden rep-
resentation of a layer created from an input, and its confidence information from involved original
features. A similar approach in the perspective of directly repositioning features, contrastive learning
( Chen et al. (2020) He et al. (2020)), learns features distant from a decision boundary by getting cen-
troids of classes further away from each other, and gathering positive pairs closer, which decreases
intra-class feature distance and increases inter-class feature distance, measured by alignment and
uniformity, respectively. In the contrastive learning literature, two problems have been recently dis-
cussed: collapse of intra-class and inter-class features ( Li et al. (2022) Chen et al. (2022)). The first
problem is reported in coarse-to-fine transfer learning( Chen et al. (2022)), where all features are
closely located on the centroids of each class as the alignment excessively decreases. The second
problem is introduced in Supervised Contrastive learning (SupCon) ( Khosla et al. (2020)), which
uses labels to create positive and negative pairs. The method outperforms other self-supervised
learning methods. However, SupCon causes unbalanced margins on long-tailed datasets by over-
whelming numerical dominance of the head classes, and it decreases the image classification per-
formance on them. Feature augmentation may also be affected by the collapse problems because of
direct feature adjustment. However, the issues have not been deeply analyzed.

In this paper, we show that feature augmentation also suffers from the problems by analyzing align-
ment and uniformity, and propose a novel feature augmentation method to generate augmented fea-
tures gradually approaching a decision boundary, called Asymptotic Midpoint Augmentation (AMA).
AMA has three parts: 1) generating a pool of augmented features by interpolating inter-class feature
pairs and pseudo labeling, 2) class-unbiased random sampling, and 3) adaptive interpolation ratio
control. The proposed method creates augmented features to make the margin balanced and moder-
ately broad by asymptotically moving them to the midpoint, as shown in Figure 1. As a result, the
method shows higher uniformity than before and sufficiently high alignment.

In an experiment on a toy task, we validate the effect of collapses by using alignment and uniformity
metrics for AMA and other feature relocation methods such as SupCon( Khosla et al. (2020)) and
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Figure 1: Overview of Asymptotic Midpoint Augmentation. (left) Feature vectors of input sam-
ples came from the pre-trained encoder. (middle) Asymptotic Midpoint Augmentation generates
augmented features and pseudo labels based on interpolation. Examples for understanding the inter-
polation are highlighted as cyan. The ratio between two different features is controlled by 𝛼 and this
parameter has asymptotically decreased from 1.0 to 0.5 until the end of training. The augmented
features are created as a mini-batch size at the same rate. (right) Finally, original and augmented
features are passed to the classifier.

Manifold Mixup( Verma et al. (2019)). We empirically verify the impact of AMA in comparison
with the feature augmentation methods in image classification tasks on long-tailed, coarse-to-fine
transfer, and original data sets. Additionally, we also analyze the relation of AMA to a representative
input-level augmentation method that enhances the different types of information, Mixup( Zhang
et al. (2017))

In summary, our main contributions are four-fold:

• we raise the inter-class and intra-class collapse issues in feature augmentation approaches
and show their impacts by analyzing alignment and uniformity.

• we propose a novel feature augmentation method, asymptotic midpoint augmentation, to
address the problems by balancing and moderately broadening the margin in feature space.

• we empirically analyze the effects and performance of AMA and other feature augmenta-
tion methods in image classification tasks on long-tailed datasets and coarse-to-fine transfer
learning, which are sensitive to collapses.

• we additionally confirm that it maintains performance in the original dataset to inhere un-
certain portion of the problems, compare AMA with a representative input-level augmen-
tation method, and analyze their relation.

2 BACKGROUND

Intra-class collapse Contrastive loss leads the features of positive pairs to be closed to invariant
on the noise factor. In contrastive learning, the encoder is forced to ensure that similar samples
must be placed at a similar location in the feature space. However, the attraction between positive
pairs makes features gather at one point. This phenomenon limits the expressiveness of the model,
and it is especially critical for some tasks such as coarse-to-fin transfer learning. More specifically,
if a model is pre-trained by coarse-grained labels and then fine-tuned by fine-grained labels, the
model would likely not classify fine-grained samples due to the collapsed features. Especially,
features in the same class are prone to collapse on the centroids of the class in supervised contrastive
learning. We called this problem as intra-class collapse. To measure the intra-class collapse, intra-
class alignment has been proposed, which represents the closeness of positive pairs ( Wang & Isola
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(2020) Li et al. (2022)). The intra-class alignment can be measured by following:

A = 1
𝐶

∑𝐶
𝑖=1

1
|F𝑖 |2

∑
v 𝑗 ,v𝑘 ∈F𝑖

∥v 𝑗 − v𝑘 ∥2 (1)

, where 𝐶 is the number of classes, v is a feature vector, and F𝑖 is the set of features from class 𝑖.
∥·∥2 means L2-norm.

Inter-class collapse Common contrastive learning methods achieve high performance thanks to
the property that centroids of the class get further away through repulsion between negative sam-
ples. However, supervised contrastive learning tends to make collapse between features in different
classes when the dataset is imbalanced, such as long-tailed datasets. More specifically, the model
naturally concentrates on getting a large distance between head classes to minimize the loss. For
this reason, the contrastive loss is not evenly weighted on all classes. In this situation, features in
tail classes would be collapsed each other. We called this collapse as inter-class collapse, and it pre-
vents the model from learning regular simplex of features, which is a crucial factor when training on
imbalanced datasets in contrastive learning. The inter-class collapse can be measured by inter-class
and neighborhood uniformity, which are metrics that favor the uniform distribution of representa-
tions on the unit hypersphere ( Wang & Isola (2020) Li et al. (2022)). The inter-class uniformity
measures the pair-wise distance between different classes, and the neighborhood uniformity inspects
the convergence of tail classes. These two kinds of metrics can be measured by following U and U𝑘 ,
respectively:

U = 1
𝐶 (𝐶−1)

∑𝐶
𝑖=1

∑𝐶
𝑗=1, 𝑗≠𝑖 ∥v̄𝑖 − v̄ 𝑗 ∥2 (2)

U𝑘 = 1
𝐶𝑘

∑𝐶
𝑖=1 min

𝑗1 , · · · , 𝑗𝑘
(∑𝑘

𝑙=1∥v̄𝑖 − v̄ 𝑗𝑙 ∥2) (3)

, where v̄𝑖 is the center of samples from class 𝑖 on the hypersphere: v̄𝑖 =
∑

v 𝑗 ∈F𝑖 v 𝑗

∥∑v 𝑗 ∈F𝑖 v 𝑗 ∥ 2
.

In this paper, we do not normalize the center of samples by their norm for a fair comparison with the
original method and feature augmentation methods, which do not purpose to learning representations
on the hypersphere.

3 ASYMPTOTIC MIDPOINT AUGMENTATION

In this section, we first present our motivation based on preliminary experiments about alignment
and uniformity for augmentation and contrastive learning methods. Then, we introduce asymptotic
midpoint augmentations (AMA) and analyze its effects to feature distribution and decision bound-
aries.

3.1 MOTIVATION

Experimental Setting To quantitatively measure the intra-class and inter-class collapses, we in-
spect intra-class alignment, inter-class uniformity, and top-3 neighborhood uniformity in an image
classification task on long-tailed CIFAR-100 where the imbalance factor was set to 100. We an-
alyzed those metrics by Eq. 1, 2, and 3. The thing to note here is that we did not normalize the
uniformity by class centers for a fair comparison. The experimental settings here are the same as
Section 4.3.

Table 1: Alignment and uniformity in an image classification task on long-tailed CIFAR-100 with
imbalance factor 100. Superscript ↑ and ↓means that higher is better and lower is better, respectively.
Subscript in U𝑘 means the number of neighbors. Acc.(%) means test accuracy in each model. Best
in bold. (Acc.(%): mean ± std)

Orig. SupCon Mixup* Manifold Mixup AMA

A↓ 9.36 ± 0.12 3.34 ± 0.09 5.89 ± 0.07 6.80 ± 0.07 8.85 ± 0.08

U↑ 8.69 ± 0.14 3.83 ± 0.11 5.19 ± 0.06 6.84 ± 0.08 8.14 ± 0.14

U↑3 4.25 ± 0.08 1.87 ± 0.06 2.61 ± 0.04 3.49 ± 0.04 4.10 ± 0.04

Acc.↑ (%) 43.23 ± 0.39 36.43 ± 0.76 37.00 ± 0.17 40.46 ± 0.42 45.98 ± 0.31
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Collapse Problems Are Important in Feature Augmentation In Table 1, the evidence of col-
lapses and their unignorable impact are observed. First of all, augmentation methods show higher
intra-class alignment than SupCon. Optimal intra-class alignment is uncertain and varies by many
factors, but SupCon is known as having excessively low intra-class alignment when intra-class col-
lapse occurs. Therefore, it is reasonable that the augmentation methods are alleviating the collapse
effect. According to the background, inter-class collapse reduces inter-class uniformity and neigh-
borhood uniformity, and the augmentation methods gradually get higher values in more recent meth-
ods. The two observations show the possibility of resolving collapses via feature augmentation, and
the corresponding significant increase in accuracy implies that the impact of the collapses can not be
ignored. Additionally, Mixup is a data augmentation method on input space, but it also improves the
measures, which shows the difference between the augmentation approach to contrastive learning.
We introduce this extended experiment in Section 4.6.

3.2 PROPOSED METHOD

Notations Let D = {(x𝑖 , 𝑐𝑖) |1 ≤ 𝑖 ≤ 𝑛, 𝑖 ∈ N} be the set of pairs of an input vector and its
label where x𝑖 ∈ R𝑑 and 𝑐𝑖 ∈ 𝐶 for the class index set 𝐶 and the pair index 𝑖. We define y𝑖 =

[𝑦1, 𝑦2, ..., 𝑦 |𝐶 |] ∈ R |𝐶 | as one-hot encoding vector for 𝑐𝑖 , where 𝑦𝑐𝑖 = 1. The feature vector of
𝑖-th input sample x𝑖 , is notated as z𝑖 ∈ R |𝐶 | . The confidence p comes from 𝜎(z), where 𝜎(·)
is a function that normalizes an input vector into a range that leads to probabilistic interpretations,
similarly to softmax. In this paper, we used softmax function for 𝜎(·). Θ and Φ represent the
parameters of the networks.

Interpolation-Based Feature Generation and Pseudo Labeling In AMA, augmented features
and labels are created as

z (𝑖, 𝑗) = 𝛼 · z𝑖 + (1 − 𝛼) · z 𝑗

𝑐 (𝑖, 𝑗) =
{
𝑐𝑖 , if 𝛼 ≥ 0.5
𝑐 𝑗 , if 𝛼 < 0.5

(4)

, where z (𝑖, 𝑗) is an augmented feature generated via interpolation of z𝑖 and z 𝑗 selected from different
classes, and the pseudo label is 𝑐 (𝑖, 𝑗) . This process occurs in the feature space, and the pseudo labels
are determined by controlling a parameter 𝛼 for asymptotically moving them close to the decision
boundary. In different with other interpolation-based methods, the labels are definitely determined
as one side.

Class-Unbiased Random Sampling We consider how to sample original features for interpo-
lation from two different classes to balance pair-wise margins between them. For this purpose,
original features are randomly selected from probabilistic distribution in every mini-batches. Let
D𝐵 = {(x𝐵,𝑖 , 𝑐𝐵,𝑖) |1 ≤ 𝑖 ≤ 𝑚, 𝑖 ∈ N} be the pairs of input samples and labels in the mini-batch,
where the mini-batch size is 𝑚. Then, the probability of selecting (x𝑖 , 𝑐𝑖) from D𝐵 for interpolation
is illustrated in Eq. 5:

P(x𝐵,𝑖) =
1
𝐶𝐵
· 1
𝑁𝑐𝑖

(5)

, where 𝐶𝐵 is the number of classes in the mini-batch and 𝑁𝑐𝑖 is the number of samples of 𝑐𝑖-th class
in the mini-batch. This sampling method allows the decision boundary to be placed in the middle of
two engaged classes while maximizing the margin.

Asymptotic move of Augmented Features Confidence is an important factor in estimating the
decision boundary. However, it is unreliable to use the pseudo labels as ground truth in early training
because neural networks are prone to predict wrong. To reduce this risk, we propose a scheduler
that relies on the training accuracy to update 𝛼 more sensitively, as illustrated in Eq. 6.

𝛼 = 𝑓 (𝑣𝑎𝑐𝑐) = 𝑒−𝛽 ·𝑣𝑎𝑐𝑐 (6)

, where 𝑁 is the number of epochs and 𝑣𝑎𝑐𝑐 ∈ [0, 1] means the real value of training accuracy at each
epoch. 𝛽 is a hyperparameter to decide how 𝛼 decreases as the training accuracy. We set 𝛽 as 0.67
where 𝛼 exponentially decreased from 1.0 to about 0.5, and empirically figured out the performance
consistently shows best when 𝛽 = 0.67 except coarse-to-fine transfer learning environment.
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Algorithm 1 Example of Applying AMA to Training a Neural Network for Classification
Input: model parameter Θ and Φ, cross-entropy loss LCE , AMA loss LAMA , mini-batch size 𝑀 , # mini-batches 𝑁 , balancing parameter 𝛼, learning rate 𝜂
Output: balanced and moderately broad margin

1: D← a set of pairs of input samples and labels
2: 𝑓Θ ← encoder, which parameters are Θ
3: 𝑔Φ ← classifier, which parameters are Φ
4: 𝛼← 1.0
5: for epoch = 1, 2, . . . , 𝑇 do
6: for 𝑖 = 1, 2, . . . , 𝑁 do
7: D𝐵 ← a set of pairs of input samples and labels in the 𝑖-th mini-batch
8: X← {x𝐵,1 ,x𝐵,2 , . . . ,x𝐵,𝑀 }
9: Z← 𝑓Θ (X)

10: Z𝑠 ← a set of original features selected via class-unbiased random sampling by Eq. 5
11: Generate augmented features Z(·,·) and labels c(·,·) from Z𝑠 by Eq. 4
12: LCE ← cross-entropy loss from Z by Eq. 7
13: LAMA ← AMA loss from Z(·,·) by Eq. 8
14: L ← LCE + LAMA
15: Θ← Θ − 𝜂∇ΘL
16: Φ← Φ − 𝜂∇ΦL
17: Update 𝛼 by Eq. 6
18: end for
19: end for

Training Loss for Augmented Features AMA uses cross-entropy for the augmented features as
original features and integrated with original cross-entropy loss as follows.

LCE =
∑︁
z∈Z

𝐶∑︁
𝑘=1
−𝑦𝑘 log 𝑝𝑘 , where p = 𝜎(z) (7)

LAMA =
∑︁

z (𝑖, 𝑗) ∈Z(·,·)

𝐶∑︁
𝑘=1
−𝑦 (𝑖, 𝑗)

𝑘
log 𝑝

(𝑖, 𝑗)
𝑘

, where p(𝑖, 𝑗) = 𝜎(z (𝑖, 𝑗) ) (8)

where Z and Z(𝑖, 𝑗) are the set of features and selected augmented features, respectively, and 𝑝𝑘 is
the probability for the 𝑘-th class. An example of integration with a usual classification is shown in
Algorithm 1.

3.3 EFFECT ANALYSIS

We explain the margin-balancing and moderate margin-broadening effects of AMA and empirically
figure out the effects of a simple classification task on a long-tailed toy dataset via qualitative and
quantitative analysis.

Margin Balancing AMA forces a decision boundary to locate near the midpoint of inter-class
features, because the optimum of AMA loss is obtained when the boundary passes the midpoint for
the following reasons: 1) class-unbiased random sampling selects the same number of augmented
features for every class, 2) the expected distance of two augmented features to their midpoint is
equal, and 3) the sum of their confidences determined by the distance 𝑑 is 2𝜎(0.5 + 𝑑) that has
the maximum at the midpoint (𝑑 = 0). Using the guidance to the midpoint repeatedly over many
updates, the asymptotic move of the augmented features toward the midpoint reduces the possibility
of locating the boundary at the intermediate points between the original and augmented features.
Because of this convergence to midpoint by AMA loss, its mixture with other losses is still adjusted
to balance margin.

Moderate Margin Broadening AMA broadens margin than original networks. Generally, loss
to maximize confidence increases margin in a simple relation of a feature and a decision boundary.
AMA adds the gradient of augmented features to the guidance in the same direction because the
features are interpolations of original features and have the same label. On the other side, the
original features stop being further away from the boundary after obtaining maximal confidence.
Because of nearly zero gradients at the state, the distance of intra-class features to their centroids is
moderately preserved without excessive converging pressure.

Experimental Setting We randomly generated [1000, 500, 100, 10] training samples and [200,
200, 200, 200] test samples around (-3, 3), (3, 3), (3, -3), and (-3, -3) for four different classes in
R2, respectively. All points were randomly sampled from the Gaussian distribution, where mean
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(a) Features and confidence map on 2-dimensional space (b) Accuracy and Distance

Figure 2: Effects of AMA to margin and feature distribution in an image classification task on long-
tailed toy dataset. The legend of (a) means (the number of points, label). We removed the axis ticks
for the simplicity, but it does not mean they have the same range to each other. (𝐷𝑚𝑎𝑥 : the Euclidean
distance of the farthest pair of features, 𝐷𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑: average distance between all pairs of centroids
for classes, 𝐷𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒: 𝐷𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑

𝐷𝑚𝑎𝑥
.)

and variance are set to 0 and 1, respectively. We used a 4-layer neural network, which has 128-64-2
hidden units in each layer for baselines and AMA. We set the optimizer as SGD at the momentum
of 0.9 and weight decay of 5e-4, and the initial learning rate as 0.1. We used 16 mini-batches, and
the total number of epochs was 100. In SupCon, we used the first three layers as an encoder and
trained the encoder while maintaining the same settings except for epochs set to 600. Then, the
last hidden layer was used as a classifier to predict labels with the same settings. To compare the
margin, we visualized feature vectors of input samples as points and their confidences as a heat map
on 2-dimensional space. Moreover, we analyzed various distances to quantitatively compare how
they affect the margin.

Result and Analysis In Figure 2a, AMA learns more balanced margin than the original and Sup-
Con methods. It is shown by the critically narrow area for tail classes (label 2 and 3) compared
to the area for head classes (label 0 and 1). Especially, SupCon assigns an extremely large area to
the head classes while AMA maintains a relatively similar distance from all boundaries. To inves-
tigate the effect of moderate margin-broadening, we quantitatively analyze original, SupCon, and
AMA, as shown in Figure 2b. 𝐷𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 indicates the relative margin of inter-class features com-
pared to the total size of feature distribution. AMA shows the best 𝐷𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒, which is helpful in
increasing inter-class uniformity and neighborhood uniformity while maintaining low 𝐷𝑚𝑎𝑥 . Sup-
Con improves inter-class uniformity by increasing 𝐷𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 , but 𝐷𝑚𝑎𝑥 increases more than about
7× of AMA. The observation implies that AMA only moderately broadens the margin without an
excessive expansion of feature distribution as SupCon.

4 EXPERIMENTS

We selected two methods as baselines to compare with AMA. SupCon shows our target problem
well, and Manifold Mixup is a representative method of feature augmentation. In the followings, all
experiments have been run on three different random seeds, and their performances are represented
as the mean mean and standard deviation std. In AMA, 𝛽 was set to 0.67 as default, and we only
annotate when it has a different value.

4.1 COMMON SETTINGS

We conducted experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet, which are generally
used in image classification benchmarks. Also, we used VGG11( Simonyan & Zisserman (2014)),
ResNet32, ResNet50( He et al. (2016)) and DenseNet-BC with 12 growth rate( Huang et al. (2017)).
SupCon and Manifold Mixup used the same environmental settings with the following explanation
for each task. In Manifold Mixup, we interpolated features only right before the classifier for a fair
comparison.
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4.2 COARSE-TO-FINE TRANSFER LEARNING TASK

Table 2: Retention of training abil-
ity in coarse-to-fine transfer learn-
ing. Best in bold and Second best
in underline. (Accuracy (%): mean
± std)

Method CIFAR-10 CIFAR-100

Orig. 66.66 ± 1.51 62.57 ± 1.53
SupCon 62.46 ± 0.25 57.16 ± 0.22
Manifold Mixup 52.10 ± 1.19 55.65 ± 0.67

AMA (𝛽 = 0.3) 64.65 ± 0.12 61.90 ± 0.66

Experimental Setting We conducted coarse-to-fine transfer
learning on CIFAR-10 and CIFAR-100. We first trained the
ResNet50 with a coarse-grained dataset and fine-tuned the lin-
ear classifier with a fine-grained dataset. We used 128 mini-
batches and the SGD at the momentum of 0.9 and weight de-
cay of 5e-4. For CIFAR-100, we set the initial learning rate as
0.1 and divided it by five at the 60th, 120th, and 160th epochs,
where the total number of epochs is 200. We composed the
coarse-grained dataset by splitting the original dataset into a
super-class of them. The fine-grained dataset is the same as
the original dataset. For CIFAR-10, we followed the hyper-
parameter and coarse-to-fine dataset settings in Chen et al.
(2022).

Result and Analysis As shown in Table 2, AMA achieved the second-best test accuracy, while
SupCon suffers intra-class collapse noticed by low accuracy. In a similar context, Manifold Mixup
and AMA also have intra-class collapse by showing lower accuracy than the original method. How-
ever, AMA achieves better than SupCon and Manifold Mixup, and it means that AMA alleviates
intra-class collapse in coarse-to-fine transfer learning.

4.3 LONG-TAILED TASK

Table 3: Performance in an image classification on long-tailed datasets. CIFAR-10-LT and CIFAR-
100-LT mean the long-tailed CIFAR-10 and CIFAR-100, respectively. Best in bold. (Accuracy (%):
mean ± std)

Method CIFAR-100-LT CIFAR-10-LT

Imbalance Factor 100 50 10 100 50 10

Orig. 43.23 ± 0.39 47.71 ± 0.24 59.37 ± 0.17 79.08 ± 0.08 83.06 ± 0.26 89.77 ± 0.08
SupCon 36.43 ± 0.76 39.97 ± 0.23 49.99 ± 0.43 71.96 ± 0.13 82.44 ± 0.15 90.68 ± 0.12
Manifold Mixup 40.46 ± 0.42 44.39 ± 0.58 54.92 ± 0.38 79.26± 0.16 83.32 ± 0.41 89.66 ± 0.11
TSC† ( Li et al. (2022) 43.8 47.4 59.0 79.7 82.9 88.7

AMA 45.98 ± 0.31 50.04 ± 0.27 59.93 ± 0.46 80.01 ± 0.45 83.27 ± 0.14 89.44 ± 0.15

Experimental Setting We used ResNet32, 256 mini-batches, the SGD at the momentum of 0.9
and weight decay of 5e-4, and the number of epochs is 400. We set the initial learning rate as 0.0
and warmed up for ten epochs by 0.015. After that, we divided the learning rate by ten at 360th and
380th epochs. The more specific settings are illustrated in Cui et al. (2021).

Result and Analysis As shown in Table 3, AMA attains the best performance except for the
imbalance factor set as 50 and 10 in CIFAR-10-LT. Whereas, SupCon shows the worst performance
in a high imbalance factor, which means SupCon has inter-class collapse in the long-tailed datasets
while AMA learns balanced margin. For this reason, AMA achieved the highest performance by
alleviating inter-class collapse between tail classes.

4.4 ORIGINAL IMAGE CLASSIFICATION BENCHMARKS

Experimental Setting We conducted image classification experiments on CIFAR-10, CIFAR-100,
and Tiny-ImageNet. For CIFAR-10, we set the initial learning rate as 0.05 and divided the learning
rate by two at every 30 epochs among the total of 300 epochs for all networks. For CIFAR-100, we
used the hyperparameter same as Section 4.2 for all networks. For Tiny-ImageNet on VGG11 and
ResNet50, we used 256 mini-batches, the SGD at a momentum of 0.9 without weight decay, and
the number of epochs is 200. We set the initial learning rate as 0.1 and multiplied it by 0.9 at every
20 epochs. For DenseNet-BC (𝑘 = 12) on Tiny-ImageNet, we used 64 mini-batches, the SGD at a
momentum of 0.9 without weight decay, and the number of epochs is 300. We set the initial learning
rate as 0.1 and divided it by ten at 150 and 225 epochs.
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Table 4: Performance in Image Classification Benchmarks. Best in bold (Accuracy (%): mean ±
std)

Network Method CIFAR-10 CIFAR-100 Tiny-ImageNet

VGG11
Orig. 8.23±0.02 31.73±0.19 46.90±0.09
Manifold Mixup 7.86±0.19 30.62±0.18 47.58±0.29

AMA 7.32±0.20 29.51±0.15 45.52±0.33

ResNet50

Orig. 4.98±0.12 23.43±0.18 43.15±0.74
SupCon 4.43±0.17 24.23±0.11 41.85±0.17
Manifold Mixup 5.45±0.39 23.58±0.69 42.17±1.63

AMA 4.62±0.07 22.95±0.65 41.64±0.16

DenseNet-BC
Orig. 5.08±0.20 23.04±0.27 39.77±0.34
Manifold Mixup 5.43±0.18 23.45±0.11 37.57±0.09

AMA 5.36±0.18 23.07±0.12 38.36±0.42

Result and Analysis As shown in Table 4, AMA achieved competitive or even high performance
with other representation augmentation based-models. Specifically for VGG11, AMA retained the
highest performance overall. It implies AMA sustains proper alignment and high uniformity without
interruption for representation learning.

4.5 ABLATION STUDY

Table 5: Ablation study on AMA. When
AM not applied, 𝛼 = 0.51 (I: Interpolation,
CR: Class-unbiased Random sampling, AM:
Asymptotic move of augmented features)

I CR AM Coarse-to-Fine Transfer Long-tailed

✓ ✓ ✓ 61.90 ± 0.66 45.98 ± 0.31
✓ ✓ 56.95 ± 1.05 44.23 ± 0.31
✓ ✓ 59.70 ± 1.32 42.10 ± 0.02
✓ 57.13 ± 1.34 41.33 ± 0.13

We conducted the ablation study to clarify the ef-
fects of all parts in AMA: interpolation, class-
unbiased random sampling and asymptotic move of
augmented features. Table 5 shows the effect of
components in AMA. In this experiment, we did ex-
periments in coarse-to-fine transfer on CIFAR-100
and in the image classification on CIFAR-100-LT
(imbalance factor: 100) with the same settings each.
In coarse-to-fine transfer learning, AMA without
CR shows the second-best performance. It implies
the asymptotic move of augmented features is more stable than simply locating augmented features
at the midpoint since the beginning. Class-unbiased random sampling exhibits its impact in the
long-tailed dataset. By mitigating unbiased augmented features, the model could learn more bal-
anced margins. Overall, using these two components together shows the best performance proving
their synergy in AMA.

4.6 ANALYSIS WITH MIXUP

Table 6: Coarse-To-Fine Grained Transfer
Learning. Best in bold (Accuracy (%): mean
± std)

Method CIFAR-10 CIFAR-100

Orig. 66.66 ± 1.51 62.57 ± 1.53
Mixup 62.22 ± 0.30 60.13 ± 1.01
AMA 64.65 ± 0.12 61.90 ± 0.66
AMA + Mixup 66.50 ± 1.30 61.92 ± 1.57

In our motivation experiments, we found that two
collapse problems also occur in the data augmenta-
tion method as Mixup( Zhang et al. (2017)). For the
exploration of AMA to data augmentation approach,
we first apply AMA to Mixup and figured out that
AMA is helpful to alleviate the collapses in long-
tailed and coarse-to-fine transfer learning tasks. In
this analysis, experimental settings are the same as
Sections 4.1, 4.2, and 4.3.

Table 7: Image Classification on Long-Tailed Dataset. Best in bold (Accuracy (%): mean ± std)

Method CIFAR-100-LT CIFAR-10-LT

Imbalance Factor 100 50 10 100 50 10

Orig. 43.23 ± 0.39 47.71 ± 0.24 59.37 ± 0.17 79.08 ± 0.08 83.06 ± 0.26 89.77 ± 0.08
Mixup 37.00 ± 0.17 40.41 ± 0.20 51.14 ± 0.26 74.50 ± 0.71 79.11 ± 0.56 87.13 ± 0.09
AMA 45.98 ± 0.31 50.04 ± 0.27 59.93 ± 0.46 80.01 ± 0.45 83.27 ± 0.14 89.44 ± 0.15
AMA + Mixup 43.83 ± 0.26 47.38 ± 0.56 58.11 ± 0.14 75.93 ± 0.18 80.01 ± 0.80 88.56 ± 0.34
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Results and Analysis In both experiments, Mixup causes performance degradation overall. How-
ever, the mixture of AMA and Mixup shows better performance than using only Mixup and almost
recovers the original performance. As a result, feature augmentation helps Mixup alleviate intra-
class and inter-class collapses.

5 RELATED WORK

5.1 AUGMENTATION

Data augmentation has been one of the effective regularization techniques( Zhang et al.
(2017) Shorten & Khoshgoftaar (2019) DeVries & Taylor (2017) Cubuk et al. (2018) Zhong et al.
(2020) Moreno-Barea et al. (2018)). Mixup( Zhang et al. (2017)), a generally used approach among
data augmentations, interpolates each pair of input samples and labels in the input space. Us-
ing this interpolation, it is possible for models to improve their inductive bias. In other streams,
data augmentation has been applied to features in feature space, called feature augmentation Verma
et al. (2019) Li et al. (2021) Kuo et al. (2020) Lee et al. (2021) Wang et al. (2021)). In Manifold
Mixup( Verma et al. (2019)), models get a smoother decision boundary than before, and it results in
the improvement of robustness. However, they have not focused on margin, which is an important
component to make decision boundary robust, while our proposed method creates augmented fea-
tures in the feature space and adjusts the augmentation to make the margin balanced and moderately
wide.

5.2 CONTRASTIVE LEARNING

Contrastive learning achieved state-of-the-art performance in image classification tasks, which is an
example of focusing on the margin( Chen et al. (2020) He et al. (2020) Caron et al. (2020) Li et al.
(2020) Gutmann & Hyvärinen (2010) Koch et al. (2015) Khosla et al. (2020)). Contrastive learning
attracts positive samples and repulses negative samples from the anchor. In supervised approaches,
SupCon( Khosla et al. (2020)) uses label information to choose positive pairs and negative pairs.
SupCon can effectively get considerable uniformity between inter-class and minor alignment be-
tween intra-class. This property leads to ideal representations, which have a large margin between
other classes. In spite of these advantages, Supcon has an unavoidable problem of collapse( Jing
et al. (2021)) because each sample converged toward the class centroid. This collapse makes fea-
tures indistinguishable from each other and can lead to poor performance in coarse-to-fine transfer
learning( Chen et al. (2022)). In addition, prior works have focused on relatively low performance
in long-tailed tasks when using SupCon( Zhu et al. (2022) Li et al. (2022)). In the long-tailed
tasks, SupCon leads to overwhelming concentration on head classes, and it encourages the collapse
between tail classes. To solve this problem, BCL( Zhu et al. (2022)) used class-average and class-
complement with SupCon loss and TSC( Li et al. (2022)) forced class centroids to form a regular
simplex on the hypersphere. In contrast, we learn balanced and moderately broad margin while
avoiding collapse by creating augmented features as asymptotically moving to the midpoint.

6 CONCLUSION

In this paper, we raised the two collapse problems of feature augmentation, which are recently
discussed in contrastive learning literature. We found that the problems were still important in
state-of-the-art feature augmentation method as Manifold Mixup by analyzing alignment and uni-
formity used as indicators of the collapse problems. To address the collapse problems, we proposed
Asymptotic Midpoint Augmentation to generate effective features via 1) interpolation of features with
pseudo labeling, 2) class-unbiased random sampling of augmented features, and 3) their asymptotic
move. The method showed the two effects of margin balancing and moderate-broadening, and their
impact on the collapse problems in quantitative and qualitative analysis of a toy long-tailed clas-
sification task. In more practical long-tailed and coarse-to-fine transfer learning experiments on
CIFAR-10 and CIFAR-100 datasets, which suffered from inter-class and intra-class collapse respec-
tively, AMA significantly alleviated the performance compared to SupCon and Manifold Mixup.
Ablation study and relation to data augmentation method as Mixup are also analyzed for validating
their deep and broader impact. A limit is that AMA may require additional tuning of hyperparameter
𝛽 to obtain the best performance because of different intensities of the collapse problems by tasks.
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