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Abstract

This work studies publications in cognitive
science and utilizes natural language process-
ing and graph theoretical techniques to con-
nect the analysis of the papers’ content (ab-
stracts) to the context (citation, journals). We
apply hierarchical topic modeling on the ab-
stracts and community detection algorithms
on the citation network, and measure content-
context discrepancy to find academic fields
that study similar topics but do not cite each
other or publish in the same venues. These re-
sults show a promising, systemic framework
to identify opportunities for scientific collabo-
ration in highly interdisciplinary fields such as
cognitive science and machine learning.

1 Introduction

As scientific fields have grown larger and more spe-
cialized, researchers may be missing potentially-
lucrative avenues of collaboration. For example,
researchers may be pursuing similar paths in paral-
lel while lacking a common language and literary
academic foundation to connect their works. Un-
covering such situations will enable more produc-
tive, coordinated research efforts, which is one of
the principal goals of science of science.

Science of science, or metascience, is the branch
of science that uses quantitative measurements and
scientific techniques to understand the interactions
between scientific agents with the aim to refine and
improve scientific practices and progress (Fortu-
nato et al., 2018). Yet currently, most metascience
studies have focused on investigating either the con-
tent or context of research in relation to other pub-

lications without bridging the gap between them
(Evans and Foster, 2011). In this paper, we investi-
gate the field of cognitive science through the twin
lenses of content and context; information is ex-
tracted from both 1) paper abstracts through natural
language processing (NLP) and 2) the citation net-
work via graph community detection techniques.
We then propose a simple but effective criteria to
determine which subdivisions within cognitive sci-
ence are similar in content but not in context, and
suggest what barriers may lie between them.

We focus on cognitive science, in part because it
has been claimed that cognitive science has failed
to achieve its intention of integrating the six disci-
plines of which it was to be comprised (psychology,
linguistics, artificial intelligence, anthropology, phi-
losophy and neuroscience) (Nuifiez et al., 2019).
Hence, it will be revealing to discover which inter-
disciplinary connections are missing in the field and
investigate how this gap could be filled. Beyond
cognitive science, our approach and methods can
provide a framework for the joint study of content
and context in other interdisciplinary fields such as
applied mathematics and machine learning.

2 Data Acquisition and Preprocessing

A total of 258,039 papers in the field “cognitive sci-
ence” were obtained from the Microsoft Academic
Graph (Sinha et al., 2015), where the field tags of
a paper are identified from its text and sometimes
citations, and the papers are also given probabil-
ities of being “important” (Shen et al., 2018). In
addition, each paper is assigned a unique ID and



include metadata such as title, authors, journal and
year of publication, abstract, and references.

First, we discard 58,039 papers with the lowest
probabilities of being “important” because 1) ~ 0%
of them have abstracts, 2) ~ 0% have references,
3) none are published in recent years, and 4) the
probability is significantly lower than the rest. We
then remove papers published prior to 1950 in order
to limit the scope to the modern notion of cognitive
science from the 1950s (Nunez et al., 2019).

Next, we keep only the papers that contain ref-
erences, and whose abstracts are between 30 and
500 words long. We found that many exceedingly
short abstracts are actually titles and publication in-
formation, while exceedingly long abstracts tend to
contain extraneous text such as table of contents or
the text of the entire first page of the paper. Finally,
after removing all papers with duplicate abstracts,
we have a dataset of 59,384 papers for analysis.

3 Methods

We introduce NLP and graph methods that were
used to conduct content and context analyses on
the publications dataset, as well as metrics used to
quantify cluster similarities.

3.1 Content Analysis

Bag-of-Words Matrix Construction We first
lemmatize the abstracts and remove numbers, punc-
tuations, English stop words, and stop words spe-
cific to abstracts (e.g. “et al”, “this paper”). We
then construct the data matrix using the bag-of-
words model and term frequency-inverse document
frequency (tf-idf) weighting, including tri-grams
and excluding words that appear in more than 80%
or less than 0.05% of abstracts. This yields a word-
by-abstract matrix X of size 9,106 x 59,384.

Non-Negative Matrix Factorization (NMF)
We apply NMF (Lee and Seung, 1999) to detect
topics and assign papers to topics. NMF approxi-
mates X ~ WH, where the dictionary matrix W
and the coding matrix H are two low-rank non-
negative matrices. The ¢th column of W gives the
weights of the words in the ¢th topic, while the jth
column of H gives the weights of the topics in the
jth abstract. This allows us to represent a topic as
a combination of words, and an abstract as a com-
bination of topics. We describe each topic using its
top three weighted words, and assign each paper to
its most weighted topic.

Hierarchical NMF Let two rank-r matrices W
and H be the output of performing NMF on
X. Once we assign abstracts to topics based on
H, we column-wise split X into r sub-matrices,
XV, X" such that columns of X" corre-
spond to abstracts assigned to the ith topic. Then
we perform NMF on each sub-matrix to obtain dic-
tionary and coding matrices for the subtopics. This
top-down approach (Grotheer et al., 2020) allows
us to develop hierarchical topics.

3.2 Context Analysis

Citation Network Construction After assign-
ing papers to nodes and citations between those
papers to edges, our citation data yields a graph
with 59,384 nodes and 191,871 directed edges. We
then isolate the largest weakly-connected compo-
nent, which leaves us with 41,465 nodes (69.8%
of original papers) and 190,997 edges (99.5% of
original citations). Symmetrizing our graph al-
lows us to leverage more powerful and trusted al-
gorithms for community detection, so we employ
Degree-Discounted Symmetrization (Satuluri and
Parthasarathy, 2011).

Modularity and Louvain’s Algorithm Modu-
larity is a measure of the quality of a graph par-
tition or community scheme. It records the num-
ber of intra-community edges minus how many
intra-community edges we would expect to see if
the edges were placed at random while following
the same degree distribution. We use Louvain’s
Algorithm (Blondel et al., 2008) to find a commu-
nity scheme that maximizes the modularity, as the
greedy algorithm can be fast, intuitive, and scale to
large networks easily.

3.3 Content-Context Discrepancy

Let ¢; be the ¢th largest community of publications
in the citation network. We measure topic simi-
larity T'(c;, ¢;) and journal similarity J(c;, ¢;) as
proxies for content and context similarity, respec-
tively. Then, we calculate the discrepancy p(c;, ¢;)
and use these metrics to identify communities that
are more similar in content than they are in context.

Recall that every paper in ¢; is assigned to an
NMF topic, and has its journal of publication
known. Let t; be the frequency distribution of
the topics of the papers in ¢;. Similarly, p; is
the frequency distribution of journals that the pa-
pers in ¢; were published in. Normalize them by
f]z‘ = ti/HtiH27 pi = pi/HpiHQ’ then define the



similarity metrics as their dot product:

~

T(ci,cj) = (b, t5), J(ciscj) = (Pi, Bj). (1)

Our proposed discrepancy index combines these
two metrics by

p(civ Cj) = T(Cia Cj) - J(Cia Cj)/27 ()

so that topic similarity is considered more heavily.

4 Results and Discussion

We display topic modeling and community detec-
tion results on the publications dataset, and discuss
how it may relate to missed opportunities for scien-
tific collaboration in cognitive science.

4.1 Hierarchical Topics in Cognitive Science
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Figure 1: Hierarchical topics of cognitive science ac-
cording to paper abstracts. Labels are the topics’ key-
words, and wedge size is proportional to number of pa-
pers in the topic.

Figure 1 shows the hierarchical topics extracted
from abstracts. The inner circle contains 15 topics,
and each topic is further split into 8 or 10 subtopics
in the outer circle. Some keywords suggest connec-
tions to known fields of cognitive science:

* language, linguistic, communication— lin-
guistics

* human, social, behavior— anthropology,

* consciousness, conscious, mind— philoso-
phy.

It is notable that neither “computer science” nor
“psychology” seem to exist as keywords to a main
topic even though they are claimed to dominate the
field of cognitive science in (Nufiez et al., 2019). A
hypothesis is that as those fields have become so
broad and popular, researchers avoid those terms
and instead use specific subtopics or methods under
the field to describe their work. Alternatively, these
fields could be so prevalent and diffused within
cognitive science that they would not appear as a
distinct topic.

4.2 Content-Context Discrepancy Criteria
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Figure 2: Heatmaps of metrics 7', J and p. Axes are
community indices ¢, j.

After uncovering 15 topics in the abstracts and
43 communities in the citation network, we exam-
ined and visualized in Figure 2 the metrics 7'(c;, ¢;)
(top left), J(c;, c;) (top right), and p(c;, ¢;) (bot-
tom left). The color of each pixel represents the
metric value for the pair of publication clusters.
Note that J(c;, ¢j) drops significantly at i, j = 17.
The sample space of journal distribution in this
dataset is large, but many communities are very
small, often with merely tens of papers. This
means the journal distribution vectors are necessar-
ily sparse, leading to a flawed comparison between
smaller communities. Therefore, we limit our anal-
ysis to the 17 largest communities and compare
only those close to each other in size to minimize
other size effects.

We use the following criteria to identify regions
of interest, i.e. communities in cognitive science
that may discuss similar themes but do not cite each



Community 4

Community 8

memory,work,retrieval

visual,object,representation

brain,network,function

learning,learn,knowledge

I development,science,review
cognitive,cognition,process
human,social, behavior

B model,propose,agent
system,complex,information
consciousness,conscious,mind
action,agent,motor
design,creativity, metaphor
emotion,emotional,agent
language,linguistic,communication
music,musical,sound

Figure 3: Topic distributions in communities 4 and 8. Wedge labels are numbers of papers in the topic. Legend

shows keywords.

other or publish in the same venues:
* Similar topics: T'(c;, ¢j) > 0.75,
¢ Dis-similar journals: J(c;,¢;) < 0.5,
* High discrepancy: p(c;,c;j) > 0.5,
* Similar size: |i — j| <5,
» Large enough size: ¢, 7 < 16.

The bottom right of Figure 2 shows the 7 identified
pairs, which we can then examine in greater detail.

4.3 Case Study on Communities 4 & 8

Communities 4 and 8 (boxed in red in Figure 2 bot-
tom right) yielded 7T'(c4, cg) = 0.826, J(ca,c3) =
0.479, and p(cq,cs) = 0.586. According to the
pie charts in Figure 3, the two communities have
a very similar topic composition—both are a mix
of “memory” + “visual” + “learning”. At the same
time, the fact that they are split into two graph com-
munities indicates that they are not very connected
in the citation network. In fact, there are approxi-
mately 15,000 intra-community edges in these two
communities, and only 800 inter-community edges.
Furthermore, we find very little overlap in the re-
spective journal sets of these two communities. See
below for their top 10 published-in journals:

Community 4

Advances in Psychology 78
Memory & Cognition 66
Journal of Experimental Psychology 63
Applied Cognitive Psychology 61
Educational Psychologist 52
Educational Psychology Review 44
Psychology of Learning and Motivation 43
Journal of Educational Psychology 35
Psychonomic Bulletin & Review 34
Memory 32

Community 8

Trends in Cognitive Sciences 84
Behavioral and Brain Sciences 50
BiorXiv 47
Frontiers in Human Neuroscience 35
Neuropsychologia 34
Journal of Cognitive Neuroscience 33
Neuron 30
Current Biology 30
Neuroscience & Biobehavioral Reviews 30
Memory 29

Community 4 is mostly published in (educa-
tional) psychology journals, whereas community 8
is associated with neuroscience journals. Clearly,
there is a citational and academic disconnect be-
tween them, even though they share similar topic
distributions. Initiating conversation between them
could help further our understanding of complex
subjects like memory, as it can provide a more
holistic view of the theme, and even inspire fresh
research questions and methods.

5 Conclusions and Future Work

We outlined an application of NLP on science of
science— a method that connects the analysis of
the content and context of scientific papers. We
extracted topics from abstracts using hierarchical
NME, detected communities in the citation network,
and analyzed their journal publication distributions.
These approaches allowed us to find groups that are
close in content but not in context, which indicate
potential opportunities for collaboration.

In the future, we wish to add a temporal dimen-
sion to our analysis. For example, can we recognize
changes in citation network and prominent topics
over time? Can we detect shifts in rhetoric and
composition? We plan to apply this framework
to particularly entangled fields such as artificial
intelligence and machine learning.
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