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Abstract

Representing and reasoning about physical space is fundamental to animal survival, and
the mammalian lineage expresses a wealth of specialized neural representations that encode
space. Grid cells, whose discovery earned a Nobel prize, are a striking example: a grid cell
is a neuron that fires if and only if the animal is spatially located at the vertices of a
regular triangular lattice that tiles all explored two-dimensional environments. Significant
theoretical work has gone into understanding why mammals have learned these particular
representations, and recent work has proposed a “unified theory for the computational and
mechanistic origin of grid cells,” claiming to answer why the mammalian lineage has learned
grid cells. However, the Unified Theory makes a series of highly specific assumptions about
the target readouts of grid cells - putatively place cells. In this work, we explicitly identify
what these mathematical assumptions are, then test two of the critical assumptions using
biological place cell data. At both the population and single-cell levels, we find evidence
suggesting that neither of the assumptions are likely true in biological neural representa-
tions. These results call the Unified Theory into question, suggesting that biological grid
cells likely have a different origin than those obtained in trained artificial neural networks.

Keywords: Grid cells, place cells, pattern formation, translation invariance, representa-
tion learning

1. Introduction

In the intricate realm of neural circuits that underpin navigation and spatial cognition,
grid cells have emerged as an especially intriguing pattern of neuronal activity. Located
in the mammalian medial entorhinal cortex, grid cells fire in a striking regular hexagonal
grid pattern as an animal navigates through space (Hafting et al., 2005). Their unique
firing properties, believed to represent a metric for spatial navigation, have drawn extensive
attention. Recent work proposed a new “unified theory” for the origin of grid cells1 (Sorscher
et al., 2019, 2020, 2022b,a) to answer why the mammalian lineage has learned grid cells.
However, the Unified Theory relies on a sequence of assumptions about grid cells performing
supervised learning to predict specific targets, believed to be place cells (a type of neuron

∗ Denotes co-first authorship.
1. In this context, “theory” is intended in the sense of an accurate and predictive mathematical description

of naturally occurring phenomena, akin to the theory of general relativity or quantum field theory.
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Figure 1: Two key assumptions of the Unified Theory. Left: Readouts, as a popula-
tion, must be translationally invariant. Center and Right: Readouts, individually,
must have center-surround tuning curves.

involved in spatial processing (O’Keefe and Dostrovsky, 1971; O’Keefe, 1976; O’Keefe and
Conway, 1978)). To our knowledge, these assumptions have not been tested in biological
place cells. In this work, we seek to rectify this. We extract the assumptions made by
the Unified Theory by revisiting its derivation in detail (App. B) then hone in on two
pivotal suppositions specifically related to the readouts i.e. supervised targets of biological
grid cells. We evaluate these assumptions against data from biological place cells and find
that both assumptions are likely false. Such conclusions challenge the Unified Theory’s
explanation for the origin of grid cells in mammals.

2. Results

Identifying assumptions of the Unified Theory The Unified Theory seeks to answer
why the mammalian lineage has learnt grid cells. Its answer is that grid cells are the optimal
solution to predicting supervised targets that we generically call “readouts”. Earlier papers
claimed that these readouts biologically correspond to place cells (Sorscher et al., 2019,
2020), although later papers (Sorscher et al., 2022b,a) suggested that these readouts might
correspond to other biological quantities (more later). We reproduce the Unified Theory in
detail (App. B) to highlight its assumptions. In this work, we focus on two:

1. The readouts, as a population, must be translationally invariant (Fig. 1, Left).

2. The readouts, individually, must have carefully tuned center-surround tuning curves:
either Difference-of-Softmaxes (DoS) or a particular Difference-of-Gaussians (DoG)
tuning curve shape (Fig. 1, Right); these functions are defined in App. A.

We focus on these two assumptions because they are mathematically critical for the
Unified Theory to be applicable to biological grid cells and numerically critical for deep re-
current neural networks to learn grid-like tuning (Banino et al., 2018; Sorscher et al., 2019,
2020; Nayebi et al., 2021; Sorscher et al., 2022b); subsequent large-scale hyperparameter
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sweeps showed relaxing these assumptions caused the disappearance of grid-like represen-
tations (Schaeffer et al., 2022). To the best of our knowledge, these assumptions have not
been quantitatively tested in biological data. In this work, we test both in turn.

Are place cells translationally invariant as a population? In order to explain the
origin of grid cells, the Unified Theory requires that the readouts possess a translation-
invariant spatial autocorrelation structure (App. B): only if the readouts’ spatial autocor-
relation is (approximately) Toeplitz will its eigenvectors be (approximately) Fourier modes
and thus induce periodic eigenvectors for emergence of grid-like tuning. One reason to
question this assumption is significant previous literature suggesting that place cells over-
represent certain locations e.g., borders, landmarks, rewarded locations (Sato et al., 2020;
O’Keefe and Conway, 1978; Wiener et al., 1989; Hetherington and Shapiro, 1997; Hollup
et al., 2001; Dupret et al., 2010; Danielson et al., 2016; Zaremba et al., 2017; Gauthier and
Tank, 2018; Bourboulou et al., 2019). Another reason is that place cells have a diversity
of tuning curve widths, even at a single dorsoventral location, and even within individual
cells as observed in recent experiments, e.g., (Eliav et al., 2021); this work also theoretically
and computationally shows that this dual heterogenous coding scheme is more optimal in
terms of encoding position than a homogenous scheme, which underlies the assumptions of
the Unified Theory and makes it unlikely to hold in biology.

We push the field forward by quantitatively measuring whether place cells are trans-
lationally invariant. We use calcium imaging of place cell populations from 320 recording
sessions across animals from (Lee et al., 2020) and construct spatial autocorrelation ma-

trices Σi
def
= PiP

T
i /n

(i)
p , where Pi ∈ Rn

(i)
x ×n

(i)
p is the ith session’s n

(i)
p place cells’ signals at

n
(i)
x spatial positions. To quantify how close a spatial autocorrelation matrix is to being

Toeplitz, we define a matrix’s projection onto the set of Toeplitz matrices T :

ΠT (Σi)
def
= argmin

T∈T

∣∣∣∣T − Σi

∣∣∣∣2
F
. (1)

In each of the 320 sessions, we subsample the largest continuous spatial region over which
the population’s summed activity is above some threshold > 0, construct Σi, then measure
two different quantities to capture the extent to which the autocorrelation matrices deviates
from being Toeplitz: (i) the matrix distance

∣∣∣∣ΠT (Σi)− Σi

∣∣∣∣
F
and (ii) the matrix absolute

percent error
∣∣∣∣ΠT (Σi)−Σi

∣∣∣∣
F
/
∣∣∣∣Σi

∣∣∣∣
F
. Because our goal is to test whether biological place

cells match the artificial “place cells” used to the train the networks, we constructed a
null distribution based on the artificial “place cells” used to in previous papers (Sorscher
et al., 2019, 2020; Nayebi et al., 2021; Sorscher et al., 2022b). Specifically, we created a
translation-invariant artificial place cell population comprised of 15000 single-field, single-
scale, ideal-width DoG readouts, then, for each session, we randomly subsampled artificial
place cells’ activity P̂i matching the dimensions (i.e. number of spatial bins, number of
neurons) of the biological place cell activity Pi, computed the artificial spatial autocorre-

lation Σ̂i
def
= P̂iP̂

T
i /n

(i)
p , and measured the same two error metrics for Σ̂i. After this has

been done for all 320 sessions, we apply a 2-sample Kolmogorov-Smirnov test (Massey Jr,
1951) to both metrics under the null hypotheses that the biological and artificial empirical
distributions were drawn from the same distribution.

For both metrics, and for all tested thresholds of spatial region coverage, biological
responses have correlation structures that deviate significantly from the requisite Toeplitz
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Figure 2: Biological place cells populations are likely not translation invariant, as
required mathematically by the Unified Theory. Biological place cell pop-
ulations from 320 recorded sessions (Lee et al., 2020) deviate significantly from
a null distribution of translation-invariant artificial place cell population used
to train deep networks, as measured by (A) the matrix distance (Kolmogorov-
Smirnov 2-sample: p = 4.72e−5) and the (B) matrix absolute percent error
(Kolmogorov-Smirnov 2-sample: p = 1.44e − 87). (C) Place cell spatial auto-
correlation matrices Σi do not visually display constant diagonals of Toeplitz
matrices, as shown in 4 randomly chosen sessions. (D) Corresponding sessions’
spatial autocorrelation matrices have non-periodic leading eigenvectors.

structure (Fig. 2AB). Specifically, we find the probability that biological place cell spatial
autocorrelation matrices comes from the same distribution as the artificial translation-
invariant autocorrelation matrices is, per the matrix distance, 4.72e− 5 (Fig. 2A) and, per
the matrix absolute percent error, 1.44e−87 (Fig. 2B). As further confirmation, the spatial
autocorrelation matrices do not visually display the constant diagonals of Toeplitz matrices
(Fig. 2C), and the leading eigenvectors of the biological spatial autocorrelation matrices
are not periodic (Fig. 2D). These results suggest that biological place cell populations likely
lack the translation invariance required by the Unified Theory.

Do place cells or their subthreshold responses have DoS or particular DoG
shapes? In order to explain the origin of grid cells, the Unified Theory requires that the
readouts of the grid cells must individually exhibit DoS or a particular DoG tuning curve

4



Testing Assumptions Underlying a Unified Theory for the Origin of Grid Cells

a

b

c

d

e

f

g

Figure 3: Subthreshold voltages of place cells do not display DoG/DoS tuning.
(a-g) Measured membrane voltage from a selection of place cells in various con-
ditions. Panels a-d reproduced from Harvey et al. (2009), e-f reproduced from
Bittner et al. (2017) and g reproduced from Zhao et al. (2022) with permission.

shapes (App. B). However, when testing this on biological data, there is some ambiguity:
what are the readouts of biological grid cells? Earlier papers (Banino et al., 2018; Sorscher
et al., 2019, 2020; Nayebi et al., 2021; Sorscher et al., 2022b) referred to the readouts as
place cells, e.g., Section 2 of (Sorscher et al., 2019) and Figure 1 of (Sorscher et al., 2022b).
However, biological place cells do not possess DoS/DoG-shaped tuning curves, as can been
seen from the wealth of extracellular place cell electrophysiology results (Diba and Buzsáki,
2007; O’Keefe and Dostrovsky, 1971; O’Keefe, 1976; Wilson and McNaughton, 1993; Foster
and Wilson, 2006; Duvelle et al., 2021; Mehta et al., 2000).

A second possibility later suggested by the Unified Theory is that the readouts are
subthreshold inputs to place cells from grid cells (Sorscher et al., 2022b,a), though it is
difficult to imagine why or how the target for the entorhinal grid cells would be a particular
shape of subthreshold activation function of downstream neurons. To test this possibility,
we hunted down and collated intracellular voltage recordings of CA1 place cells (Harvey
et al., 2009; Bittner et al., 2017; Zhao et al., 2022) (Fig. 3). These recordings do not reveal
DoS/DoG-shaped subthreshold responses near their place fields. These results suggest that
place cell inputs likely lack the center-surround shape required by the Unified Theory and
used numerically (Sorscher et al., 2019, 2020; Nayebi et al., 2021; Sorscher et al., 2022b).
A third possibility suggested by the Unified Theory is that readouts are summed grid
cell contribution to inputs to place cells; we do not know of any dataset or experimental
technique through which this claim could be tested.
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3. Discussion

In this work, we test two assumptions made by the Unified Theory for the origin of grid
cells and found both are likely not true at both the population and single cell levels. Our
results call the Unified Theory into question, suggesting that biological grid cells likely
have a different origin than the grid-like representations found in trained artificial neural
networks (Banino et al., 2018; Cueva and Wei, 2018; Sorscher et al., 2019).

6



Testing Assumptions Underlying a Unified Theory for the Origin of Grid Cells

References

Andrea Banino, Caswell Barry, Benigno Uria, Charles Blundell, Timothy Lillicrap, Piotr
Mirowski, Alexander Pritzel, Martin J. Chadwick, Thomas Degris, Joseph Modayil, Greg
Wayne, Hubert Soyer, Fabio Viola, Brian Zhang, Ross Goroshin, Neil Rabinowitz, Razvan
Pascanu, Charlie Beattie, Stig Petersen, Amir Sadik, Stephen Gaffney, Helen King, Koray
Kavukcuoglu, Demis Hassabis, Raia Hadsell, and Dharshan Kumaran. Vector-based
navigation using grid-like representations in artificial agents. Nature, 557(7705):429–
433, May 2018. ISSN 0028-0836, 1476-4687. doi: 10.1038/s41586-018-0102-6. URL
http://www.nature.com/articles/s41586-018-0102-6.

Katie C Bittner, Aaron D Milstein, Christine Grienberger, Sandro Romani, and Jeffrey C
Magee. Behavioral time scale synaptic plasticity underlies ca1 place fields. Science, 357
(6355):1033–1036, 2017.

Romain Bourboulou, Geoffrey Marti, François-Xavier Michon, Elissa El Feghaly, Morgane
Nouguier, David Robbe, Julie Koenig, and Jerome Epsztein. Dynamic control of hip-
pocampal spatial coding resolution by local visual cues. Elife, 8:e44487, 2019.

Yoram Burak and Ila R Fiete. Accurate path integration in continuous attractor network
models of grid cells. PLoS computational biology, 5(2):e1000291, 2009.

Christopher J Cueva and Xue-Xin Wei. Emergence of grid-like representations by training
recurrent neural networks to perform spatial localization. International Conference on
Learning Representations, page 19, 2018.

Nathan B Danielson, Jeffrey D Zaremba, Patrick Kaifosh, John Bowler, Max Ladow, and
Attila Losonczy. Sublayer-specific coding dynamics during spatial navigation and learning
in hippocampal area ca1. Neuron, 91(3):652–665, 2016.
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Appendix A. Tuning Curves: Difference of Softmaxes and Difference of
Gaussians

What is a Difference-of-Softmaxes (DoS) or Difference-of-Gaussians (DoG) tuning curve?
Suppose we sample a sequence of positions x0, ..., xT ∈ R2. We sample Np place cell centers

{pi}
Np

i=1 uniformly at random within the (bounded) environment.

• Difference of Gaussians: A vector in RNp whose entries are given by:

αE exp
(
− 1

2σ2
E

||xt − pi||2
)
− αI exp

(
− 1

2σ2
I

||xt − pi||2
)

• Difference of Softmaxes: A vector in RNp whose entries are given by:

Softmax
(
− 1

2σ2
E

||xt − pi||2
)
− Softmax

(
− 1

2σ2
I

||xt − pi||2
)

In the Unified Theory, for DoG, only certain combinations of (αE , σE , αI , σI) should be
theoretically expected to produce grid-like tuning; most will not. See Fig. 4C in Schaeffer
et al. (2022) for more details.

Appendix B. Reproduction of & Commentary on the Unified Theory for
the Origin of Grid Cells

Here, we reproduce the Unified Theory of Sorscher et al. (2019, 2020, 2022b) to elucidate
its assumptions, including the two assumptions that we test in this work: (1) place cells as
a population are translationally invariant, and (2) place cells (or their subthreshold inputs)
have difference-of-Gaussian or difference-of-Softmaxes center-surround tuning curves. We
note that the Unified Theory does not deal with dynamics of path integration or learning
dynamics of a deep recurrent network, but rather concerns the problem of readout recon-
struction/prediction. This leads us to the first assumption:

Assumption 1 (A1): The hypothetical network representations G ∈ Rnx×ng is some
function of space. Here nx is the number of spatial locations and ng is the number of hidden
units. This is a subtle but significant assumption because, for recurrent networks given
velocity inputs, the networks’ representations are not a function of space, but rather develop
into a function of space (i.e. builds a continuous attractor) over the course of training. For
a better understanding of why the assumption of building a continuous manifold of fixed
points is significant, see literature of the theory of continuous attractors which is briefly
reviewed in Khona and Fiete (2022).

Under A1, consider a feedforward mapping P̂
def
= GW where W ∈ Rng×np . Here np is

the number of readout units. One can define the readout reconstruction error as the mean
square loss between the readout target P ∈ Rnx×np and prediction P̂

def
= GW :

E(G,W )
def
= ||P − P̂ ||2F = ||P −GW ||2F (2)

Assumption 2 (A2): Linear readout W relaxes, reaching its optimum much faster
than G changes, so that we can replace W with its optimal ordinary least squares value for
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fixed G,P :
W ∗(G,P ) = (GTG)−1GTP (3)

Substituting W ∗(G,P ) into the loss for W yields the error as a function of P and G:

E(G,P ) = ||P −G(GTG)−1GTP ||2F (4)

Assumption 3 (A3): G’s columns can be made orthonormal i.e. GTG = Ing .This
means that each grid unit has the same average firing rate over all space, and that any 2
grid cells do not overlap.

Then, we can write down a Lagrangian for this optimization problem with Lagrange
multiplier λ for this constraint:

L = −E(G,P )− λ(GTG− Ing) (5)

We can then set GTG to I in the error term and the Lagrangian is now written as:

L = −||P −GGTP ||2F − λ(GTG− Ing) (6)

L = −Tr[(P −GGTP )T (P −GGTP )]− λ(GTG− Ing) (7)

Here, the identity ||M ||2F = Tr(MTM) has been employed. The trace term can be simplified
further using the cyclic permutation property of Trace: Tr(ABC) = Tr(CAB),

Tr[(P −GGTP )T (P −GGTP )] = Tr(P TP ) + Tr[GT (PP T )G(GTG)]− 2Tr(GTPP TG)

Here Σ
def
= 1

np
PP T ∈ Rnx×nx is the readout spatial correlation matrix. We can also drop

the G independent term above. Using the trace identity again, this term simplifies to
Tr(GTPP TG). Hence the total simplified Lagrangian is then:

L = Tr
[
GTΣG− λ(GTG− Ing)

]
(8)

Considering gradient learning dynamics, one gets the following evolution equation for
G:

d

dt
G = ∇GL ⇒ d

dt
G = ΣG− λG (9)

Sorscher et al. (2019, 2020) then simplify further analysis by considering a single grid
unit. This corresponds to replacing the nx × ng matrix G by the nx × 1 column vector g:

d

dt
g = Σg − λg (10)

This linear dynamical system captures how the pattern g of a unit evolves with gra-
dient learning. The Unified Theory concludes that the eigenvectors corresponding to the
subspace of the top eigenvalue form the optimal pattern, since these eigenvectors will grow
exponentially with the fastest rate.

Assumption 4 (A4): The readout spatial correlation Σ is translation-invariant over
space i.e. Σx,x′ = 1

np

∑np

i=1 pi(x)pi(x
′) = 1

np

∑np

i=1 pi(x+∆)pi(x
′ +∆) = Σx+∆,x′+∆∀∆.

Assumption 5 (A5): The environment has periodic boundaries (or no boundaries,
which corresponds to a continuum limit). [An alternative assumption in other parts of the
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derivations and numerics is (A5’): the assumption involves periodic boundary conditions
with a small box size L).]

Under A4 and A5, the eigenmodes of Σ are exactly Fourier modes across space and
form a periodic basis. The normalized eigenvectors are indexed by their wavelength, k, and
are denoted fk with corresponding eigenvalue λk. To calculate this eigenvalue, the Unified
Theory uses Fourier analysis:

Σfk = λkfk

=⇒ λk = f †
kΣfk

Here f †
k denotes the conjugate of the eigenvector fk.

Next, they rewrite in component form: Σx,x′ = 1/np(PP T )x,x′ = 1/np
∑np

i=1 pi(x)pi(x
′)

λk = f †
kΣfk =

np∑
i=1

∑
x,x′

1

np
f∗
k(x

′)pi(x)pi(x
′)fk(x)

=
1

np

np∑
i=1

(∑
x

pi(x)f
∗
k(x)

)(∑
x′

pi(x
′)fk(x

′)

)

=
1

np

np∑
i=1

p̃∗(k)p̃(k) = |p̃(k)|2

=⇒ λk = |p̃(k)|2

The Unified Theory concludes that the eigenvalue corresponding to eigenvectors with
wavelength k is given by the corresponding power of the Fourier spectrum of the readout
correlation matrix Σ. The optimal pattern is thus the one which has the highest Fourier
power in Σ.

Further, Sorscher et al. (2019, 2020) consider the effect of non-negativity perturba-
tively in the readout regression framework by phenomenologically adding a term to the
Lagrangian, =

∫
x σ(g)dx.

L = Tr
[
GTΣG− λ(GTG− Ing)

]
+

∫
x
σ(g)dx (11)

In Fourier space, Sorscher et al. (2019, 2020) show perturbatively that this amounts to
a cubic interaction term, which is the leading order term that non-trivially distinguishes
between nonlinearities such as ReLU and Sigmoid which break the g 7→ −g symmmetry
and nonlinearities such as Tanh which do not. Again, specializing to the single neuron
Lagrangian,

Lint =

∫
k,k′,k′′

g(k)g(k′)g(k′′)δ(k + k′ + k′′)dkdk′dk′′

This term effectively acts as a penalty for non-negativity. Here, it is important to point
out that this cubic term appears not only for non-negativity, but rather any function that
is not anti-symmetric. Negative activation functions such as slightly shifted Tanh can also

12
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have a cubic term. Thus, non-negativity is a special case, as has been noted in Sorscher
et al. (2019) Appendix B. We refer to this as Assumption 6 (A6).
Under this assumption, Sorscher et al. (2019, 2020) conclude that the optimal pattern
consists of a triplet of Fourier waves with equal amplitude and k−vectors that lie on an
equilateral triangle, at 60o to each other.

Next, we examine the Fourier spectrum of a translationally invariant Gaussian readout

f(∆x) =
1√
2πσ2

exp(−(∆x2)/2σ2) under the assumptions of this theory. For simplicity

and to provide intuition we write its Fourier transform in 1d, which is given by another
Gaussian. The peak of the Fourier spectrum is at k = 0, or the DC, non-periodic mode:

f̃(k) =

∫
R

1√
2πσ2

exp(−(∆x2)/2σ2)eik∆xd∆x

= exp(−k2σ2/2)

In simulations in a finite environment of length L, the allowed frequency modes are
discretized with bin-size 2π/L ((A5’). This is shown in Fig.4 as lattice points with the
Fourier spectrum overlayed as in Sorscher et al. (2019, 2020). Gaussian readouts produce a
Fourier spectrum peaked at the central DC mode. This mode has no periodicity and thus
the theory for a single hidden unit predicts no lattices in this hidden unit, in the continuum
or small-box discrete limit.

Until now, all analysis was performed for a single grid unit. What happens in full multi-
cell setting? For this case, Sorscher et al. (2019) shows that the global optimum to the
constrained optimization problem:

max
G

Tr(GTΣG) such that GTG = Ing ,

i.e. under (A3) involves the columns of G spanning the top ng eigenmodes of Σ (The-
orem B.2, Appendix B of Sorscher et al. (2019)). Under (A6), Sorscher et al. (2019) also
shows that with a Fourier spectrum consisting of a wide annulus (in the discrete setting
this corresponds to a Fourier spectrum of rings of different radii), the optimum consists of
a hierarchy of hexagonal maps, but only if the Fourier powers of these rings are exactly
equal (Lemma B.3, Appendix B). For purely Gaussian spectra (corresponding to Gaussian
readouts), the full theoretical solution of this problem depends on specific details of the
power spectrum curve (i.e. the width of the Gaussian) since each discrete eigenmode has
a different Fourier power which must be taken into account while constructing linear com-
binations of modes, and thus is not solvable analytically. Instead, Sorscher et al. (2019)
numerically simulates the Lagrangian dynamics with assumption (A3) to find a hierarchy
of lattices. However, the number of different period lattices that result is related directly to
and nearly as numerous as the number of cells. For a large number of neurons, such as the
4096 hidden units used in simulations Sorscher et al. (2022b,a), and sufficient wide power
spectra, this would mean the optimum solutions would consist of likely hundreds of discrete
frequencies (each corresponding to a grid module). This is to be contrasted with the 4-8
modules estimated to exist in rodents Stensola et al. (2012).

We next consider a translationally invariant Difference-of-Gaussians readout. We refer
to this as Assumption 7 (A7).
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Figure 4: Fourier structure of Gaussian readouts.

f(∆x) =
αE√
2πσ2

E

exp(−(∆x)2/2σ2
E)−

αI√
2πσ2

I

exp(−(∆x)2/2σ2
I )

Under A7, the readout Fourier spectrum is given by:

f̃(k) =

∫
R
d(∆x)f(∆x)eik∆x

= αEσE exp(−σ2
Ek

2/2)− αIσI exp(−σ2
Ik

2/2)

The solution will be periodic if the maximum, given by [k∗]2 = 2
σ2
E−σ2

I
log(αEσ

3
E/αIσ

3
I ),

contains sufficient power and if k∗ ̸= 0; specifically, the condition for pattern formation is
f̃(k) > 1; see Burak and Fiete (2009); Khona and Fiete (2022); Schaeffer et al. (2022) for
more details. This reveals the second assumption that we focus on in this work: the Unified
Theory requires that readout tuning curves have a center-surround functional form with
hyperparameters αE , αI , σE , σI lying in a narrow range.
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