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Abstract

To solve control problems via model-based reasoning or planning, an agent needs
to know how its actions affect the state of the world. The actions an agent has at its
disposal often change the state of the environment in systematic ways. However,
existing techniques for world modelling do not guarantee that the effect of actions
are represented in such systematic ways. We introduce the Parsimonious Latent
Space Model (PLSM), a world model that regularizes the latent dynamics to make
the effect of the agent’s actions more predictable. Our approach minimizes the
mutual information between latent states and the change that an action produces
in the agent’s latent state, in turn minimizing the dependence the state has on the
dynamics. This makes the world model softly state-invariant. We combine PLSM
with different model classes used for i) future latent state prediction, ii) planning,
and iii) model-free reinforcement learning. We find that our regularization improves
accuracy, generalization, and performance in downstream tasks, highlighting the
importance of systematic treatment of actions in world models.

1 Introduction

In Reinforcement Learning (RL), the actions that an agent can use to solve tasks often have systematic
and predictable effects on the state of the environment. When stepping on the gas pedal, the car tends
to accelerate, when holding down the joystick in a given direction, the video game character tends
to move in that direction, and so forth. These typical effects have exceptions that are predictable
as well, e.g. stepping on the gas will not lead to acceleration if the car engine is turned off, and
the video game character will not move if it is facing a wall. How can we learn world models that
capture these systematic properties of actions? World models predict the agent’s future states, given
the current state and action [1, 2, 3]. Most approaches to world modelling represent high-dimensional
observations (such as images) in compact, low-dimensional latent states zt, simplifying model-based
prediction and control [4]. Here we explore the possibility of compressing states and dynamics
jointly to learn systematic effects of actions (see Fig. 1). As is common practice in many dynamics
model architectures [4, 5], we consider the case where the model predicts the next latent z̃t+1 state
by predicting the difference ∆̃at

t , or the change, between the current and future latent state, given an
action at.

z̃t+1 = zt + ∆̃at
t (1)

Even if zt is low-dimensional, the effects of actions might not be represented parsimoniously within
the world model: Performing the same action at in two similar states z, z′ might produce two very
different deltas ∆,∆′, due to how the observation encoder has constructed the latent state space (see
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Figure 1: Overview: World models are commonly used to predict latent trajectories, predict sequences
of pixel observations, and perform planning. We propose an architecture together with an information
bottleneck for learning simple and parsimonious world models. Our method relies on a query network
that extracts a sparse representation ht for predicting latent transition dynamics. Combining our
method with auxiliary loss functions for i) contrastive learning ii) planning and iii) and model-free RL,
we see consistent performance improvement in all domains. Lines and bars show mean performance
from three sets of RL benchmarks. Error bars represent 95% confidence interval.

Fig. 2). We introduce the Parsimonious Latent Space Model, or PLSM for short, a world model
where actions have more predictable effects on the inferred latent states of the agent. Dynamics are
simplified by minimizing how much the predicted dynamics ∆̃at

t depend on zt. This pushes the
world model to represent states in a way that makes actions have coherent and predictable effects on
the dynamics. We still allow the dynamics to vary depending on the state, but we penalize the extent
of this dependence, resulting in dynamics that are softly state-invariant.

We combine PLSM with two classes of world models: Contrastive World Models (CWM) [3] for
latent state prediction, and with Self Predictive Representations (SPR) for model-free and model-
based control (TD-MPC) [6, 5, 7]. Across control experiments and prediction experiments we see
improvements in planning, representation learning for control, robustness to noise, world model
accuracy, and generalization.

2 Latent dynamics

We assume that sequences of states, actions and rewards arise in a Markov Decision Process (MDP).
An MDP consists of a state space S , an action space A, and transition dynamics st+1 ∼ P (st+1|st,at)
determining how the state evolves with the actions the agent performs. In RL, we additionally care
about the reward function r(st,at), which maps state-action pairs to a scalar reward term. Here, the
goal is to learn the policy πθ(at|st) that maps states to the actions with the highest possible Q-values
Qπθ

(st,at) = Eπθ

[∑T
t=1 γ

tr(st,at)
]
, where γ is a discount factor. In this paper, we consider latent

dynamics learning both in reward-free and RL settings.
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Figure 2: The heart (left) can appear on any x, y coordinate in a two-dimensional latent space with
boundaries, on which it can transition in 9 different ways (moving in eight directions and standing
still, for instance when moving into a boundary). Encouraging dynamics to be parsimonious recovers
these 9 different possible transitions (see right), whereas an unconstrained model (see center) does
not.

To predict environment dynamics, the current state st is first transformed using an encoder into
a latent state zt that compactly represents the agent’s sensory observation (2). The world model
predicts the change in the latent state, ∆̃at

t that is induced by the action at (3) & (4).

zt = eθ(st) (2)

∆̃t = dθ(zt,at) (3)

z̃t+1 = zt + ∆̃t (4)

We omit the action superscript from ∆̃t for simplicity. Here, eθ is the encoder network mapping
states to latent states, and dθ is the dynamics network mapping zt and at to ∆̃t.

2.1 Parsimonious latent dynamics

Consider the probability distribution of transitions P (∆̃t|at) given the agent’s actions, marginalizing
across latent states. If actions have predictable effects on the state of the environment, the entropy of
P (∆̃t|at) will be low – knowing the latent state gives little information about the effect of at. To
make the world model handle actions more systematically, we propose to minimize the amount of
information the world model needs from zt in order to predict correctly how an action changes the
state of the world. This quantity is represented in the mutual information between the latent state zt
and the dynamics ∆̃t:

I(zt; ∆̃t|at) = H[∆̃t|at]−H[∆̃t|zt,at] (5)

where H[·] denotes the Shannon entropy. If this quantity is 0, the latent dynamics ∆̃t only depend
on the agent’s action at and not zt. In this extreme, all ∆̃t are predicted exclusively by the action.
However, it is rarely the case that the action can capture an environment’s full dynamics, and making
dynamics contingent on states is often necessary to some degree.

To allow only the relevant information from zt to influence the dynamics, we introduce a query
network fθ which maps latent state-action pairs to a latent code ht. We modify the next-step
prediction components accordingly

ht = fθ(zt,at) (6)

∆̃t = dθ(ht,at) (7)

We give the query network information about the action that the transition is conditioned on. This
allows the network to attend to the relevant bits in zt to output an appropriate ht. Finally, to make
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ht represent only the minimal amount of information needed to predict the next state, provided
that at is known, we penalize the norm of ht [8, 9]. This type of regularization has been used to
constrain representations of deterministic Autoencoders in past work [8, 9], with [8] showing that
it is equivalent to minimizing the KL divergence to a constant variance zero mean Gaussian. Other
regularizers and stochastic formulations are also possible (see Appendix C). For simplicity we use
the deterministic variant and leave stochastic versions for future work.

The strength of the penalization is controlled through a hyperparameter β. This regularization
minimizes how much ht can vary with zt and hence their mutual information (see Appendix A).
We then train our encoder eθ, query network fθ, and dynamics dθ jointly to minimize the following
information regularized loss function.

L = ||eθ(st+1)− (zt + dθ(ht,at))||22 + β||ht||22 (8)

Our loss function encourages that the mutual information term is kept as low as possible, while still
allowing the model to predict the next latent state accurately. In contrast to information bottlenecks
imposed on the latent states themselves, we apply an information bottleneck to the dynamics, making
∆̃t easier to predict simply given at. Regularizing ht differs from regularizing zt in important ways.
In environments where the dynamics ∆ can be predicted perfectly from the actions and independently
of the state, regularizing ht will not lead to a loss in information in the latent representation zt. This
is because the bottleneck on ht only constrains the model in using information from zt to predict ∆t,
and not necessarily in predicting zt+1. See Appendix B for a comparison of our method against L1

and L2 norm regularization on latent states. Notably, our method can also lead to state compression,
in that eθ will be encouraged to omit features from st+1 that cannot be predicted easily with little
information from zt.

Unfortunately, the above loss function has a trivial solution: it can be minimized completely if dθ
and eθ output a constant 0 vector for all states and state-action pairs [7]. This issue is referred to as
representational collapse. Representational collapse can be remedied in various ways. To show the
generality of our information bottleneck, we combine it with two different approaches for mitigating
representational collapse, a self-supervised approach for model-based and model-free RL in Section
3, and a contrastive approach for future state prediction in Section 4.

3 Parsimonious dynamics for Reinforcement Learning

3.1 Model-based RL

We evaluated the PLSM’s effect on planning algorithms’ ability to learn policies in continuous control
tasks. To do so, we built upon the TD-MPC algorithm [6], an algorithm that jointly learns a latent
dynamics model and performs policy search by planning in the model’s latent space.

TD-MPC makes use of a Task-Oriented Latent Dynamics (TOLD) model. This dynamics model is
trained to predict its own future state representations from an initial state and action sequence while
making sure that the controller’s policy πθ and Q-value function are decodable from the latent state
(hence the name task-oriented latent dynamics). TOLD falls under the category of Self Predictive
Representation (SPR) models, since it uses an exponentially moving target encoder e−θ with the
stop-gradient operator to learn to predict its own representations. For planning TD-MPC uses the
Cross-Entropy Method [10], searching for actions that maximize Q-values.

Only minimal adjustments to the TOLD model are necessary to attain parsimonious dynamics. Instead
of predicting the next latent directly from the current latent and action z̃t+1 = dθ(zt,at), we use a
query network fθ, mapping latent state-action tuples to ht and then minimize

LSPR = ||sg(eθ(st+1))− (zt + dθ(ht,at))||22 + β||ht||22

We evaluated the efficacy of parsimonious dynamics for control in five state-based continuous
control tasks from the DeepMind Control Suite (DMC) [11]. We chose the following environ-
ments: i) acrobot-swingup, due to its challenging and chaotic dynamics. ii) finger-turn hard,
which poses a challenging exploration problem that TD-MPC was found to struggle with. iii)
quadruped-walk, iv) quadruped-run and v) humanoid-walk due to the high-dimensional dynam-
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Figure 3: PLSM, when incorporated into either the TD-MPC algorithm (A), or RePo (B), improves
planning in continuous control tasks with high-dimensional and complex dynamics, and visual
distractions, respectively. Lines show the average return attained across 15 evaluation episodes,
averaged over five seeds. The shaded region represents the 95% confidence interval.

ics. These tasks have dynamics that appear complex in the original state-space but could potentially
be simplified in an appropriate latent space by introducing a dynamics bottleneck.

We trained the latent dynamics and planning models in the five tasks up to a million environment steps.
Scores for TD-MPC are obtained from the original implementation provided by the authors1. Again
we used β = 0.1 for all tasks except for humanoid-walk, where β = 0.001 was more successful.
Otherwise we relied on the standard hyperparameters from [6]. We see clear performance gains due
in all tasks except quadruped-run (Fig. 3A). Our results suggest that modeling the world with
simple dynamics can be beneficial for RL and trajectory optimization.

3.2 Distracting visual control

Since our regularization compresses away aspects of the environment whose dynamics are un-
predictable given the agent’s actions, it could be beneficial in control tasks with distractors. We
implemented PLSM on top of RePo [12], relying on the authors’ official implementation2. RePo is a
model-based RL algorithm based on the Dreamer [2] architecture. Here the environment dynamics
are represented through a GRU network which is updated recurrently with latent state and action
variables. To make the dynamics parsimonious, we update the GRU using a compressed query
representation ht subject to L2 regularization instead of the full state representation zt, resulting
in recurrent dynamics that are softy state-invariant. We then trained RePo with and without our
regularization on the Distracting Control Suite [13], a challenging visual control benchmark based on
DMC, where the background is replaced with a random, distracting video from the 2017 Davis video
dataset. These videos are independent of the agent’s actions, irrelevant for rewards, and change from
episode to episode.

We trained RePo with and without the PLSM objective in five Distracting Control Suite tasks for
one million environment steps across five seeds. We used a regularization coefficient of β = 1e-7

1See https://github.com/nicklashansen/tdmpc
2See https://github.com/zchuning/repo
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Figure 4: Changing the dynamics model in SPR to PLSM increases score in several Atari games,
with little implementation overhead. On average, human normalized scores are higher when using
PLSM dynamics. Bars show difference in human normalized score between SPR with and without
PLSM dynamics, averaged over five seeds.

for all tasks. This produced a considerable improvement over RePo in more challenging tasks like
hopper-stand, walker-run and finger-spin (see Fig. 3B). Our results suggest that encouraging
the dynamics model to represent the effects of actions more consistently can improve its generalization
ability in environments with distractors.

3.3 Model-free RL

Next we tested whether the learned latent space of PLSM could provide useful for model-free
learning. Several methods rely on latent dynamics learning as an auxiliary objective for model-free
RL [5, 7, 14, 15]. Since PLSM arranges the latent space in way that makes state transitions more
predictable, it may discover useful state features and ignore aspects of the environments that would
make the dynamics unpredictable otherwise. We build upon the SPR implementation for Atari3 [16],
which uses a latent dynamics model for next latent state prediction. We alter the architecture of this
latent dynamics model in the same way we did for TD-MPC, and add the ht norm to the loss function.
Setting β = 5 and leaving all other hyperparameters as per the standard implementation, we train the
PLSM augmented SPR algorithm on 100k environment steps across 5 seeds on all 26 Atari games.
We use the SPR scores reported in [17] as our baseline.

Across several games we see substantial improvements to human normalized score (see Fig. 4).
Averaging over all games, using PLSM dynamics improves human normalized scores by 5.6 per-
centage points (61.5 % for SPR vs 67.1% with PLSM). While we see improvements in games such
as UpNDown and Kangaroo, there are other games where the regularization impacts performance
negatively. Performance could potentially improve by fine-tuning the regularization strength for these
domains. See Appendix I for the full score table.

4 Future state prediction

We found that our regularization improved model-free and model-based performance across several
environments. Next we evaluated whether PLSM also generally improves world models’ long-horizon
prediction accuracy in latent space. Using the evaluation framework and environments from [3]
(see Fig. 13 for example observations), we generated datasets of image, action, next-image triplets
from two Atari games (Pong and Space Invaders), and grid worlds with moving 3D cubes and 2D
shapes, where each action corresponds to moving an object in one of four cardinal directions. To
make the learning tasks more challenging, we increased the number of movable objects from 5
to 9. Additionally we created an environment based on the dSprite dataset [18], with four sprites

3See https://github.com/mila-iqia/spr

6

https://github.com/mila-iqia/spr


Figure 5: PLSM improves contrastive world models’ accuracy in long-horizon latent prediction in
five out of six environments. In the cubes and shapes dataset, the PLSM is close to perfect even when
predicting as far as 10 timesteps in the future. Lines show accuracy on entire test data averaged over
five random seeds. The shaded region corresponds to the standard error of the mean.

traversing latent generative factors on a random walk. The sprites had 6 generative factors: Spatial
x, y coordinates, scale, rotation, color, and shape. The sprites could vary in coordinates, scale, and
rotation within episodes, and additionally vary in color across episodes. Lastly, we evaluate PLSM
on a dynamic object interaction dataset with realistic textures and physics without actions, MOVi-E
[19], to see if our method can be beneficial in action-free settings.

Following [3], we pair PLSM with a contrastive loss function to mitigate representational collapse:
The contrastive loss encourages that different states are distinguishable in the latent space. Given a
latent state and action, the model should minimize the distance between the predicted and true future
latent state, while maximizing the distance between the predicted future latent state zt+1 and all other
latent states in the training batch z−, up to a margin λ.

LContrastive = ||zt+1 − z̃t+1||22 +max(0, λ− ||z− − z̃t+1||22) (9)

To apply our regularization on the contrastive dynamics model, we simply add the norm of the
query representation to the contrastive loss, similarly to equation (8). We fitted the regularization
coefficient β with a grid search and found a value of 0.1 to work the best. As a baseline we used the
unregularized contrastive model from [3], referred to as CWM (for Contrastive World Model), and its
dynamics are defined through Equation (2), (4) and (9). We also combine PLSM with the slot-based
version of this model, called C-SWM (see Appendix H for results).

The models were scored based on their ability to correctly predict future states (e.g. latent prediction
accuracy). The models were trained and evaluated using the same parameters and metrics as in [3]:
Given a state st, a sequence of N actions at, ...,at+N−1, and the resulting state st+N , we make the
model predict its latent representation of st+N from the initial state and action sequence. The models
were evaluated at several prediction horizons. Finally, we report the Hits at Rank 1 accuracy for
transitions in the test set, a common test metric for contrastive models [3, 20, 21].

4.1 PLSM improves long-horizon prediction accuracy

PLSM could better predict its own representations further into the future in five out of the six datasets
(Fig. 5). We see the greatest gains in the cubes and shapes environments. Here, all 9 objects can
collide with each other and the grid boundaries depending on their position. Always considering
all possible interactions makes it challenging for a model to generalize to novel transitions. A more
parsimonious solution is simply to represent whether or not the object in question would collide or
not if moved in the direction specified by at. Our results suggest that our regularization can help
learn such representations, affording better generalization to left-out transitions.
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Figure 6: PLSM improves generalization and robustness in contrastive models: When exposed to
scenes with fewer objects than trained on (cubes and shapes environment), or corrupted data (dSprite
environment) from the test set, PLSM improves accuracy over the CWM. Lines represent the average
of models trained across five seeds. Shaded regions and bars reflect the standard error of the mean.

In one environment, Pong, we do not see an advantage in encouraging parsimonious dynamics. Here,
various components are outside of the agent’s sphere of influence, for instance, the movement of the
opponent’s paddle. This makes it challenging for the PLSM to capture all aspects of the environment
state in its dynamics. In environments with non-controllable dynamics, we offer a remedy by only
enforcing half of the latent space to be governed by parsimonious dynamics, and allowing the other
half to be unconstrained. This hybrid model in turn shows the strongest performance in the Atari
environments. See Appendix G for details.

4.2 Generalization and robustness

Figure 7: Latent states zt carry decodable infor-
mation about the data generating factors, whereas
query states ht do not. When conditioning on
an action at, query states carry more information
about the object that the action changes.

Next, we evaluated the generalization and ro-
bustness properties of PLSM. For the cubes
and shapes environments, we generated novel
datasets where the number of moving objects
was lower than in the original training data. In
these datasets, the number of moving objects
varied from 1 to 7. We also probed the mod-
els’ robustness to noise. We corrupted test data
from the dSprite environment with noise sam-
pled from Gaussian distributions. Models were
tested both in a low noise (σ = 0.1) and a high
noise (σ = 0.2) condition. See Supplementary
Fig. 14 for example data.

When tested on scenes with fewer objects than
the training data, we see a general decrease in
accuracy because of the domain shift. Still, with
our information-theoretic dynamics bottleneck
the model generalizes significantly better to the
out-of-distribution transition data (Fig. 6). Since
PLSM seeks to predict the next state using as
little information from its latent representations
as possible, it is more likely to learn that the
blocks move in a way that is generally invariant
to the number of other blocks in the scene.

Lastly, PLSM proved more robust to Gaussian
noise than the unconstrained dynamics models:
In the high noise condition, PLSM dynamics
still accurately predict almost 60% of the tran-

sitions after 10 steps, whereas the unconstrained dynamics models, more susceptible to use noisy
information in the state, predict less than 50% accurately.
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We also investigated the representations learned by the query network (see Fig. 7). To verify that
PLSM learns objects’ attributes (such as position and orientation), we attempted to decode ground
truth object positions, scales and orientations in the dSprite dataset from PLSM latent states. We
find that one can decode these ground truth factors with high accuracy from the latents. However,
trying to decode these variables from the query states yielded substantially lower accuracy, indicating
that they contain less information about the generative factors of the environment. Interestingly,
when we condition PLSM on an action that affects only one object, we can decode attributes of that
object more accurately from the query state than average. We observe this because the query state is
designed to only encode information that is relevant to predict the effect of individual actions.

In sum, parsimonious dynamics regularization improves both generalization and robustness properties
in the three environments tested. The mutual information bottleneck on ∆̃t therefore not only
improves prediction accuracy for data in the training distribution, but may also allow the model to
generalize better to out-of-distribution data, and improve its robustness to noisy observations.

5 Related work

Our approach introduces a mutual information constraint between the latent states zt and the latent
dynamics ∆̃t inferred by the model. Several methods focus on state compression for dynamics
modeling [1, 22, 5, 6, 23, 24]: The Recurrent State Space Model (RSSM) [22, 2, 25], uses a
variational Auto-Encoder in combination with a recurrent model (e.g. a GRU [26]) to infer compact
latent states in partially observable environments. Latent consistency is enforced by minimizing
the Kullback-Leibler (KL) divergence between latent states predicted by the model and latent states
inferred from pixels. The KL term regularizes the latent state not to contain more information than
can be predicted by the dynamics model [2, 27]. Unlike our approach, this information bottleneck is
not applied to the dynamics ∆̃t themselves, but to the representations zt. Expanding on this line of
work, RePo [12] discards image reconstruction from the RSSM, and simply enforces that the model
can reconstruct the environment’s reward function, leading to stronger compression and improved
performance in tasks with unpredictable elements. Similar approaches like Denoised MDP [28] only
model controllable and reward-relevant aspects of the environment. While simplified latents can
make transition dynamics more tractable to model, they do not necessarily give rise to the systematic
action representations that we are interested in. Lastly, Self Predictive Representation (SPR) models
[7, 6, 5] learn dynamics by predicting the future representations of a target encoder. SPR models
have been used both for model-free and model-based control.

Mutual information minimization is used in many deep learning frameworks more generally: [29]
and [30] use variational methods for minimizing the mutual information between the network’s inputs
X and latent representations Z while maximizing the mutual information between representations Z
and outputs Y . Mutual information minimization also has links to generalization ability [31, 32, 33,
34, 35], robustness in RL [36, 37], and exploration [38, 39]. Our information bottleneck differs from
previous approaches in that it directly constrains the effect the latent state can have on the residual
term in the latent dynamics over and above the agent’s actions.

Closest to our regularization method is the past-future information bottleneck [40, 41]. Here the
mutual information between sequences of past states and future states is minimized [42, 43]. While
this method simplifies dynamics, our approach differs in important ways: Rather than representing the
environment’s dynamics, say, using a low number of its principal components, we treat the dynamics
operator ∆̃t itself as a random variable, and minimize its conditional dependence on zt. Furthermore,
when ∆̃t is fully disentangled from zt, each action can be seen as a transformation that acts on
the latent state space in the same way, invariantly of zt [44, 45]. We model the dynamics as softly
state-invariant, allowing us to predict future latents both accurately and parsimoniously.

6 Conclusion

We have proposed a world model that tries to represent the effect of actions parsimoniously. Our
model predicts future states while minimizing the dependence between the predicted dynamics ∆̃t

and the latent state representations zt. Optimizing this objective makes the effect of the actions on
the agent’s latent state more predictable. Combining our objective with different model classes –
contrastive world models and SPR models – we observed consistent improvements in models’ ability
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to predict their own representations accurately, generalize to novel and noisy environments, and
perform planning and model-free control in high-dimensional and pixel-based environments with
complex dynamics. Overall, our results suggest that systematic action representations can offer
important improvements to the generalization ability and data-efficiency of world models.

Limitations: Our model, in its current formulation, assumes that actions have predictable and
deterministic effects on the environment. Aspects of the environment that do not behave predictably
conditioning on actions are susceptible to be ignored by the model, even if they are relevant for the
downstream task. While performance in Atari was improved on average, this aspect led to reduced
performance in some tasks. Similarly, the degree of regularization β needs to be tuned to achieve the
right level of dynamics compression for different environments.

Future directions: A promising future direction is to combine our mutual information regularization
with recurrent models. In partially observable, non-Markovian environments, next-state prediction is
often done with a recurrent model that uses the agent’s history as input. Using our bottleneck here
would correspond to the assumption that the effect of the agent’s actions are softly history-invariant.
Another promising avenue of research is to combine PLSM with discrete dynamics. Many successful
world modelling approaches assume that the latent state space is categorical [25, 46]. Instead of
modelling transitions using affine transformations ∆, transitions could be modelled by predicting
transition matrices. Finally, recent recent advances in controllable video-generation like Genie [47]
and UniSim [48] both incorporate actions into their video models. Genie infers latent actions that
explain transitions in videos, and UniSim conditions on actions and language instructions to generate
controllable videos. Modelling the effect of actions in a parsimonious way could improve the accuracy
and generation capabilities of such systems.
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Appendix

A Mutual Information minimization

To simplify dynamics, our algorithm minimizes the mutual information between zt and ∆̃t condi-
tioned on at (Eq. 8 & 3). With stochastic gradient descent, we search for parameters θ that optimize
the following objective:

min
θ

I(zt; ∆̃t|at) (10)

To do so, we introduce a new variable ht that depends on zt and at (Eq. 6). We use this variable,
together with at, to produce ∆̃t, instead of zt. For a specific at, the Markov chain behind ∆̃at

t can be
written as

zt → ht → ∆̃at
t (11)

Thus, to minimize the mutual information between zt and ∆̃t, we can instead minimize the mutual
information between zt and ht: minθ I(zt;ht|at). Following [29], we write the mutual information
between zt and ht as follows:

I(zt;ht|at) =
∫

dz dh da p(z,h,a) log
p(h|z,a)
p(h|a)

(12)

In our case, p(h|z,a) is deterministic. The marginal distribution conditioned on a, p(h|a), is
challenging to obtain. We instead use a variational approximation: With our variational distribution
q(h|a), we can upper bound the mutual information as follows

I(zt;ht|at) =
∫

dz dh da p(z,a)p(h|z,a) log p(h|z,a)
q(h|a)

(13)

First, this upper bound lets us see that the mutual information can be minimized by minimizing the
number of bits of information zt contains about ht over and above at. This could potentially be done
by introducing a parameterized prior that depends on at, qθ(ht|at) and minimize the KL divergence
between these two probability distributions

KLD[p(ht|zt,at)||qθ(ht|at)] (14)

We opt for a simpler approach, that allows us to do this without introducing a new prior and
parameterization. Following [8], we assume that q(ht|at) is a standard, d-dimensional, isotropic
Gaussian distribution N (0, I). Assuming further that ht is another d-dimensional isotropic Gaussian,
the KL divergence is a function of the mean and standard deviation of ht [8, 27]:

2KLD = ||µ(ht)||22 + d+

d∑
i

σ(ht)i − log σ(ht)i (15)

Here µ(·) and σ(·) return the mean and standard deviation of the Gaussian, respectively. Importantly,
we can minimize the KL divergence by minimizing the first term in the above equation, which is
simply the norm of the mean of ht. In our deterministic setup, we therefore simply minimize the
norm of ht itself.
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B PLSM vs L1 and L2 norm regularization

Figure 8: To illustrate how our mutual information minimization impacts the latent space, we trained
PLSM to learn the dynamics of a dot moving in four directions on a gridworld with a wall in the
middle. We compared PLSM to contrastive models that regularize the L1 and L2 norms of the latent
space, respectively. We observe that PLSM regularization leads to a more regular representation of
the states in the gridworld, whereas no regularization leads to a warped representation. Moreover, L1

and L2 regularization simply shrinks the latent space. This type of shrinkage is not present in PLSM.

C Ablations

We tested some alternative formulations and ablations of our PLSM objective on a subset of the
datasets (see Fig. 9). One ablation removed the query representation ht and simply regularized the
latent state zt. This model achieved substantially worse performance in the three datasets we tested it
on. As an alternative to regularizing the L2 norm of ht, we also tested a top-k bottleneck, which used
the top 15 features from ht instead of the full representation. This model performed on par with the
original PLSM. Lastly, minimizing the L2 norm of ht could potentially be compensated for by the
dynamics MLP by increasing the norm of the weight matrices. As a control, we added weight decay
to the dynamics model to prevent this, and observe comparable performance.

D Is the L2 minimization effective?

One potential issue with minimizing the L2 norm of the query representation ht is that the model
can compensate for this by increasing the magnitude of the weights in the ensuing dynamics module.
While this can be prevented by adding weight decay to the dynamics model’s weights, we show
that PLSM does not suffer from this empirically in the datasets we evaluated it on. We calculated
the average norm of ht of PLSM relative to the average norm of zt in the unregularized model.
Comparing them we see indeed that ht has several orders of magnitude lower norm. However,
comparing the norm of the ensuing linear layers, we see that they most often do not differ significantly
(see Fig. 10). This suggests that shrinking ht truly minimizes the amount of information the model
can extract from it to predict ∆.
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Figure 9: PLSM and three alternative models, one dispensing of the query representation, one
using a top-k bottleneck, and one adding weight decay to the dynamics MLP. Removing the query
representation decreases performance substantially. Performance is intact in the two alternative
formulations of PLSM.

Figure 10: While the norm of ht is orders of magnitude lower than the norm of zt, the norm of
ensuing weights from the dynamics model are comparable and often not significantly different.

E Atari

We report more detailed Atari results in this section, including median, IQM, and the probability
of improvement using the RLiable package [17] (see Fig. 11) . We also investigated how the
regularization strenght of PLSM impacted performance in Atari. We see that in games where
important features of the environment are not controllable by the agent, weaker regularization is
beneficial. For instance, in Boxing, the movement of the opponent is hard to predict, and here having
a lower regularization strength is advantageous.

16



Figure 11: Median, IQM, Mean and Optimality Gap reported for the three model-free RL algorithms.

Figure 12: In Boxing and Hero, lower regularization generally led to better performance.

F Datasets

See Fig. 13 for example frames from the training datasets and Fig. 14 for example frames from the
generalization tests.

Figure 13: The six environments used to evaluate the accuracy of the latent dynamics. Top, from left
to right: dSprites 4, cubes 9m shapes 9. Bottom: pong, space invaders, and MOVi-e.

G Hybrid model

We propose a hybrid model for the Atari environments. The hybrid model splits the latent state in two,
one parsimonious state space z1t and an unconstrained state space z2t . To predict the next state, the
model uses two dynamics MLPs z̃2t+1 = z2t + d1θ(z

1
t , z

2
t ,at) and z̃1t+1 = z1t + d2θ(ht,at). The next

latent prediction is then defined as z̃t+1 = Concatenate(z̃1t+1, z̃
2
t+1). Results are shown in Fig. 15.

H Slots with information regularization

We evaluated the C-SWM on our cubes 9 task, both with and without our regularization. The
performance of C-SWM dropper by a small amount due to the increased difficulty of the task for
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Figure 14: Datasets used to probe generalization and robustness. Left: Cubes and shapes data with
varying numbers of objects. Right: dSprite images with mild and severe noise corruption.

Figure 15: Our hybrid model, which splits the latent space into a parsimonious one and an uncon-
strained one, outperforms the baseline on long-horizon latent prediction in the Atari environments.

longer prediction horizons (t = 10). Interestingly, using our regularization method proved beneficial
for the slotted model, outperforming the unregularized C-SWM in long horizon latent prediction.

Table 1: PLSM with slots outperforms the C-SWM [3] in latent prediction at prediction horizon
t = 10, averaged over five seeds, plus and minus standard error of the mean.

Accuracy PLSM C-SWM
Cubes 9 99.05% ±0.18 97.45%±1.3
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I Atari scores

Game Random Human CURL DrQ SPR SPR+PLSM

Alien 227.8 7127.7 711.0 865.2 841.9 832.2
Amidar 5.8 1719.5 113.7 137.8 179.7 152.1
Assault 222.4 742.0 500.9 579.6 565.6 634.5
Asterix 210.0 8503.3 567.2 763.6 962.5 913.4

BankHeist 14.2 753.1 65.3 232.9 345.4 63.5
BattleZone 2360.0 37187.5 8997.8 10165.3 14834.1 13394.0

Boxing 0.1 12.1 0.9 9.0 35.7 28.4
Breakout 1.7 30.5 2.6 19.8 19.6 15.6

ChopperCommand 811.0 7387.8 783.5 844.6 946.3 450.6
CrazyClimber 10780.5 35829.4 9154.4 21539.0 36700.5 30410.2
DemonAttack 152.1 1971.0 646.5 1321.5 517.6 477.2

Freeway 0.0 29.6 28.3 20.3 19.3 28.4
Frostbite 65.2 4334.7 1226.5 1014.2 1170.7 1371.9
Gopher 257.6 2412.5 400.9 621.6 660.6 557.0

Hero 1027.0 30826.4 4987.7 4167.9 5858.6 5763.2
Jamesbond 29.0 302.8 331.0 349.1 366.5 336.8
Kangaroo 52.0 3035.0 740.2 1088.4 3617.4 4886.6

Krull 1598.0 2665.5 3049.2 4402.1 3681.6 4043.4
KungFuMaster 258.5 22736.3 8155.6 11467.4 14783.2 15187.6

MsPacman 307.3 6951.6 1064.0 1218.1 1318.4 1156.7
Pong -20.7 14.6 -18.5 -9.1 -5.4 1.1

PrivateEye 24.9 69571.3 81.9 3.5 86.0 85.8
Qbert 163.9 13455.0 727.0 1810.7 866.3 786.5

RoadRunner 11.5 7845.0 5006.1 11211.4 12213.1 12400.0
Seaquest 68.4 42054.7 315.2 352.3 558.1 561.3

UpNDown 533.4 11693.2 2646.4 4324.5 10859.2 29572.0
#Superhuman 0 N/A 2 3 6 6

Mean 0.0 1.000 0.261 0.465 0.616 0.671
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J Hyperparameters

J.1 Compute

We ran all experiments reported in the paper on compute nodes with 2 Nvidia A100 GPUs. On
average, Atari runs lasted for 5 hours and DMC runs 4-9 hours depending on the task.

J.2 Convolutional neural network architecture

To learn pixel representations we use a Convolutional Neural Network (CNN) architecture similar to
the one used in [9] and [49]. For the Atari latent prediction experiments we stacked two frames to
provide information about object movements. In MOVi-E we stacked four frames.
import torch
from torch import nn
encoder = nn.Sequential(

nn.Conv2d(num_channels , 32, 3, stride =2),
nn.ReLU(),

nn.Conv2d (32, 32, 3, stride =1),
nn.ReLU(),

nn.Conv2d (32, 32, 3, stride =1),
nn.ReLU(),

nn.Conv2d (32, 32, 3, stride =1),
nn.ReLU()
)

J.3 Contrastive models

Table 2: Contrastive model hyperparameters.

Hyperparameter Value
Hidden units 512

Batch size 512
MLP hidden layers 2

Latent dimensions |zt| 50
Query dimensions |ht| 50

Regularization coefficient β 0.1
Margin λ 1

Learning rate 0.001
Activation function ReLU [50]

Optimizer Adam [51]

J.4 DeepMind Control Suite

We use the same hyperparameters as [6] for the planning agents. The only addition is our PLSM
regularization. We use a regularization coefficient of 0.1 for all agents, and make the query net MLP
fθ the same size as the dynamics network ht, with |ht| = |zt|.

Table 3: Action repeat values in the DeepMind Control Suite tasks.

Task Action repeat
Acrobot Swingup 4
Finger Turn Hard 2
Quadruped Walk 4
Quadruped Run 4
Humanoid Walk 2
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J.5 Distracting Control Suite

All models were trained with an action repeat value of 2 in all environments. All model hyperparame-
ters were the same is in [12]. The background videos were randomly sampled per episode from the
DAVIS 2017 video dataset [52], projected in black and white.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We include experiments and results for all claims made in the paper.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss limitations of our model in the Discussion section.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: Mathematical details of the model are provided throughout the paper and in
the appendix.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experiment details and hyperparameters are included in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release code with model implementation upon publication.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details are found in Experiment section and Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Error bars and confidence intervals are reported in figures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute details reported in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: We found no potential societal impacts worth discussing.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets, models and assets used in the paper are cited properly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification:

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification:
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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