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Abstract
Many interactive learning environments use some
measure of uncertainty to estimate how likely the
model output is to be correct. The reliability of
these estimates is diminished when changes in the
environment cause incoming data to drift away
from the data the model was trained on. While
interactive learning approaches can use implicit
feedback to help tune machine learning models to
identify and respond to concept drift more quickly,
this approach still requires waiting for user feed-
back before the problem of concept drift can be
addressed. We propose that modeled cognitive
feedback can supplement implicit feedback by
providing human-tuned features to train an un-
certainty model that is more resilient to concept
drift. In this paper, we introduce modeled cogni-
tive feedback to support interactive learning, and
show that an uncertainty model with cognitive
features performs better than a baseline model in
an environment with concept drift.

1. Introduction
Machine learning (ML) models operating in dynamic real
world environments often experience degraded performance
as the incoming data changes from the training set. If the
concept drift is not addressed, it can lead to incorrect model-
based decisions. Adjusting for such changes in traditional
ML systems usually requires monitoring the model perfor-
mance and then completing slow and costly retraining when
the performance falls below some threshold. Interactive
learning opens up new opportunities for refining machine
learning models in the face of concept drift, by training
and improving models online through implicit feedback col-
lected from user activity. However, this process relies on
waiting for user feedback before the model can begin to
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improve, and this can often take more time and interaction
than desired. When a system is slow to detect and respond
to concept drift, it will be incorrect in its estimates of un-
certainty. This can be especially problematic in workflows
where an analyst is working to validate and correct machine
generated labels. In this situation, uncertainty models are
used to prioritize what labels are shown to the analyst with-
out overwhelming them with too many incorrect guesses
(Michael et al., 2020). This process relies on an uncertainty
model that accurately estimates the probability of being
wrong about a classification. If the model underestimates or
overestimates the probability of a particular label, this can
degrade the performance of the human-machine team.

In this paper, we investigate using modeled cognitive feed-
back to supplement user feedback to tune an uncertainty
model to more accurately reflect the data distribution in a
changing environment. First, we will introduce the chal-
lenges of representing uncertainty in interactive learning
environments. We will then provide some background on
cognitive models and how they have been used to support
both interactive and machine learning systems, and discuss
how they could be used to more quickly adapt to concept
drift in interactive learning environments. Finally, we will
describe a proof of concept where we compare two uncer-
tainty models in an online learning task and show that one
incorporating cognitive features derived from modeled vi-
sual search is more accurate over time than one using more
traditional features.

2. Background
2.1. Uncertainty in Interactive Learning

We consider the challenge of representing uncertainty in
an interactive learning system where an analyst is work-
ing closely with a machine learning system to validate and
correct labels. Uncertainty is often not well-defined, but it
is often assumed to be some measure of what is unknown
(Weinhardt & Schaefer, 2022) Here we define it as the prob-
ability of machine correctness. This measure is used in
active learning to identify examples that would be the most
impactful in training a supervised model, minimizing the
number of examples that the analyst must label or validate
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to help the model converge (Cohn et al., 1994) . When an
uncertainty model is inaccurate, it leads to a model that is
either underconfident or overconfident. An overconfident
model may make more mistakes by not prioritizing the val-
idation of labels that are wrong, while an underconfident
model may waste resources asking for validation when none
is needed. Calibrating an uncertainty model in a dynamic
real world environment calls for interactive tools that build
upon both the human and machine strengths to identify and
adapt to different kinds of change in the data. For example,
automated methods can be used to adjust the uncertainty
model when performance metrics fall below a threshold
(Bayram et al., 2022), but relying on this method alone is
slow to detect problems. Interactive learning environments
offer alternative ways to detect concept drift by using ex-
plicit and implicit feedback collected from a user who may
identify changes in the environment or a drop in machine
classification accuracy before the automated methods. How-
ever, waiting for user feedback is still not ideal, since the
uncertainty model is likely already inaccurate by the time
the user can identify the problem and provide feedback.

In the remainder of the paper, we will introduce a new
approach for providing cognitive feedback to calibrate an
uncertainty model. This approach builds on previous work
using cognitive models to design adaptive interfaces and
machine learning models that must be built upon some un-
derstanding of human behavior. We will start with describ-
ing some of the previous work done to incorporate cognitive
models into human-attuned interfaces, and then provide
an example introducing how cognitive models can be used
to generate cognitive features that can help an uncertainty
model be more resilient to concept drift in an interactive
task.

2.2. Cognitive Modeling for Human-Attuned Interfaces

Cognitive models are built upon clearly defined theories
about aspects of cognition, such as memory, learning or
attention. They provide an algorithmic representation of
a psychological theory that simulates a measurable aspect
of human performance (i.e. reaction time, accuracy). The
resulting simulation can be compared to real human perfor-
mance to validate the model’s strengths and weaknesses
(Lewandowsky & Farrell, 2010). Many cognitive mod-
els leverage existing cognitive architectures in their design.
Cognitive architectures represent a specific theory about
how human minds are structured, allowing them to learn,
reason, and/or perceive the environment. These, too, have
been developed through systematic evaluation against hu-
man performance in psychological studies. Many cognitive
architectures exist, each with their own design choices. For
example, SOAR is a cognitive architecture that incorporates
several modules that run in parallel and are controlled by
a procedural rule-based system. It differentiates between

working, episodic, and semantic memory and incorporates
visuospatial and motor modules to control virtual effectors
(Laird et al., 1986). ACT-R is another architecture that in-
corporates modules that represent a variety of aspects of
cognition, including declarative memory, visual attention,
auditory attention and motor functions. These modules can
run in parallel around a central, rule-based control system
(Anderson et al., 2004). Many other architectures exist
beyond these two, each with their own strengths and weak-
nesses. Recent work has considered how to unify these into
a common computational framework that represents theory
where architectures generally agree (Laird et al., 2017). By
building upon cognitive architectures that have been vali-
dated against human performance, a cognitive model can
provide a hypothesis as to how humans would respond to
specific tasks involving the cognitive functions modeled by
that architecture. Cognitive models support the design of
human-attuned interfaces by providing a baseline algorith-
mic representation of human cognitive abilities and limita-
tions.

In the following sections, we will explore how research in
human factors and machine learning has previously lever-
aged cognitive models to create human-attuned interfaces
and models. We will then consider the potential for cogni-
tive models in providing feedback for interactive learning.
Finally, we will introduce the challenges in representing
uncertainty in interactive learning workflows and consider
how modeled cognitive feedback can help machine learning
models respond more rapidly to concept drift.

2.2.1. COGNITIVE MODELS IN HUMAN FACTORS
RESEARCH

Human Factors research has a long history of incorporat-
ing cognitive models. Often this is done to help define a
specific theory that can explain some observed aspect of
human performance and test how changes to the interface
or environment might affect performance. In turn, this can
be used to improve the system or interface that a user in-
teracts with. In Salvucci (2006), researchers developed a
model of a car driver in ACT-R. The model could account
for the steering behavior and gaze distributions of human
drivers in a multilane highway environment. The work
provided an initial example of applying models designed
in ACT-R to complex, realistic tasks. In another example,
Fleetwood & Byrne (2006) developed an ACT-R model of
visual search to describe how participants of an eye tracking
study searched the screen for an icon. The model was used
to explain both response time and eye movement data. In
another study, researchers used psychological theories and
eye tracking data to develop an ACT-R model to simulate
the relative difficulty in recognizing different messages in
grouped bar charts (Burns et al., 2013). In Lohrenz et al.
(2009), cognitive models of clutter were developed to ex-
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plain people’s subjective ratings of clutter on geospatial
displays. This model was used to help evaluate whether a
geospatial display would be considered too cluttered by its
intended audience. Cognitive models have also been devel-
oped to model visual search patterns and timings for familiar
layout designs. By incorporating learning and memory into
the model, it was possible to predict when layouts become
familiar or forgotten and predict how much a familiar layout
might impact a user’s visual search behavior when exploring
a new unfamiliar layout (Todi et al., 2018).

2.2.2. COGNITIVE MODELS IN MACHINE LEARNING
RESEARCH

Machine learning has also benefited from incorporating
features and simulated data from cognitive models. For
example, Plonsky et al. (2016) extended a random forest
algorithm to include psychological features in addition to
more standard and naive features. In a choice prediction
competition, the resulting model significantly outperformed
other models built upon best practices. To address the chal-
lenge of predicting human decisions, which often require
huge datasets to accurately model with off the shelf tech-
niques, Bourgin et al. (2019) generated data from cognitive
models of decision making and used these to pretrain a
neural network. The network was later finetuned using a
smaller sample of real human decision making data. This
approach led to improvements on two benchmark datasets.
(Trafton et al., 2020) also explored generating synthetic
data to support machine learning models of human behavior.
This research explored using ACT-R models explaining dif-
ferent strategies of behavior in a supervisory control task to
generate synthetic data to supplement real human data when
training a convolutional network. The best results were
achieved by combining real human data with synthetic data
generated from the different strategies, which performed
better than models trained off empirical or synthetic data
alone.

2.3. Cognitive Models for Interactive Learning

We have reviewed several examples of how cognitive mod-
els can simulate human cognitive abilities to help make
human factors decisions. We also explored past research
showing how cognitive models can reduce the amount of
real human data required to create machine learning models
with equivalent or better performance of those trained on
human data alone. Modeled cognitive feedback for inter-
active learning could build upon this work by simulating
cognitive aspects of interfacing with an interactive learning
system and looking at measurable metrics, such as fixation
locations in a visual search or the reaction time to find and
select a button. This information can be incorporated as an
additional feature into the machine learning model, or as
feedback to a reinforcement learning algorithm. Changes

in modeled reactions could be an indication that something
about the underlying environment has also changed so that
the uncertainty model can adapt even before an active learn-
ing algorithm selects a data point to query the user about.

We will now introduce a task designed to compare uncer-
tainty models in an interactive learning environment with
concept drift.

3. Threshold Selection Task
We designed a simple threshold selection task to explore
methods of evaluating uncertainty as a probability of ma-
chine correctness. The goal of the task is to locate the
threshold on a noisy signal graph where the signal no longer
appears to be high. The signal graph is designed as a sig-
moid curve with varying degrees of noise, and the user can
select any point along the curve that they think is the point
of inflection. This task was designed to provide an intuitive
problem where the machine learning algorithm predicts the
threshold location that a user would choose. Over the course
of several examples, the machine learning model guesses
where the threshold will be and then the user clicks the point
they think best represents the threshold.

Throughout the task, the user is presented with graphs gener-
ated from 5 sets of signal types. Each signal type incorporate
noise into the sigmoid differently to introduce concept drift
(see Figure 1 for examples). Each of the 5 sets contains 7
trials where noise is generated in that same way. 30 realiza-
tions, each representing a user and machine team stepping
through 35 trials, are completed. By collecting data over
30 realizations, we can consider the distribution of machine
and user placements to calculate the probability of machine
correctness and compare it to the confidence score produced
by the uncertainty model.

We will now describe the classifier used to select the ma-
chine placements from which the uncertainty models predict
a confidence value (probability of correctness).

3.1. Classifier

A naı̈ve Bayes classifier predicts the user placements us-
ing several features chosen from standard feature selection
techniques. To train the classifier, labels were determined
by assigning 1 to all sample points with x-coordinates less
than or equal to the human placed threshold and 0 to the
remaining points.

3.2. Cognitive Model

In addition to generating machine placements, we designed
a cognitive model to generate cognitive features for each
trial that were provided to the cognitive uncertainty model.
The model simulates a user visually scanning and encoding
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Figure 1. Exemplar graphs from the five different phases from the
threshold selection task

a sigmoid curve. We designed the cognitive model in ACT-
R, using the EMMA extension. EMMA extends ACT-R to
include basic functionality to generate quantitative predic-
tions about eye movements, including the timing of those
movements (Salvucci, 2001). The ACT-R agent is designed
to simulate the eye movements that occur as a user scans
along the sigmoid curve and selecting a specific point as the
inflection point. Since the location of the inflection point is
subjective, depending on a user’s preferences, our ACT-R
agent does not simulate the decision of choosing a point
and instead chooses one at random. From the simulation,
we were able to extract timing information about the task,
including the total amount of time spent scanning the curve
to points that were fixated upon long enough to be encoded.
We used this information to design three cognitive features
for our uncertainty model. These are defined below and
were generated for each x-coordinate along the sigmoid.

• scan-time (t): The amount of time that passed between
trial start and a fixation point along the sigmoid curve,
as calculated by EMMA. The number of points that
were fixated upon, and therefore the number of total
points along the line with associated scan-time values,
varied depending on the shape and noise level of the
sigmoid. All other scan-time values are set to 0.

• extrapolated-time (te): A timing calculated from the
scan-time that assigns an extrapolated-time to every
x-coordinate position pos(x) between the two fixata-
tion positions (pos(p0) and pos(p1)). The extrapolated
time te can be calculated as:

te = t(p0) +
(pos(x)− pos(p0))(t(p1)− t(p0))

pos(p1)− pos(p0)

• next-time (t1): Each points t1 value is set to the scan-
time (t) for the associated x-coordinate if it exists. Oth-
erwise, it is set to t associated with the next lowest
x-coordinate that has a scan-time value associated with
it.

3.3. Uncertainty Model

The cognitive model described above provides three fea-
tures that can be provided to an uncertainty model when it’s
deciding about how confident it is in the classifiers decision.
We define uncertainty to be the probability of machine in-
correctness for a given placement. The uncertainty value
can be used to report machine confidence, which is defined
as confidence = 1− uncertainty

Baseline Uncertainty Model To examine the effectiveness
of using cognitive features in our uncertainty model, we
compare two versions of the uncertainty model. The first
version is a baseline uncertainty model. This model also
naı̈ve Bayes, and draws heavily from the classifier model.
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However, it differs from the classifier in that the uncertainty
model allows some placement tolerance such that any point
within some distance of a user placement is considered a
correct placement. Lower placement tolerances should lead
to lower expected accuracy. Points within the tolerance
distance are labeled as 1 and the rest are labeled as 0.

Cognitive Uncertainty Model The second version of the
uncertainty model is built in the same way as the baseline
uncertainty model, except now we are using three additional
cognitive features (scan-time, extrapolated-time, and next-
time) derived from the line scan model described above in
Section 3.2.

4. Results
The two uncertainty models described above were used
to generate confidence scores for the machine placements
generated from the classifier. We evaluated the confidence
scores by comparing them to the probability of machine
correctness using the mean absolute error. By comparing
the mean absolute error of the baseline uncertainty model
to that of the cognitive uncertainty model, we see that while
the models are comparable in early trials, the cognitive
uncertainty model trends towards being a better predictor of
machine correctness over time (see Figure 2).

Recall that both uncertainty models made use of a tolerance
parameter that configures how close a machine placement
needs to be to the user’s chosen inflection point to be consid-
ered correct. When we consider the average mean absolute
error of both uncertainty models at different tolerances, we
see the same trend, with the cognitive uncertainty model
outperforming the baseline uncertainty model in the latter
half of the trials (see Figure 2(c)).

5. Conclusions and Future Work
We have discussed the importance of accurate uncertainty
models in interactive learning environments and the chal-
lenges of calibrating uncertainty models to account for con-
cept drift as real world data evolves away from the data
a model was initially trained on. A new method was in-
troduced to use modeled cognitive feedback to improve
uncertainty models, even before feedback is collected from
the user. An interactive learning task was designed to ex-
plore the potential of this method. In the task, a user and a
machine learning model work together to select the inflec-
tion point of as noisy sigmoid curve. A cognitive uncertainty
model was used to generate confidence values for the ma-
chine learning placements, and it incorporated three features
derived from a cognitive model of a user visually scanning
the sigmoid graph in each trial. When compared to a base-
line uncertainty model, we found that the cognitive uncer-
tainty model trended towards predicting confidence scores
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(a) Perfomance of uncertainty models across trials when tolerance
is 0.08.
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Figure 2. The performance of the uncertainty models using cogni-
tive features is comparable to the model using classic features in
early trials and consistently higher in later trials.
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that were a closer representation of machine correctness
than the baseline model in later trials. This seems to indi-
cate that the cognitive uncertainty model was more resilient
to the changes in the signal data as it became more noisy,
but required some trials to train on the cognitive features.

This represents an initial result that cognitive features de-
rived from a cognitive model can improve performance
of underlying uncertainty models compared to a baseline
model. There is still room for improvement upon this
method. Currently, the cognitive model that generates the
features is designed using a single visual search strategy.
It is possible that a more robust cognitive model could be
developed by analyzing eye tracking data from users com-
pleting the task. It would be interesting to see how much the
performance of the cognitive uncertainty model could be
improved by using features from a more realistic cognitive
model.

In this paper, we considered interactive threshold detection
as a simple task to test if cognitive features could help the
uncertainty model performance. In the future, we would like
to explore developing cognitive uncertainty models for real-
istic interactive learning tasks, such as region digitization or
sound identification.
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