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Abstract

In statistical analyses, both observational and experimental, understanding how
outcomes vary with covariates is crucial. Traditional methods like Bayesian and
frequentist regression, regression trees, and model averaging partition data into
homogeneous pools to summarize outcomes. However, these methods either
focus on a single optimal partition or sample from all possible partitions, often
missing high-quality ones or including low-support partitions. A recently developed
Bayesian approach, Rashomon Partition Sets (RPSs), enumerates partitions with
posterior densities close to the maximum a posteriori (MAP) partition, capturing
uncertainty among high-evidence partitions. RPSs adhere to two principles,
scientific coherence, and simplicity, by using a minimax optimal ℓ0 prior without
additional dependence assumptions. In this paper, we critically compare the RPS
approach with three commonly used alternatives: Bayesian Model Averaging,
Bayesian/frequentist regularization, and Causal Random Forests.

1 Introduction

Take a basic question: how does a (continuous or discrete) outcome vary with combinations of the
covariates? There are many examples: how do various health interventions affect health outcomes,
how does technology adoption depend on incentives and demographics, how does the performance of
a material depend on environmental conditions, or how do human reactions to a situation vary based
on background and cognitive state? There are many potential explanations of heterogeneity (models)
and the covariates of interest can interact in complex and unpredictable ways (e.g. a material is
resilient to heat, except in the presence of a particular chemical; each additional piece of information
helps a person make a better decision until too much becomes overwhelming). Existing approaches
generally fall into two categories. They either (i) search for a single “optimal” model under some
assumptions about the association between covariates (e.g. LASSO) or (ii) attempt to sample from the
entire set of possible models (e.g. Bayesian Model Averaging, BMA, or random forests). Both these
approaches ignore the reality that many models will be indistinguishable from a statistical perspective,
especially with correlation structure in covariates, despite very different implications for policy or
science. We evaluate an alternative using the idea of Rashomon Sets from Leo Breiman’s 2001
“Statistical modeling: The two cultures” paper (and the highly related “Occam’s Razor” philosophy
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Figure 1: Two partitions, each representing a distinct model for heterogeneity in the outcome, yi. The left panel
shows heterogeneity in acceleration of a cube measured after dropping it a uniform gravitational field with drag
as the mass of the cube and external pressure changes. The right panel shows Banerjee and Duflo (2010)’s model
for interest rates as a function of borrower’s wealth and education when there are high administrative costs
relative to loan amount. There are two features, each with three levels. Each circle represents a combination
unique combination. Removing edges corresponds to creating disjoint components in the graph.

from Madigan and Raftery’s seminal 1994 paper for BMA)–to enumerate and explore a small number
of high (posterior) probability models, called the Rashomon Partition Set (RPS) because each item
in the RPS partitions the factorial space of covariates using a tree-like geometry (Breiman, 2001;
Madigan and Raftery, 1994; Venkateswaran et al., 2024).

2 Rashomon Partition Sets

Both modern and classical statistical tools, either implicitly or explicitly, address this problem using
partitions. They partition observations into “pools” where outcomes are similar within the pool but
differ across pools, then compute a summary (or fit a model) to pool. Some models, such as Bayesian
or frequentist tree models, are explicit about these partitions. Others, however, do so implicitly (e.g. a
regression with a single binary covariate posits heterogeneity between people in one group versus the
other, and homogeneity otherwise). Banerjee et al. (2021) introduced Hasse diagrams as a geometric
representation of partitions. Figure 1 gives an example of two partitions. The Hasse defines partitions
by removing (splitting on) edges to form disjoint connected components, which guarantees that all
sets in a partition contain only “connected” feature combinations. Distinguishing meaningful from
spurious heterogeneity then amounts to evaluating partitions. Estimation strategies and algorithms
privilege different partitions in search of the partition that captures meaningful complexity without
sacrificing power, but the partitions capture the root of the heterogeneity directly.

In a recent working paper, we propose Rashomon Partition Sets (RPSs) (Venkateswaran et al., 2024).
The RPS consists of all partitions that are close to the maximum a posteriori (MAP) partition in
terms of posterior density. Venkateswaran et al. (2024) bound the difference between posterior
quantities computed using the entire posterior and using only the RPS and use an ℓ0 prior, which is
minimax optimal but does not impose additional restrictions on the association between covariates.
Restrictions on the universe of partitions ensure that each partition corresponds to a scientifically
plausible explanation. For experiments, policymakers can then weigh additional considerations (e.g.,
cost, equity, privacy) in choosing which policies from the RPS to implement. RPSs also yield insights
to generate new scientific theories. Looking across models in the RPS, one can build an archetype of
feature combinations that appear consistently and have consistent effects on the outcome, regardless
of the structure imposed on other covariates by other high posterior partitions.

More formally, suppose that there are n units (or individuals) and each has M features. The feature
matrix is given by X1:n,1:M and outcomes are y ∈ Rn. Every feature has R possible values, partially
ordered. Let K be the set of all K = RM unique feature combinations. Each combination of
features k ∈ K can be represented in a dummy binary matrix D with entries Dik = 1 if and only
if observation i has feature combination k. The dataset is Z := (y,X). So, y = Dβ + ϵ, where
βk = E[Yi | Dik = 1] is the expected outcome in the population given the feature combination and ϵi
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is some idiosyncratic mean-zero residual. A partition, Π, in the space of all partitioning models, P , is
a model of heterogeneity such that for every pool π ∈ Π, possibly a singleton, if feature combinations
k, k′ ∈ π, then βk = βk′ . The posterior given the data Z is P(Π | Z). Let P⋆ ⊆ P be the set of
permissible partitions that obey some permissibility rules.
Definition 1 (Rashomon Partition Set (RPS)). For some posterior probability threshold τ ∈ (0, 1),
define the Rashomon Partition Set relative to a reference partition Π0, Pτ (Π0), as

Pτ (Π0) = {Π ∈ P⋆ : P(Π | Z) ≥ (1− τ) · P(Π0 | Z)}. (1)

The RPS relative to Π0 is the set of partitions that have a similar or higher posterior value than
the reference. If ΠMAP is the maximum a posteriori (MAP) partition, then define Pτ (Π

MAP). That
is, take the RPS as the set of partitions that are sufficiently close to the posterior of the MAP
partition. To construct the RPS, begin with an initialization partition, then enumerate all models with
posteriors at least as high as this initialization partition (which by definition includes ΠMAP). Then,
construct the RPS by moving down the list of partitions, ordered by posterior value, until reaching
(1− τ)P(ΠMAP|Z).
Given a posterior over the partition models, the posterior over the effects of various feature
combinations, possibly pooled, on the outcome of interest conditional on the partition models in this
set. So P(β | Z,Pτ ) =

∑
Π∈Pτ

P(β | Z,Π)P(Π | Z,Pτ ), and analogously for measurable
functions of β. The posterior for β restricted to the RPS is, of course, not the same as the
distribution over all possible partitions, Pβ|Z(β). Venkateswaran et al. (2024) characterize the
uniform approximation error of the posterior distribution of β, and measurable functions of it,
restricting to the RPS. This result does not depend on a specific prior over partitions, but a prior
is required to find RPS in practice. Venkateswaran et al. (2024) propose an ℓ0 prior that assumes
only sparsity in heterogeneity and is robust to any potential correlation structure between covariates.
Venkateswaran et al. (2024) show that the ℓ0 prior is minimax optimal and calculate bounds on the
size of the RPS and enumerate the entire RPS.

3 Comparison of RPSs to existing approaches

Bayesian Model Averaging Our goal is to represent uncertainty amongst scientifically plausible
explanations of heterogeneity in an outcome. Scientifically plausible explanations should be supported
by the observed data. RPSs, therefore, are enumerative, meaning that they consist of a list of all
partitions with posterior density close to the MAP partition. In their seminal paper developing an
Occam’s Window approach to Bayesian Model Averaging (BMA) for graphical models, Madigan and
Raftery (1994) express a similar philosophy:

[standard BMA] does not accurately represent model uncertainty. Science is an iterative
process in which competing models of reality are compared on the basis of how well they
predict what is observed; models that predict much less well than their competitors are
discarded. Most of the models in [standard BMA] have been discredited [...] so they should
be discarded.

Madigan and Raftery (1994) use this logic to justify an approach that favors high posterior, simple
models but constructs this set by sampling from the posterior. Sampling includes models that are
consistent with observed data and others that are highly unlikely, with the latter comprising most of
the posterior mass (Moulton, 1991). RPSs break from the literature that relies on sampling, instead
using the MAP as an anchor and listing models with similar posterior density. Further, sampling
explores the space of partitions/models, whereas the domain of science is explanations. Without
restrictions on the space, there could be multiple partitions that correspond to a single explanation,
and the number of partitions corresponding to each explanation will depend on the complexity of the
explanation. Sampling in the space of partitions, then, weights scientific explanations differentially
based on the number of partitions corresponding to that explanation.

ℓ1 Regularization. We compare RPSs to widely used regularization-based approaches, such as
Bayesian or frequentist Lasso, which use the ℓ1 penalty, compared to ℓ0 in the RPS. First, the ℓ1
penalty requires irrepresentability: that there is limited correlation between the regressors so that the
support may be consistently recovered (Zhao and Yu, 2006). The conditions required for the ℓ1 to
consistently select the “right” partition are likely not met in most substantively interesting settings
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Table 1: Each cell shows the fraction of CRF trees inside the RPS (within parentheses are absolute counts).
# trees = 20

(# permissible = 1.29)
# trees = 50

(# permissible = 2.67)
# trees = 100

(# permissible = 10.32)

ϵ = 0.1 (|Pθ| = 7.46) 0% (0) 0% (0) 0% (0)
ϵ = 0.2 (|Pθ| = 46.6) 0% (0) 0% (0) 0% (0)
ϵ = 0.3 (|Pθ| = 126.54) 0.41% (0.52) 0.91% (1.15) 3.35% (4.24)
ϵ = 0.5 (|Pθ| = 823.81) 0.16% (1.29) 0.32% (2.67) 1.25% (10.32)

(e.g. with unknown and potentially large correlation between variables). Second, the Bayesian lasso
means that the ℓ1 penalty corresponds to priors P(α) that are i.i.d. Laplace on every dimension
k. The main philosophical problem is that there is no reason to place the meta-structure that the
marginal differences between adjacent variants should come from an i.i.d. distribution. In fact, one
might think that the basic science or social science dictates exactly the opposite. Independence means
that a marginal increase in dosage of drug A, holding fixed B and C at some level, is thought to be
independent of increasing A holding fixed B and C at (potentially very similar) different levels.

Figure 2: Simulation results. The plot shows
often the true best profile is discovered as we
increase the Rashomon threshold in the blue
curve. With just ϵ ≈ 0.038, we recover the
true best profile in the Rashomon set about
90% of the time. The red dot corresponds to
how often Lasso recovers the true best.

Take a setting with four features. Each feature takes
on four ordered factors including the control (which
corresponds to zero, when the feature is inactive),
{0, 1, 2, 3}. There are sixteen different feature profiles:
24 = 16 possible combinations of active and inactive
features. The control corresponds to the profile where
all features are inactive. Our data-generating process
groups all feature combinations in a given profile into
the same pool. We will assume that the following profiles
have a non-zero outcome: β(0,0,0,1) = 4.4, σ2

(0,0,0,1) =

1, β(0,1,0,0) = 4.3, σ2
(0,1,0,0) = 1, β(0,1,0,1) =

4.45, σ2
(0,1,0,1) = 1, β(1,0,1,0) = 4.5, σ2

(1,0,1,0) =

1.5, β(1,1,1,1) = 4.35, σ2
(1,1,1,1) = 1. All other feature

profiles have outcome β = 0 and variance σ2 = 1. The
feature profile (1, 0, 1, 0) is the best, however, the other
four profiles listed above are very close. We generated
data with nk = 30 data points per feature combination.
The outcomes were drawn from N (βi, σ

2
i ). We averaged

the results over r = 100 simulations. Figure 2 tells us
how often the true best feature profile is present in RPS
as a function of the threshold ϵ. Lasso selects the data-
generating model only about half the time, though as we
increase ϵ we see that the true data-generating model is
nearly always included in the RPS.

Causal Random Forests (Wager and Athey, 2018). There are two fundamental differences. The
first is geometric. Causal Random Forests (CRFs) use regression trees, which impose a hierarchy
between variables that is not supported by the (partially ordered) data and, thus, are not interpretable
as explanations. Hasse diagrams, in contrast, are the natural geometry for partially ordered sets.

Second, CRFs bootstrap samples over the data propagate this uncertainty. The trees sampled as part
of this process create a “forest” are, by definition, random draws given the data. Given a different set
of data, the distribution of likely trees would change. They are also not guaranteed to be optimal or
nearly optimal. If the goal is to identify interpretable explanations of heterogeneity, then sampling
randomly is very unlikely to produce high quality trees. With RPS, by definition, all models in the set
are of high posterior.

We simulate data with four features, the first being a binary treatment variable. The second
feature takes on 3 ordered levels and the last two features have 4 ordered levels: β(1,1,1:2,1:3) =
2, β(1,1,1:2,4) = 4, β(1,1,3:4,1:3) = 2, β(1,1,3:4,4) = 0, β(1,2,1:2,1:3) = 3, β(1,2,1:2,4) =
5, β(1,2,3:4,1:3) = 7, β(1,2,3:4,4) = 1, β(1,3,1:2,1:3) = 1, β(1,3,1:2,4) = −1, β(1,3,3:4,1:3) =
−1, β(1,3,3:4,4) = −2. We generate nk = 10 data points per feature combination. In the treatment
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group, we drew outcomes from a N (βk, 1) distribution.The results are presented in Table 1. The
vast majority of partitions sampled by CRFs are not scientifically coherent (permissible) partitions
and thus cannot be interpreted as plausible explanations. This result is not specific to CRFs and
would hold for any algorithm using unrestricted trees. Consequently, the number of trees that are in
the RPS is also very small, meaning that, although averaging over trees has appealing asymptotic
properties, the trees included in particular sample are unlikely to be high-quality explanations. This
result is, again, not specific to CRFs but highlights the value of exploring uncertainty by enumerating
high-quality explanations compared to sampling.

4 Conclusion

In summary, methods such as Bayesian or frequentist regression search for a single optimal model
under some assumptions about the covariate structure. However, in large datasets, many models
may be statistically indistinguishable even though their scientific implications are very different.
RPSs overcome this limitation in two ways. First, it uses an ℓ0 prior that is agnostic to any covariate
dependence. Second, it enumerates all near-optimal models, making it feasible to infer the true
scientific model. On the other hand, methods such as random forests or BMA sample from the entire
set of models. While this avoids the “single model” paradigm, there is no guarantee that the sampled
models are the near-optimal models. In fact, Moulton (1991) suggests that models not supported by
the data account for most of the posterior. In contrast, RPSs, by definition, consist of all near-optimal
models.
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