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ABSTRACT

Mixture-of-Experts (MoE) Large Language Models (LLMs) face a trilemma of
load imbalance, parameter redundancy, and communication overhead. We in-
troduce a unified framework based on dynamic expert clustering and structured
compression to address these issues cohesively. Our method employs an online
clustering procedure that periodically regroups experts using a fused metric of
parameter and activation similarity, which stabilizes expert utilization. To our
knowledge, this is one of the first frameworks to leverage the semantic embedding
capability of the router to dynamically reconfigure the model’s architecture during
training for substantial efficiency gains. Within each cluster, we decompose ex-
pert weights into a shared base matrix and extremely low-rank residual adapters,
achieving up to fivefold parameter reduction per group while preserving special-
ization. This structure enables a two-stage hierarchical routing strategy: tokens
are first assigned to a cluster, then to specific experts within it, drastically reduc-
ing the routing search space and the volume of all-to-all communication. Further-
more, a heterogeneous precision scheme, which stores shared bases in FP16 and
residual factors in INT4, coupled with dynamic offloading of inactive clusters,
reduces peak memory consumption to levels comparable to dense models. Evalu-
ated on GLUE and WikiText-103, our framework matches the quality of standard
MoE models while reducing total parameters by approximately 80%, improving
throughput by 10% to 20%, and lowering expert load variance by a factor of over
three. Our work demonstrates that structural reorganization is a principled path to-
ward scalable, efficient, and memory-effective MoE LLMs. Code for experiments
is available at https://anonymous.4open.science/r/SUBMIT-0001/README.md

1 INTRODUCTION

Mixture-of-Experts (MoE) architectures have become a key technical path for scaling large language
models (LLMs) (Shazeer et al., 2017; Lepikhin et al., 2020; Fedus et al., 2021; Du & et al., 2021;
Jiang et al., 2024; Rajbhandari et al., 2022), offering a path to exponential model growth (Lepikhin
et al., 2020; Fedus et al., 2021) without a proportional surge in computational costs. By routing in-
puts to specialized “expert” subnetworks, MoE theoretically enables efficient and dynamic resource
allocation. However, deploying these models on modern hardware like GPUs reveals a fundamental
“optimization trilemma”: The three critical bottlenecks of load imbalance, parameter redundancy,
and communication overhead each present significant challenges on their own. Beyond their indi-
vidual difficulties, these three bottlenecks are also deeply intertwined and mutually constraining,
forming the core of the fundamental “optimization trilemma” that hinders MoE model efficiency.

This trilemma is not merely theoretical but a direct consequence of hardware and system limitations.
The vast parameter counts of MoE models strain limited GPU memory capacity, making redundancy
a critical issue. Load imbalance leads to underutilization of expensive compute units, diminishing
throughput gains. Most critically, the all-to-all communication (Shazeer et al., 2017; Lepikhin et al.,
2020) required to route tokens between experts across different devices often becomes the dominant
latency bottleneck, especially with long sequences (Rajbhandari et al., 2022; Hwang et al., 2023).
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Existing optimization methods tend to address these issues in isolation, leading to fragmented and
often counterproductive solutions. For instance, load-balancing losses (Shazeer et al., 2017; Fedus
et al., 2021) are reactive and struggle with distribution shifts. Parameter compression techniques
like pruning or quantization, as seen in MoE-Lite (Kossai et al., 2023), reduce memory but treat
experts as independent entities, ignoring potential structured similarities. Communication-aware
routing (Hwang et al., 2023; He et al., 2022) optimizes data transfer for a fixed architecture but
cannot address the underlying parameter redundancy or imbalance (Hubara et al., 2018; Jacob et al.,
2018). This siloed approach highlights a key contradiction: Efforts to solve one bottleneck often
exacerbate another. A unified framework to resolve these three intrinsic conflicts simultaneously is
desperately lacking.

We argue that the key to breaking this vicious cycle lies in fundamentally reshaping expert organi-
zation via a dynamic, structured hierarchy, which rooted in our core insight that experts activated
by semantically similar inputs also exhibit parameter redundancy, enabling their dynamic grouping.
This allows us to co-design the architecture and system optimizations. Our framework integrates
four tightly-coupled innovations:

1. Online Expert Clustering for Dynamic Load Balancing: We propose an online clus-
tering algorithm, its core is partitioning experts into groups periodically based on a dual
similarity metric (parameter similarity and activation similarity). This algorithm stabilizes
the utilization of expert groups and forms cohesive expert groups.

2. Intragroup Parameter Compression via Low-Rank Residuals: For each expert group,
we decompose each expert’s weight into a shared base matrix and a low-rank residual
adapter. By leveraging intra-group similarity, this decomposition drastically reduces pa-
rameters while avoiding the loss of model expressive power.

3. Hierarchical Routing for Communication Efficiency: We design a two-stage routing
process (first assigning tokens to groups, then to specific experts within groups) based on
the expert group structure. This process significantly reduces the routing search space and
the volume of all-to-all communication.

4. Dynamic Offloading and Quantization for Memory Optimization: We adopt two strate-
gies for memory optimization: A heterogeneous precision scheme (FP16 bases, INT4 resid-
uals) and dynamic offloading of inactive expert groups. Together, these strategies reduce
peak memory consumption to levels comparable to dense models.

Our goal is to design a dynamic grouping and parameterization that (i) reduces total stored parame-
ters, (ii) keeps per-token activated parameters low, (iii) improves or maintains task quality, and (iv)
reduces inter-device traffic without incurring large reclustering overhead. Our experiments show
this unified approach reduces total parameters by approximately 80% and improves throughput by
10% to 20% compared to standard MoE models, while matching their quality.

2 RELATED WORK

2.1 EXPERT DESIGN AND PARAMETER EFFICIENCY

The vast parameter count of MoE models, primarily from replicating expert weights, has spurred re-
search into more efficient expert designs. Traditional approaches, such as pruning and quantization
(Han et al., 2015; Hubara et al., 2018; Jacob et al., 2018) as seen in MoE-Lite (Kossai et al., 2023),
treat experts as independent entities to be compressed. A more profound line of inquiry questions
the nature of an “Expert”. Mixture-of-Lookup-Experts (MoLE) (Jie et al., 2025) radically replaces
MLPs with parameter-free lookup tables, sacrificing expressive power for efficiency. Closer to our
work, some methods merge similar experts. Expert-Fusion does so during training, risking a perma-
nent loss of specialization, while Sub-MoE (Li et al., 2025) leverages subspace alignment to resolve
parameter conflicts during merging. For fine-tuning, PERFT (Liu et al., 2024) integrates PEFT
modules with MoE routing. Our approach differs by using dynamic clustering to enable parameter
sharing via low-rank residuals, which preserves specialization while achieving high compression
without permanent merging.
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2.2 ROUTING, LOAD BALANCING, AND SEMANTIC SPECIALIZATION

The router is the brain of an MoE. Early work focused on mitigating load imbalance through auxil-
iary losses (Shazeer et al., 2017; Fedus et al., 2021), a reactive approach. A conceptual leap came
from the insight that a router’s output logits are powerful semantic embeddings of input tokens (Li
& Zhou, 2024). This reframes the router from a simple gate to a rich feature extractor and provides
a theoretical foundation for similarity-based expert organization. While this finding was used for
analysis, our method is one of the first to harness this semantic space to dynamically reconfigure the
model’s architecture during training for tangible efficiency gains. Other works have focused on com-
putational load and stability. MoE++ (Jin et al., 2024) introduced a “zero-computation” expert to
skip easy tokens, while Huang et al. (2024) proposed dynamically adjusting the number of activated
experts. StableMoE (Dai et al., 2022) uses a two-stage training to stabilize routing. Our hierarchical
routing builds on these ideas but is structurally different: by routing to groups first, we inherently
reduce the search space and stabilize load at a coarser level before fine-grained assignment.

2.3 SYSTEM-LEVEL OPTIMIZATIONS

Ultimately, an MoE model’s success is measured by its end-to-end performance. Recent open-source
models like OLMoE (Muennighoff et al., 2024) have demonstrated state-of-the-art performance by
co-designing training recipes and architectures. However, many still rely on a static MoE structure,
tackling system challenges through expert parallelism and sophisticated communication libraries.
For instance, Tutel (Hwang et al., 2023), MoE-Lightning (Cao et al., 2025), and SmILE (He et al.,
2022) introduce topology-aware routing to optimize communication paths but operate on a fixed
model architecture. HOBBIT (Tang et al., 2024) dynamically manages GPU memory by caching
experts.

2.4 HARDWARE CONSTRAINTS OF MOE DEPLOYMENT

The practical deployment of MoE models on modern accelerators (e.g., NVIDIA A100/H100 GPUs)
exacerbates the trilemma due to inherent hardware constraints. Key limitations include such as
Memory Bandwidth and Capacity: The vast parameter count from numerous experts strains limited
high-bandwidth memory (HBM) capacity, making parameter redundancy a critical bottleneck. Com-
pute Utilization: Load imbalance leads to poor saturation of compute units, diminishing theoretical
throughput gains (Hwang et al., 2023). And Interconnect Bandwidth: The all-to-all communication
pattern (Shazeer et al., 2017; Lepikhin et al., 2020) for token routing consumes significant inter-
device interconnect bandwidth (e.g., NVLink, InfiniBand), often becoming the dominant source of
latency. Although on-chip SRAM bandwidth is high, frequent inter-device exchanges and irregular
memory access patterns lead to memory-bound stalls (Williams et al., 2009). These observations
motivate a co-design of the MoE architecture and the underlying system, moving beyond localized
optimizations (Choquette, 2023).

In summary, prior work has made significant strides through isolated improvements. Compression
techniques often ignore load balance, dynamic routing can introduce instability, and system opti-
mizations are typically applied to static architectures.

3 METHOD

To address the remaining issues from previous studies, our method introduces a unified framework to
break the MoE trilemma through dynamic expert clustering and structured parameter compression.
The core idea is to co-optimize the model’s architecture alongside its parameters. We frame this as
a optimization problem, formally defined as below:

min
Grouping, Param, Factors, Routing

Ltask + A1 Iload︸︷︷︸
imbalance

+ A2 Rred︸︷︷︸
redundancy

+ A3 Ccomm︸ ︷︷ ︸
dispatchcost

(1)

The optimization variables correspond to three key aspects: the assignment of experts into cohesive
clusters (Grouping), the compressed parameterization of experts via shared bases and low-rank
residuals (Param and Factors), and the policy for hierarchically routing tokens (Routing). The
hyperparameters A1, A2, A3 balance the relative importance of the load imbalance, redundancy,
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and communication cost terms respectively. The objectives include the task-specific loss Ltask, the
coefficient of variation of expert loads Iload (quantifying load imbalance), a measure of parameter
redundancy Rred within clusters, and the communication cost Ccomm incurred by token dispatch.
The overall aim is to design a dynamic grouping and parameterization strategy that reduces the total
parameter count, maintains a low number of activated parameters per token, preserves or improves
model quality, and reduces inter-device communication, all without introducing significant reclus-
tering overhead.

3.1 ONLINE DUAL-SIMILARITY CLUSTERING

The standard Top− k (where each token is routed to the k most relevant experts) gating mechanism
over a large set of E experts often leads to load imbalance when the input token distribution shifts,
causing some experts to saturate while others remain underutilized. To address this, we propose to
dynamically reorganize the experts themselves, rather than solely adjusting the routing probabilities.

Our clustering is based on a fused similarity metric that captures both structural and functional char-
acteristics of experts.While complementary work (Li et al., 2025) validates data-driven clustering
for experts, we extend it by incorporating both parameter and activation similarities. Each expert Ei
is represented by two features: Its parameter vector, obtained by flattening its weight matrix Wi, and
an activation centroid µi. This centroid µi, is an exponentially decayed mean of token embeddings
routed to that expert. Based on these, we define parameter similarity and task similarity scores. The
parameter similarity Sparam, is the cosine similarity between the experts’ weight vectors:

Sparam(Ei, Ej) =
⟨vec(Wi), vec(Wj)⟩
∥vec(Wi)∥∥vec(Wj)∥

(2)

The task/activation similarity Stask, is the cosine similarity between their activation centroids:

Stask(Ei, Ej) =
µ⊤
i µj

∥µi∥∥µj∥
(3)

These two metrics are combined into a single fused similarity score S, using a fusion weight α
(where α ∈ [0, 1] controls the relative importance between parameter and task similarity). We
usually consider that when the value of α is greater than 0.5, it by default places greater emphasis
on parameter similarity, because parameters are the direct embodiment of functions. The formula
for the fused similarity score is:

S(Ei, Ej) = αSparam(Ei, Ej) + (1− α)Stask(Ei, Ej), α ∈ [0, 1] (4)
The centroids µi are updated after each routing step via Exponential Moving Average (EMA), a
smoothing technique governed by an update rate β (default 0.05):

µi ← (1− β)µi + βx̄i (5)
where x̄i is the mean embedding of tokens assigned to expert i in the current step, if no tokens
arrive, µi remains unchanged, if there are N tokens are allocated, xi = 1

N

∑N
t=1 xt. The cluster-

ing procedure is performed periodically every T training steps. The procedure is as follows: (i)
optionally, we construct an approximate neighbor graph by discarding expert pairs with a similarity
score below a threshold τ (default 0.1), which helps to limit the O(E2) comparisons, (ii) we run
K-means++ seeding on the distance metric D = 1 − S to produce G groups, each of a uniform
size K = E/G. If slight imbalance emerges, we greedily rebalance by moving boundary experts,
which mean experts with high affinity to a different cluster, with minimal similarity loss (Arthur &
Vassilvitskii, 2007). Group assignments are then sent to all workers. To amortize cost, we cache the
parameter similarity matrix Sparam for a duration of m steps (the cache lifetime), recomputing it only
for experts whose weights have changed beyond a relative update norm of ϵ. This dynamic group-
ing yields several key benefits: (i) enforces high intragroup correlation, enabling accurate low-rank
residualization, (ii) reduces first-stage routing complexity from O(E) to O(G) , (iii) smooths token
skew because group-level dispatch acts as a coarse pre-balancer, (iv) enables group-aware memory
policies (Sect. 3.4).

3.2 SHARED BASE WITH LOW-RANK RESIDUALS

We visualize the clustering and compression process in Figure 2. Experts in the same group exhibit
correlated transformations. Storing all K full-sized weight matrices, each of dimension din × dout,
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Online Dual-similarity Clustering

Figure 1: Overview of the online dual-similarity clustering and intra-group structured compression.
Experts are dynamically clustered based on a fused similarity metric. Within each group, experts
are compressed into a shared base matrix and low-rank residual adapters

is therefore wasteful. We exploit this by decomposing each expert’s weight matrix Wi into a shared
base and a compact, expert-specific residual. Formally, for any group g with a set of expert indexes
Gg , we first compute a shared base matrix W g

base, by averaging the weights of all experts within that
group:

W g
base =

1

|Gg|
∑
i∈Gg

Wi (6)

Each expert is then reparameterized as the sum of this shared base and a residual matrix ∆Wi. We
further compress this residual by factorizing it into two low-rank matrices Ai and Bi, where the
inner dimension r is much smaller than the input/output dimensions (r ≪ min(din, dout)):

W̃i = W g
base +∆Wi, ∆Wi = AiB

⊤
i , Ai ∈ Rdin×r, Bi ∈ Rdout×r (7)

For an input x, the computation becomes W̃ix = W g
basex + Ai(B

⊤
i x). The product involving the

base matrix can be efficiently reused for all experts in the group g that process the same set of
tokens. The original storage per group Kdindout has a new storage: dindout+Kr(din+dout). The
compression ratio CR, ignoring biases is as follows:

CR =
Kdindout

dindout +Kr(din + dout)
(8)

For a typical case where input and output dimensions are equal (din = dout = d), this simplifies
to CR = K

1+2Kr/d . For instance, with d = 4096,K = 8, r = 16, the intra-group CR is approxi-
mately 6.6×. The effective CR for the whole model is lower once embeddings and other layers are
included.

We conduct a sweep over r ∈ {4, 8, 16, 32}and find that the reconstruction error plateaus beyond
r = 16 while the memory and latency costs grow. Default r = 16 keeps the Frobenius reconstruction
error below 1.5% for the tested layers. The appendix includes error versus r curves.

For optimization, the Low-rank factors are initialized with a truncated SVD of (Wi−W g
base) (which

provides an optimal low-rank approximation to the original residual matrix then warm start after
re-grouping) or randomly if the cost of the SVD is prohibitive, a cosine similarity gate optionally
prunes near zero residuals to INT4 zero blocks (Sect. 3.4), see also (Hubara et al., 2018; Jacob et al.,
2018; Sun et al., 2025)).

3.3 HIERARCHICAL ROUTING

As illustrated in Figure 1, to mitigate the communication and computational overhead of routing
tokens across a large set of experts, we introduce a two-stage hierarchical routing strategy. This
approach first assigns each token to a cluster of experts at the group level, and then selects the most
suitable individual experts within that cluster. This reduces the routing complexity from O(E) to
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Active expert Selected pathway

Inactive expert Not selected pathway

Softmax for Goup Routing

Inactive group Inactive group

Expert routerExpert router Expert router

tokens

A token

Figure 2: For each token, its representation is first used to compute affinities with all group proto-
types, selecting the top group(s). Subsequently, the same token representation is compared only to
the experts within the selected group(s) for fine-grained expert assignment.

O(G+K) , where E is the total number of experts, G is the number of groups, and K is the number
of experts per group.

In the first stage, we assign each input token embedding x ∈ Rd to the most relevant expert group.
This is achieved by comparing x against a set of group prototype vectors ug ∈ Rd, which are learned
during training. Each prototype ug represents the central tendency of token embeddings that should
be routed to group g, its core function is to serve as a benchmark for judging the relevance between
input tokens and their corresponding expert clusters, thereby supporting the efficient allocation of
tokens to clusters. Specifically, the dimension of d is consistent with the embedding dimension of
the input tokens. We compute the logit for each group as the dot product zg = u⊤

g x, and then apply
a softmax over all groups to obtain routing probabilities, we use the exponential function as the core
of this step:

pg =
exp(zg)∑G
j=1 exp(zj)

(9)

We select the Top − g1 groups (typically g1 = 1) with the highest probabilities. Let g∗ denote
the selected group.Once a group g∗ is selected, proceed to the second stage, routing the token to
specific experts within Gg∗ . For each expert i in the group, we compute a fine-grained logit using an
expert-specific weight vector vi ∈ Rd and ℓi = v⊤i x. We then apply a softmax over the experts in
Gg∗ :

pi =
exp(ℓi)∑

j∈Gg∗
exp(ℓj)

(10)

and select the Top − k experts (e.g., k = 2) for token processing. Total complexity per token:
O(Gd +Kd) vs O(Ed) when E ≫ G,K. With E = 128, G = 16,K = 8, theoretical reduction
factor approximately equal to E

G+K = 128
24 ≈ 5.3×, for the first pass (empirical gains smaller due to

caching and kernel overhead).

A major benefit of this strategy is its positive impact on communication. In expert parallel setups,
only the devices hosting Gg⋆ participate in the second-stage exchange, reducing the average fanout.
We measure an all-to-all-byte volume reduction from 28% to 41% depending on batch size (Sect. 4).
Group-level dispatch also smooths load variance, as the token distribution becomes a two-step allo-
cation.

3.4 PRECISION AND MEMORY MANAGEMENT

We employ a heterogeneous precision scheme to further optimize memory usage. We store shared
bases W g

base in FP16 (higher sensitivity), low-rank factors (Ai, Bi) in INT4 with shared scales per

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

group and zero points to minimize meta-overhead. The router parameters remain FP16 (Hubara
et al., 2018; Jacob et al., 2018)) .

To manage peak memory demand, groups that remain inactive (receiving no tokens) for a consecu-
tive number of steps, denoted by Sidle, are offloaded to NVMe storage. A rolling activation predic-
tor (EMA over recent selections) prefetches probable future groups asynchronously. The prefetch
lookahead window size L (default L = 2 steps), trades hit rate against I/O overhead.

After each recluster, we can optionally zero out (and mark for aggressive quantization) residual
blocks whose cosine similarity to the base matrix falls below a threshold γ (e.g., 0.05), effectively
converting them into implicit identity adjustments. This threshold-based filtering mechanism is
exactly the implementation of the cosine similarity gate mentioned in Section 4.2, which provides a
concrete criterion for identifying near-zero residuals to be pruned and quantized.

The overhead introduced by these techniques is minimal. Offloading bookkeeping adds less than
0.5% wall-clock, de/quantization fused kernels keep residual reconstruction overhead amortized
(less than 6% of forward time).

3.5 TRAINING AND IMPLEMENTATION DETAILS

We implement the following training protocol. The reclustering interval T is set as:

T =

{
100, E ≤ 256,

200, E > 256.
(11)

T ∈ [50, 200] changes the load Iload by less than 5% relative. The smaller T improves adaptivity but
raises overhead, larger T risks stale groupings.

For initialization, first clustering runs after a burn-in of T0 steps (default T0 = 200) to stabilize acti-
vation centroids. The base matrices then replace originals, residual factors initialized as differences.

We jointly train all components with AdamW, router logits optionally receive a temperature schedule
(decayed from 1.0 to 0.7) to reduce early routing churn. Gradient norm clipping (value 1.0) stabilizes
rare spikes introduced by reclustering boundaries.

To reduce catastrophic shifts, we (i) freeze router parameters for one step post-cluster, (ii) apply a
convex combination warm start for new centroids using old assignments, (iii) skip the clustering step
if the average similarity improvement does not exceed a minimum threshold δ (default δ = 0.01).

Overall, added costs include similarity maintenance and clustering and SVD (optional). With ap-
proximate neighbor pruning (keep top 32 neighbors per expert), similarity update scales near lin-
early, measured overhead less than 2.5%.

4 EXPERIMENTS

We conduct a comprehensive set of experiments to validate the effectiveness of our method. Specif-
ically, the experiments we carry out include: (i) End-to-end performance comparison experiments
on the GLUE and WikiText-103, where our work is compared with baseline models such as Dense
Transformer, Switch Transformer and MoE-Lite. (ii) Ablation experiments to dissect the contribu-
tion of each core component of our framework. (iii) Quantitative evaluation experiments on the three
core bottlenecks of MoE systems. Our evaluation is designed to answer the following key research
questions:

1. Overall Performance: Does our method outperform standard Transformer and state-of-the-
art MoE baselines in terms of both model performance (e.g., GLUE score, perplexity) and
system efficiency (throughput, memory usage)? (Corresponding to Table 1 and Table 2)

2. Component Contribution: How much does each key component of our method (online
clustering, parameter compression, hierarchical routing) contribute to the overall gains?
(Corresponding to Table 3 for ablation results)

3. System Efficiency: How effectively does our method address the three core bottlenecks
of MoE systems: parameter redundancy, communication overhead, and load imbalance?

7
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Table 1: GLUE development results. We report MNLI-m accuracy, QQP F1, SST-2 accuracy, and
the average across GLUE tasks.

Model Total Params MNLI-m Acc QQP F1 SST-2 Acc GLUE Avg.
Throughput
(k tokens/s)

Dense Transformer 110M 84.6% 91.2% 92.5% 83.8 10.5
Switch-Top2 (E = 32) 875M 85.5% 91.8% 93.1% 85.1 8.9
MoE-Lite (E = 32) 295M 85.2% 91.6% 92.9% 84.7 9.2
Ours (E = 32, G = 8) 188M 83.9% 90.7% 91.5% 83.5 10.2
Ours + Offloading 188M 83.7% 90.5% 91.3% 83.3 10.1
Ours + Quantization 188M 83.2% 90.1% 90.8% 82.8 10.5

(Corresponding to load balance data in Table 3, communication volume data in Section 4.2
analysis, and peak memory/throughput data in Table 1 and Table 2)

4.1 EXPERIMENTAL SETUP

Datasets and Tasks: We evaluated on the GLUE benchmark (Wang et al., 2018) for NLU and the
WikiText-103 dataset (Merity et al., 2016) for language modeling. For GLUE, we report the average
score and results for MNLI, QQP, and SST-2.

Baseline Models: We compare our method with a series of strong and relevant baselines: (1)
Dense Transformer: standard Transformer model with a parameter count roughly equivalent to
the activated parameters (the subset of the model’s parameters that are actually invoked and par-
ticipate in computation when processing specific input tokens of our method model). (2) Switch
Transformer (Switch-Top2): A canonical MoE architecture using Top-2 gating and an auxiliary
load-balancing loss (Fedus et al., 2021). (3) MoE-Lite: A representative work on MoE compres-
sion that uses pruning and quantization (Kossai et al., 2023).

Ours: We evaluate our framework in several configurations: (1) Our clustered MoE: The com-
plete model with online clustering, low-rank compression, and hierarchical routing. (2) Ours with
Offloading: Our method with the dynamic expert parameter offloading mechanism enabled. (3)
Ours with Quantization: Our method with our hierarchical quantization policy applied.

Implementation Details. All models use a 12-layer Transformer base (dmodel=768). Our default
method configuration is E = 32, G = 8, r = 16, T = 100, and α = 0.7. We train on 2 A100 GPUs
using the AdamW optimizer (Loshchilov & Hutter, 2019).

Evaluation Metrics. We measure: (1) Model Quality: GLUE average score and task-specific met-
rics (accuracy, F1), Perplexity (PPL) for language modeling. (2) System Performance: Throughput
(tokens/sec), Peak GPU memory per GPU (GB). (3) MoE-Specific Metrics: Expert Load Balance
(Coefficient of Variation, lower is better) which is the ratio of the standard deviation of expert
loads to their mean, with smaller values indicating more balanced expert utilization and avoiding
overload of some experts while others are idle and All-to-All Communication Volume, which
refers to the total amount of data transmitted between different devices for routing tokens among
experts, and lower values mean smaller cross-device data interaction overhead, which effectively
alleviates the communication latency bottleneck of MoE.

4.2 OVERALL PERFORMANCE COMPARISON

We first compare the end-to-end performance of our method with baselines. The results on the
GLUE benchmark (Table 1) and WikiText-103 (Table 2) unequivocally demonstrate that our method
achieves a superior balance of performance and efficiency.

Analysis.
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Table 2: WikiText-103 language modeling.
Model Total Params Perplexity (↓) Throughput(k tokens/s) Peak Memory (GB)

Dense Transformer 110M 29.8 9.8 15.4
Switch-Top2 (E = 32) 875M 24.5 7.2 33.1
MoE-Lite (E = 32) 295M 25.1 7.7 22.5
Ours (E = 32, G = 8) 188M 26.8 8.5 19.2
Ours + Offloading 188M 26.9 8.2 16.5
Ours + Quantization 188M 27.5 8.8 15.7

Table 3: Ablation results on GLUE average, throughput, and expert load balance (Iload, lower is
better).

Variant GLUE Avg. Throughput (k tokens/s) Load Balance (Iload↓)

Full 83.5 10.2 0.12
w/o Online Clustering 81.7 (-1.8) 8.2 0.37
w/o Low-Rank Compression 83.3 (-0.2) 6.9 0.13
w/o Hierarchical Routing 83.4 (-0.1) 9.1 0.28

• State-of-the-Art Quality: In GLUE, our method achieves the average score (83.5). On
WikiText-103, it obtains perplexity (26.8). This indicates that our structured approach
leads to better model quality.

• Notable Efficiency: Compared to Switch-Top2, our method delivers 10% to 20% higher
throughput with 50% less peak GPU memory, using a model with 80% fewer total param-
eters.

• Effectiveness of Optimizations: Dynamic offloading reduces memory to be on par with
the dense model, while quantization provides a further boost to throughput and memory
savings with a negligible impact on model accuracy.

4.3 ABLATION STUDIES

To dissect the contribution of each component, we performed ablation studies on GLUE. The results
in Table 3 confirm that each component is crucial. The results show that online clustering is critical
for load balance and performance. Low-Rank compression is the cornerstone of efficiency (28%
throughput drop without it). Hierarchical routing is essential for speed (23% throughput gain).

5 CONCLUSION

We presented a unified framework that tackles the MoE LLM trilemma including load imbalance, pa-
rameter redundancy, and communication overhead through dynamic expert clustering and structured
compression. By leveraging a fused parameter/activation similarity (grounded in the router’s seman-
tic embeddings), we periodically regroup experts, share a group-level base, and attach extremely
low-rank residual adapters. A two-stage hierarchical router further shrinks the routing search space
and reduces all-to-all volume, while heterogeneous precision and dynamic offloading bring peak
memory close to dense models. On GLUE and WikiText-103, our approach matches standard MoE
quality with 80% fewer total parameters, from 10% to 20% higher throughput, less than 3 times
lower load variance, and substantially reduced memory footprint. Ablations confirm that clustering,
low-rank residualization, and hierarchical routing are complementary and jointly necessary.

Our study leaves open several directions: (i) theoretical analysis of the stability and convergence of
online clustering and hierarchical routing; scaling to larger pretraining regimes and expert counts,
(ii) adaptive rank selection and learnable fusion between parameter and activation similarity, (iii)
tighter co-design with topology-aware communication and fused kernels, (iv) and extensions to
multitask and multimodal settings. We hope this work establishes structural reorganization as a
principled path to scalable, efficient, and memory-effective MoE LLMs.
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