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ABSTRACT

Recent advances in diffusion models enable high-quality video generation and
editing, but precise relighting with consistent video contents, which is critical for
shaping scene atmosphere and viewer attention, remains unexplored. Mainstream
text-to-video (T2V) models lack fine-grained lighting control due to text’s inherent
limitation in describing lighting details and insufficient pre-training on lighting-
related prompts. Additionally, constructing high-quality relighting training data is
challenging, as real-world controllable lighting data is scarce. To address these is-
sues, we propose RelightMaster, a novel framework for accurate and controllable
video relighting. First, we build RelightVideo, the first dataset with identical dy-
namic content under varying precise lighting conditions based on the Unreal En-
gine. Then, we introduce Multi-plane Light Image (MPLI), a novel visual prompt
inspired by Multi-Plane Image (MPI). MPLI models lighting via K depth-aligned
planes, representing 3D light source positions, intensities, and colors while sup-
porting multi-source scenarios and generalizing to unseen light setups. Third, we
design a Light Image Adapter that seamlessly injects MPLI into pre-trained Video
Diffusion Transformers (DiT): it compresses MPLI via a pre-trained Video VAE
and injects latent light features into DiT blocks, leveraging the base model’s gener-
ative prior without catastrophic forgetting. Experiments show that RelightMaster
generates physically plausible lighting and shadows and preserves original scene
content.

1 INTRODUCTION

With the advancement of video generation technology (Blattmann et al., 2023; Wan et al., 2025),
it is now possible to generate high-quality, long video clips comparable to movies. Improving the
controllability of video generation is a pressing need for downstream applications, e.g., camera tra-
jectory control (Bian et al., 2025; He et al., 2025) and multi-identity preservation (Liu et al., 2025a).
As a fundamental element of video content creation, lighting plays an irreplaceable role: it shapes
the visual atmosphere of scenes, enhances spatial depth, and guides viewers’ attention—directly
determining the aesthetic and communicative effect of video content. However, achieving precise
lighting control and flexible lighting editing remains highly challenging. Traditionally, professional
video lighting relied on specialized equipment or specific environmental conditions, which are dif-
ficult for ordinary creators to replicate. Even with the lowered creation threshold brought by video
generation models, mainstream text-to-video (T2V) models still fail to support accurate, fine-grained
lighting control, creating a critical gap between technical capability and practical demand. We pro-
pose a framework RelightMaster for precise video relighting.

We observe that there are two core challenges hindering the progress of video relighting. First,
constructing high-quality training data for relighting is extremely difficult. Real-world video data
with controllable lighting conditions is scarce: adjusting lighting parameters in physical scenes is
time-consuming, costly, and unable to ensure consistent content across different lighting setups. To
mitigate this, we turn to game engines (e.g., Unreal Engine 5 (Games, 2022)) to generate synthetic
data. Nevertheless, such synthetic data still has limitations: its appearance (e.g., texture details,
color realism) differs significantly from general real-world video data, and the limited data volume
easily leads to model overfitting. This calls for an effective method to activate the prior knowledge
already learned by pre-trained video generation models, bridging the gap between synthetic and
real data. Second, representing and inputting lighting information accurately is a bottleneck. T2V
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models primarily take text prompts as input, but text is inherently inadequate for describing fine-
grained lighting details (e.g., light position, intensity distribution, color temperature). Worse still,
the prompts used in T2V pre-training rarely include lighting-related descriptions, leaving models
unable to learn effective lighting representations from text, which further limits the precision of
lighting control. To address this challenge, we argue that a visual prompt is needed: one that can
not only provide precise, quantitative control signals for light sources (e.g., positional and intensity
information) but also naturally align with the video prior (i.e., the visual distribution and spatial
structure learned by pre-trained video generation models), thus overcoming the inaccuracy of text-
based lighting control while leveraging existing model knowledge.

We draw inspiration from the multi-plane image (MPI) (Tucker & Snavely, 2020) representation and
propose a novel Multi-plane Light Image (MPLI) for video relighting. The core idea of MPLI is to
model lighting information in a spatially aligned manner with video content: we first extract K depth
planes from the camera frustum, covering the spatial hierarchy of the scene. Then, we calculate the
irradiance on each of these K planes based on the 3D position of the light source, generating K
corresponding Light Images. This design endows MPLI with three key advantages: (1) it fully
captures the 3D positional information of light sources, establishing a natural alignment with the
2D frame modality of video; (2) it inherently supports multi-light-source scenarios. Multiple light
sources can be integrated by superimposing their respective irradiance calculations on the K planes;
(3) it exhibits strong generalization: in our experiments, even when trained only on single-light-
source data, the model naturally supports multi-light-source relighting, verifying the robustness of
the MPLI.

To seamlessly integrate MPLI as a control condition into existing video generation models, we
further propose a Light Image Adapter. Current video generation models typically use a Video
Variational Autoencoder (VAE) to compress K video frames into a single video latent feature, which
is then processed by a patchify module and fed into a Diffusion Transformer (DiT) (Peebles & Xie,
2023) for generation. To align MPLI with the visual distribution learned by the diffusion model,
we first compress the K Light Images of MPLI into a single latent light feature using the same
pre-trained Video VAE. The Light Image Adapter is initialized with parameters from the pre-trained
patchify module, which ensures consistency with the model’s prior knowledge, and injects the latent
light feature into the network before each DiT block. This lightweight integration not only preserves
the original generation capability of the DiT model but also enables precise, fine-grained control
over video relighting. In contrast, previous methods (Zhou et al., 2025; Zhang et al., 2024) only relit
videos with rough texts or replace the background with environment maps.

The main contributions of our work can be summarized as follows:

• We propose a novel light representation, the Multi-plane Light Image (MPLI), that explic-
itly encodes the spatial properties of 3D light sources and aligns naturally with the video
modality. The MPLI enables dynamic multisource light control and demonstrates strong
generalization.

• We propose a lightweight and efficient Light Image Adapter that seamlessly injects the
MPLI condition into pre-trained Video DiT models. This allows for precise lighting con-
trol while leveraging the vast generative prior of the base model, avoiding catastrophic
forgetting and the need for full retraining.

• We build a dataset, RelightVideo, the first video dataset that renders the same dynamic
contents with different lighting conditions, advancing the cutting-edge research on light
control in video generation and editing.

• We propose a novel framework, RelightMaster, for accurate and controllable video relight-
ing that generates physically plausible lighting and shadow effects across the entire scene
while preserving the original background content.

2 RELATED WORKS

Diffusion Models for Relighting. Traditional image relighting methods rely on intrinsic image
decomposition (Luo et al., 2020; Careaga & Aksoy, 2023; Liang et al., 2025), which decomposes
an sRGB image into shading, albedo, and then replaces the shading according to the estimated
normals. Recently, text-to-image (T2I) diffusion models (Dhariwal & Nichol, 2021; Ho et al., 2020;
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Rombach et al., 2022; Song et al., 2020) have emerged as pivotal foundational models in image
editing, attributed to their strong capability in learning real-world image priors. For the task of
image relighting, a prominent approach is fine-tuning these pre-trained T2I models. Such methods
eliminate the need for explicit decomposition of intrinsic scene components (e.g., shape, albedo) and
directly leverage the learned priors of lighting and scene consistency to achieve flexible and realistic
illumination editing, supporting diverse control modalities like text descriptions and environment
maps. Representative works include LightIt (Kocsis et al., 2024), DiLightNet (Zeng et al., 2024),
IC-Light (Zhang et al., 2024), and LightLab (Magar et al., 2025) . Recently, Light-A-Video (Zhou
et al., 2025), TC-Light (Liu et al., 2025b), and RelightVid (Fang et al., 2025) extend the image
relighting method IC-Light to video relighting. Lumen (Zeng et al., 2025) replaces the background
in videos while correspondingly adjusting the lighting in the foreground with harmonious blending.

Diffusion Models for Video Editing. Diffusion-based video generation techniques have also under-
gone remarkable advancements (Blattmann et al., 2023; Wan et al., 2025; Singer et al., 2025; Ling
et al., 2024). Leveraging these developments, training-free paradigms including AnyV2V (Ku et al.,
2024), MotionClone (Ling et al., 2024), and BroadWay (Bu et al., 2024) facilitate prompt-guided op-
erations such as inpainting, style transfer, and motion retargeting without requiring additional model
fine-tuning. For achieving frame-level consistency in edited content, fine-tuning-based approaches
like ConsistentVideoTune (Cheng et al., 2023) and Tune-A-Video (Wu et al., 2022) adapt pre-trained
video diffusion models to user-provided references, enabling seamless object insertion and consis-
tent color grading effects. Recently, a series of video relighting methods (Zhou et al., 2025; Liu
et al., 2025b; Fang et al., 2025) extend IC-Light (Zhang et al., 2024) from image relighting to video
relighting. All of the three methods inherent the nature of IC-Light: most lighting controllability
comes from the environment map instead of the input text. However, once using the environment
map, it requires handcrafting the foreground objects for relighting and enforces static background
replacement based on provided environment maps, which does not meet the requirements of video
relighting under general circumstances. Camera trajectory editing (Bian et al., 2025; He et al., 2025;
Gu et al., 2025; Bai et al., 2025) can be regarded as a type of video editing. Inspired by ReCamMas-
ter (Bai et al., 2025) that synthesized video pairs that share the same dynamic contents via graphics
engines, we propose RelightMaster that learns relighting from rendered video pairs. In contrast to
previous video relighting methods (Zhou et al., 2025; Liu et al., 2025b; Fang et al., 2025), our pro-
posed RelightMaster achieves good light control with end-to-end generation while preserving the
complete original video content.

3 DATASET

Collecting video pairs with varying lighting conditions in the real world is challenging. Setting
up lighting in real scenes is time-consuming and expensive, which limits the data diversity and
scalability. For example, light stages commonly used to collect 3D human body data often feature
monotonous backgrounds. Even worse, it is difficult to ensure that the dynamic objects remain
consistent across multiple video recordings. Using synthetic data can effectively circumvent the
problem of inconsistent motion, and advanced game engines can provide extremely realistic lighting
simulations at a low cost.

We build a dataset rendering pipeline based on Unreal Engine to batch generate video training data
with the same content but different lighting. We collected 24 3D scene assets as static backgrounds
and randomly bound 93 actions to 66 human models as dynamic object foregrounds. Finally, we ob-
tained 652 assembled scenes after random combination. Fig. 1 presents an overview of our dataset.
For each scene, we use four random camera trajectories centered on dynamic objects to render the
original video, that is, the reference video without changing the lighting conditions. We then add
additional point lights with randomized parameters to the existing scene and render the target video
again with the changed lighting conditions. We adjust the 3D position, color, and intensity of the
point lights to provide fine-grained control over the lighting conditions. We focus on the main pa-
rameters that determine the basic physical properties of light sources. The coordinates of the light
source are always relative to the first frame of the video, with the camera center as the origin, and do
not change as the camera moves. Except for the controllable parameters, all other intrinsic parame-
ters of the light source provided by Unreal Engine 5 are completely fixed. A fixed light source refers
to a light source whose parameters are always fixed during the video recording, while a variable
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Figure 1: Dataset Overview. (a) and (b) show the assets used in our relighting datasets, including
the 3D scenes, human models, and animations. (c) demonstrates an example lighting configuration.
For each scene that has been set up, denoted as w/o light, we sample multiple camera trajectories
and additional light sources to render video editing pairs with diverse motion and light conditions.

light source refers to a light source whose parameters can change over time. We develop a simple
rule to generate three batches of random data to enhance data diversity. 1) Fixed light source with
a fixed depth slightly behind the camera’s initial position. 2) Fixed light source with fully random
parameters. 3) Variable light source with fully random parameters, and one of these parameters can
further change over time. e.g., 2D coordinates, depth, color, or intensity.

We obtained a total of 7,824 pairs of training data through Unreal Engine 5 rendering, including the
original video, the target video, and the corresponding original parameters of the lighting conditions.
Each video has a resolution of 384x672 and a total of 77 frames. The prompts are generated based
on the original videos using a common video caption model to eliminate the influence of the text
content on lighting control. During the training process, the T2V base model can only generate
target videos based on the given lighting conditions.

4 METHOD

A point light source contains three attributes: position p ∈ R3, color c ∈ R3, and intensity
I ∈ R. Considering that the light source may change over time, we also need a representation
for temporally-varying lights. An intuitive solution to represent light sources is text, but precise
lighting editing via text is difficult, as pretrained text-to-video (T2V) models have never seen such
captions. Motivated by the Multi-plane Image (MPI) representing a 3D scene via multiple images
at different depths, we propose a novel Multi-plane Light Image to encode 3D light information in
a scene, including positions, colors, and intensities of multiple light sources. Specifically, we use 4
light images in an MPLI and compress the 4 images into one video latent feature via Video VAE,
which is injected into DIT through a Light Image Adapter (LIA). For an input video of 4N + 1
frames, we use N MPLIs to represent temporally-varying scene lighting, which naturally aligns
with the pretrained DIT (Peebles & Xie, 2023). We first brief on the preliminary knowledge of the
pretrained T2V model, and then elaborate on our proposed MPLI and LIA.
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Figure 2: An overview of our relighting training framework. A Multi-plane Light Image (MPLI)
contains 4 light images, and each MPLI is encoded as a latent light feature by the Video VAE. N
latent light features are passed to the DiT model via our proposed Light Image Adapter (LIA), which
is initialized by the pretrained patchify module and shared across different DiT blocks. The original
video and the noise are temporally concatenated. The parameters of the pretrained DiT model are
frozen except the 3D attention layers. We also add a LoRA module after the 3D attention layer to
learn the additional editing knowledge.

4.1 PRELIMINARY

We finetune our RelightMaster on a pretrained internal text-to-video (T2V) generation model, which
adopts a latent video generation architecture. Given a video with 4N + 1 frames, the T2V model
pads 3 dummy images to the video and compresses 4 images as a latent video feature via a video
variational encoder (VAE) (Kingma & Welling, 2013). Then the model is trained by the conditional
flow matching loss (Lipman et al., 2022). We obtain the noisy video feature xt = (1−t)x0+tϵ at the
timestep t by interpolating the clean video latent feature x0 and a noise sampled from the standard
Gaussian distribution ϵ ∈ N (0, 1) according to the timestep t, which corresponds to the ordinary
differential equation (ODE): dxt = vΘ(xt, t)dt. The T2V model predicts the velocity vΘ(xt, t):

LFM = Et,x0,ϵ

∥∥vΘ(xt, t)− ut(x0|ϵ)
∥∥2
2
. (1)

In the inference stage, the T2V model uses the Euler scheduler to generate a video from noise:

xt = xt−1 + vΘ(xt−1, t) ·∆t. (2)
t iterates from 0 to 1.

4.2 MULTI-PLANE LIGHT IMAGE REPRESENTATION

Compared to environment maps that only characterize ambient light captured from real environ-
ments, our goal is to re-light the environment with new light sources in the 3D scene, which requires
accurately injecting the 3D positions of the newly added light sources into the video generation
network. Inspired by Multi-Plane Image (MPI), which uses multiple images at different depths to
represent 3D scenes, we propose a Multi-Plane Light Image (MPLI) representation to encode the
3D positions of point light sources. Below, we first introduce the basic concept of a Light Image and
then extend it to the multi-plane form.

Light Image. A Light Image is a normalized irradiance image rendered from light sources. Specifi-
cally, we place a plane orthogonal to the camera’s orientation and pass through the camera’s optical
center, with a depth of d. Each pixel (x, y) on this plane corresponds to the 3D position q = (x, y, d)
in the camera coordinate system. To simplify modeling, we approximate the point light source as
a single luminous particle with an illumination intensity of I, and its 3D position in the camera
coordinate system is pl = (xl, yl, zl). In a homogeneous medium, the luminous intensity follows
the inverse-square law: the intensity at a distance r from the light source is inversely proportional
to the square of r, i.e., Ir ∝ 1/r2. Thus, the irradiance at pixel on the Light Image is simplified
as:Ix,y = I

||q−p||22
. To align with the video resolution, we crop an H × W region centered on the

camera’s optical center from the photosensitive plane. Suppose there are multiple light sources, we
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sum up all the irradiance to obtain the entire information. Additionally, to adjust the numerical range
of irradiance for better adaptation to the video generation network, we introduce two scalers s1 and
s2 to modify the above equation:

Ix,y =
∑
i

Ii · ci
||q− pi||22/s1 + s2

. (3)

i indicates the i-th light source. The final RGB lighting information captured on the light image is
obtained by multiplying the irradiance Ii with the color of the point light source ci.

Multi-Plane Light Image. The single-plane light image can only encode the projection of light
sources onto a fixed depth plane, failing to distinguish the 3D depth of different point light sources.
To address this, we extend the single photosensitive plane to multiple parallel photosensitive planes
as the Multi-Plane Light Image (MPLI), where each plane corresponds to a unique depth in the
camera coordinate system. In our experiments, we set up four parallel photosensitive layers, each
with a distinct depth. We use multiple MPLIs to further support light sources varying over time.
Each MPLI corresponds to a video moment. Sequentially arranged, these MPLIs accurately capture
dynamic changes (position, intensity) and meet video generation’s lighting coherence needs.

4.3 LIGHT IMAGE ADAPTER

To enable effective injection of Multi-plane Light Image (MPLI), which efficiently encodes multi-
source lighting in scenes, into the pre-trained text-to-video (T2V) pipeline, we further propose a
Light Image Adapter (LIA). Our pre-trained T2V model processes videos with 4N +1 frames: after
padding 3 dummy frames, a video Variational Autoencoder (VAE) compresses every 4 consecutive
frames into a single video latent feature. To align with this architectural design, we set K = 4 for
MPLI, such that a single MPLI can be compressed by the same pre-trained Video VAE into a latent
light feature, matching the dimensionality and distribution of video latents. To support temporally-
varying lighting, i.e., light sources varying across video frames, we associate one MPLI with each
4-frame interval in the input video. Thus, for a video undergoing relighting, we configure N MPLIs
in total. While this lighting representation operates at a 4-frame granularity rather than per-frame,
we find it sufficient for most scenarios, since the Diffusion Transformer (DiT) model inherently
smooths lighting effects for intermediate frames.

We propose LIA to inject sequential MPLIs into the network while preserving the pre-learned video
prior. Specifically, the pre-trained T2V model first passes video latent features through a patchify
module for further compression. To ensure compatibility with the learn video prior to the T2V
model, our LIA reuses the structure of the patchify module and initializes its parameters with those
of the pre-trained patchify module. After encoding the latent light feature, the LIA injects this
signal into each DiT block. Critically, LIA parameters are shared across all blocks. We find this
parameter-sharing mechanism, which plays as a form of self-regularization, crucial, as it mitigates
overfitting, which is an issue that frequently arises when introducing new control modalities without
such regularization. Besides LIA, we finetune the 3D attention in the pretrained T2V model to
accommodate the increased token sequence length and add a low rank (LoRA) projector to absorb
the additional lighting knowledge.

5 EXPERIMENTS

In this section, we first provide a series of experiments to show the controllability of our RelightMas-
ter, and then we compare our RelightMaster with other state-of-the-art video relighting methods to
show the superiority. Finally, we present ablation studies to show the effectiveness of our proposed
Multi-plane Light Image and Light Image Adapter.

5.1 CONTROLLABLE VIDEO RELIGHTING

To comprehensively evaluate the effectiveness of our proposed RelightMaster in handling diverse
lighting conditions for video relighting, we design a series of controlled experiments. Our Relight-
Master generates relit videos according to the input lighting conditions, which include light source
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Reference Video

(a) 2D Position

Reference Video

(b) Depth

Reference Video

(c) Intensity

Reference Video

(d) Color

Figure 3: Relighting with fixed light source. (a) and (b) demonstrate the light source position, (c)
reflects the light source intensity, and (d) indicates the light color.
positions in the 3D camera frustum, and the light color and intensity. We thus individually control
the light conditions and relight the query videos in Fig. 3 to demonstrate precise controllability.

Light source position. We conduct two experiments that correspond to Fig. 3 (a) and (b), respec-
tively. In experiment (a), we use a baseline video with no additional light sources to preserve the
original appearance of the input video. We then compare this baseline against relit videos that use
a single point light source with fixed depth. This point light source is placed at three distinct 2D
positions: top-left, center, and bottom-right. The relit videos exhibit position-dependent specular
reflections. Specifically, visible highlight regions appear on the rubber gloves of the dynamic object,
and these highlights align with the 2D positions of the applied light sources. In experiment (b), we
fix the 2D position of the point light source to the center and then gradually increase the depth of the
light source. We generate four relit videos with increasing depth values, and each video shows dis-
tinct lighting effects. The shallow depth produces frontal low-intensity illumination. The moderate
depth creates side illumination, and the large depth, with the light source behind the scarlet macaw,
results in backlighting. These results confirm that the model accurately responds to adjustments in
light source position, enabling fine-grained control over 3D lighting position.

Light intensity. In Fig. 3 (c), we fix the 3D position of a white point light source and gradually
increase the light intensity starting from 0, equivalent to no additional light, to higher values, gen-
erating a sequence of relit videos with incremental intensity levels. The relit videos exhibit a clear
correlation with the increasing light intensity. The wolf’s head and body are gradually brightened
by the white light as the intensity rises. Concurrently, the cast shadows also become progressively
stronger with higher intensity. Such lighting effects reflect the model’s accurate response to light
intensity adjustments.

Light color and position. In this experiment, we fix the 3D position of the point light source to a
side-lighting configuration and keep its intensity constant at a moderate level to avoid overexposure.
We then test four distinct light colors: white, red, green, and blue, generating a separate relit video

7
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(a) Multiple Lights

Reference Video

(b) Variable Lights

Reference Video

Figure 4: Relighting with temporally-varying lights and multi-lights. Our RelightMaster sup-
ports multiple and temporally-varying light source control. The corresponding Multi-plane Light
Images (MPLI) at different moments are visualized for better understanding.
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…, the light source gradually moves from the upper left corner to the lower 

right corner, and the color gradually changes from red to green.
…, the white light on the right gradually moves away from the camera.

Figure 5: Comparison with other video relighting methods. We translate our precise light control
signals to text and feed them to Light-A-Video (Zhou et al., 2025) and TC-Light (Zhou et al., 2025).
for each color. As shown in Fig. 3 (d), each relit video exhibits color-specific lighting effects that
align with the applied light color. Specifically, on the male subject in the video, the face, hair, and
clothing folds all show corresponding color-cast. Moreover, across all color settings, natural shad-
ows, which are consistent with the side-lighting position, and diffuse reflections are clearly observed.
These natural and color-accurate lighting effects reflect the precise color control capability.

Temporally-varying lights and multi-lights. In Fig. 4, over the duration of the video corresponding
to the flower, we apply two temporal variations: 1) the light source moves continuously from the
top-left to the bottom-right and 2) the light color transitions smoothly from red to green. As observed
in the relit video, the flower’s petals and stamens show color casts shifting from red to green, while
the highlight and shadow positions on the flower surface follow the light’s movement. For the video
of the man, we deploy a blue light and a green light in the scene. We make the blue light intensity
stronger and the green light weaker. The relit video accurately responds to the light variations.
These results denote that our RelightMaster can precisely synchronize temporal adjustments of light
position and color and support multiple lights.

5.2 COMPARISON WITH STATE-OF-THE-ART VIDEO RELIGHTING

We choose Light-A-Video (Zhou et al., 2025) and TC-Light (Liu et al., 2025b) for comparison.
Light-A-Video and TC-Light extend the light control capability of IC-Light (Zhang et al., 2024)

8
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Reference VideoReference Video

Figure 6: Generalization to multi-lights.

Reference VideoReference Video
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Figure 7: Light Image Adapter Initialization. “zero init” and “copy init” respectively denote that
the LIA is initialized with a zero convolution or the parameters from the pretrained patchifier.

from images to videos. Similar to IC-Light, they rely on text prompts and an environment map to
regulate relighting effects. However, the use of an environment map will replace the background of
the original image or video, which is unacceptable for scenarios requiring background preservation.
We thus transform the relighting conditions into text descriptions and append these descriptions to
the original video caption and feed the merged prompt to Light-A-Video to obtain its relighting re-
sults. For our RelightMaster, we use the Multi-plane Light Images (MPLI) to indicate the relighting
conditions. We conduct four experiments for comparison, as shown in Fig. 5. Two experiments
focus on dynamic light position and color changes: the light source is moved from the top-left to the
bottom-right of the frame, with its color gradually transitioning from red to green. The remaining
two groups involve dynamic depth adjustment of a white light source, which is gradually moved for-
ward along the camera lens. We compare our RelightMaster against Light-A-Video and TC-Light to
reveal the clear performance gaps. Light-A-Video and TC-Light show no response to the relighting
conditions. In contrast, our RelightMaster accurately responds to the instructions. In the position-
color transition experiments, the light source moves smoothly from the top-left to the bottom-right,
with the color gradually shifting from red to green. In the other experiments where the white light
source moves forward, a dynamic and physically consistent lighting process is observed on the male
and female subjects: initially, the white light brightens them by direct illumination. As the light
continues to advance past the subjects’ lateral position, the subjects begin to be partially occluded
by their own contours, resulting in subtle shadow. Finally, the light moves further forward to the
back of the object. The subjects exhibit a clear backlighting effect, indicating that our RelightMaster
clearly outperforms the other methods.

5.3 ABLATION STUDY

We provide two ablation studies with a single Light Image, i.e., K = 1, and on a 1/3 training dataset.
As shown in Fig. 6, trained only on the single light source relighting data, our method can generalize
to multi-source light source relighting, which reveals the extraordinary generalization performance
of our Light Map representation. A common strategy used in image and video adapters is to initialize
the parameters with a zero-convolution. However, the zero-initialization technique can not activate
the relighting controllability (Fig. 7). In contrast, we initialize our Light Image Adapter with the
parameters from the patchifier enabling video relighting, which reveals the significance that aligns
the lighting control signals to the prior distribution learned by the DiT.

6 CONCLUSION

We proposed a novel framework RelightMaster for video relighting, which includes a dataset Re-
lightVideo, a Multi-plane Light Image (MPLI) for accurate light source control, and a Light Image
Adapter (LIA) for light feature injection. The experiments demonstrated that RelightMaster is able
to individually control the light source position, color, and intensity for video relighting.

9
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A APPENDIX

LLM usage. We used Gemini to help us polish our writing.

…, a high-intensity green hard light used as a rim light and environmental 

light, positioned directly at the rear of the subject.
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…, a high-intensity warm white hard light used as the key light and side 

light, positioned at the left side of the subject.

…, a medium-intensity warm red hard light used as the key light, positioned 

at the front-left-top of the subject.

…, a blue light used as the key light and side light, positioned at the right 

side of the subject.

Figure 8: Visualization for the quantitative comparison

Table 1: Quantitative Comparison on Synthetic Dataset
METHOD PSNR ↑ SSIM ↑ LPIPS ↓

Light-A-Video 12.984 0.621 0.338
TC-Light 10.534 0.432 0.525
Ours 19.456 0.808 0.157

Table 2: Quantitative comparison on Real Videos with VBench Metrics

METHOD Subject Background Motion Dynamic Aesthetic Imaging
Consistency ↑ Consistency ↑ Smoothness ↑ Degree ↑ Quality ↑ Quality ↑

Light-A-Video 0.960 0.972 0.993 0.4 0.604 0.479
TC-Light 0.953 0.961 0.996 0.4 0.549 0.351
Ours 0.958 0.972 0.994 0.4 0.598 0.612

Quantitative Comparison on Synthetic Dataset To enable a direct comparison against Ground
Truth (GT), we constructed a synthetic test set following a pipeline similar to our training data
generation. We rendered 10 video pairs featuring challenge single-light sources, consisting of paired
pre-edit (input) and post-edit (GT) sequences. We evaluated the performance of our method against
Light-A-Video and TC-Light using standard image quality metrics: SSIM, PSNR, and LPIPS, in
Tab. 1. Our method demonstrates superior performance across these metrics, indicating the highest
fidelity to the target lighting effects compared to the other methods.
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Table 3: Quantitative Comparison on the User Study Results
METHOD Video Quality ↑ Relight Controllability ↑ Content retention ↑

Light-A-Video 0 2 2
TC-Light 0 0 0
Ours 130 128 128

Table 4: Ablation Study on K with Video Reconstruction Metrics.
K PSNR ↑ SSIM ↑ LPIPS ↓

2 23.546 0.866 0.113
4 23.456 0.869 0.105
8 23.581 0.866 0.107

Quantitative Comparison on Real Videos. To evaluate performance in diverse real-world scenar-
ios, we curated a test set comprising 10 classic clips selected from various movies. We visualized
4 of them in Fig. 8. Since GT is unavailable, we compare the performance by video generation
metrics and human evaluation. We utilized VBench to assess the general video generation quality as
shown in Tab. 2. The “imaging quality” metrics indicate that the quality of videos generated by our
RelightMaster significantly surpasses the other two methods. Regarding the aesthetic quality metric,
RelightMaster performs comparably to Light-A-Video. However, in terms of actual human percep-
tion, our method demonstrates significantly better visual quality. We attribute this discrepancy to the
inherent bias in the aesthetic operator. We also conducted a user study to evaluate editing accuracy
(i.e., how well the lighting change matches the prompt/control) with these 10 videos. Participants
were asked to select the best results from the generated videos in terms of three questions:

• Which video presents the best quality?
• Which video presents the best relighting controllability?
• Which video best preserves the content of the input video?

There are 13 people participating in the user study. We collect the scores for each of the three
methods across the three questions as shown in Tab. 3. The results present that our RelightMaster
dominantly outperforms the other three methods. The quality of videos generated by Light-A-Video
and TC-Light is not visually pleasing and the controllability is not good enough, as shown in Fig. 8.
In contrast, the videos generated by our RelightMaster present good aesthetics and fine-grained
controllability, which explains why most users rank videos generated by our RelightMaster 1st in
the user study.

Table 5: Ablation Study on K with VBench Metrics

K Subject Background Motion Dynamic Aesthetic Imaging
Consistency ↑ Consistency ↑ Smoothness ↑ Degree ↑ Quality ↑ Quality ↑

2 0.930 0.939 0.993 0.563 0.538 0.602
4 0.930 0.941 0.993 0.594 0.546 0.609
8 0.929 0.939 0.993 0.594 0.534 0.611

Ablation Study on K. We provide an ablation study to show the reason why we select K = 4.
We render 32 video pairs that contain temporally varying light sources to evaluate the performance.
We compare the models with different numbers of multi-plane light maps (K) with the video recon-
struction metrics in Tab. 4 and video quality metrics (VBench) in Tab. 5. We observe significant
performance improvement, including LPIPS in the Tab. 4 and dynamic degree and aesthetic quality
in Tab. 5, from K = 2 to K = 4, but the performance of K = 4 and K = 8 is comparable. We thus
select K = 4 as our final setting.
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