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Abstract

Shape information is a strong and valuable prior in segmenting organs in medical im-
ages. However, most current deep learning based segmentation algorithms have not taken
shape information into consideration, which can lead to bias towards texture. We aim
at modeling shape explicitly and using it to help medical image segmentation. Previous
methods proposed Variational Autoencoder (VAE) based models to learn the distribution
of shape for a particular organ and used it to automatically evaluate the quality of a seg-
mentation prediction by fitting it into the learned shape distribution. Based on which we
aim at incorporating VAE into current segmentation pipelines. Specifically, we propose
a new unsupervised domain adaptation pipeline based on a pseudo loss and a VAE re-
construction loss under a teacher-student learning paradigm. Both losses are optimized
simultaneously and, in return, boost the segmentation task performance. Extensive exper-
iments on three public Pancreas segmentation datasets as well as two in-house Pancreas
segmentation datasets show consistent improvements with at least 2.8 points gain in the
Dice score, demonstrating the effectiveness of our method in challenging unsupervised do-
main adaptation scenarios for medical image segmentation. We hope this work will advance
shape analysis and geometric learning in medical imaging.

Keywords: Segmentation, Unsupervised Domain Adaptation, 3D Shape Modeling.

1. Introduction

Semantic segmentation of anatomical organs is a challenging task in clinical research. One
major problem in practice is that the preferred modality and scanning protocol that dif-
ferent hospitals adopt can vary significantly. Different CT machines and protocols result
in different spacing, slice thickness of the scans, and variance of intensity, textures of the
organs. Therefore, models trained on a specific source domain from a certain hospital can
often decrease performance if directly applied to data obtained from other hospitals with-
out fine-tuning towards the target data. For example, training a 3D U-Net (Özgün Çiçek
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et al., 2016) on a public NIH Pancreas dataset1 and directly testing it on another public
MSD Pancreas dataset (Simpson et al., 2019) yields 15.1% performance drop (from 0.829
to 0.678) in terms of Dice score. Moreover, medical image segmentation requires large-scale
annotated data to achieve good performance, which is available in the labeled source do-
main but not in the unknown target domains. Thus, supervised fine-tuning on the target
domain is not feasible. Owing to these observations, we seek to answer the following critical
question in this paper - Can we improve domain adaptation for medical image segmentation
tasks without target labels?

We hereby introduce an unsupervised domain adaptation (UDA) framework to take into
account intrinsic shape statistics into standard medical image segmentation models (e.g.,
3D U-Net). The intuition behind our work is that the shape representation learned from
the source domain is beneficial for the segmentation task on the target domain as different
datasets should share the same representation of the 3D anatomy if they are from the same
organ (e.g., Pancreas), albeit the change of textures caused by different scanning machines,
protocols, phases, etc. In addition, Liu et al. (2019) proved that Variational Autoencoder
(VAE) based models can learn the distribution of shape for a certain organ and can be
used to evaluate the quality of a segmentation prediction by fitting it into the learned shape
distribution. Inspired by this, we propose a new UDA pipeline based on a dual-loss func-
tion under a teacher-student learning paradigm. On the source domain, the intrinsic organ
shape statistics are captured via a pre-trained VAE, apart from a trained segmentation
network, which will serve as the teacher network later. During domain adaptation, the
target segmentation network (student network) is updated with the guidance of the trained
segmentation network (teacher network) as well as a VAE reconstruction loss. Unlike tra-
ditional teacher-student approaches, which impose feature-level consistency between two
networks, we further introduce a pseudo-label loss in pixel-level that favors dense predic-
tion tasks. Both VAE reconstruction loss and pseudo loss are optimized simultaneously
and, in return, boost the segmentation performance. We conducted experiments on three
public Pancreas CT datasets as well as one in-house Pancreas CT dataset. Extensive re-
sults showed that our segmentation with explicit VAE shape modeling outperformed other
domain adaptation methods with or without shape priors.

2. Related Work

Unsupervised domain adaptation exploits the labeled source data and unlabeled target
data. The mainstream methods seek to reduce the domain discrepancy of images or fea-
tures (Wilson and Cook, 2020; Toldo et al., 2020). For adaptation at the image level,
image-to-image translation—either converting images from source to target domain (Taig-
man et al., 2016; Bousmalis et al., 2017) or learning a joint distribution (Liu and Tuzel, 2016;
Sankaranarayanan et al., 2018)—can be accomplished by a conditional GAN. For adapta-
tion at the feature level, the methods like adversarial training (Ganin and Lempitsky, 2015;
Tzeng et al., 2017) and explicit domain discrepancy measures (Tzeng et al., 2014; Long
et al., 2015, 2016, 2017) can build features that are invariant across the domains. In the
context of domain adaptive semantic segmentation tasks, AdaptSegnet (Tsai et al., 2018)
attempts to align the distribution at the output level, whereas SIFA (Chen et al., 2020)

1. https://wiki.cancerimagingarchive.net/display/Public/Pancreas-CT
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suggests adapting the distribution at both image-level and feature-level. A common trend
among these methods is to explicitly align the distributions across the domains. In addition,
self-supervised methods—integrated with mean teacher (Nguyen et al., 2021a; Deng et al.,
2021; Nguyen et al., 2021b) and pseudo labeling (Gu et al., 2020; Zheng and Yang, 2021)—
encourage to implicitly align the distributions and have recently achieved compelling results
on multiple tasks. Although tremendous progress has been made in this field, most existing
methods have not incorporated the object shape information into the domain transfer.

Apart from UDA, some works incorporate the shape prior into the segmentation pipeline
to optimize the results. Projective convolution network (Kalogerakis et al., 2017) focuses on
the view-based shape representations. Shape denoising network (He et al., 2021) suggests
to extract a self-taught shape representation by leveraging weak labels, and then utilize this
cue for shape refinement. However, in these task-specific shape models, domain shift is not
delicately addressed, thus it hampers its usage on domain adaptation tasks. PCA (Milletari
et al., 2017) method constructs shape models, but it requires further annotation for the
key points. In abdominal imaging, the shape of most organs is naturally consistent under
various domain shifts (e.g., imaging protocols, scanners, contrast enhancements, and human
poses). Unlike all existing works, we are among the first to propose an end-to-end shape
model inferring strong learning objective for abdominal organ segmentation without extra
annotation across the domains.

3. Method

We first formulate the unsupervised domain adaptation (UDA) for segmentation task. In
UDA setting, there are two segmentation datasets, the labeled one as the source domain
and the unlabeled one as the target domain. We denote a segmentation dataset {xi, yi}ni=1

where xi is an image and yi is the corresponding pixel-wise ground truth annotation of
xi. The source dataset can therefore be denoted as {xsi , ysi }Ni=1, and the target dataset as
{xti, yti}Mi=1, where yt is unknown in the UDA task. The goal is to train a segmentation
network S to predict the labels yt on target images xt.

A straightforward way to solve this problem is to train S on the labeled source domain
data, and directly predict labels on the target domain by S(xt). However, domain gap ex-
ists due to biases across different datasets, especially for medical imaging (such as bias and
variability of computed tomography texture feature measurements across different clinical
image acquisition settings). To narrow the domain gap between datasets, we explicitly in-
troduce shape priors in the segmentation pipeline in observing the fact that unlike textures
variance, shape context is relatively unchanged (e.g., the shape of the pancreas is consistent
despite different clinical image acquisitions). Modeling shape on the source domain, we de-
velop a Teacher-Student paradigm to finetune S on the unlabeled target domain. Formally,
we want to find a teacher model L with the explicit modeling of shape, so that

Lθ(S, x
t) = L(S(xt), yt), (1)

where θ is the parameters of model L and L is a loss term to depict the similarity of seg-
mentation results and ground truth. Liu et al. (2019) proved that Variational Autoencoder
(VAE) based models can learn the distribution of shape for a certain organ, and can be
used to evaluate the quality of a segmentation prediction by fitting it into the learned shape
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Figure 1: Proposed VAE based pipeline of unsupervised domain adaptation for medical
segmentation.

distribution. In our work, we propose to incorporate the VAE based model into the teacher
model to improve the segmentation results on the target domain.

The architecture of our proposed VAE-based UDA pipeline can be found in Figure 1.
Our pipeline basically consists of two steps. In the first step, the VAE network is trained
on the source domain with the objective to reconstruct the ground truth masks. The
segmentation network is also trained on the source domain. In the second step, we first
copy the parameters of source segmentation network to the target segmentation network
as its initial weights, and fix the parameters of the VAE network. We then update the
target segmentation network by jointly optimizing two losses, a pseudo-loss and a VAE
reconstruction loss. These steps are described with more details in following sections.

3.1. Segmentation Network

In our proposed teacher-student paradigm, the segmentation network from source domain
serves as a teacher model while the target segmentation network as a student model. The
segmentation network we use in our work is 3D-UNet (Özgün Çiçek et al., 2016), a common
and effective network architecture in medical image segmentation. Using Dice coefficient as
the loss term, we formally define the segmentation loss as

Lseg = − 2∥S(xs) · ys∥1
∥S(xs)∥1 + ∥ys∥1

. (2)
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3.2. Modeling Shape with VAE

To model the shape in VAE feature space, we assume there is some distribution P (y) for
normal label y, and we train a VAE network on ground truth masks {ysi }Ni in the source
domain. In the VAE network, we aim to find an estimation function Q(z|y) that gives a
distribution of latent vector z that are likely to produce ground truth mask y. The objective
to optimize in the VAE network is

logP (y)−KL[Q(z|y)∥P (z|y)] = Ez∼Q[logP (y|z)]−KL[Q(z|y)∥P (z)], (3)

where KL is Kullback-Leibler divergence.
As is demonstrated in Liu et al. (2019), the right hand side of Equation (3) becomes

a natural estimation of logP (y) during optimization of the VAE objective. Experiments
show that term KL[Q(z|y)∥P (z)] is less related to the distribution of y, so we can take
Ez∼Q[logP (y|z)] as an evaluation of shape.

Now we interpret the VAE objective. VAE network basically contains a encoder E =
(µ,Σ) that estimates the mean and variance of the Gaussian distribution for latent vector
z and a decoder D that reconstructs z. Here, we use Dice coefficient as the loss term, and
choose Gaussian Distribution for the distribution of latent vector z. VAE network is trained
on the source domain. The formal definition of the VAE training loss is

LV AE = −Ez∼N (µ(ys),Σ(ys))

(
2∥ys ·D(z)∥1

∥ys∥1 + ∥D(z)∥1

)
+ λKL · KL (N (µ(ys),Σ(ys))∥N (0, 1)) ,

(4)

where λ is a hyperparameter regulating the two terms.
The shape benchmark can be interpreted as the VAE reconstruction loss, which is Dice

Loss between ground truth label and the label reconstructed by VAE. VAE reconstruction
loss serves as part of the teacher model when finetuning the segmentation on the target
domain. It can be mathematically written as

Lrecon = − 2∥yt ·D(µ(yt))∥1
∥yt∥1 + ∥D(µ(yt))∥1

, (5)

where we simply estimate the latent variable using mean value µ(yt).

3.3. VAE-based UDA Pipeline

In VAE-based UDA pipeline, the first step is to train a segmentation network Ss using
Lseg and a VAE network (E,D) using LV AE in the source domain. In the unlabeled target
domain, the parameters of target segmentation network are copied from source segmentation
network and finetuned with a teacher model. Recall that we want to find a teacher model
Lθ with the explicit model of shape, so that

Lθ(S
t, xt) = L(St(xt), yt). (6)

The shape estimation loss Lrecon is part of Lt
θ(S, x

t), aiming to introduce the shape prior
learned from the source domain to reduce biases. Noticing that reconstruction loss Lrecon
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only derives from the foreground masks, another loss term is required to prevent the seg-
mentation network outputting results deviating the image.

Pseudo labels predicted by source segmentation network can serve as a constraint that
directs reconstruction loss. The Dice Loss between the predictions from the source and
target segmentation network is defined as pseudo loss, which can be formally written as

Lpseudo = − 2∥Ss(xt) · St(xt)∥1
∥Ss(xt)∥1 + ∥St(xt)∥1

. (7)

The effect of pseudo loss lies in two aspects. First, pseudo loss punishes the segmentation
results with low confidence. Second, it serves as an adversarial counterpart of reconstruction
loss, avoiding a shortcut solution of target network, i.e., generating an identical predicted
mask that has relatively small reconstruction loss.

Based on the reconstruction loss and the pseudo loss which have adversarial effects, the
teacher model can be defined as

Lθ(S
t, xt) = λrecon · Lrecon + Lpseudo, (8)

where λrecon is a hyperparameter mediating the two losses, and Ss, µ,D defined in the two
losses are fixed networks parameterized by θ. Besides, based on the observation that Lrecon

can be an estimator of the segmentation quality, Lpseudo should take a smaller weight when
Lrecon is high. Thus, we proposed a technique of dynamic hyperparameter for λV AE in
actual training. Specifically, the value of λrecon changes with regard to Lrecon.

3.4. Test-time Training

VAE contains the shape prior not only benefits the training process, but also testing. Thus,
a test-time training method is proposed to better exploit the effect of VAE network. For
each test image xttest, we adopt the loss Lθ(S

t, xt) given by the teacher model and train the
target segmentation network St for 1 iteration to get Ṡt. The final segmentation result yttest
for test image xttest is then given by yttest = Ṡt(xttest). After each prediction Ṡt is discarded.

4. Experiments

4.1. Datasets and Metrics

In the experiment part, we used three public pancreas CT datasets (NIH, MSD, Synapse)
and two in-house pancreas CT datasets (IV contrast and oral contrast). NIH serves as the
source domain in our experiment, where we trained the teacher networks (segmentation
network and VAE network). The other three datasets serve as the target domain data for
testing. We use the mean Dice score as the evaluation metric for segmentation results. The
descriptions for the datasets can be found in Appendix D.

4.2. Ablation Studies

We conduct ablation studies on the transfer from the NIH dataset to the MSD dataset as
the MSD dataset has a sufficient number of images. Several proposed components of our

6



Unsupervised Domain Adaptation through Shape Modeling for Segmentation

Table 1: Ablation study of key components in our proposed VAE-based pipeline.

Pseudo Loss Reconstruction Loss Dynamic Hyperparameter Test-time Training Dice

- - - - 0.6777
✓ - - - 0.7068
- ✓ - - Not work
✓ ✓ - - 0.7484
✓ ✓ ✓ - 0.7529
✓ ✓ ✓ ✓ 0.7574

CT Image

Ground Truth Direct Test DiscriminatorPseudo Label VAE (ours)SIFA

Figure 2: The 2D and 3D visualization for the results on a MSD test case.

network structure are evaluated, including pseudo loss Lpseudo, reconstruction loss Lrecon,
dynamic hyperparameter and test-time training.

Table 1 is a summary of the ablation study of components of our network. The row
”Baseline” demonstrates the result of the direct test of 3D U-Net. Specifically, the segmen-
tation network is trained on the NIH training set and directly tested on the MSD validation
set. This should be the lower bound for our network architecture.

To validate the effectiveness of our network loss, we fine-tune the network on MSD train-
ing set using only Lpseudo, which yields 0.029 Dice score improvement. Then we incorporate
the VAE reconstruction loss with the pseudo loss. This shows another 0.042 Dice score
improvement. When exploring the necessity of pseudo loss, we find that it is not workable
only training with reconstruction loss. The segmentation will deviate from the background
image in this case, as VAE only deals with the distribution of foreground masks. The last
two rows of this table show the effectiveness of several learning techniques. In the Dynamic
Hyper-parameter experiment, we set different choose different λV AE depending on Lrecon.
The hyperparameter experiment shows a 0.005 improvement on the dice score. We further
implemented the test-time fine-tuning technique and gained another 0.005 improvements.

4.3. Comparison with other UDA methods

Extensive experiments on three target domains were performed to compare our VAE-based
model with baseline models for segmentation in domain adaptation. All the methods are
tested on the same split with the sa me data preprocessing method. The implementation
details can be found in Appendix B. The experiment results are shown in Table 2.
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Table 2: Performance comparison of VAE-based pipeline with other UDA segmentation
methods. The segmentation results are evaluated with mean Dice score. Domain
gap is calculated by the dice gap between a certain method and the upper bound.

MSD Synapse In-house IV In-house Oral
Method Dice Gap Dice Gap Dice Gap Dice Gap

Direct Test 0.6777 0.1283 0.7452 0.0509 0.7983 0.0657 0.7019 0.1208
Pseudo Label 0.7068 0.0992 0.7769 0.0192 0.8139 0.0501 0.7378 0.0849
Discriminator 0.7176 0.0884 0.7817 0.0144 0.8127 0.0513 0.7296 0.0931

SIFA 0.6605 - 0.7456 - 0.7758 - 0.6910 -
VAE pipeline (ours) 0.7574 0.0486 0.7869 0.0092 0.8264 0.0376 0.7453 0.0774

Upper bound 0.8060 - 0.7961 - 0.8640 - 0.8227 -

Among these baseline methods, a direct test is the lower bound that we train a 3D U-Net
on the source domain and directly test it on the target domain. Adopting pseudo labels
in the target domain to predict the ground truth labels is an intuitive method in unsuper-
vised domain adaptation. Beyond pseudo labels, the discriminator is a generative-model
based network that focuses on label alignment by explicitly applying a discriminator. (See
Appendix E.) SIFA is a 2D GAN-based network dealing with feature-level and image-level
alignment simultaneously. Besides, we also tested the upper bound of domain adaptation
by fine-tuning 3D U-Net on the target domain using labeled training data. We calculate
the domain gap by the difference between upper bound dice and dice of a certain method.
The domain gap of SIFA is not calculated because its backbone is not 3D U-Net.

Figure 2 presents an example of segmentation results on MSD target dataset for each
method. Examples of other target datasets can be found in Appendix F. Due to the domain
gap, a direct test with segmentation trained on the source domain may lead to results with
noise on the target domain. The pseudo label can reduce noises, but the segmentation results
are still not perfect since the pseudo label itself suffers from bias. Though discriminator
can incorporate distribution prior information into the UDA pipeline to some extend, the
discriminator loss is not as effective as VAE reconstruction loss in maintaining a specific
distribution in the global context. SIFA does not perform well in our experiment, for it
only deals with 2D figure and may fail on some slices. By incorporating VAE in the UDA
pipeline, our model conforms with the pancreas’ shape better than all other methods. This
validates VAE’s power of incorporating shape prior.

5. Conclusions

We proposed an unsupervised domain adaptation method to generalize 3D segmentation
models to medical images collected from different scanners and/or protocols (domains). Our
method is inspired by the fact that organs usually show consistent shape, i.e., contours, be-
tween most modalities and protocols, while texture and intensity can vary significantly.
We incorporated shape features into the segmentation network via variational autoencoder
(VAE) and utilized two losses, i.e., a VAE reconstruction loss and a pseudo loss, to guar-
antee its transferability to multiple domains. Experimental results on four target datasets
demonstrate the superiority of our method.
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Appendix A. Why it Works

To clearly demonstrate why our method works, we focus on the key losses in our proposed
teacher model. Taking the validation data from MSD dataset as an example, Figure 3
demonstrates the distribution of data points with regard to their Lrecon and Lpseudo. The
results of pseudo labels, ground truth masks and our predicted masks are demonstrated
from left to right.

Note that we initialize the parameters using weights of source segmentation network,
the pseudo labels are actually a starting point for our domain adaptation. Our goal is to
make its distributions of the two losses as similar as that of the ground truth. With the
statistics, we clearly see that our VAE-based pipeline managed to do so.

Ground Truth Predicted Mask

goal

Pseudo Labels

actual

Figure 3: An analysis figure about the distributions of ground truth, pseudo label and
predicted mask for data in MSD validation set. The y-axis represents Lrecon and
the x-axis represents Lpseudo

.

Appendix B. Implementation Details

As the voxel size varies among different data, we first preprocessed the training and valida-
tion data to the same voxel size of 1mm× 1mm× 1mm. We also adopted a cube bounding
box that is sufficient to hold the annotation mask and cropped the images and ground-truth
masks on both the source domain and target domain.

Our 3D UNet backbone consists of 5 down-sampling blocks and 5 up-sampling blocks
with skip connections. Each down-sampling block of input channel cin and output channel
cout contains one 3D Conv layer of input and output channel cin, one 3D Conv layer of
input channel cin and output channel cout, and two 3D Conv layers of input and output
channel cout. We take batch normalization and ReLU activation after the last three layers
of the network. The up-sampling block is similar to the down-sampling block, except that it
replaces the first 3D Conv layer with the 3D Conv Transpose layer. The number of channels
we take for 3D U-Net is 8, 16, 32, 64, 128, 256. A Softmax layer is applied at the final step.

The structure of the VAE network includes an encoder and a decoder. The encoder
network contains five down-sampling blocks and two paralleled fully-connected layers for
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Table 3: Training time (source domain)

3DUNet VAE
10 hours 19 hours

Table 4: Training time (target domain MSD)

VAE pipeline (finetune) 3DUNet from scratch
3 hours 14 hours

generating the mean and variance. The decoder network contains five up-sampling blocks.
A Softmax layer is applied at the final step. The number of dimensions we choose here for
the bottleneck is 16384. We take λKL to be 2e− 5.

For the choice dynamic hyperparameter λV AE , we set three thresholds 0.15, 0.225,
0.3, dividing Lrecon into four sections. We take λV AE by multiplication with a factor γ
from 0.6, 1.2, 2.0, 3.0 respectively. λV AE is then given by γ · λ̂V AE , where λ̂V AE is the
hyperparameter chosen in the experiment. In our experiment, we choose λ̂V AE = 0.1 on
Synapse, and λ̂V AE = 1 on other target domains. We choose a smaller λ̂V AE on Synapse
due to its limited size. Loss term Lrecon for the dataset with limited size will suggest a
stronger template, and thus causing the segmentation model to pay less attention to the
information of CT images.

Our network is trained with the SGD optimizer. We fix the learning rate to 1e − 2.
All the frameworks are built on PyTorch. We train the source segmentation network and
the VAE network for about 300, 000 iterations. We fine-tune the segmentation network on
the target domain for about 15, 000 iterations. All experiments are trained and evaluated
on a GPU server with four Nvidia TITAN Xp cards. The running time (approximately to
convergence) can be found in Table 3 and Table 4.

Appendix C. Ablation Study on the Adversial Effect of Lrecon and Lpseudo

Table 5: Ablation studies on weights of VAE reconstruction loss on MSD validation set.

λV AE Dice
0.0 0.7068
0.1 0.7131
0.2 0.7274
0.5 0.7367
1.0 0.7484
2.0 0.7361

When studying the effectiveness of VAE, we also experimented the adversial effects
of pseudo loss and reconstruction loss. This is done by experiments of different λV AE .
The experiments are conducted on the domain transfer from NIH to MSD, without the
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techniques of dynamic hyper-parameter and test-time finetuning. Results can be found in
Table 5.

Appendix D. Datasets and Preprocessing

Here we provide descriptions about the datasets we take in our experiment.

• NIH Pancreas CT contains 82 abdominal contrast enhanced 3D CT scans. The CT
scans have resolutions of 512× 512 pixels with varying pixel sizes and slice thickness
between 1.5 ∼ 2.5mm, acquired on Philips and Siemens MDCT scanners. The dataset
is randomly splitted into a training set of 61 training cases and 21 testing cases.

• MSD contains 420 portal-venous phase 3D CT scans (282 Training + 139 Testing),
having labels of pancreas and tumor. The CT scans have resolutions of 512× 512× l
pixels. We merge the pancreas and tumor labels together as pancreas in our task. As
we do not know the annotation on the test data, we randomly split the training set
into our training set of 210 cases and testing set of 72 cases.

• Synapse contains 50 abdomen CT scans (30 Training + 20 Testing). Each CT
volume consists of 85 ∼ 198 slices of 512× 512 pixels, with a voxel spatial resolution
of ([0.54 ∼ 0.54]× [0.98 ∼ 0.98]× [2.5 ∼ 5.0])mm3. As we do not know the annotation
on the test data, we randomly split the training set into our training set of 22 cases
and testing set of 8 cases.

• In-house IV Contrast Dataset. Our in-house fully-labeled pancreas dataset in-
cludes 290 contrast-enhanced abdominal clinical CT images in the portal venous
phase, in which we randomly choose 216/74 patients for training and testing. Each
CT volume consists of 319 ∼ 1051 slices of 512 × 512 pixels, and have voxel spatial
resolution of ([0.523 ∼ 0.977]×[0.523 ∼ 0.977]×0.5)mm3, acquired on Siemens MDCT
scanners.

• In-house Oral Contrast Dataset. Our in-house dataset also includes 91 oral
contrast abdominal CT images in the portal venous phase, which are substantially
different from the above four datasets in terms of the use of contrast agents, i.e.,
oral instead of intravenous (IV). We randomly choose 68/23 patients for training and
testing. Each oral contrast CT volume consists of 512× 512× l pixels, and have voxel
spatial resolution of ([0.523 ∼ 0.977]× [0.523 ∼ 0.977]×0.5)mm3, acquired on Siemens
MDCT scanners.

Preprocessing. We clip the intensities to a range of -200 to 400, then further normalize
them into -1 to 1. Patch size of 128× 128× 128 is used to sample training data. We apply
augmentation of random intensity scaling of 0.85 ∼ 1.15, random rotation within 20 degrees
and random translation within 5 voxels.

Appendix E. More Descriptions of other UDA Competitors

In ”Pseudo Label” and ”Discriminator” baseline, we follow similar pipeline with our pro-
posed VAE based pipeline. First train a segmentation network S on the source domain, and
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CT Image

Ground Truth Direct Test DiscriminatorPseudo Label VAE (ours)SIFA

Figure 4: The 2D and 3D visualization for the results on a Synapse test case.

CT Image

Ground Truth Direct Test DiscriminatorPseudo Label VAE (ours)SIFA

Figure 5: The 2D and 3D visualization for the results on an in-house IV contrast test case.

then finetune S on the target domain under a teacher-student paradigm. In the “Pseudo
Label” experiment, we only adopted pseudo loss on the target domain. In the “Discrimina-
tor” experiment, we further trained a discriminator on the source domain and implemented
a discriminator loss on the target domain. The following is a more detailed description of
the discriminator. We generated a number of masks (some of which with poor qualities)
with several well-trained or poorly-trained segmentation networks in the source domain.
We mix them with the ground truth masks, and train a discriminator to predict the dice
score of these masks. The discriminator loss on the target domain is the score predicted by
the discriminator.

Appendix F. More Visualizations

Here are the visualizations on other target datasets. The visualization results of Synapse
dataset can be found in Figure 4. The visualization results of in-house IV contrast dataset
can be found in Figure 5. The visualization results of in-house oral contrast dataset can be
found in Figure 6.
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CT Image

Ground Truth Direct Test DiscriminatorPseudo Label VAE (ours)SIFA

Figure 6: The 2D and 3D visualization for the results on an in-house oral contrast test case.
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