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Abstract. Retinal images are often used to examine the vascular sys-
tem in a non-invasive way. Studying the behavior of the vasculature on
the retina allows for noninvasive diagnosis of several diseases as these
vessels and their behavior are representative of the behavior of vessels
throughout the human body. For early diagnosis and analysis of diseases,
it is important to compare and analyze the complex vasculature in retinal
images automatically. In previous work, PDE-based geometric tracking
and PDE-based enhancements in the homogeneous space of positions
and orientations have been studied and turned out to be useful when
dealing with complex structures (crossing of blood vessels in particular).

In this article, we propose a single new, more effective, Finsler func-
tion that integrates the strength of these two PDE-based approaches
and additionally accounts for a number of optical effects (dehazing and
illumination in particular). The results greatly improve both the previ-
ous left-invariant models and a recent data-driven model, when applied
to real clinical and highly challenging images. Moreover, we show clear
advantages of each module in our new single Finsler geometrical method.

Keywords: Geodesic Tracking · Optical Image Enhancement ·
TV-Flow Enhancement · Vascular Tree Tracking · Finsler Geometry

1 Introduction

The retina allows for noninvasive examination of the vascular system since the
vessels in the eye, and their corresponding behavior, are representative of the
behavior of vessels throughout the rest of the body. Therefore, studying the
behavior of the vasculature on the retina allows for noninvasive diagnosis of
several diseases, like diabetes, hypertension, and Alzheimer’s disease [6,16,19].
Automatic vessel tracking algorithms help the efficient diagnosis of these dis-
eases. Here, we rely on geodesic tracking methods which calculate the shortest
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path connecting two points on the same blood vessel, following the biological
structure. We will show that the single geodesic model will also allow for accept-
able tracking of full vascular trees on realistic retinal images of limited quality.

Diseases such as cataract disease give rise to cloudy retinal images [20], while
camera movements lead to motion artifacts [14] and uneven illumination [24].
This affects the clarity and visibility of the vasculature in the images we want
to track. To cope with the limitations in the quality of ophthalmology images in
practice, we must integrate both contrast enhancement from optical image pro-
cessing [22] and crossing-preserving contextual TV-flows, in our correct geodesic
tracking of the vasculature, as we will show.

Many approaches have been used when studying geodesic tracking methods
on 2D images. However, in many methods, problems arise when dealing with
difficult structures, like crossings and bifurcations, where standard geometric
algorithms acting in the image domain R

2 often take the wrong exit. Therefore
one lifts the image to the homogeneous space of positions and orientations M2.
In this lifted space, difficult structures are disentangled, cf. Fig. 2a. In previous
works by various authors, it has been shown that PDE-based geometric tracking

Fig. 1. Geodesic tracking on the original image, (contrast-)enhanced image, and
enhanced image after which TV-flow enhancement is done (left to right). The seeds
and tips are indicated in resp. green and red. Yellow (/ red) circles indicate tracking
mistakes that are (/ are not) fixed in the tracking of another column. (Color figure
online)
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algorithms [4,9,10,12] perform well in M2. Here, one first calculates a distance
map which is based on the image data. After computing the distance map, the
steepest descent algorithm is applied to find each shortest path from a tip (an
endpoint) to the corresponding seed (a starting point).

In our tracking, we integrate PDE-enhancements, like crossing-preserving
total variation flow (TV-flow) enhancement in M2 [18]. We will show this improves
the results. Furthermore, optical enhancement [22] of limited-quality retinal
images is required to keep equal contrast and intensity across the whole vascu-
lature. This inevitably creates small noisy structures that are non-aligned with
other structures in the data. Applying the TV-flow enhancement in M2 leads to
crossing-preserving contextual denoising that preserves crossings, and line struc-
tures, and removes noisy non-aligned structures from the optical enhancement.
Altogether the scheme results in a vascular tracking algorithm that provides bet-
ter results as wavefronts follow the complex branching vasculature better than the
approach in [4], see Fig. 1. Even a single geodesic front propagation (building the
distance map initializing all seeds at the same time), where fronts follow the entire
vasculature in one run produces good results, see Fig. 2.

Fig. 2. Distance map built in M2 (2a; top) and isocontours of the minimum projection
over the orientations back onto R

2 (2a; bottom). The isocontours of the minimum
projection of the distance map are constructed based on the original image and optically
enhanced image after which TV-flow enhancement is done (in Fig. 2b and 2c resp.).

The main contributions of this article are; 1) the development of a
new asymmetric, data-driven left-invariant Finsler geometric model that includes
contextual contrast enhancement via TV-flows on SE(2), 2) experiments that
show that application of this new Finsler geometric model reduces many tracking
errors compared to previous left-invariant models [2,9] and the recent data-
driven model [4], 3) the new model performs very well on both realistic, unevenly
illuminated retinal images and allows full vascular trees computations from a
single distance map. The inclusion of the optical and TV-flow enhancements in
the Finsler function no longer require a 2-step algorithm as in [4], but with the
techniques in this work a single run of building the distance map suffices.
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2 Lifted Space of Positions and Orientations M2

As explained in the introduction, it is beneficial to perform image processing
(denoising, tracking) in the space of positions and orientations M2. This 3D
space will offer us sufficient space to separate difficult (crossing) structures.

Definition 1 (Space of positions and orientations M2). The space of two-
dimensional positions and orientations M2 is defined as a smooth manifold
M2 := R

2
� S1, where S1 ≡ R/(2πZ) ≡ SO(2) using the identification

n = (cos θ, sin θ) ←→ θ ←→ Rθ ∈ SO(2), (1)

where Rθ is the counter-clockwise planar rotation over angle θ. Elements in M2

are denoted by (x, θ) ∈ R
2 × R/(2πZ). To stress the semidirect product of roto-

translation group SE(2) := R
2

� SO(2) acting on M2, we write M2 = R
2

� S1.

We lift the image from R
2 to M2 ≡ SE(2) in order to separate crossing

structures, using the orientation score transform.

Definition 2 (Orientation Score). The orientation score transform Wψf :
L2(R2) → L2(M2) using anisotropic wavelet ψ maps an image f ∈ L2(R2) to an
orientation score U = Wψf and is given by

(Wψf)(x, θ) :=
∫
R2

ψ(R−1
θ (y − x)) f(y) dy.

In our experiments, we use cake wavelets [8,18] as they do not tamper with data
evidence and allow for fast reconstruction by integration over θ.

In order to perform tracking in the lifted space of positions and orientations
M2, we need to introduce a metric that is used to describe distances. This metric
needs to satisfy the property that a roto-translation of the input yields the same
roto-translation on the output.

Definition 3 (Left-Invariant Metric). A metric tensor field G on M2 is
called left invariant if

Gg·p ((Lg)∗ṗ, (Lg)∗ṗ) = Gp (ṗ, ṗ) ,

for all p ∈ M2, all ṗ ∈ Tp(M2), the tangent space to M2 at point p, and for
all g ∈ SE(2), where Lg(p) = g · p = (y, Rα) · (x, θ) = (y + Rαx, α + θ) with
push-forward (Lg)∗ṗ(U) = ṗ(U ◦ Lg). More explicitly, ṗ =

∑3
i=1 αi ∂xi |p with

αi ∈ R, p = (x, y, θ). Then

((Lg)∗ṗ(U)) = α1(cos θ∂x + sin θ∂y)(U)(p) + α2(− sin θ∂x + cos θ∂y)(U)(p)

+ α3∂θ(U)(p).

More generally, a possibly asymmetric Finsler function defined on tangent-bundle
T (M2) = {(p, ṗ) | ṗ ∈ Tp(M2)} given by F : T (M2) → R

+ is left invariant if
F(p, ṗ) = F(g · p, (Lg)∗ṗ) for all (p, ṗ) ∈ T (M2), g ∈ SE(2).
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Thereby the distance is left invariant:

dF (p1,p2) = inf

{∫ 1

0
F(γ(t), γ̇(t))dt

∣∣∣∣γ ∈ Γ1, γ(0) = p1, γ(1) = p2

}
= dF (g · p1, g · p2),

for all g ∈ SE(2), optimizing over the set Γ1 of piecewise C1([0, 1], M2)-curves.

In our application, the asymmetric Finsler function will restrict backward move-
ment as we will see in Sect. 3, and consequently cusps are avoided [9].

3 Existing Reeds-Shepp Car Models

Over the years, many geometric control problems have been proposed for
geodesic tracking of blood vessels or vehicles. The ones closest to our model
are the symmetric and asymmetric Reeds-Shepp car models. The symmetric
Reeds-Shepp Car model, proposed in [3,15], is given by

Gp(ṗ, ṗ) = C(p)2
(

ξ2|ẋ · n|2 +
ξ2

ζ2
‖ẋ ∧ n‖2 + ‖ṅ‖2

)
, (2)

for all p = (x,n) ∈ M2, ṗ = (ẋ, ṅ) ∈ Tp(M2) with ‖ẋ ∧ n‖2 := ‖ẋ‖2 − |ẋ · n|2,
where n is constructed using the identification in (1). The asymmetric
Reeds-Shepp Car model, proposed in [9], is given by the asymmetric Finsler
norm/function

|F(p, ṗ)|2 = Gp(ṗ, ṗ) + C(p)2(ε−2 − 1)ξ2|(ẋ · n)−|2, (3)

for all p = (x,n) ∈ M2, ṗ = (ẋ, ṅ) ∈ Tp(M2) with a− := min{0, a}. The param-
eter ξ influences the flexibility of the tracking, weighing between spatial and
angular movement. The anisotropy parameter ζ penalizes sideways movement.
When ζ ↓ 0, the classical sub-Riemannian model appears.

The cost function C : M2 → [δ, 1], δ > 0, discourages movement outside
the vascular structures via a crossing-preserving vesselness map V(p) [11],[4,
App.D]. Typically [3, eq.5.1] one has C(p) = (1 + λV(p)p)−1. The choice of
the cost function is important and in this article (Sect. 4, 5, 6) we propose to
include illumination enhancement and crossing preserving TV-flow (prior to the
vesselness map computation) in the cost function as this will greatly improve
tracking results.

In the asymmetric Reeds-Shepp car model, the parameter ε ∈ (0, 1] describes
how strongly the model has to adhere to the forward gear. When ε = 1, we are
in the symmetric model. When ε ↓ 0, backward motion becomes prohibited.

Computation of shortest paths (geodesics) connecting seeds and tips is done
in 2 steps. First, the distances to all points in the domain are calculated, resulting
in a distance map. Then, the shortest path is obtained by a steepest descent
algorithm applied on this distance map. In all experiments we use the Anisotropic
Fast Marching [4,13] by J.-M. Mirebeau for distance map computations.
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Fig. 3. Visualization of the physical model when imaging the retina; O is the actual
image we would like to recover, Sc is the perceived image (sum of purple and red
reflected light). I stands for input illumination, Tl and Tsc resp. denote the transmission
ratio of the lens and the intraocular scattering (incl. cataract). (Color figure online)

4 Illumination Enhancement

Previous approaches in retinal vessel tracking typically consider the unprocessed
picture S taken by the ophthalmologist, e.g. [2,9,11]. However, this may deviate
from the actual retinal image O which we aim to recover, due to possible cataract
and uneven illumination. The physical model of the construction of the output
image is visualized in Fig. 3. This yields the following standard optics formula:

Sc(x) = L(x)
(
T 2
sc(x)Oc(x) + 1 − Tsc(x)

)
with L = I · T 2

l , (4)

where c denotes the color channel in RGB or the luminance channel Y in YPbPr
color space, cf. Wikipedia, and L, Tsc : Ω → [0, 1] denote the illumination from
outside the eye and transmission of the intraocular scattering respectively on
domain x ∈ Ω ⊂ R

2. The illumination from outside the eye L is composed of
the input illumination I and the transmission ratio of the lens Tl. We apply an
illumination correction, as done in [23]. After determining the illumination L,
we re-express the Y channel (in YPbPr color space) of (4) to

OY (x) = L−1(x)SY (x)−1+Tsc(x)
T 2
sc(x)

∈ [0, 1], for all x ∈ Ω,

with Tsc = 1 − A

(
L−1(·)S(·) +

n∑
l=1

1
n

1
1+exp(−φl(·))Gσl

∗ (
L−1(·)S(·))

)
,

(5)

with Gaussian kernel standard deviations σl = pixelsize · 2(l−1) of the retinal
image at scale level l ∈ {1, . . . , n} where we took n = 4 and where the sigmoids
on scale coefficients above are included to control the range in [0, 1] and to allow
for stable optimization below. The Y channel of the actual image O is obtained
by solving the Euler-Lagrange equation of the Tikhonov regularization problem
via the Karush-Kuhn-Tucker conditions including the constraints OY ∈ [0, 1]:

(φmin, Amin) = argmin(φ,A) {‖OY − OY ‖2
L2(Ω)+ λ‖∇OY ‖2

L2(Ω)} (6)

where we optimize w.r.t. A > 0 and φ = (φl)n
l=1 ∈ R

n, not OY . Here, OY ∈
R is an estimation of the desired intensity level [23, Sec.3.5], and λ regulates
the smoothness of OY . After optimal non-constant OY = OY (φmin, Amin) is
retrieved by (5), image O follows by linear conversion of YPbPr- to RGB-colors,
via updated Pb- and Pr-channels.



Vascular Tracking with Optical and TV-Flow Enhancement in SE(2) 531

5 TV-Flow Enhancement

TV-flow enhancement is a valuable technique to denoise surfaces, but at the same
time preserve sharp edges. Recall that the metric intrinsic gradient is given by

M2 
 p �→ ∇Gφ(p) =
(
(G)−1 dφ

)
(p) ∈ Tp(M2),

using G in (2) with ζ = Cξ = 1, C = 10. Then TV-flow U �→ W0(·, t) is given by
{

∂Wε

∂t (p, t) = div
(

∇GWε(·,t)
ε2+(∇GW (·,t))2

)
(p), p ∈ M2, t ≥ 0,

Wε(p, 0) = U(p)

and W0(p, t) = limε↓0 Wε(p, t). For proof of the L2-convergence, see [18]. Train-
ing of the end-time t of the TV-flow is not needed as for all lifted optically
enhanced (cf. Sect. 4) images U of the STAR-dataset [21], end-time t = 0.5 is
nearly optimal for subsequent tracking, and Δt = 0.1 always remains in the
stability region [18]. The same settings provided optimal PSNR-ratios in [18].

6 A Finsler Metric on M2 that Includes the Enhancements

Our goal was to track vasculature accurately. In order to do so, one needs a
metric tensor field that describes distances on the manifold. In some cases, it is
beneficial to construct a metric tensor field GU that depends explicitly on the
underlying orientation score data U . This “data-driven” metric tensor field needs
to be left invariant with respect to the roto-translation of the underlying data:

Definition 4 (Data-Driven Left-Invariant Metric (DDLIM)). The met-
ric tensor fields GU and FU on M2 are data-driven left invariant when they
satisfy for all (p, ṗ) ∈ T (M2) and all g ∈ SE(2):

GU
p (ṗ, ṗ) = GLgU

g·p ((Lg)∗ṗ, (Lg)∗ṗ), and FU (p, ṗ) = FLgU (g · p, (Lg)∗ṗ), (7)

where LgU(h) := U(Lg−1h) := U(g−1 · h) for all h ∈ M2.

The considered data-driven left-invariant metric tensor fields are given by

GU
p (ṗ, ṗ) = Gp(ṗ, ṗ) + μ C2(p)

‖HU |p(ṗ, ·)‖2∗
max
‖q̇‖=1

‖HU |p(q̇, ·)‖2∗
, (8)

∣∣FU (p, ṗ)
∣∣2 = |F(p, ṗ)|2 + μ C2(p)

‖HU |p(ṗ, ·)‖2∗
max
‖q̇‖=1

‖HU |p(q̇, ·)‖2∗
, (9)

for all p = (x,n), ṗ = (ẋ, ṅ), representing the symmetric and asymmetric metric
tensor fields respectively. In (8) and (9), the metric tensor fields G and F were
introduced in (2) and (3) respectively. The Hessian field HU is defined as HU :=
∇(dU), w.r.t. plus Cartan connection ∇[+] for computational details see [7], [4,
Rem.8], and ‖·‖∗ denotes the dual norm w.r.t.

√Gp(ṗ, ṗ), where ζ = ξ = C = 1.
The parameter μ > 0 regulates the inclusion of the new data-driven term,

and C(p) denotes the cost function described in [4, App. D].
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Remark 1. The construction of this cost now relies on the orientation score U of
the optically enhanced image with TV-flow enhancement, whereas previously it
relied on the orientation score of the unprocessed image. Akin to [4, App.C], one
can show that the new Finsler/Riemannian metric tensor fields (8) are DDLIM.

The geodesics are calculated by steepest descent on distance maps using a
metric that describes distances in M2.

Definition 5 (Data-Driven Riemannian Distance). The data-driven Rie-
mannian distance dGU from a point p ∈ M2 to a point q ∈ M2 is given by

dGU (p,q) = inf
γ ∈ Γ1,

γ(0) = p,
γ(1) = q

∫ 1

0

√
GU

γ(t) (γ̇(t), γ̇(t)) dt (10)

where Γ1 := {γ : [0, 1] → M2|γ ∈ PC1([0, 1], M2)} with PC1 the space of piece-
wise continuously differentiable curves in M2, and γ̇(t) := d

dtγ(t). The quasi-
distance that belongs to the asymmetric Finslerian model (9) is given by

dFU (p,q) = inf
γ ∈ Γ1,

γ(0) = p,
γ(1) = q

LFU (γ) := inf
γ ∈ Γ1,

γ(0) = p,
γ(1) = q

∫ 1

0

FU (γ(t), γ̇(t)) dt. (11)

Lemma 1. If FU is DDLIM (Definition 4) then distance dFU satisfies:

∀g∈SE(2)∀p1,p2∈M2 : dFLgU (g · p1, g · p2) = dFU (p1,p2). (12)

Proof. One has dFLgU (g·p1, g·p2)= inf
γ ∈ Γ1,

γ(0) = g · p1,
γ(1) = g · p2

LFLgU (γ)
(7)
= inf

g−1 · γ ∈ Γ1,

g−1 · γ(0) = p1,

g−1 · γ(1) = p2

LFU (g−1·γ)

= dFU (p1,p2), where g−1 · γ ∈ Γ1 ⇔ γ ∈ Γ1, from which (12) follows. �

The shortest curves are computed using steepest descent on the distance map,
departing from tip p ∈ M2 towards seed p0 ∈ M2 as described in Theorem 1.

Theorem 1. The shortest curve γ : [0, 1] → M2 with γ(0) = p and γ(1) = p0

can be computed by steepest descent tracking on distance map W (p) = dFU (p,p0)

γ(t) := γU
p,p0

(t) = Expp(t v(W )), t ∈ [0, 1], (13)

where Exp integrates the following vector field on M2: v(W ) := −W (p)∇FU W
and where W is the viscosity solution of the eikonal PDE system

{
F∗

U (p,dW (p)) = 1 p ∈ M2,

W (p0) = 0,
(14)
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assuming p is neither a 1st Maxwell-point nor a conjugate point, with dual
Finsler function F∗

U (p, p̂) := max{〈p̂, ṗ〉| ṗ ∈ Tp(M2) with FU (p, ṗ) ≤ 1}.
As v(W ) is data-driven left invariant, the geodesics carry the symmetry

γ
LgU
g·p,g·p0(t) = g γU

p,p0
(t) for all g ∈ SE(2),p,p0 ∈ M2, t ∈ [0, 1]. (15)

Proof. This is a special case of [4, Thm.1] with Lie group SE(2) ≡ M2. Then this
yields the symmetric case ‖∇GU W (p)‖ = 1 in the usual eikonal PDE form. Inclu-
sion of the asymmetric front propagation (relying on asymmetric Finsler metric
FU ) requires a replacement of ‖∇GU W (p)‖ = 1 with a dual norm expression
F∗

U (p,dW (p)) = 1, where one takes the positive part of the spatial momentum
component in direction cos θdx + sin θdy ∈ T ∗(M2). This is similar to the tech-
nique in [9, Thm.4] but due to the data-driven behavior FU this is subtle [4,
Eq. 43, Lem. 3] and also directly applies to our model (16) using cost function
C (incl. optical & TF-flow enhancement) as explained in Remark 1. Also, the
backtracking requires a subtle adaptation: instead of ordinary intrinsic gradient
descent in direction ∇GU W = (GU )−1dW it now becomes more general descent
in direction ∇FU W (·) := dF∗

U (·,dW (·)) as explained in [9, prop.4]. ��
In the experimental section, we rely on the mixed metric tensor field, which

is needed to avoid wrong exits at complex structures, see [4], and is given by:

GM
p (ṗ, ṗ) = κ(x)Gp(ṗ, ṗ) + (1 − κ(x)) GU

p (ṗ, ṗ), p = (x,n) ∈ M2

FM (p, ṗ)2 = κ(x)F(p, ṗ)2 + (1 − κ(x))FU (p, ṗ)2, (16)

with κ = 1A ∗ Gσ and A the crossing structure locations and Gaussian Gσ=1pix.

7 Experimental Results

We rely on the asymmetric metric tensor field (16) to calculate the geodesics
of the 3 different models. These models are constructed based on a) the picture
taken by the ophthalmologist (original image), b) the original image with illu-
mination enhancement as explained in Sect. 4 (optically enhanced image), and
c) the optically enhanced image with crossing-preserving TV-flow enhancement
discussed in Sect. 5. In this section, we illustrate the results for a specific image
and refer to Table 1 for an overview of the performance of the different mod-
els on the STAR dataset [1,21]. These results are consistent with the discussed
example, and for reproducible code and all processed images see [5]. In all exper-
iments we set standard parameter settings [3, eq.5.1], [4, eq.65] for cost-function
C (p = 3, λ = 1000), for the metrics (ξ = ζ = 0.1) in (2), for TV-flow (t = 0.5).

In prior research, the “original image” directly entered the metric tensor
field on M2 when calculating the geodesics. These images are of varying qual-
ity, depending on the patient’s condition and the used equipment. Applying a
tracking algorithm, like Anisotropic Fast Marching [4], on the metric tensor field
based on the original image, often results in tracking mistakes due to uneven
illumination, both along vascular structures and on the background, making it
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Fig. 4. Tracking of Vascular Tree per Vessel Type: Tracking with the mixed
model (M2,FM ) proposed in (16) with μ = 15. Prior classification of vascular trees by
type (artery/vein resp. white/cyan) only results in perfect tracking of the vessel tree
on the enhanced images. Yellow circles indicate tracking mistakes.

hard to distinguish different structures. In Fig. 1a, one sees the tracking results
on an original, unevenly illuminated, non-enhanced image, where all vessels were
tracked in one single run. At a lot of locations (13), the tracking connects the
seeds p0 and tips p incorrectly. The optical enhancement explained in Sect. 4 cor-
rects for uneven illumination. Calculating the geodesics using the metric tensor
field relying upon the optically enhanced image, reduces the number of tracking
mistakes significantly (to 5), cf. Fig. 1b. Due to pointwise optimization in the
optical enhancement, noise is generated. The crossing-preserving total variation
flow enhancement suppresses this noise and indeed results in even fewer tracking
mistakes (3), cf. Fig. 1c.

Calculating the tracking results in Fig. 1 uses no knowledge about the vascu-
lature, apart from seed and tip locations. One might incorporate prior knowledge
A) on vessel types (artery/vein), or B) on the connectivity of tips and seeds.

We start by investigating prior knowledge on A), where we first connect all
tips on arteries to the seeds on arteries, and similarly for the tips and seeds
on veins. Figure 4 shows that the tracking results improve significantly for all
cases; the number of tracking mistakes at crossings reduces from (13, 5, 3) to
(5, 0, 0) for resp. the original, optically enhanced image excl. and incl. TV-flow
enhancement.

Second, we investigate the prior knowledge on B). In Fig. 5, the tracking
results connecting the tips to their corresponding seed are presented. The number
of correct tracks has improved once again, to only (3, 0, 0) mistakes for resp. the
original, optically enhanced and optically enhanced with TV-flow image.

We report the tracking results for the three different approaches on images from
STAR [1,21], in particular the example in Fig. 1, 4, and 5. We observe the same
trend in performance for other imageswhichwe summarize inTable 1.We calculate
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the (weighted) percentage of incorrectly calculated geodesics by means of:

ε :=
1

|T |
∑
y∈T

⎛
⎝1 − ‖y − x0(y)‖√

N2
x + N2

y

⎞
⎠ C0(x(y),y) ≥ 0, (17)

Here S, T denote the sets of resp. seeds (near the optic disk) and tips. The image
size is Nx × Ny. The ground truth seed and calculated seed (first arriving front
in the distance map, cf. Fig. 2) corresponding to the tip y are resp. denoted by
x0(y) ∈ S and x(y) ∈ S. Function C0 : S × T → {0, 1} is given by C0(x,y) = 0
if the tracking between x and y is correct and C0(x,y) = 1 otherwise.

Fig. 5. Tracking of Vascular Tree per Seed on the Optic Disk: Tracking with
the mixed model (M2,FM ) proposed in (16) with μ = 15. Prior grouping of tips (in red)
and seeds (in green) only results in perfect tracking of the vessel tree on the enhanced
images. Tracking mistakes are indicated by yellow circles. (Color figure online)

Table 1. Error measure ε of each tracking applied to STAR images in [5], calculated
by (17). Highlighted: best results per tracking.

Original image Optically
enhanced image

Optically enhanced image
with crossing-preserving
TV-flow

Single Run 0.34 0.23 0.20

Per Type (A/V) 0.25 0.12 0.10

Per Seed 0.23 0.09 0.09

We evaluate with a harsh error measure (17): one crossing mistake (indicated
by a circle) often causes more errors, when the vessel bifurcates after the crossing.

The optical enhancement and TV-flow regularization applied on the original
images, result in more accurate geodesics compared to those calculated directly
on the original images, as can be seen in Table 1. The more prior information
we use, the more accurate the geodesics follow the vasculature. Remarkably,
tracking requiring artery-vein classification of seeds and tips performs similarly
and is easier to automate than tracking with knowledge of seed-tip connectivity.
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Conclusion

We developed a new asymmetric, data-driven left-invariant Finsler geometric
model that includes contextual contrast enhancement via TV-flows on SE(2).
Experiments reveal that application of this new Finsler geometric model has ben-
efits over previous left-invariant models [2,9] and the recent data-driven model
[4]. The new model reduces many errors and performs very well on both realistic
and challenging low-quality retinal images where full vascular trees are computed
from a single asymmetric Finslerian distance map. Although we have shown that
both the contrast enhancement and the TV-flow on SE(2) in the new Finslerian
model are highly beneficial, there are still exceptional cases where vessel tracts
take the wrong exit. This happens at places where both a crossing and a bifur-
cation occur (cf. the red circles in Fig. 1c). Therefore, in future work, we aim to
tackle these cases by automatic artery vein classification via PDE-G-CNNs [17],
as our experiments show this allows us to obtain the same good practical results
as with the ‘tracking per seed’ (that requires too costly user-knowledge).
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