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Abstract

In this paper, we aim to automate the labor-
intensive process of developing machine learn-
ing (ML)-based tools for medical imaging,
paving the way for the self-evolution of medical
agentic systems. (i) We present M>Builder, a
multi-agent collaboration framework designed
to automate model training in medical imag-
ing, that divide-and-conquers complex medi-
cal ML with four specialized agents. (ii) To
better fit in the professional medical imaging
domain, we build up a specialized ML context
protocol, a structured environment designed to
provide agents with comprehensive free-text
descriptions of medical datasets, training code
templates, and interaction tools. (iii) To moni-
tor the progress, we propose M>Bench, span-
ning four medical imaging ML tasks across 14
datasets, covering both 2D and 3D data. Our
experiments demonstrate that, when employing
an identical agent core, M®Builder surpasses
existing automated ML agentic architectures,
achieving a superior task completion rate of
94.29% while maintaining satisfactory model
performance. This highlights the potential of
fully automated ML-based tool development in
medical imaging. Code will be publicly avail-
able upon publication.

1 Introduction

Large Language Model (LLM)-powered agentic
systems have demonstrated remarkable success
across diverse domains. Leveraging their abil-
ity to orchestrate specialized tools, they can solve
complex, multi-step tasks with precision. How-
ever, their application in medical remains challeng-
ing. Medical tasks are typically professional and
complex, encompassing a wide range of diseases,
imaging modalities, and task-specific requirements.
This diversity makes it difficult for preparing a
complete toolset to implement a specific medical
agentic systems, often necessitating further labor-
intensive development of specialized tools, e.g.,
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Figure 1: Overview of our proposed M3Builder and
M?3Bench. From user text input to model deployment.

training a machine-learning-based model. How-
ever, clinicians often lack the coding skills or tech-
nical expertise to implement such processes, signif-
icantly hindering the tailored adaptation of agentic
systems in medical practice.

In this paper, we propose M>Builder (M? stands
for Mutli-agent, Machine Learning, and Medical
Imaging), a novel agentic framework for automat-
ing medical imaging machine learning (MIML)
tasks. Given a MIML tool development demand
and raw training data, M>Builder autonomously
manages the entire process, from data preparation
to model construction, training, and deployment.
When integrated with other medical agentic sys-
tems, the overall system gains the ability to self-
evolve, automatically developing new ML-based
medical imaging tools, significantly alleviating the
burden of manual tool collection and creation.

Specifically, M®Builder employs a multi-agent
collaboration framework, where four role-playing
LLM agents work together to execute medical



imaging ML tasks step-by-step. These include task
management, data engineering, module architec-
ture design, and model training. In each step, the
system will self-refine its intermediate generation
based on Python execution feedbacks.

Moreover, we design a new MIML-centered
agentic context protocol. It includes: a free-text
dataset description template emphasizing critical
taxonomy tags, a collection of coding templates
to structure agent outputs and reduce coding com-
plexity, and a suite of supporting documentation
tool functions. This protocol helps integrate MIML
coding priors into the agentic workflow, simplifies
system processes, emphasizes key MIML coding
elements, and underlines core coding lines to en-
able seamless human-in-the-loop auditing.

Lastly, we introduce a benchmark, M>Bench, de-
signed to evaluate the performance for automated
MIML. M?Bench comprises four general tasks:
organ segmentation, anomaly detection, disease di-
agnosis, and report generation. These tasks are as-
sociated with 14 distinct training datasets, spanning
five anatomical regions and three primary imaging
modalities, encompassing both 2D and 3D models.
By covering a broad range of tasks and datasets,
M?3Bench offers a comprehensive quantitative as-
sessment of the automated MIML capabilities of
various agentic systems.

Experimentally, to validate the effectiveness of
the proposed agentic system, we compare against
other state-of-the-art (SoTA) ML agentic systems,
including ML-AgentBench (Huang et al., 2023a),
Aider (Gauthier, 2023), MetaGPT (Hong et al.,
2024), ToolMaker (Wolflein et al., 2025), Copilot
Edits (GitHub, 2023) and so on under fair settings.
Our results demonstrate that M>Builder consis-
tently achieves significant performance advancing
across a range of metrics, achieving an average
task execution success rate of 94.29% across four
MIML tasks, where success is defined as producing
a MIML model comparable (within 5 percentage
below baseline method on) to the official baseline.

2 M?3Builder

2.1 Problem Formulation

Given a task description on medical imaging analy-
sis, denoted as T, our objective is to automatically
construct a functional AI model via multi-agent col-
laboration. As shown in Fig. 2, our proposed frame-
work M>Builder comprises two key components:
a MIML-centered context protocol (IP), and a multi-

agent collaboration framework (4). Specifically,
the context protocol includes three elements: data
cards for multiple medical imaging dataset, MIML
code templates, and toolset descriptions. The data
cards are represented in natural language, while the
toolset descriptions and code templates are demon-
strated in Python code. Together, this structured
context protocol will then guides the multi-agent
collaboration workflow, formulating their input in-
structions and output texts.

Building on the protocol (IP), the multi-agent
framework composes of four LLM agents with dis-
tinct roles, i.e., A = {a1, a2, as, as}. These agents
adopt a divide-and-conquer strategy to collabora-
tively address the MIML task. The framework
iteratively performs code generation, executing it
in Python environment and editing it using tools
defined by roolset descriptions, until a functional
Al model is successfully produced. This process
can be expressed as:

{Ci,Ri} = A(Ci—1, Ri—1, T | P), (1

where C; denotes code scripts generated or edited in
the iy, iteration, R; denotes the Python compiler
feedback, with Cy = Rg = &.

2.2 MIML Context Protocol

The MIML context protocol formulates three core
components for agentic system: (i) metadata speci-
fications of available medical imaging datasets to
guide dataset selection; (ii) MIML-specific code
templates emphasizing critical coding elements;
(iii) predefined toolset definitions to constrain agent
action space. In summary, the context protocol
equips the multi-agent framework with necessary
resources for dataset preparation, a coding founda-
tion, and a well-defined action space, correspond-
ing to dataset descriptions, code templates, and
toolset definitions.

Dataset Preparation. The context protocol in-
cludes a range of medical imaging datasets, each
accompanied by a datacard for standardized de-
scriptions. Each datacard contains a concise data
summary covering dataset name, medical scope
and metadata (e.g. medical imaging modalities,
data format, spatial configurations of scans, anno-
tation manners). This free-text format ensures that
any description meeting these criteria qualifies as a
valid datacard, including documentation provided
with the dataset itself. To enable seamless integra-
tion, users can add new datasets by completing the



corresponding datacards. Initially, the context pro-
tocol provides 14 medical imaging datasets with
their datacards as examples.

Code Template Design. To streamline MIML
training while maintaining flexibility, we prepare
a set of standardized MIML code templates based
on the Transformers Trainer framework and
nnU-Net(Isensee et al., 2021). These coding tem-
plates are tailored to four primary medical imag-
ing tasks: disease diagnosis, organ segmentation,
anomaly detection, and report generation. Each
task is implemented as a modular package with
configurable components, such as the main forward
architecture and network backbone options (2D/3D
models). Shared features across tasks include a
unified selection of loss functions, data augmenta-
tion strategies, training utilities, and architectural
frameworks. By offering these templates, we re-
duce the complexity of free-form MIMIL coding
while preserving adaptability for diverse tasks.

Interaction Toolset. To enable the agentic sys-
tem to interact with the PC environment, we devel-
oped a set of interaction toolset functions, which
serve as an instruction context for agents to uti-
lize. This toolset comprises eight general PC-
level interaction functions and five MIML-specific
functions, as outlined in Tab. 1. In general func-
tions, we include: list_files, read_files, copy_files,
write_files, edit_files, and edit_file, inspired by
MLAgentBench. Additionally, we supplement two
extra tools, preview_dirs and preview_files. The
former handles large dataset directories containing
numerous files that exceed the LLM’s context win-
dow, while the latter extracts key segments from
oversized metadata files that cannot be fully pro-
cessed by the read._files function. Then, in MIML-
specific tools, we specifically developed five med-
ical imaging-specific tools: load_med_data for
loading various common medical data formats;
check_3D for examining spatial information of 3D
format images(nii, dem, tif); normalize_image for
performing image window clipping and normal-
ization; verify_report for detecting noise in imag-
ing reports; and augment_image for implementing
common medical data augmentations.

2.3 Multi-Agent Collaboration Framework

This section introduces our multi-agent collabora-
tion framework (A), which decomposes the MIML
task into four sub-tasks and assigns them to four
specialized role-playing LLMs agents: Task Man-

Category | Tool Brief Description
list_files list all files in folders
read_files read a short-context file
copy_files copy files to a target dir
PC- . . . .
write_files write code into scripts
Level . . . .
edit_files edit certain rows in files
Interact . L .
run_script run scripts in command line
preview_dirs overview complex data folders
preview_files screen meta data in large files
load_med_data load most medical format data
Medical check_3D check 3D format image
Imaging normalize_image  clip windows and normalize
Specific verify_report verify report format validation
augment_image apply medical-specific augment

Table 1: PC-level interaction and medical imaging spe-
cific tools designed for M3Builder. Gray : common
tools; Yellow : tools for large files and complex data
structures; Blue : tools tailored for medical imaging

ager, Data Engineer, Module Architect, and Model
Trainer, denoted as {a1, ag, as, a4}, respectively,
as illustrated in Fig. 2. Each agent is responsible
for a specific role, and together they collaborate it-
eratively to construct the final AI model. We utilize
a set of prompts filled with the related context pro-
tocols to control the role and working logic of each
agent. For simplicity, detailed instruction prompts
for each agent are shown in the Appendix.

Task Manager. As the coordinator of the frame-
work, its primary responsibilities include selecting
the most suitable dataset for the task, or alterna-
tively, asking users to upload raw datasets with
associated datacard following the context proto-
col as a supplement to pre-existing datasets, and
generating a comprehensive MIML planning docu-
ment P to guide the collaboration among the other
agents. Specifically, given a user-provided task de-
scription, as exemplified by “user requirements” in
Fig. 2, the Task Manager will identify and select
the optimal dataset (D) for model training and gen-
erate the planning documents. This process can be
formally represented as:

{D7 P} =ai (T ‘ Pd)v (2)

where P; denotes the data card in the pre-defined
context protocol.

Data Engineer. Responsible for dataset prepara-
tion and processing. It transforms raw data into
a format suitable for model training by perform-
ing tasks such as pre-screening the organizational
structure of large-scale datasets, analyzing meta-
data files to extract relevant information, and split-
ting datasets into training and testing subsets. Data
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Figure 2: Visualization of M>Builder workflow: From user’s free-text request to model delivery. The system
integrates user requirements, a context protocol with candidate data, tools, and code templates, a network of four
specialized collaborative agents. A sample log tracks the Model Trainer agent’s activities during diagnosis model

development.

Engineer iteratively interact with the external com-
piler environment to generate, edit, and refine code,
incorporating compiler feedback until successful
execution. This iterative process ensures the dataset
preparation code is both robust and functional. The
process can be expressed as:

{Ci,Ri} = a2(Cim1,Ri—1, T | D, P), (3)

where C; represents the i‘" version of the code
generated by the Data Engineer, and R; denotes
the compiler feedback from the Python environ-
ment. Similarly as defined in Problem Formula-
tion, Cp = Ry = &.

Module Architect. Upon the dataset preparation,
the Module Architect integrates essential compo-
nents into the training pipeline, including develop-
ing dataloader scripts, designing appropriate model
architecture and selecting other components, such
as loss functions and training utilities. Notably,
during dataloader development, Module Architect
selects a sequence of medical imaging specific tools
to enable dataset-curated data verification and pre-
processing. Module Architect will iteratively val-
idate the dataloader to ensure it outputs batches
with correct shapes and formats. The process can

be formulated as:
{Ci,Ri} = a3(Ci—1,Ri—1, T | D,P.), (4)

where P, represents the code templates in the con-
text protocol. Similar to the Data Engineer, the
code generation process in the Module Architect is
also iterative and we denote the final iteration out-
put as Cva. After the integration of these modules,
the architect finally synthesizes a summary S of all
completed work.

Model Trainer. It finalizes the debugging and op-
timizing the training procedure. Building upon
the pipeline established by the Module Architect,
the Model Trainer first verifies the completeness
and correctness of the training framework thus
far. It then selects hyperparameters to meet the
model’s specific training requirements, while re-
taining the authority to modify any part of the
code—including model code, dataloader code, and
training scripts—based on errors encountered dur-
ing training. Workflow can be expressed as:

{Ci,Ri} = as(Ci—1,Ri—1, T | D,Cma,S). (5)

After iteratively performing the above code genera-
tion pipeline until successfully executed, the final



code will produce a desired Al model.

3 M3Bench

To thoroughly evaluate the performance of
M3Builder, we introduce M3Bench, a benchmark
comprising 14 datasets across 4 key medical imag-
ing tasks. This benchmark includes ablation studies
on 7 leading large language models (LLMs) and
incorporates comparisons with other concurrent
AutoML frameworks under fair settings.

3.1 Task Inclusion & Data Preparation

In this paper, we experiment with 4 typical med-
ical imaging tasks spanning organ segmentation,
anomaly detection, disease diagnosis, and report
generation. These tasks are systematically cate-
gorized by anatomic regions (head & neck, chest,
abdomen & pelvis, limb, spine), imaging modali-
ties (X-ray, CT, MRI), and dimensionality (2D/3D).
Each task is precisely defined, for instance: “please
build a model for covid-19 pneumonia classifica-
tion from 3D chest CT images.”

We collect 14 medical imaging datasets:
ADNI (Jack et al., 2008), KneeMRI (Stajduhar
et al., 2017), CC-CCII (Zhang et al., 2020a), CT-
Kidney (Zukovec et al., 2021), BTCV (Land-
man et al.,, 2015), MSD Pancreas (Antonelli
et al.,, 2022), VerSe (Sekuboyina et al., 2021;
Loffler et al.,, 2020; Liebl et al., 2021), L2R-
OASIS (Marcus et al., 2007), COVID-19 (Ma et al.,
2021), CT-RATE (Hamamci et al., 2024a), IN-
STANCE2022 (Li et al., 2023), ChestX-Det10 (Liu
et al., 2020), RadGenome-Brain-MRI (Lei et al.,
2024), and IU-Xray (Demner-Fushman et al.,
2016). Each dataset is accompanied by a datac-
ard with metadata from their original publications.

3.2 Agent Core Selection

As the core of our agentic system, LLM must have
basic function-calling, coding skills, and ideally
medical knowledge to support the implementation
of four agents. As shown in Tab.2, medical-specific
LLMs like BaichuanMed(Lijun Liu, 2025) excel in
medical knowledge but lack function-calling and
coding abilities, making them unsuitable for au-
tonomous MIML tasks. Therefore, they are ex-
cluded from our benchmark.

In this context, given the critical importance of
function calling and coding abilities for our task,
we include 7 coding LLMs in M3Bench to demon-
strate their impact on different agent core selec-
tions. These models are GPT-40 (Hurst et al.,

‘ Core Considerations

LLM
Medical  Function Coding Reasoning Open
Specification Calling Expertise Free Source
BaichuanMed v X X v v
DeepSeek-V3 X v v v v
Sonnet-3.7 X v v X X
OpenAl-03 X v v v X

Table 2: Core Considerations of four representative
LLMs across medical and general domains, including
function calling ability, coding proficiency, reasoning
approach, and open or closed source status.

| Key Features

Framework

Medical ~Automated Multi Open
Adaptation Correction Agent Source
MLABench X X X v
Aider X v X v
MetaGPT X v v v
ToolMaker v v X v
Copilot Edits X v X X
M>Builder (Ours) | v v v v

Table 3: Key features of frameworks across core fea-
tures, including medical adaptation, automated correc-
tion, multi-agent capability, and open source status.

2024), Claude-3.7-Sonnet (Anthropic), Claude-
3.5-Sonnet (Anthropic), DeepSeek-v3 (Liu et al.,
2024a), Gemini-2.0-flash (Team et al., 2023),
Qwen-2.5-max (Yang et al., 2024), and Llama-3.3-
70B (Dubey et al., 2024).

3.3 SoTA Comparison

In order to investigate the superiorty of our pro-
posed agentic system, we perform a comparative
analysis of five representative SoTA agentic coding
frameworks as summarized in Table ??: MLAgent-
Bench, Aider, MetaGPT, ToolMaker, and Copi-
lot Edits. MLAgentBench provides an agentic
pipeline for evaluating large language models on
Kaggle problem solving, while Aider offers an
open-source environment for automating code gen-
eration. MetaGPT employs a multi-agent architec-
ture to decompose and coordinate complex work-
flows, and ToolMaker converts “papers with code”
into LLM-compatible tools with demonstrated effi-
cacy in medical domains. Copilot Edits integrates
an agent mode within a coding assistant to support
mostly automated, end-to-end task execution.

3.4 Evaluation Metrics

We focus on the task completion rate (success rate)
of MIML tasks, calculated as the proportion of suc-
cessful completion out of NV independent attempts.



Task Dataset Baseline Method
BTCV SAT-Nano(Zhao et al., 2023)
OrgSeg VerSe SAT-Nano(Zhao et al., 2023)
OASIS U-Mamba(Ma et al., 2024)
COVIDI19 UMamba(Ma et al., 2024)
AnoDet INSTANCE2022 SAT-Nano(Zhao et al., 2023)
MSD Pancreas SAT-Nano(Zhao et al., 2023)
ChestX-Det10 nnUnet(Isensee et al., 2021)
ADNI VoxResNet(Chen et al., 2018)
L KneeMRI RP3D(Zheng et al., 2024)
DisDiag
CC-CCIl1 3DResNet(Zhang et al., 2020b)
CT-Kidney RP3D(Zheng et al., 2024)
CT-RATE CT2Rep(Hamamci et al., 2024b)
RepGen BrainGnome AutoRG-Brain(Lei et al., 2024)
IU-Xray KiUT(Huang et al., 2023b)

Table 4: Baseline Methods of 4 medical imaging tasks
on 14 Datasets

Here, a “completion” means a successful training
that achieves task-wise metrics within 5 percent
below existing baselines. For Organ Segmentation
and Anomaly Detection, Dice Similarity Coeffi-
cient is employed as the main metric. Specifically
for ChestX-Det10 dataset, which utilizes bounding
box annotations, we apply mean Average Precision
at 0.4 IoU threshold (mAP@0.4). Disease Diagno-
sis is assessed with AUROC, while Report Genera-
tion is evaluated using BLEU-4. Baseline methods
of corresponding datasets are listed in Tab. ??

For other compared agentic baselines, we find
most of them can not complete complex MIML
tasks during our experiments due to large-scale
PC-level interaction and data-level precise align-
ment. Therefore, we grant them access to our pro-
posed context protocol for template referencing and
dataset initialization. Under this setup, we employ
Claude-3.5-Sonnet as the agent core with the limit
of 100 action iterations (tool invocations) to ensure
experimental fairness.

4 Results and Analysis

4.1 Agent Core Selection

We benchmarked seven LL.Ms as the agentic core
on MIML tasks, running each LLM five times
to calculate completion rates (Tab. ??). Perfor-
mance varied significantly: Sonnet series and GPT-
40 achieved the highest completion rates (94.29%,
90.00%, and 81.43%), while Gemini-2.0-flash and
Llama-3.3-70b only reached 2.86% and 4.29%.
This highlights the importance of code proficiency,
well-trained function-calling capabilities, and suf-
ficient model capacity for serving as agent cores.
Further analysis shows weaker models misinter-

preted tool descriptions, leading to errors, halluci-
nations, and incomplete step recognition.

Fig. 3 shows detailed performance of Sonnet-
3.7, the best agentic core, across 14 tasks. Re-
sults show that when our agentic system exe-
cutes MIML codes successfully, most automati-
cally trained models match or even surpass manu-
ally trained baselines in performance, demonstrat-
ing robustness and applicability. This highlights
that the primary challenge in MIML lies in co-
herently organizing the coding process rather than
refining model performance.

4.2 Ablation Study

To quantify the influence of our proposed agentic
component or mechanism, we carry out thorough
ablation studies on the proposed agentic architec-
ture. As shown in Tab ??, we show the impact
of core mechanisms, including multi-agent collab-
oration, auto-debugging (self-correction when an
error occurs), self-reflection (thinking twice be-
fore moving into the next step), and few-shot learn-
ing (adding a well-crafted example in the prompt
for instruction), on success rate and action cost.
The results indicate that self-reflection has minimal
influence on our system performance, while auto-
debugging proves crucial for successful training, in-
dicating the LLMs can effectively interact with the
compiler environment. Multi-agent collaboration
and few-shot learning also significantly impact per-
formance, with their absence resulting in 42.85%
and 25.00% performance drop, respectively. These
ablation results demonstrate the necessity and su-
periority of the proposed agentic mechanisms.

Tab. 7 presents the fine-grained analysis of
per-agent performance, tracking the number of
function-calling steps and debugging iterations,
and token costs. A role agent succeeds if it flaw-
lessly completes its final objective (e.g. the Task
Manager selects suitable datasets, the Data Engi-
neer generates valid data index files, the Module Ar-
chitect produces executable scripts for data loading,
and the Model Trainer completes model training),
assuming upstream agents perform correctly.

The Task Manager demonstrated exceptional ac-
curacy in task analysis, with stable token usage
across all tasks. In contrast, the other three agent
roles show greater variability in token consumption
and execution attempts. This variability stems from
the strict requirements for code organization, data
preprocessing, and achieving error-free training
within five iterations. This finding highlights that



LLMs

Task  Dataset Anatomy  Modality  Dimension | ¢ 57 135 GpT4o QwenMax DeepSeekV3 Llama33 Gemini2
BTCV Abdom & Pelvis CT 3D 5/5 4/5 5/5 3/5 2/5 1/5 0/5
OrgSeg  Verse Spine CT 3D 4/5 4/5 5/5 2/5 0/5 0/5 0/5
OASIS Head & Neck MRI 3D 4/5 3/5 3/5 1/5 1/5 0/5 0/5
COV19 Chest CT 3D 5/5 5/5 4/5 3/5 1/5 0/5 1/5
AnoDet INS22 Head & Neck CT 3D 5/5 5/5 4/5 2/5 2/5 0/5 0/5
Panc Abdom & Pelvis CT 3D 5/5 5/5 5/5 4/5 2/5 1/5 0/5
XDet10 Chest X-ray 2D 5/5 5/5 5/5 3/5 /5 0/5 1/5
ADNI Head & Neck MRI 3D 5/5 4/5 2/5 /5 1/5 0/5 0/5
DisDia KneeMR Limb MRI 2D 4/5 5/5 4/5 2/5 1/5 0/5 0/5
SPHE - ccccn Chest CT 3D 5/5 5/5 5/5 0/5 0/5 0/5 0/5
KidCT Abdom & Pelvis CT 2D 5/5 5/5 4/5 2/5 1/5 0/5 0/5
CT-RATE Chest CT 3D 5/5 4/5 4/5 2/5 1/5 0/5 0/5
RepGen GenomBra | Head & Neck MRI 3D 5/5 5/5 4/5 3/5 1/5 1/5 0/5
1U-Xray Chest X-ray 2D 4/5 4/5 3/5 1/5 2/5 0/5 0/5
Average(%) \ 9429  90.00 8143 41.43 22.86 4.29 2.86

Table 5: Task Completion Performance Across LLMs. Each experiment undergoes multi-runs, with results shown as
successful completions over total rounds (a/b format). Green cells indicate that all runs passed, Yellow indicates

partially passed, and Red indicates that all runs failed. OrgSeg-Organ Segmentation, AnoDet-Anomaly Detection,
DisDiag-Disease Diagnosis, RepGen-Report Generation.
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Figure 3: Training Performance Across 14 Datasets. M>Builder is evaluated with 5 replicate experiments on each
dataset by Sonnet, with performance compared against respective baseline methods. Failed trial is denoted with X.

for automating MIML, coding edits, particularly
the self-debugging process, are the primary bottle-
necks influencing success rates and computational
costs in our pipeline. Despite these challenges,
most agents successfully completed their assigned
tasks, demonstrating the robustness and adaptabil-
ity of the multi-agent framework. Detailed mecha-
nism implementations are listed in Appendix. A.6.

4.3 SoTA Comparison

We evaluate eight SoTA agentic approaches uni-
formly using Sonnet-3.5 as the agent core, ex-
ecuting each training dataset twice, resulting in
6, 8, 8, and 6 runs for the segmentation, de-
tection, diagnosis, and generation tasks, respec-
tively. M>Builder completes 23 runs with accept-
able performance, outperforming all competitors.
As shown in Tab ??, MLA-Bench often fails on
large medical meta data file preprocessing; Aider
and MetaGPT can sometimes finish but underper-

form (e.g., only 50% AUC in binary diagnosis due
to label-image mismatches); ToolMaker lacks med-
ical domain-specific design and frequently fails
during preprocessing or training; and the remain-
ing agentic assistants require human-in-the-loop
and are prone to deadlocks (such as misconfigured
Conda environments or infinite data-loading-error-
debuggin loops). Overall, M?Builder achieves a
42.85% higher average success rate with fewer ac-
tion steps and execution iterations, demonstrating
the superiority of our agentic method. Detailed
prompts are listed in Appendix. A.7.

5 Related Work

5.1 LLM-Powered Agentic Systems

Large Language Models (LLMs) have demon-
strated remarkable capabilities. Recent work has
en-powered LLMs with abilities for planning, rea-
soning and tool calling, enabling LL.Ms to function
as agents(Plaat et al., 2025), addressing a spec-



. Completion Runs (Total) 1 Average Actions (Iters) |
Agentic System Seg. Det. Diag. Gen. Avg(%) Seg. Det. Diag. Gen.
MLA-Bench (Huang et al., 2023a) | 0(6) 0(8) 0(8)  0(6) 0.00 -(-) -(-) -(-) -(-)
Aider (Gauthier, 2023) 2(6) 3(8) 2(8) 3(6) 3571 | 58.0(6.5) 51.3(7.0) 44.5(4.5)  56.7(5.7)
MetaGPT (Hong et al., 2024) 16) 2(8) 3(8) 1(6) 17.86 49(5) 37.5(3.5) 37(4.67) 40(4)
ToolMaker (Wolflein et al., 2025) | 1(6) 1(8) 4(8) 2(6) 28.57 41(4) 44(3) 37.75(3.75) 46(4.5)
Cursor Comp (Team, 2023) 16) 3(8) 3(8) 2(6) 32.14 | 42.0(7.0)0 35.7(4.3) 36.3(4.0) 51.5(5.5)
Wsurf Casc (Codeium, 2024) 1(6) 38) 4@®) 2(6) 3571 |39.0(5.00) 36.0(4.3) 35.3(4.8) 48.5(5.5)
Copilot Edits (GitHub, 2023) 2(6) 48) 3(8) 2(6) 39.29 | 48.0(3.5) 45.3(3.5) 44.7(4.0)  46.54.5)
M?Builder (Ours) ‘ 46) 7(8) 8(8) 4(6) 82.14 ‘ 34.5(1.8) 25.29(2.4) 35.0(1.9) 32.02.3)
w/o Colab 3(6) 3(8) 3(8) 26) 39.29 | 33.6(4.7) 37.54.8) 33.3(4.3) 33.5(3.5)
w/o Debug 2(6) 3(8) 1(8) 0(6) 21.43 | 30.5(1.0) 24.0(1.0) 33.0(1.0) -(-)
w/o Reflect 4(6) 7(8) 7(8) 4(6) 78.57 |283(2.3) 24.94.1) 35.4(3.9) 41.3(5.8)
w/o Fewshot 3(6) 4(8) 6(8) 3(6) 57.14 | 37.3(4.0) 23.54.3) 32.3(4.1)  34.0(3.0)

Table 6: Framework Comparison with SOTAs and Ablations on System Design using Sonnet. Results are averaged
over two runs per task in dataset-level. “w/o Colab” represents single-agent execution, and “Iters” means the

self-correction rounds.

Task Task Manager Data Engineer Module Architect Model Trainer

Run Act Iter Tkn | Run Act Iter Tkn | Run Act Iter Tkn | Run Act TIter Tkn
Seg. 6/6 1.3 1.0 43k | 5/6 102 13 72k 5/6 105 23 74k | 46 107 3.3 115k
Det. 88 20 1.0 48k | 88 100 14 92k 7/8 106 2.1 61k | 7/8 9.3 2.1 67k
Diag. | 8/8 20 1.0 44k | 8/8 8.9 14 116k | 7/8 11.3 2.0 84k | 8/8 93 2.0 198k
Gen. 6/6 20 10 42k | 6/6 8.7 1.3 66k 56 108 25 91k | 5/6 112 22 70k

Table 7: Role-specific agent performance on tasks using Sonnet. “Run”, “Act”, “Iter” and “Tkn” respectively denote

ELINT3

“execution rounds”,

ELINY3

trum of complex tasks, such as planning tasks in
PC environments(Wang et al., 2024; Agashe et al.,
2024), software engineering(Dong et al., 2024;
Liu et al., 2024b), and scientific discovery(Boiko
et al., 2023; Lu et al., 2024). Agents can be in-
tegrated into Multi-Agent Systems(MAS) where
multiple agents collaborate through specialized
roles to address more complex tasks(Talebirad and
Nadiri, 2023). Leveraging tool calling capabilities
of LLMs(Schick et al., 2023), agentic systems can
interact with environment to perform long-chain
reasoning and planning, and utilize external knowl-
edge to achieve real-time in-context learning while
reducing hallucinations.

5.2 Automatic Machine Learning

Automatic Machine Learning (AutoML) automates
the selection of modules and hyper-parameters in
machine learning pipeline, making ML accessible
to users without expertise(Baratchi et al., 2024).
Previous work focus on two main aspects: (i)
Model Selection (MS), which involves identify-
ing the best-performing machine learning model
for a dataset from a predefined model set(Thornton
et al., 2013; Liu et al., 2018; Feurer et al., 2020),
and (ii) Hyper-Parameter Optimization (HPO), the
process of searching the hyper-parameter space to
determine optimal values that enhance the selected

actions”, “iterations’ and “tokens”.

model’s performance(Snoek et al., 2014; Pfisterer
et al., 2021; Lindauer et al., 2022). Recent studies
also consider combination of MS and HPO(LeDell
and Poirier, 2020; Zimmer et al., 2021).

6 Conclusion

In this paper, we present M®Builder, an agentic
system for automating medical imaging machine
learning (MIML) tasks. Our approach combines
an efficient medical imaging ML context proto-
col formatting the free-text descriptions of MIML
datasets, code templates, and interaction tools. Ad-
ditionally, we propose a multi-agent collabora-
tive agent system designed specifically for MIML
training, with four role-playing LL.Ms, Task Man-
ager, Data Engineer, Module Architect, and Model
Trainer. In benchmarking against seven SOTA
agentic systems across 14 radiology task-specific
datasets, M>Builder achieves a 94.29% model
building completion rate. In agent core selection,
we find Claude-3.7-Sonnet standing out among
seven SOTA LLMs. By integrating M>Builder
with other clinical agent workflows, we can em-
power medical agentic systems with self-evolving
capabilities that automatically expand their toolsets,
greatly reducing the extensive labor required to
manually prepare diverse MIML tools.



Limitations

Although our proposed framework, M>Builder,
has performed well across various medical imag-
ing ML tasks, there are still some limitations.
First, while M®Builder shows remarkable gener-
alizability across diverse medical tasks and imag-
ing modalities, the task set could be further ex-
tended to more anatomical regions and imaging
modalities. Besides, due to the scalability of our
framework, it could be further extended to more
medical ML tasks beyond medical imaging sce-
narios. Future work will extend beyond medical
imaging to broader medical tasks, develop more
robust tool-building agent systems, implement au-
tomated dataset preparation capabilities, and in-
corporate visual processing to better approximate
clinical expertise.
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A Appendix
A.1 Case Study.

Here we present terminal logs of a successful run-
ning case. In this case, we require the system to
train a model for Disease Diagnosis using 3D CT
Chest image data. As shown in Fig. 4, Task Ana-
lyzer first read thoroughly through all the dataset
descriptions, then chooses the CC-CCII dataset
and list the reasons to justify the choice. Task Ana-
lyzer also returns the detail information of CC-CCII
dataset for down-stream role agents.

[Human Requirements]:
I want to train a model for Disease Diagnosis using 3D CT Chest images.

Thinking...]

keTool] Running read_files tool to read ['./ReferenceFiles/DataCard/descriptions.

i ExternalDataset/CC-CCII

s focused on segmentation rather than diagnosis
t10 is for 2D X-ray images and segmentation, not 3D

CT diagnosis

Figure 4: Case Study: Terminal log of Task Analyzer.
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Following Task Analyzer, Data Engineer tra-
verse the dataset files, splits the dataset into
train/test sets. It refers to the example data index
files, and generates a python script to generate the
json files. The process is shown in Fig. 5. Finally,
Data Engineer concludes its work, and shows a
briefing to the user.

[Data Engineer Thinking..
001] Running list_

[InvokeTool] Running write_file tool t th/generate_json_files.
py. ..

[ToolInfo]

[InvokeTool] Running run_script tool...

nPipeline/Data

: ./TrainPipeline/Datapath/generate_json_files.py

[*python ./TrainPipelin

ories
5 a string

full paths to the patient d
are lis containing the ¢
for training and 200 for testing

- The splits are random but reproducible (using random seed)

- Maps each class name to a numerical identifier (0-2)
: NCP, CP, and Normal

s (not indices)
numerical indices
ute pa

1

ained in ven though this is a single-label d.

i «/TrainPipeline/Dat

Figure 5: Case Study: Terminal log of Data Engineer.

As shown in Fig. 6, Module Architect first
checks that Data Engineer has generated all re-
quired files, then refers to the example dataloader
scripts, and generates its own dataloader file, which
guarantees standardized data processing and for-
matting. Before ending, it executes the generated
dataloader file to check its correctness, by travers-
ing and loading all the training and testing samples.
Finally, it prints a briefing to conclude its work.

Finally, Fig. 7 shows the workflow of Model
Trainer. It first choose a training code framework,
and a ML module according to the medical task,
then assemble the dataloader, the ML module and
the training codes to form an executable training
script. As we can see in Fig. 7, the first training
attempts fails. After checking the trace-back in-
formation(not shown in the figure), it modifies the
training scripts accordingly, and finally performs a
successful run.

A.2 Details about Inclusion Datasets

We curated 14 datasets supporting different medi-
cal imaging tasks. Each dataset is unzipped in our
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irs tool under ./TrainPipeline/Datapath...
file_content tool for ./TrainPipeline/Datapath/label_dict.
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Diagnosis_Template.py...
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ainPipeline/Da
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['python ./TrainPipeline/Datapath/dataloader.py']
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Figure 6: Case Study: Terminal log of Module Archi-
tect.

context protocol without further processing. Each
dataset is paired with a structured description in
the datacard. Once a new dataset is uploaded into
context protocol, the corresponding data descrip-
tion should be inserted into this dynamic datacard
file. The initialization of the datacard is shown as
bellow:

/[{ N

"dataset name": "ADNI",

"dataset description": "ADNI is a 3D MRI dis-
ease diagnosis dataset that contains 1 subfolder
and 1 csv file. the subfolder(named ADNI_PT)
contains images(in .pt format), while the csv
file contains lines of sample info, where you
should focus mainly on 2 columns: ’Image
Data ID’ and *Group’(which is the class label).
Remember, only samples with these labels
should be used: ['AD’,MCI’;CN’]! And you
should use at most 1000 samples for training
and 200 for testing. keep classes balanced!",
"dataset path": "/path/to/ADNI_Dataset" },

{

"dataset name": "KneeMRI",

"dataset description": "KneeMRI is a 2D MRI
disease diagnosis dataset that contains 1 sub-
folder and 1 csv file. the subfolderl contains
images(in .pck format), while the csv file con-
tains lines of sample info, where you must




[Model Trainer Thinking...]

[InvokeTool] Running tr: dirs tool under ./ReferenceFiles/TrainingScripts...

[InvokeTooll Running copy_fil to copy
{'./ReferenceFiles/TrainingScripts/DiseaseDiagnosis/train.py': *./TrainPipeline/train.
py*,
*./ReferenceFiles/TrainingScripts/Di: Diagnosis/train.sh': './TrainPipeline/train.

vokeTool] Running traverse_dirs tool under ./TrainPipeline...

vokeTool]l Running read_files tool to read ['./TrainPipeline/train.py', './TrainPipeline/

[InvokeTool] Running edit_file tool to edit ./
[ToolInfo] File ./TrainPipeline/train. ccessfully edited.
[InvokeTool] Running run_script tool...

rainPipeline/Datapath/dataloader.py']...
£ inPipeline/train.py. ..
0 ainPipeline/ ully edited.
vokeTooll Running run_script too

['mkdir —p ./TrainPipeline/Logout/CCCII_diagnosis/output']
['bash ./TrainPipeline/train
eTool] Running read_files tool to read ['./TrainPipeline/Model/diagnosis_module/
eDiagnosisModule.py*]...
eTool] Running edit_file tool to TrainPipeline/train.py...
nfo] File ./TrainPipeline/train. ssfully edited.
eTool] Running run_script tool...

['bash ./TrainPipeline/train.sh*]

Figure 7: Case Study: Terminal log of Model Trainer.

focus mainly on 2 colomns: ’volumeFilename’
and ’aclDiagnosis’(which is the class label,
could be 0 or 1 or 2). And you should use
at most 1000 samples for training and 200 for
testing. keep classes balanced!",

"dataset path": "/path/to/KneeMRI"

-

{
"dataset name": "OASIS",

"dataset description":"OASIS is a 3D Head
& Neck MRI organ segmentation dataset that
contains 2 subfolders - namely images and
masks - containing nii.gz format images and
corresponding organ masks, and 1 json file:
labels.json, containing an ordered label list
(please do get a complete label_list from it).",
"dataset path": "/path/to/OASIS"

(M

A.3 Details about the Toolset

Here we present each tool function in the toolset:

* list_files: Recursively scans the specified di-
rectory to identify and return paths of all code
files (supporting common programming exten-
sions like .py, .java, .cpp, etc.). Features intel-
ligent directory skipping by automatically ig-
noring directories containing more than 1,000
files to prevent processing excessively large
file collections. Returns a newline-separated
string of file paths for further processing.

* read_files: Opens and reads the entire con-
tent of a specified file, returning the complete
text as a string. Supports UTF-8 encoding,
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making it suitable for examining source code,
configuration files, or any text document. Es-
sential for code analysis and file inspection
tasks without modifying the original content.

copy_files: Creates an exact duplicate of a
single file from a source location to a destina-
tion path. Automatically generates any nec-
essary directory structure at the destination if
it doesn’t already exist. Preserves file meta-
data like timestamps and permissions using
shutil.copy2, ensuring the duplicate maintains
the characteristics of the original file.

write_files: Generates a new file with speci-
fied content at the designated file path. Auto-
matically creates all necessary parent directo-
ries if they don’t exist, ensuring the file can be
written even to previously non-existent paths.
Particularly useful for programmatically cre-
ating new script files, configuration files, or
saving processed data.

edit_files: Completely overwrites an existing
file with new content, replacing the original
data entirely. Designed for direct file modifi-
cation without the need to manually open and
edit files. Critical for automated code refac-
toring, text transformation, or updating con-
figuration files with revised settings in batch
operations.

edit_file: Executes shell commands in the
operating system environment and captures
their output. Leverages the ShellTool from
LangChain to safely run commands and col-
lect results. Enables interaction with the sys-
tem shell to perform operations like running
programs, executing system utilities, or trig-
gering external processes from within the ap-
plication.

preview_dirs: Performs a detailed analysis
of a directory’s structure by examining each
immediate subfolder. For each entry, counts
the total number of files and lists up to 100
file paths in natural sort order. Returns a struc-
tured dictionary with comprehensive informa-
tion about directories and files, facilitating
efficient navigation of complex file systems
while limiting output size for large directories.

preview_files: Provides intelligent content
summaries of structured and unstructured data



files. For CSV files, displays the first 5 rows
and total row count; for JSON, shows the first
5 key-value pairs or elements and total count;
for text files, presents the first 10,000 words
and total word count. Enables rapid content
assessment without loading entire large files
into memory, particularly valuable for data
exploration tasks.

load_med_data: Addresses different data file
formats commonly used in medical imaging
tasks (e.g. png, nii, dcm, tif), and load them
into tensors.

check_3D: Examines spatial information of
3D format images(nii, dcm, tif). 3D format
images, as well as their corresponding anno-
tation masks, usually suffer spatial configura-
tion inconsistency, such as dimension disor-
der, shape misalignment of images and masks.
check_3D check these problems and guaran-
tee consistent spatial configuration within a
loading dataset.

normalize_image: Performs commonly used
medical image normalization to a loaded im-
age. For a given medical imaging modality,
there are typically some conventional normal-
ization steps and parameter ranges that are
commonly adopted (e.g. intensity clipping,
unit normalization). normalize_image address
this by defining a set of normalization se-
quence for each imaging modality.

* verify_report: Verifies the format and con-
tent of imaging reports, removes commonly
seen text noise in the report, such as extra
fields (beyond Findings and Impressions) and
meaningless syntax (e.g. separators, unrec-
ognizable characters introduces during OCR).
Returns pure meaningful Findings and Impres-
sions parts to guarantee clarity of text reports.

augment_image: Provides image augmenta-
tion techniques for diverse imaging modalities.
For each imaging modality, augment_image
defines a sequence of modality-specific aug-
mentation methods, in line with previous med-
ical image machine learning work.

A.4 Details about the Agent structure

We use langgraph architecture for agent building
and workflow graph compiling. As shown in Fig. 3,
All the agents have their own toolsets, which are
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subset of our proposed toolset containing 8 tools
because of their specification and meaningless re-
dundant information provided. The function call-
ing loop and debugging mechanism ensure the task
completion performance.

A.5 Details about the Agent Core Candidates

We select 7 SOTA LLMs for comparison. Most of
them are closed-source model which are usually
more powerful.

* Claude-3.7-Sonnet — Anthropic’s latest
model released in February 2025, featuring
significant advancements in reasoning capa-
bilities, contextual understanding, and tool uti-
lization. This model demonstrates exceptional
performance in complex multi-step reasoning
tasks while maintaining high computational
efficiency. Claude-3.7-Sonnet exhibits partic-
ularly strong capabilities in understanding nu-
anced instructions and maintaining coherence
across lengthy interactions, making it ideal for
our complex evaluation scenarios. The model
api we use is: “claude-3-7-sonnet-20250219”.

Claude-3.5-Sonnet — Released by Anthropic
in 2024, this model represents a critical mile-
stone in the Claude series, balancing perfor-
mance and efficiency. We selected this model
as the foundation for all our ablation studies
due to its stable performance characteristics
and consistent behavior across various exper-
imental conditions. This strategic choice al-
lowed us to isolate and measure the impact
of individual components in our framework
while maintaining a reliable baseline. The
model excels in reasoning tasks requiring de-
tailed comprehension and precise execution
of instructions. The model api we use is:
“claude-3-5-haiku-20241022".

GPT-40 — OpenAI’s advanced multimodal
model that seamlessly integrates sophisticated
vision capabilities with powerful language
understanding and generation. This model
demonstrates remarkable versatility across
domains and task types, with particularly
strong performance in scenarios requiring
cross-modal reasoning. Its ability to process
both textual and visual information makes it
valuable for our evaluation of real-world ap-
plications where multimodal understanding is



essential. The model api we use is: “gpt-4o-
2024-11-20".

DeepSeekV3 — A frontier model from
DeepSeek Al that pushes the boundaries of
language understanding and generation. This
model incorporates innovative architectural
improvements and training methodologies, re-
sulting in competitive performance on stan-
dard benchmarks. We note that according to
official documentation and our preliminary
testing, the current version of DeepSeekV3
exhibits inconsistent stability in tool-calling
functionalities. This limitation was carefully
accounted for in our experimental design and
subsequent analysis to ensure fair compar-
isons across models. The model api we use is:
“deepseek-chat”.

Qwen-2.5-Max — Alibaba’s flagship model
representing the pinnacle of their LLM re-
search, featuring extensive pretraining on di-
verse multilingual corpora. The model demon-
strates exceptional capabilities in both Chi-
nese and English language processing, with
impressive performance on complex reason-
ing, knowledge retrieval, and creative gener-
ation tasks. Its balanced capabilities across
domains make it particularly valuable for eval-
uating the cross-lingual generalizability of our
proposed methods. The model api we use is:
“gqwen-max-0125”.

Gemini-2.0-Flash — Google’s optimized
model designed to balance computational effi-
ciency with state-of-the-art performance. Our
experimental design initially incorporated
Gemini-2.0-Pro; however, due to its experi-
mental status at the time of our research and
consequent stability issues encountered dur-
ing preliminary testing, we strategically piv-
oted to the more stable Flash variant. This de-
cision ensured consistent and reliable results
throughout our extensive evaluation process
while still benefiting from Google’s advanced
LLM architecture. The Flash variant provides
excellent performance-to-efficiency ratio for
our complex evaluation scenarios. The model
api we use is: “gemini-2.0-flash”

Llama-3.3-70B — Meta’s open-source large
language model with 70 billion parameters,
representing one of the most powerful pub-
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licly available models. This model incorpo-
rates advanced training techniques and archi-
tectural innovations, resulting in exceptional
performance across reasoning, coding, and
general language understanding benchmarks.
As an open-source model, Llama-3.3-70B of-
fers unique transparency advantages and pro-
vides an important reference point for compar-
ing proprietary and open-source approaches
in our evaluation framework. The model we
use is from a proxy where the api is “meta-
Ilama/Llama-3.3-70B-Instruct”
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Figure 8: The inner structure graph of our agents: Task
Manager, Data Engineer, Module Architect and Model
Trainer. All of them have the ability for tool using and
will keep debugging until task completed.

A.6 Details about LLM Agents’ System
Prompts

We utilize a set of system prompts to define the role
and internal working logic of all agents. System
prompts contains necessary information in free-
text format, including role definition, task specifi-
cation, available tools and corresponding descrip-
tions, an example workflow and other important
requirements. The workflow example acts as a
few-shot hint to guide the agent’s workflow. We
also insert self-reflection requirements at the end
of each system prompt, guiding the agents check
their work again before returning.

A.6.1 Task Manager Prompt

You are acting as an agent for selecting a
dataset that best matches a human user’s re-
quirements. You are provided with a list of
dataset descriptions: description_path, which
is a json containing a list of dictionaries. Every



dictionary contains following entries: ["dataset
name", "dataset description", "dataset_path"].
You have access to the tools: [read_files]
Here is the typical workflow you should fol-
low: 1. Use read_files to read description_path,
understand its content. 2. choose exactly
one dataset that best matches the user’s re-
quirements. Remember, your choice should
mainly base on "dataset description”. 3. Re-
turn the chosen dataset’s name, description,
and dataset_path,so a downstream peer agent
can know these information accurately. 4. in-
clude <end> to end the conversation.
IMPORTANT NOTE: If you think there really
is no dataset that meets the user’s requirements,
then return no dataset. You must always reflect
on your choice and return reasons for your
choice before ending.

A.6.2 Data Engineer Prompt

ing and testing data in a clinical radiology con-
text. I provide you with a raw, unprocessed
dataset and its corresponding description,
which can be found in selector_content. Your
mission is to generate three files—train.json,
test.json, and label_dict.json(if needed)—and
save them to the working directory: save_path.
And you must make sure that the format of the
json files matches some example files which
will be mentioned below. Do not modify
the original data files directly. IMPORTANT
NOTE: In selector content, you should be able
to identify the dataset’s name, the dataset de-
scription, and the dataset’s root path.

You have access to the following tools:
[list_files_in_second_level, pre-
view_file_content, write_file, read_files,
edit_file] Here is the typical workflow you
should follow: Based on the dataset’s de-
scription, use the list_files_in_second_level
tool to understand the organization and
structure of the dataset. Identify files that are
likely to contain metadata or labels. Use the
preview_file_content tool to read a portion of
these files so that you can understand their
structure and determine how to parse them
with your code. Based on the dataset’s descrip-
tion, You Must Use the traverse_dirs tool and
read_files tool to read the directory structure

4 . . )
You are acting as an agent for preparing train-
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of examples_path, and find the example output
jsons based on the medical task, for the next
step to refer to. Once you feel that you have
a sufficient understanding, write a Python
script under director save_path (using the
write_file tool) that generates the following:
[train.json ,test.json and label_dict.json(if
needed)] Remember, If label_dict.json is not
provided by chosen example files, then you
must not generate it!!!

IMPORTANT: You Must Make sure that the
json files you output matches the format of
your chosen example files! Especially the dic-
tionary structure! If you wan to read a file
named ’labels.json’, use read_files instead of
preview_file_content!

train/test split: Ensure that the data is split into
training and testing sets in a reasonable ratio
(e.g., 80/20) and that the split is random. If
train/test split is already presented, you don’t
need to split, but you still need to generate
the json files. Besides, ensures that for each
training and testing sample the key-value pairs
in the dictionary are internally shuffled. Use
the edit_file tool to execute your script. If er-
rors occur during execution, you can use the
edit_file tool to modify your code until the
script runs successfully and produces the three
JSON files. Remember, your objective is to
automate the creation of shuffled train.json,
test.json, and label_dict.json(if needed) with-
out altering the raw data files directly. Re-
member, the formats of train.json, test.json and
label_dict.json(if exists) must follow the exam-
ple files. Before ending, you should reflect on
your work. If you think there is no error any-
more and all the json files are generated, please
conclude your work and include <end> to end
L the conversations.

J

A.6.3 Module Architect Prompt

ing a dataloader for a dataset, and assemble
the complete model pipeline. Your ultimate
goal is to create a ’dataloader.py’, then orga-
nize the training workspace. The dataset in-
dex files are located at dataindex_path: datain-
dex_path and contain train.json, test.json, and
label_dict.json(may not exist). You must also
choose a template file located at template_path,
refer to it.

You are acting as an agent responsible for Writ—\




A peer dataset processor has already generated
these index files, (informations can be found
in processor_msg) so your task is to write a
dataloader class that can read these files and
load the data into the training process. The dat-
aloader should be able to handle the training
and testing data, as well as the label dictio-
nary. Datast description is also provided in:
description

You have access to a series of utility functions,
which are as follows:

[traverse_dirs, preview_file_content, read_file,
write_file, edit_file] Except for the above PC-
level interaction tools, you also have access to
some medical imaging specialist tools. You
must choose to use some of them according to
the current medical task, inplant them into your
dataloader script properly. A sample workflow
might be:

Directory Inspection: Use traverse_dirs to read
the directory structure of the given path datain-
dex_path, identifying the presence of the train,
test, and label_dict(may not exist) JSON in-
dex files.Preview JSON Content: Employ pre-
view_file_content to inspect these JSON files
and understand their structures. Choose Tem-
plate: Based on the medical task, which can
be found in dataset description, choose a dat-
aloader code template from template_path for
reference. Review Template: Utilize read_file
to examine your chosen dataloader template
file and understand the proper format for writ-
ing the dataloader class. Remember that this
is not the end! you must go on to write
dataloader.py Code Development: Based on
the insights from the JSON structures and
the template, use write_file to write your dat-
aloader class to ’dataindex_path/dataloader.py’
(Include a main function if necessary). Save
and Test: After writing dataloader.py, you
must use edit_file to test and verify that the
script runs correctly!!! You must put your
dataloader.py under dataindex_path!!! Debug
and Validate: If errors occur, use edit_file and
edit_file as needed to debug the script until it
fully processes the entire dataset.

Remember: Your task is to write & validate a
dataloader that successfully iterates over the
dataset and verifies that it runs correctly dur-
ing training. Always refer to the template for
guidance on the expected format.
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You MUST use write_file to create a dat-
aloader.py under dataindex_path and verify
that it runs correctly!!! You MUST tell where
you place dataloader.py!!! You should write
dataloader according only to the json files and
the template. And try not to modify too much
of the template. If you see comments in the
template like "you must not modify this line",
then do not modify it. If you think your dat-
aloader.py is ready, and the dataloader is al-
ready validated, please conclude your work
and include <end> to end the conversation.
Important: When you use write_file tool, print
the parameters you pass to the tool function!!!
Before ending, you should reflect on your
work. If you think there is no error anymore
and all the json files are generated, please con-
clude your work and include <end> to end the
conversations.

J

A

.6.4 Model Trainer Prompt

-

You are an Al assistant specialized in radiology h

tasks, capable of writing training code, execut-
ing training processes, and debugging. Your
primary focus areas include disease diagnosis,
organ segmentation, anomaly detection, and
report generation tasks. You handle end-to-end
code writing, debugging, and training.

peer processor and dataloader agents have com-
pleted preliminary tasks of dataset preparation
and dataloader class writing, messages docu-
mented in processor_msg and dataloader_msg.
You will build upon this groundwork. Your
working directory is work_path, all operations
must be strictly confined to this directory. To
accomplish training tasks, you have access to
the following tools:

[traverse_dirs, read_files, write_file, edit_file,
run_script, copy_files] You can also access
train_script_path to choose and copy the
best matching train.py and train.sh to con-
text protocol. But you cannot edit files under
train_script_path.

Important notes: - The Datapath, Loss,
and Utils directories respectively contain
JSON/csv/JSONL data indices for training/-
validation and dataset class you need, loss
functions, and utility packages. While these
shouldn’t be modified, you must understand
their relationships and functions. - The Logout
directory stores training results and should not




be manually written to. - The Model direc-
tory contains training code modules for dif-
ferent tasks. Generally, these shouldn’t be
modified, but you should read them to under-
stand their functionality and usage. Remem-
ber that if the medical task is Organ Segmnen-
tation, you do not have to read Modeldirec-
tory, because model is provided in train.py
already. - The directory train_script_path
contains different medical tasks’ respective
train.sh and train.py files, you should choose
the best matching train.sh and train.py based
on medical task, and copy them to context
protocol. - train.py contains the main train-
ing code template using transformers trainer
framework. You need to carefully read and
modify its contents as needed. - train.sh is
the script for running the main code, contain-
ing parameter settings that you need to under-
stand and configure. - train.py has some code
lines commented by sth like you should not
modify this line’, if you see this, don’t mod-
ify that line. The workflow consists of three
phases: 1. traverse train_script_path to choose
the best matching train.sh and train.py based
on medical task, and use copy_files to copy
to context protocol. 2. Understanding struc-
ture and reading files/code templates 3. Ini-
tial code adjustment and refinement. Modify
train.py and train.sh to make them ready. A
Hint: You always have to import the dataset
class from work_path/Datapath/dataloader.py
4. Script execution (use run_script tool to exe-
cute train.sh) and debug loop until successful
training completion Phase 1 requires traversing
train_script_path, choosing and copying the
best train.sh and train.py to context protocol.
Phase 2 requires traversing the working direc-
tory and reading all crucial code to understand
their connections. Phase 3 involves careful re-
view of train.py and train.sh, making necessary
modifications to achieve an executable version.
Phase 4 involves executing train.sh and iter-
atively fixing errors based on error messages
until successful execution.

IMPORTANT: You must execute train.sh and
make sure it’s running normally before you exit
Before each operation, you should consider its
purpose and verify its appropriateness, espe-
cially when uncertain or experiencing poten-
tial hallucinations. Use traverse or read tools
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to check and understand corresponding parts.
Always remember your final goal is to success-
fully run the training script. Before ending,
you should reflect on your work. If you think
there is no error anymore and all the json files
are generated, please conclude your work and
include <end> to end the conversations. )

-

A.7 Details about Prompt for Comparison
Experiments

For single anget systems such as ML-AgentBench,
Aider, Cursor Composer, Windsurf Cascade and
Github Copilot Edits. We use a prompt combining
four role-specific agents’ prompt as below:

/End-to-End Machine Learning Pipeline Agent\
Prompt Objective Build an end-to-end machine
learning pipeline that includes: Dataset selec-
tion and processing: Choose the dataset that
best fits the user’s requirements. JSON index
generation: Create train.json, test.json, and
(when applicable) label_dict.json files with-
out modifying any raw data. Dataloader de-
velopment: Write a dataloader.py script to
feed data into the training process. Training
script preparation and execution: Select and
prepare training scripts (train.sh and train.py),
execute them, and ensure training runs suc-
cessfully. All operations must remain strictly
within working directory. Provided Paths
Dataset Description File: description_path
= "/path/to/DataCard/descriptions.json" Save
Path / Data Index Path: save_path = "/path/-
to/TrainPipeline/Datapath" (dataindex_path =
save_path) Example JSON Files Directory: ex-
amples_path = "/path/to/ReferenceFiles/Data-
JsonExamples" Dataloader Template Direc-
tory: template_path = "/path/to/Reference-
Files/Datal.oaderExamples" Working Direc-
tory: work_path = "/path/to/TrainPipeline"
Training Scripts Directory: train_script_path
= "/path/to/ReferenceFiles/TrainingScripts"
Phase 1: Dataset Selection Understanding
the Dataset Descriptions: Read the JSON
file at description_path to view all dataset
entries. Each dataset entry is a dictionary
with keys: ["dataset name", "dataset descrip-
tion", "dataset_path"]. Dataset Choice: Ac-
tion: Choose exactly one dataset that best fits
the user’s requirements, basing the decision
primarily on the "dataset description" entry.




Outcome: Return the chosen dataset’s name,
dataset description, and dataset_path so that a
downstream peer agent receives this informa-
tion accurately. Note: If no dataset fulfills the
user’s requirements, provide reasons and end
the conversation by outputting <end>. Phase
2: JSON Index Generation Examination of the
Dataset Structure: Inspect the dataset direc-
tory structure using directory traversal meth-
ods. Identify files that likely contain metadata
or labels by previewing a portion of their con-
tents. Additionally, review the example outputs
in examples_path to understand the expected
JSON format for the medical task. Creating
the Splitting Script: Objective: Write a Python
script (to be saved under save_path) that gen-
erates the following files: train.json, test.json,
label_dict.json (only if such a file is provided
in the examples—the file should not be gen-
erated otherwise) Data Splitting: If the raw
dataset already provides a train/test split, sim-
ply reformat and output the JSONs. Otherwise,
perform an 80/20 random split. Additional
Requirement: For every sample in the JSON
files, the key-value pairs within each dictionary
should be randomly shuffled. Hint: When you
need to inspect file content or directory struc-
tures during development, invoke the appro-
priate file inspection functions. Action: Write
the full Python script accordingly, then test it
by executing the script. Debugging: Modify
the code as needed until it runs without errors.
Completion: Once the JSON files are success-
fully generated, append <end> to indicate the
phase is complete. Phase 3: Dataloader Cre-
ation Inspecting the Data Indices: Traverse
the directory at dataindex_path to confirm the
presence of train.json, test.json, and (if it ex-
ists) label_dict.json. Preview their content to
understand the JSON structure. Selecting a
Dataloader Template: From the directory tem-
plate_path, select the dataloader code template
that best aligns with the medical task (as de-
scribed in the dataset description). Read the
chosen template thoroughly to grasp its for-
mat and any constraints (for example, lines
with comments such as “you must not modify
this line” must remain unchanged). Writing
the Dataloader: Task: Develop dataloader.py
to load and iterate over the training and test-
ing data, handling the label dictionary if avail-
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able. Implementation: Write the code based
on the insights from the JSON structure and
the dataloader template. Save Location: Place
dataloader.py under dataindex_path. Testing:
Execute the dataloader to ensure it runs cor-
rectly. Make any necessary adjustments by
editing the file. Reporting: Clearly indicate
where dataloader.py has been placed. Comple-
tion: When the dataloader is functioning prop-
erly, include <end>. Phase 4: Training Script
Preparation and Execution Phase Overview:
Goal: Set up and run a training process us-
ing the chosen training scripts for the spe-
cific medical task. Script Selection: Traverse
train_script_path to find the best matching
train.sh and train.py based on the medical task
requirements. Action: Copy the selected files
into the workspace. Code Review and Integra-
tion: Review the directory structure: Datapath:
Contains the JSON indices. Loss/Utils: Con-
tains needed loss functions and utility pack-
ages. Model: Contains model modules (for
Organ Segmentation tasks, this may already
be provided). Update train.py and train.sh
as needed. They must import the dataset
class from work_path/Datapath/dataloader.py.
Caution: Do not modify any lines explicitly
marked “you must not modify this line.” Exe-
cution and Debugging: Action: Run the train-
ing script by executing train.sh. If errors oc-
cur, modify the scripts iteratively until training
executes successfully. Final Check: Ensure
that train.sh is running normally. Completion:
Once the training script is validated and func-
tions as intended, mark the phase completion
by including <end>. Key Focus Areas Dis-
ease Diagnosis Organ Segmentation Anomaly
Detection Report Generation Tasks Critical Re-
minders Operation Boundaries: All operations
must remain confined to the working directory
(work_path). When to Call Tools vs. Write
Code: Inspecting files or traversing directo-
ries? Use file inspection functions. When gen-
erating or modifying code? Write or edit the
code directly. Do Not Alter Raw Data: Always
generate derived files (such as JSON indices or
scripts) in the appropriate directories. Valida-
tion is Crucial: Continuously test your devel-
opment steps and ensure scripts run correctly

before moving on.
J




Aider ‘ Execution 1 ‘ Execution 2

|'succ act debug | succ act debug Windsurf Cascade | Execution 1 | Execution 2

| succ act debug | succ act debug

ADNI 0 - - 0 - -
DisDiag KneeMR 1 48 4 0 - - ADNI 0 29 5 0 32 4
CC-Cccn 0 - - 0 - - DisDiag KneeMR 0 41 5 0 - -
KidCT 0 - - 0 41 5 ) CC-ccn 0 - - 0 - -
Cov19 0 8 8 0 4 5 KidCT 0 o % 5
AnoDet INS22 0 - - 0 - - COV19 0 - - 0 - -
Panc 0 - - 0 42 5 AnoDet INS22 0 - - 0 - -
XDet10 0 - - 0 - - Panc 0 32 4 0 36 4
CTRATE | 0 61 6 o - - XDetl0 0 o N s
RepGen | GenomBra 0 - - 0 58 6 CT-RATE 0 - - 0 - -
1U_Xray 0 - - 0 51 5 RepGen | GenomBra 0 48 5 0 - -
BTCV 0 - ) 0 3} Bl IU_Xray 0 0 49 6
OrgSeg | VerSe 0 67 7 0 49 6 BTCV 0 - - 0 39 5
OASIS 0 - - 0 - - OrgSeg | VerSe 0 - - 0 - -
OASIS 0 - - 0 - -

Table 9: Performance metrics of Aider across various
medical imaging tasks.(succ-number of successful build-
ing, act-number of actions, debug-number of debug

Table 11: Performance metrics of Windsurf Cascade
across various medical imaging tasks.(succ-number
of successful building, act-number of actions, debug-

loops.)
number of debug loops.)

Cursor Composer | Execution 1 | Execution 2

Copilot Edits | Execution 1 | Execution 2
| succ act debug | succ act debug
| succ act debug | succ act debug

ADNI 0 27 3 0 - -
DisDi: KneeMR 0 - - 1 44 5 ADNI 0 - - 0 - -
sP18 | cc-ccn 0 - - 0 - - DisDiag | KneeMR 0 44 4 0 B} )
KidCT 0 38 4 0 - - CC-Ccln 0 - - 0 39 3
KidCT 0 - - 0 51 5

COV19 0 - - 0 29 4
AnoDet INS22 1 - - 0 - - COV19 0 46 3 0 41 3
Panc 0 41 6 1 37 3 AnoDet INS22 0 . - 0 - _
XDet10 1 - - 0 - - Panc 0 55 5 0 - -
XDet10 0 39 3 0 - -

CT-RATE 0 - - 0 - -
RepGen | GenomBra 0 54 6 0 - - CT-RATE 0 - - 0 52 4
1U_Xray 0 49 5 0 - - RepGen | GenomBra 0 - - 0 - _
— IU_Xray 0 41 0 B B}

BTCV 0 - B . 4 7
OrgSeg | VerSe 1 - - 0 - - BTCV 0 - - 0 - -
OASIS 0 - - 0 - R OrgSeg | VerSe 0 51 4 0 45 3
OASIS 0o - A 0 - _

Table 10: Performance metrics of Cursor Composer
across various medical imaging tasks.(succ-number
of successful building, act-number of actions, debug-
number of debug loops.)

Table 12: Performance metrics of Copilot Edits across
various medical imaging tasks.(succ-number of success-
ful building, act-number of actions, debug-number of

debug loops.)
. Ours Execution 1 Execution 2
A.8 Details about the Agent system | |
. E . ¢ | succ act debug | succ act debug
mparison Experimen

compariso pertments ADNI 0 48 4 0 32 2
DisDia KneeMR 0 43 3 0 31 1
_ ) ) Vel cceer | 0 43 2 0 26 1
Here we run each task experiments twice, resulting KidCT 0 27 1 0 31 2
in a 28 execution in total. Here we reorganize them S\?S‘;lz‘) g gz § 8 gg g
categorized by radiology task-level: Organ Seg- AnoDet | pyne 0o - - 0o 27 2
. . . . . XDet10 0o 31 3 0o 30 2

mentation, Anomaly Detection, Disease Diagnosis ©
. . CTRATE | 0 29 2 o - -
and Report Generation. We detail our each execu- RepGen | GenomBra | 0 38 4 0 B} B}
tion under each agentic framework, using metrics WXy | 0 31 1 0 30 2
. . - . BTCV 0 29 1 0 3 3
including Average Actions and Iterarions where OrgSeg | VerSe 0 34 0o - -
one action means a step of tool using and a iter- OASIS o - - o 5 2

ation means a step of debug for script execution.

Table 13: Performance metrics of Qurs across various
The result are shown as below:

medical imaging tasks.(succ-number of successful build-
ing, act-number of actions, debug-number of debug
loops.)
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w/o Colab | Execution 1 | Execution 2
| succ act debug | succ act debug
ADNI 0 34 4 0 - -
DisDic KneeMR 0 37 5 0 - -
sPIg | ce-cc 0o - - 0o - -
KidCT 0 - - 0 29 4
COV19 0 40 5 0 - -
INS22 0 36 4 0 - -
AnoDet | pe 0o - . 0 33 s
XDet10 0 41 5 0 - -
CT-RATE 0 - - 0 - -
RepGen | GenomBra 0 32 5 0 - -
1U_Xray 0 - - 0 35 4
BTCV 0 - - 0 33 5
OrgSeg | VerSe 0 36 5 0 - -
OASIS 0 32 4 0 - -
Table 14: Performance metrics of the Execution with-

out collaboration (single agent) across various medical
imaging tasks.(succ-number of successful building, act-

number of actions, debug-number of debug loops.)

w/o debug

| Execution 1

Execution 2

| suce

act

debug | succ act

debug

DisDiag

ADNI
KneeMR
CC-Cccl
KidCT

33

AnoDet

COV19
INS22
Panc
XDet10

—Oo—~OoO 00O C

RepGen

CT-RATE
GenomBra
IU_Xray

coo|o~~rOoO0 | OO0 ~,O

OrgSeg

BTCV
VerSe
OASIS

=R Nl e e Xl

SO -

Table 15:

Performance metrics of the Execution without
extensive debugging across various medical imaging
tasks(succ-number of successful building, act-number

of actions, debug-number of debug loops.).

w/o reflect | Execution 1 | Execution 2
| succ act debug | succ act debug
ADNI 1 37 4 0 - -
DisDing | KneeMR 1 35 3 1 34 s
SPI8 | cc-cen 1 31 4 1 36 4
KidCT 1 36 3 1 39 4
COV19 1 25 5 1 23 5
INS22 1 20 3 1 23 4
AnoDet | b e 127 3 125 4
XDet10 0 - - 1 31 5
CT-RATE 1 42 6 1 46 7
RepGen | GenomBra 1 38 5 1 39 5
1U_Xray 0 - - 0 - -
BTCV 1 28 2 1 27 2
OrgSeg | VerSe 1 31 3 0 - -
OASIS 0 - - 1 27 2
Table 16: Performance metrics of the Execution without

reflection mechanism across various medical imaging
tasks.(succ-number of successful building, act-number

of actions, debug-number of debug loops.)
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A.9 Details about the Agent Rols-specification
Experiments.

In the Role-specification analysis, we have men-
tioned that we run each task twice, which leads to
28 execution rounds in total. Here we reorganize
them categorized by radiology task-level: Organ
Segmentation, Anomaly Detection, Disease Diag-
nosis and Report Generation and in the following
are each execution details:



OrgSeg | Task Manager | Data Engineer | Module Architect | Model Trainer
| Run  Act Iter Tkn | Run Act Iter Tkn | Run Act Iter Tkn | Run Act Iter Tkn

1 1y 3 1 4k | 1(1) 8 1 49 | 1(1) 8 1 37% | 1(1) 10 3 139
2 1y 2 1 4k | 1) 12 1 8k |1 7 1 35k | 1(1) 9 2 75k
3 1 2 1 sk |o1) 9 1 55k | 1(1) 12 3 8k | o1 11 5 113k
4 2 1 4k | 1) 11 2 65k | o) 10 2 60k | o) 12 5 154k
5 a2 1 sk | () 111 9k | 1) 10 2 62k | 1) 13 3 132k
6 1 2 1 4 | 1) 10 2 k|11 16 5 164k | 1(1) 9 2 78k

Table 18: Performance metrics for different roles across tasks in OrganSeg, including Task Manager, Data Engineer,
Module Architect, and Model Trainer.

AnoDet | Task Manager | Data Engineer | Module Architect | Model Trainer

| Run Act Iter Tkn | Run Act Iter Tkn | Run Act Iter Tkn | Run Act Iter Tkn
1 W 2 1 4k | 111 Tk [ 1) 9 1 43k |11 7 1 5k
2 Wy 2 1 4k | 1) 10 1 60k | 1) 8 1 39 | (1) 8 2 60k
3 Wy 2 1 S5k |1 11 2 13k | 1) 11 2 64k | (1) 10 3 73k
4 Wy 2 1 4k | 1) 10 1 128k |01y 17 5 103k | (1) 9 2 68k
5 1(1) 2 1 5k 1(1) 11 2 71k 1(1) 10 2 69k 0(1) 13 5 92k
6 W 2 1 4 |1y 10 2 70k | 10 3 72k | 1) 9 1 7%
7 1 2 1 4k | 1) 8 1 107k | 1(1) 9 1 45k | 1) 8 1 59
8 1(1) 2 1 5k 1(1) 9 1 99k 1(1) 11 2 50k 1(1) 10 2 62k

Table 19: Performance metrics for different roles across tasks in AnoDet, including Task Manager, Data Engineer,
Module Architect, and Model Trainer.

DisDiag | Task Manager | Data Engineer | Module Architect | Model Trainer
| Run  Act Tter Tkn | Run Act Tter Tkn | Run Act Tter Tkn | Run Act Iter Tkn

1 a2 1 5k | 1y 7 1 153k | 1) 9 1 39 | 1() 30 4 754k
2 1w 2 1 4k | (1) 8 1 103k | 1(1) 10 2 44k | (1) 13 2 95k
3 1 2 1 4k | 1) 11 2 140k | (1) 11 2 74k | (1) 19 4 330k
4 W 2 1 4 | 1) 9 1 112k | () 10 2 6% | 1(1) 9 1 100k
5 K 2 1 sk | () 10 2 161k | o) 23 5 255k | 1) 8 2 79
6 2 1 4k | 1) 8 1 9% | 1) 8 1 66k | 1) 8 1 79
7 W 2 1 4k | 1) 8 2 8% | 1() 10 2 8k | L) 7 1 66k
8 2 1 sk | 10 1 7% | 1(1) 9 1 70k | () 10 1 8%

Table 20: Performance metrics for different roles across tasks in DisDiag, including Task Manager, Data Engineer,
Module Architect, and Model Trainer.

RepGen | Task Analyzer | Data Engineer | Code Writer | Model Trainer

| Run Act Tter Tkn | Run Act Iter Tkn | Run Act Tter Tkn | Run Act Iter Tkn
1 1(1) 2 1 4k 1(1) 4 1 14k 1(1) 5 1 18k 0o(1) 14 5 103k
2 1 2 1 sk | 1)y 7 1 22k | 1) 10 2 33k | (1) 10 2  4lk
3 1 2 1 4k | 1)y 11 1 94k |11 16 5 17k |11 9 2 80k
4 1 2 1 4k |11y 10 1 8ok | 1(1) 8 1 47 | 1) 11 1 6%
5 1(1) 2 1 4k 1(1) 11 3 110k | 0O(1) 17 5 219k | 1(1) 13 2 79k
6 1(1) 2 1 4k 1(1) 9 1 77k 1(1) 9 1 58k 1(1) 10 1 55k

Table 21: Performance metrics for different roles across tasks in RepGen, including Task Analyzer, Data Engineer,
Code Writer, and Model Trainer.
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