
M3Builder: A Multi-Agent System for Automated
Machine Learning in Medical Imaging

Anonymous ACL submission

Abstract001

In this paper, we aim to automate the labor-002
intensive process of developing machine learn-003
ing (ML)-based tools for medical imaging,004
paving the way for the self-evolution of medical005
agentic systems. (i) We present M3Builder, a006
multi-agent collaboration framework designed007
to automate model training in medical imag-008
ing, that divide-and-conquers complex medi-009
cal ML with four specialized agents. (ii) To010
better fit in the professional medical imaging011
domain, we build up a specialized ML context012
protocol, a structured environment designed to013
provide agents with comprehensive free-text014
descriptions of medical datasets, training code015
templates, and interaction tools. (iii) To moni-016
tor the progress, we propose M3Bench, span-017
ning four medical imaging ML tasks across 14018
datasets, covering both 2D and 3D data. Our019
experiments demonstrate that, when employing020
an identical agent core, M3Builder surpasses021
existing automated ML agentic architectures,022
achieving a superior task completion rate of023
94.29% while maintaining satisfactory model024
performance. This highlights the potential of025
fully automated ML-based tool development in026
medical imaging. Code will be publicly avail-027
able upon publication.028

1 Introduction029

Large Language Model (LLM)-powered agentic030

systems have demonstrated remarkable success031

across diverse domains. Leveraging their abil-032

ity to orchestrate specialized tools, they can solve033

complex, multi-step tasks with precision. How-034

ever, their application in medical remains challeng-035

ing. Medical tasks are typically professional and036

complex, encompassing a wide range of diseases,037

imaging modalities, and task-specific requirements.038

This diversity makes it difficult for preparing a039

complete toolset to implement a specific medical040

agentic systems, often necessitating further labor-041

intensive development of specialized tools, e.g.,042

Train a model to segment left /
right lung for chest X-ray
images. Please select data and
use tools in { context protocol }.

��Builder

cheXsegment_model.bin

cheXtraining_output.log

Output ��Bench
Assessment

Input

MIML Context
Protocol

Multi-agent
Framework

Figure 1: Overview of our proposed M3Builder and
M3Bench. From user text input to model deployment.

training a machine-learning-based model. How- 043

ever, clinicians often lack the coding skills or tech- 044

nical expertise to implement such processes, signif- 045

icantly hindering the tailored adaptation of agentic 046

systems in medical practice. 047

In this paper, we propose M3Builder (M3 stands 048

for Mutli-agent, Machine Learning, and Medical 049

Imaging), a novel agentic framework for automat- 050

ing medical imaging machine learning (MIML) 051

tasks. Given a MIML tool development demand 052

and raw training data, M3Builder autonomously 053

manages the entire process, from data preparation 054

to model construction, training, and deployment. 055

When integrated with other medical agentic sys- 056

tems, the overall system gains the ability to self- 057

evolve, automatically developing new ML-based 058

medical imaging tools, significantly alleviating the 059

burden of manual tool collection and creation. 060

Specifically, M3Builder employs a multi-agent 061

collaboration framework, where four role-playing 062

LLM agents work together to execute medical 063

1

imaging ML tasks step-by-step. These include task064

management, data engineering, module architec-065

ture design, and model training. In each step, the066

system will self-refine its intermediate generation067

based on Python execution feedbacks.068

Moreover, we design a new MIML-centered069

agentic context protocol. It includes: a free-text070

dataset description template emphasizing critical071

taxonomy tags, a collection of coding templates072

to structure agent outputs and reduce coding com-073

plexity, and a suite of supporting documentation074

tool functions. This protocol helps integrate MIML075

coding priors into the agentic workflow, simplifies076

system processes, emphasizes key MIML coding077

elements, and underlines core coding lines to en-078

able seamless human-in-the-loop auditing.079

Lastly, we introduce a benchmark, M3Bench, de-080

signed to evaluate the performance for automated081

MIML. M3Bench comprises four general tasks:082

organ segmentation, anomaly detection, disease di-083

agnosis, and report generation. These tasks are as-084

sociated with 14 distinct training datasets, spanning085

five anatomical regions and three primary imaging086

modalities, encompassing both 2D and 3D models.087

By covering a broad range of tasks and datasets,088

M3Bench offers a comprehensive quantitative as-089

sessment of the automated MIML capabilities of090

various agentic systems.091

Experimentally, to validate the effectiveness of092

the proposed agentic system, we compare against093

other state-of-the-art (SoTA) ML agentic systems,094

including ML-AgentBench (Huang et al., 2023a),095

Aider (Gauthier, 2023), MetaGPT (Hong et al.,096

2024), ToolMaker (Wölflein et al., 2025), Copilot097

Edits (GitHub, 2023) and so on under fair settings.098

Our results demonstrate that M3Builder consis-099

tently achieves significant performance advancing100

across a range of metrics, achieving an average101

task execution success rate of 94.29% across four102

MIML tasks, where success is defined as producing103

a MIML model comparable (within 5 percentage104

below baseline method on) to the official baseline.105

2 M3Builder106

2.1 Problem Formulation107

Given a task description on medical imaging analy-108

sis, denoted as T , our objective is to automatically109

construct a functional AI model via multi-agent col-110

laboration. As shown in Fig. 2, our proposed frame-111

work M3Builder comprises two key components:112

a MIML-centered context protocol (P), and a multi-113

agent collaboration framework (A). Specifically, 114

the context protocol includes three elements: data 115

cards for multiple medical imaging dataset, MIML 116

code templates, and toolset descriptions. The data 117

cards are represented in natural language, while the 118

toolset descriptions and code templates are demon- 119

strated in Python code. Together, this structured 120

context protocol will then guides the multi-agent 121

collaboration workflow, formulating their input in- 122

structions and output texts. 123

Building on the protocol (P), the multi-agent 124

framework composes of four LLM agents with dis- 125

tinct roles, i.e., A = {a1, a2, a3, a4}. These agents 126

adopt a divide-and-conquer strategy to collabora- 127

tively address the MIML task. The framework 128

iteratively performs code generation, executing it 129

in Python environment and editing it using tools 130

defined by toolset descriptions, until a functional 131

AI model is successfully produced. This process 132

can be expressed as: 133

{Ci,Ri} = A(Ci−1,Ri−1, T | P), (1) 134

where Ci denotes code scripts generated or edited in 135

the ith iteration, Ri denotes the Python compiler 136

feedback, with C0 = R0 = ∅. 137

2.2 MIML Context Protocol 138

The MIML context protocol formulates three core 139

components for agentic system: (i) metadata speci- 140

fications of available medical imaging datasets to 141

guide dataset selection; (ii) MIML-specific code 142

templates emphasizing critical coding elements; 143

(iii) predefined toolset definitions to constrain agent 144

action space. In summary, the context protocol 145

equips the multi-agent framework with necessary 146

resources for dataset preparation, a coding founda- 147

tion, and a well-defined action space, correspond- 148

ing to dataset descriptions, code templates, and 149

toolset definitions. 150

Dataset Preparation. The context protocol in- 151

cludes a range of medical imaging datasets, each 152

accompanied by a datacard for standardized de- 153

scriptions. Each datacard contains a concise data 154

summary covering dataset name, medical scope 155

and metadata (e.g. medical imaging modalities, 156

data format, spatial configurations of scans, anno- 157

tation manners). This free-text format ensures that 158

any description meeting these criteria qualifies as a 159

valid datacard, including documentation provided 160

with the dataset itself. To enable seamless integra- 161

tion, users can add new datasets by completing the 162

2

corresponding datacards. Initially, the context pro-163

tocol provides 14 medical imaging datasets with164

their datacards as examples.165

Code Template Design. To streamline MIML166

training while maintaining flexibility, we prepare167

a set of standardized MIML code templates based168

on the Transformers Trainer framework and169

nnU-Net(Isensee et al., 2021). These coding tem-170

plates are tailored to four primary medical imag-171

ing tasks: disease diagnosis, organ segmentation,172

anomaly detection, and report generation. Each173

task is implemented as a modular package with174

configurable components, such as the main forward175

architecture and network backbone options (2D/3D176

models). Shared features across tasks include a177

unified selection of loss functions, data augmenta-178

tion strategies, training utilities, and architectural179

frameworks. By offering these templates, we re-180

duce the complexity of free-form MIMIL coding181

while preserving adaptability for diverse tasks.182

Interaction Toolset. To enable the agentic sys-183

tem to interact with the PC environment, we devel-184

oped a set of interaction toolset functions, which185

serve as an instruction context for agents to uti-186

lize. This toolset comprises eight general PC-187

level interaction functions and five MIML-specific188

functions, as outlined in Tab. 1. In general func-189

tions, we include: list_files, read_files, copy_files,190

write_files, edit_files, and edit_file, inspired by191

MLAgentBench. Additionally, we supplement two192

extra tools, preview_dirs and preview_files. The193

former handles large dataset directories containing194

numerous files that exceed the LLM’s context win-195

dow, while the latter extracts key segments from196

oversized metadata files that cannot be fully pro-197

cessed by the read_files function. Then, in MIML-198

specific tools, we specifically developed five med-199

ical imaging-specific tools: load_med_data for200

loading various common medical data formats;201

check_3D for examining spatial information of 3D202

format images(nii, dcm, tif); normalize_image for203

performing image window clipping and normal-204

ization; verify_report for detecting noise in imag-205

ing reports; and augment_image for implementing206

common medical data augmentations.207

2.3 Multi-Agent Collaboration Framework208

This section introduces our multi-agent collabora-209

tion framework (A), which decomposes the MIML210

task into four sub-tasks and assigns them to four211

specialized role-playing LLMs agents: Task Man-212

Category Tool Brief Description

PC-
Level
Interact

list_files list all files in folders
read_files read a short-context file
copy_files copy files to a target dir
write_files write code into scripts
edit_files edit certain rows in files
run_script run scripts in command line
preview_dirs overview complex data folders
preview_files screen meta data in large files

Medical
Imaging
Specific

load_med_data load most medical format data
check_3D check 3D format image
normalize_image clip windows and normalize
verify_report verify report format validation
augment_image apply medical-specific augment

Table 1: PC-level interaction and medical imaging spe-
cific tools designed for M3Builder. Gray : common

tools; Yellow : tools for large files and complex data
structures; Blue : tools tailored for medical imaging

ager, Data Engineer, Module Architect, and Model 213

Trainer, denoted as {a1, a2, a3, a4}, respectively, 214

as illustrated in Fig. 2. Each agent is responsible 215

for a specific role, and together they collaborate it- 216

eratively to construct the final AI model. We utilize 217

a set of prompts filled with the related context pro- 218

tocols to control the role and working logic of each 219

agent. For simplicity, detailed instruction prompts 220

for each agent are shown in the Appendix. 221

Task Manager. As the coordinator of the frame- 222

work, its primary responsibilities include selecting 223

the most suitable dataset for the task, or alterna- 224

tively, asking users to upload raw datasets with 225

associated datacard following the context proto- 226

col as a supplement to pre-existing datasets, and 227

generating a comprehensive MIML planning docu- 228

ment P to guide the collaboration among the other 229

agents. Specifically, given a user-provided task de- 230

scription, as exemplified by “user requirements” in 231

Fig. 2, the Task Manager will identify and select 232

the optimal dataset (D) for model training and gen- 233

erate the planning documents. This process can be 234

formally represented as: 235

{D, P} = a1(T | Pd), (2) 236

where Pd denotes the data card in the pre-defined 237

context protocol. 238

Data Engineer. Responsible for dataset prepara- 239

tion and processing. It transforms raw data into 240

a format suitable for model training by perform- 241

ing tasks such as pre-screening the organizational 242

structure of large-scale datasets, analyzing meta- 243

data files to extract relevant information, and split- 244

ting datasets into training and testing subsets. Data 245

3

“I need a model to judge the anterior cruciate ligament injury situation based on 2D MRIs.”

User Requirement

Agent Network Workflow

“I select { KneeMRI } and then make a { general analysis }”

Task Manager

Data Engineer

“I generate { train.json }, { test.json }, and { label.json }”

“I write { KneeMRI_loader } script and make a { conclusion }”

Module Architect

Model Trainer

“I am training the model, and writing { training log } down.”
A Knee MRI Diagnosis Model

DatasetPath>
...

>

TrainPipeline>

 DataSplit

> vol01

> vol08

...

> metadata.csv

>

> train.json
> test.json
> label.json
loader_template.py

 Modules>

> LossFunc
> Utils

KneeMRI_loader.py

 DisDiag_model>

model_arch.py

> OrgSeg_model

main.py
train.sh
output.log

Context Protocol

 KneeMRI

...

Datacard.json

...
...

Auto-debug

Self-reflection Workflow Tracking Example
I need to check if the dataindex files match
the dataloader.py.
 preview_files ([train.json, test.json])

 read_files ([label.json, dataloader.py])

I know the structure now and need to further
read the model arch and main function.

 read_files ([model_arch.py, main.py])

Now I need to understand the pipeline arch.
 list_files (“path/to/TrainPipeline”)

Now I fully understand how to fix scripts.

 edit_files ([main.py])

All prepared! Now I need to run train script.

 run_script (“bash train.sh”)

 error in model_arch.py: shape (32, 3 ...

I see the error info, let me fix and run again.

 edit_file ([model_arch.py, main.py])

 run_script (“bash train.sh”)

 CUDA: out of memory, try to allocate...

I will adjust the batch size and run again!

Act.1

Act.2

Act.3

Act.4

Act.5

Act.6

Act.7...

(Iter.1)

(Iter.2)

File Validation Check
Path validation

Code Runable Check
data traverse

Model Quality Control
logout monitor

Toolset.py
def list_files():
def write_files():
def run_script():
def preview_dirs():
def preview_files():
def normalize_img():
def verify_report():
def augment_img():

Agent Core Candidates

Few-shot

...

...

Figure 2: Visualization of M3Builder workflow: From user’s free-text request to model delivery. The system
integrates user requirements, a context protocol with candidate data, tools, and code templates, a network of four
specialized collaborative agents. A sample log tracks the Model Trainer agent’s activities during diagnosis model
development.

Engineer iteratively interact with the external com-246

piler environment to generate, edit, and refine code,247

incorporating compiler feedback until successful248

execution. This iterative process ensures the dataset249

preparation code is both robust and functional. The250

process can be expressed as:251

{Ci,Ri} = a2(Ci−1,Ri−1, T | D,P), (3)252

where Ci represents the ith version of the code253

generated by the Data Engineer, and Ri denotes254

the compiler feedback from the Python environ-255

ment. Similarly as defined in Problem Formula-256

tion, C0 = R0 = ∅.257

Module Architect. Upon the dataset preparation,258

the Module Architect integrates essential compo-259

nents into the training pipeline, including develop-260

ing dataloader scripts, designing appropriate model261

architecture and selecting other components, such262

as loss functions and training utilities. Notably,263

during dataloader development, Module Architect264

selects a sequence of medical imaging specific tools265

to enable dataset-curated data verification and pre-266

processing. Module Architect will iteratively val-267

idate the dataloader to ensure it outputs batches268

with correct shapes and formats. The process can269

be formulated as: 270

{Ci,Ri} = a3(Ci−1,Ri−1, T | D,Pc), (4) 271

where Pc represents the code templates in the con- 272

text protocol. Similar to the Data Engineer, the 273

code generation process in the Module Architect is 274

also iterative and we denote the final iteration out- 275

put as CMA. After the integration of these modules, 276

the architect finally synthesizes a summary S of all 277

completed work. 278

Model Trainer. It finalizes the debugging and op- 279

timizing the training procedure. Building upon 280

the pipeline established by the Module Architect, 281

the Model Trainer first verifies the completeness 282

and correctness of the training framework thus 283

far. It then selects hyperparameters to meet the 284

model’s specific training requirements, while re- 285

taining the authority to modify any part of the 286

code—including model code, dataloader code, and 287

training scripts—based on errors encountered dur- 288

ing training. Workflow can be expressed as: 289

{Ci,Ri} = a4(Ci−1,Ri−1, T | D, CMA,S). (5) 290

After iteratively performing the above code genera- 291

tion pipeline until successfully executed, the final 292

4

code will produce a desired AI model.293

3 M3Bench294

To thoroughly evaluate the performance of295

M3Builder, we introduce M3Bench, a benchmark296

comprising 14 datasets across 4 key medical imag-297

ing tasks. This benchmark includes ablation studies298

on 7 leading large language models (LLMs) and299

incorporates comparisons with other concurrent300

AutoML frameworks under fair settings.301

3.1 Task Inclusion & Data Preparation302

In this paper, we experiment with 4 typical med-303

ical imaging tasks spanning organ segmentation,304

anomaly detection, disease diagnosis, and report305

generation. These tasks are systematically cate-306

gorized by anatomic regions (head & neck, chest,307

abdomen & pelvis, limb, spine), imaging modali-308

ties (X-ray, CT, MRI), and dimensionality (2D/3D).309

Each task is precisely defined, for instance: “please310

build a model for covid-19 pneumonia classifica-311

tion from 3D chest CT images.”312

We collect 14 medical imaging datasets:313

ADNI (Jack et al., 2008), KneeMRI (Štajduhar314

et al., 2017), CC-CCII (Zhang et al., 2020a), CT-315

Kidney (Žukovec et al., 2021), BTCV (Land-316

man et al., 2015), MSD Pancreas (Antonelli317

et al., 2022), VerSe (Sekuboyina et al., 2021;318

Löffler et al., 2020; Liebl et al., 2021), L2R-319

OASIS (Marcus et al., 2007), COVID-19 (Ma et al.,320

2021), CT-RATE (Hamamci et al., 2024a), IN-321

STANCE2022 (Li et al., 2023), ChestX-Det10 (Liu322

et al., 2020), RadGenome-Brain-MRI (Lei et al.,323

2024), and IU-Xray (Demner-Fushman et al.,324

2016). Each dataset is accompanied by a datac-325

ard with metadata from their original publications.326

3.2 Agent Core Selection327

As the core of our agentic system, LLM must have328

basic function-calling, coding skills, and ideally329

medical knowledge to support the implementation330

of four agents. As shown in Tab.2, medical-specific331

LLMs like BaichuanMed(Lijun Liu, 2025) excel in332

medical knowledge but lack function-calling and333

coding abilities, making them unsuitable for au-334

tonomous MIML tasks. Therefore, they are ex-335

cluded from our benchmark.336

In this context, given the critical importance of337

function calling and coding abilities for our task,338

we include 7 coding LLMs in M3Bench to demon-339

strate their impact on different agent core selec-340

tions. These models are GPT-4o (Hurst et al.,341

LLM
Core Considerations

Medical
Specification

Function
Calling

Coding
Expertise

Reasoning
Free

Open
Source

BaichuanMed ✓ ✗ ✗ ✓ ✓

DeepSeek-V3 ✗ ✓ ✓ ✓ ✓

Sonnet-3.7 ✗ ✓ ✓ ✗ ✗

OpenAI-o3 ✗ ✓ ✓ ✓ ✗

Table 2: Core Considerations of four representative
LLMs across medical and general domains, including
function calling ability, coding proficiency, reasoning
approach, and open or closed source status.

Framework
Key Features

Medical
Adaptation

Automated
Correction

Multi
Agent

Open
Source

MLABench ✗ ✗ ✗ ✓
Aider ✗ ✓ ✗ ✓
MetaGPT ✗ ✓ ✓ ✓
ToolMaker ✓ ✓ ✗ ✓
Copilot Edits ✗ ✓ ✗ ✗

M3Builder (Ours) ✓ ✓ ✓ ✓

Table 3: Key features of frameworks across core fea-
tures, including medical adaptation, automated correc-
tion, multi-agent capability, and open source status.

2024), Claude-3.7-Sonnet (Anthropic), Claude- 342

3.5-Sonnet (Anthropic), DeepSeek-v3 (Liu et al., 343

2024a), Gemini-2.0-flash (Team et al., 2023), 344

Qwen-2.5-max (Yang et al., 2024), and Llama-3.3- 345

70B (Dubey et al., 2024). 346

3.3 SoTA Comparison 347

In order to investigate the superiorty of our pro- 348

posed agentic system, we perform a comparative 349

analysis of five representative SoTA agentic coding 350

frameworks as summarized in Table ??: MLAgent- 351

Bench, Aider, MetaGPT, ToolMaker, and Copi- 352

lot Edits. MLAgentBench provides an agentic 353

pipeline for evaluating large language models on 354

Kaggle problem solving, while Aider offers an 355

open-source environment for automating code gen- 356

eration. MetaGPT employs a multi-agent architec- 357

ture to decompose and coordinate complex work- 358

flows, and ToolMaker converts “papers with code” 359

into LLM-compatible tools with demonstrated effi- 360

cacy in medical domains. Copilot Edits integrates 361

an agent mode within a coding assistant to support 362

mostly automated, end-to-end task execution. 363

3.4 Evaluation Metrics 364

We focus on the task completion rate (success rate) 365

of MIML tasks, calculated as the proportion of suc- 366

cessful completion out of N independent attempts. 367

5

Task Dataset Baseline Method

BTCV SAT-Nano(Zhao et al., 2023)
VerSe SAT-Nano(Zhao et al., 2023)OrgSeg
OASIS U-Mamba(Ma et al., 2024)

COVID19 UMamba(Ma et al., 2024)
INSTANCE2022 SAT-Nano(Zhao et al., 2023)
MSD Pancreas SAT-Nano(Zhao et al., 2023)

AnoDet

ChestX-Det10 nnUnet(Isensee et al., 2021)

ADNI VoxResNet(Chen et al., 2018)
KneeMRI RP3D(Zheng et al., 2024)
CC-CCII 3DResNet(Zhang et al., 2020b)

DisDiag

CT-Kidney RP3D(Zheng et al., 2024)

CT-RATE CT2Rep(Hamamci et al., 2024b)
BrainGnome AutoRG-Brain(Lei et al., 2024)RepGen

IU-Xray KiUT(Huang et al., 2023b)

Table 4: Baseline Methods of 4 medical imaging tasks
on 14 Datasets

Here, a “completion” means a successful training368

that achieves task-wise metrics within 5 percent369

below existing baselines. For Organ Segmentation370

and Anomaly Detection, Dice Similarity Coeffi-371

cient is employed as the main metric. Specifically372

for ChestX-Det10 dataset, which utilizes bounding373

box annotations, we apply mean Average Precision374

at 0.4 IoU threshold (mAP@0.4). Disease Diagno-375

sis is assessed with AUROC, while Report Genera-376

tion is evaluated using BLEU-4. Baseline methods377

of corresponding datasets are listed in Tab. ??378

For other compared agentic baselines, we find379

most of them can not complete complex MIML380

tasks during our experiments due to large-scale381

PC-level interaction and data-level precise align-382

ment. Therefore, we grant them access to our pro-383

posed context protocol for template referencing and384

dataset initialization. Under this setup, we employ385

Claude-3.5-Sonnet as the agent core with the limit386

of 100 action iterations (tool invocations) to ensure387

experimental fairness.388

4 Results and Analysis389

4.1 Agent Core Selection390

We benchmarked seven LLMs as the agentic core391

on MIML tasks, running each LLM five times392

to calculate completion rates (Tab. ??). Perfor-393

mance varied significantly: Sonnet series and GPT-394

4o achieved the highest completion rates (94.29%,395

90.00%, and 81.43%), while Gemini-2.0-flash and396

Llama-3.3-70b only reached 2.86% and 4.29%.397

This highlights the importance of code proficiency,398

well-trained function-calling capabilities, and suf-399

ficient model capacity for serving as agent cores.400

Further analysis shows weaker models misinter-401

preted tool descriptions, leading to errors, halluci- 402

nations, and incomplete step recognition. 403

Fig. 3 shows detailed performance of Sonnet- 404

3.7, the best agentic core, across 14 tasks. Re- 405

sults show that when our agentic system exe- 406

cutes MIML codes successfully, most automati- 407

cally trained models match or even surpass manu- 408

ally trained baselines in performance, demonstrat- 409

ing robustness and applicability. This highlights 410

that the primary challenge in MIML lies in co- 411

herently organizing the coding process rather than 412

refining model performance. 413

4.2 Ablation Study 414

To quantify the influence of our proposed agentic 415

component or mechanism, we carry out thorough 416

ablation studies on the proposed agentic architec- 417

ture. As shown in Tab ??, we show the impact 418

of core mechanisms, including multi-agent collab- 419

oration, auto-debugging (self-correction when an 420

error occurs), self-reflection (thinking twice be- 421

fore moving into the next step), and few-shot learn- 422

ing (adding a well-crafted example in the prompt 423

for instruction), on success rate and action cost. 424

The results indicate that self-reflection has minimal 425

influence on our system performance, while auto- 426

debugging proves crucial for successful training, in- 427

dicating the LLMs can effectively interact with the 428

compiler environment. Multi-agent collaboration 429

and few-shot learning also significantly impact per- 430

formance, with their absence resulting in 42.85% 431

and 25.00% performance drop, respectively. These 432

ablation results demonstrate the necessity and su- 433

periority of the proposed agentic mechanisms. 434

Tab. 7 presents the fine-grained analysis of 435

per-agent performance, tracking the number of 436

function-calling steps and debugging iterations, 437

and token costs. A role agent succeeds if it flaw- 438

lessly completes its final objective (e.g. the Task 439

Manager selects suitable datasets, the Data Engi- 440

neer generates valid data index files, the Module Ar- 441

chitect produces executable scripts for data loading, 442

and the Model Trainer completes model training), 443

assuming upstream agents perform correctly. 444

The Task Manager demonstrated exceptional ac- 445

curacy in task analysis, with stable token usage 446

across all tasks. In contrast, the other three agent 447

roles show greater variability in token consumption 448

and execution attempts. This variability stems from 449

the strict requirements for code organization, data 450

preprocessing, and achieving error-free training 451

within five iterations. This finding highlights that 452

6

LLMsTask Dataset Anatomy Modality Dimension
Son.3.7 Son.3.5 GPT4o QwenMax DeepSeekV3 Llama3.3 Gemini2

BTCV Abdom & Pelvis CT 3D 5/5 4/5 5/5 3/5 2/5 1/5 0/5
Verse Spine CT 3D 4/5 4/5 5/5 2/5 0/5 0/5 0/5OrgSeg
OASIS Head & Neck MRI 3D 4/5 3/5 3/5 1/5 1/5 0/5 0/5

COV19 Chest CT 3D 5/5 5/5 4/5 3/5 1/5 0/5 1/5
INS22 Head & Neck CT 3D 5/5 5/5 4/5 2/5 2/5 0/5 0/5
Panc Abdom & Pelvis CT 3D 5/5 5/5 5/5 4/5 2/5 1/5 0/5

AnoDet

XDet10 Chest X-ray 2D 5/5 5/5 5/5 3/5 1/5 0/5 1/5

ADNI Head & Neck MRI 3D 5/5 4/5 2/5 1/5 1/5 0/5 0/5
KneeMR Limb MRI 2D 4/5 5/5 4/5 2/5 1/5 0/5 0/5
CC-CCII Chest CT 3D 5/5 5/5 5/5 0/5 0/5 0/5 0/5

DisDiag

KidCT Abdom & Pelvis CT 2D 5/5 5/5 4/5 2/5 1/5 0/5 0/5

CT-RATE Chest CT 3D 5/5 4/5 4/5 2/5 1/5 0/5 0/5
GenomBra Head & Neck MRI 3D 5/5 5/5 4/5 3/5 1/5 1/5 0/5RepGen
IU-Xray Chest X-ray 2D 4/5 4/5 3/5 1/5 2/5 0/5 0/5

Average(%) 94.29 90.00 81.43 41.43 22.86 4.29 2.86

Table 5: Task Completion Performance Across LLMs. Each experiment undergoes multi-runs, with results shown as
successful completions over total rounds (a/b format). Green cells indicate that all runs passed, Yellow indicates
partially passed, and Red indicates that all runs failed. OrgSeg-Organ Segmentation, AnoDet-Anomaly Detection,
DisDiag-Disease Diagnosis, RepGen-Report Generation.

SAT-Nano U-MambaSAT-Nano U-Mamba SAT-Nano SAT-Nano nnUnet

VoxResNet RP3D 3DResNet RP3D CT2Rep AutoRG-Brain KiUT

Ours Ours Ours Ours Ours Ours Ours

Ours Ours Ours Ours Ours Ours Ours

Organ Segmentation Anomaly Detection

Disease Diagnosis Report Generation

Figure 3: Training Performance Across 14 Datasets. M3Builder is evaluated with 5 replicate experiments on each
dataset by Sonnet, with performance compared against respective baseline methods. Failed trial is denoted with ✗.

for automating MIML, coding edits, particularly453

the self-debugging process, are the primary bottle-454

necks influencing success rates and computational455

costs in our pipeline. Despite these challenges,456

most agents successfully completed their assigned457

tasks, demonstrating the robustness and adaptabil-458

ity of the multi-agent framework. Detailed mecha-459

nism implementations are listed in Appendix. A.6.460

4.3 SoTA Comparison461

We evaluate eight SoTA agentic approaches uni-462

formly using Sonnet-3.5 as the agent core, ex-463

ecuting each training dataset twice, resulting in464

6, 8, 8, and 6 runs for the segmentation, de-465

tection, diagnosis, and generation tasks, respec-466

tively. M3Builder completes 23 runs with accept-467

able performance, outperforming all competitors.468

As shown in Tab ??, MLA-Bench often fails on469

large medical meta data file preprocessing; Aider470

and MetaGPT can sometimes finish but underper-471

form (e.g., only 50% AUC in binary diagnosis due 472

to label–image mismatches); ToolMaker lacks med- 473

ical domain-specific design and frequently fails 474

during preprocessing or training; and the remain- 475

ing agentic assistants require human-in-the-loop 476

and are prone to deadlocks (such as misconfigured 477

Conda environments or infinite data-loading-error- 478

debuggin loops). Overall, M3Builder achieves a 479

42.85% higher average success rate with fewer ac- 480

tion steps and execution iterations, demonstrating 481

the superiority of our agentic method. Detailed 482

prompts are listed in Appendix. A.7. 483

5 Related Work 484

5.1 LLM-Powered Agentic Systems 485

Large Language Models (LLMs) have demon- 486

strated remarkable capabilities. Recent work has 487

en-powered LLMs with abilities for planning, rea- 488

soning and tool calling, enabling LLMs to function 489

as agents(Plaat et al., 2025), addressing a spec- 490

7

Completion Runs (Total) ↑ Average Actions (Iters) ↓Agentic System
Seg. Det. Diag. Gen. Avg(%) Seg. Det. Diag. Gen.

MLA-Bench (Huang et al., 2023a) 0(6) 0(8) 0(8) 0(6) 0.00 -(-) -(-) -(-) -(-)
Aider (Gauthier, 2023) 2(6) 3(8) 2(8) 3(6) 35.71 58.0(6.5) 51.3(7.0) 44.5(4.5) 56.7(5.7)

MetaGPT (Hong et al., 2024) 1(6) 2(8) 3(8) 1(6) 17.86 49(5) 37.5(3.5) 37(4.67) 40(4)
ToolMaker (Wölflein et al., 2025) 1(6) 1(8) 4(8) 2(6) 28.57 41(4) 44(3) 37.75(3.75) 46(4.5)

Cursor Comp (Team, 2023) 1(6) 3(8) 3(8) 2(6) 32.14 42.0(7.0) 35.7(4.3) 36.3(4.0) 51.5(5.5)
Wsurf Casc (Codeium, 2024) 1(6) 3(8) 4(8) 2(6) 35.71 39.0(5.0) 36.0(4.3) 35.3(4.8) 48.5(5.5)
Copilot Edits (GitHub, 2023) 2(6) 4(8) 3(8) 2(6) 39.29 48.0(3.5) 45.3(3.5) 44.7(4.0) 46.5(4.5)

M3Builder (Ours) 4(6) 7(8) 8(8) 4(6) 82.14 34.5(1.8) 25.29(2.4) 35.0(1.9) 32.0(2.3)

w/o Colab 3(6) 3(8) 3(8) 2(6) 39.29 33.6(4.7) 37.5(4.8) 33.3(4.3) 33.5(3.5)
w/o Debug 2(6) 3(8) 1(8) 0(6) 21.43 30.5(1.0) 24.0(1.0) 33.0(1.0) -(-)
w/o Reflect 4(6) 7(8) 7(8) 4(6) 78.57 28.3(2.3) 24.9(4.1) 35.4(3.9) 41.3(5.8)

w/o Fewshot 3(6) 4(8) 6(8) 3(6) 57.14 37.3(4.0) 23.5(4.3) 32.3(4.1) 34.0(3.0)

Table 6: Framework Comparison with SOTAs and Ablations on System Design using Sonnet. Results are averaged
over two runs per task in dataset-level. “w/o Colab” represents single-agent execution, and “Iters” means the
self-correction rounds.

Task Task Manager Data Engineer Module Architect Model Trainer
Run Act Iter Tkn Run Act Iter Tkn Run Act Iter Tkn Run Act Iter Tkn

Seg. 6/6 1.3 1.0 4.3k 5/6 10.2 1.3 72k 5/6 10.5 2.3 74k 4/6 10.7 3.3 115k
Det. 8/8 2.0 1.0 4.8k 8/8 10.0 1.4 92k 7/8 10.6 2.1 61k 7/8 9.3 2.1 67k
Diag. 8/8 2.0 1.0 4.4k 8/8 8.9 1.4 116k 7/8 11.3 2.0 84k 8/8 9.3 2.0 198k
Gen. 6/6 2.0 1.0 4.2k 6/6 8.7 1.3 66k 5/6 10.8 2.5 91k 5/6 11.2 2.2 70k

Table 7: Role-specific agent performance on tasks using Sonnet. “Run”, “Act”, “Iter” and “Tkn” respectively denote
“execution rounds”, “actions”, “iterations” and “tokens”.

trum of complex tasks, such as planning tasks in491

PC environments(Wang et al., 2024; Agashe et al.,492

2024), software engineering(Dong et al., 2024;493

Liu et al., 2024b), and scientific discovery(Boiko494

et al., 2023; Lu et al., 2024). Agents can be in-495

tegrated into Multi-Agent Systems(MAS) where496

multiple agents collaborate through specialized497

roles to address more complex tasks(Talebirad and498

Nadiri, 2023). Leveraging tool calling capabilities499

of LLMs(Schick et al., 2023), agentic systems can500

interact with environment to perform long-chain501

reasoning and planning, and utilize external knowl-502

edge to achieve real-time in-context learning while503

reducing hallucinations.504

5.2 Automatic Machine Learning505

Automatic Machine Learning (AutoML) automates506

the selection of modules and hyper-parameters in507

machine learning pipeline, making ML accessible508

to users without expertise(Baratchi et al., 2024).509

Previous work focus on two main aspects: (i)510

Model Selection (MS), which involves identify-511

ing the best-performing machine learning model512

for a dataset from a predefined model set(Thornton513

et al., 2013; Liu et al., 2018; Feurer et al., 2020),514

and (ii) Hyper-Parameter Optimization (HPO), the515

process of searching the hyper-parameter space to516

determine optimal values that enhance the selected517

model’s performance(Snoek et al., 2014; Pfisterer 518

et al., 2021; Lindauer et al., 2022). Recent studies 519

also consider combination of MS and HPO(LeDell 520

and Poirier, 2020; Zimmer et al., 2021). 521

6 Conclusion 522

In this paper, we present M3Builder, an agentic 523

system for automating medical imaging machine 524

learning (MIML) tasks. Our approach combines 525

an efficient medical imaging ML context proto- 526

col formatting the free-text descriptions of MIML 527

datasets, code templates, and interaction tools. Ad- 528

ditionally, we propose a multi-agent collabora- 529

tive agent system designed specifically for MIML 530

training, with four role-playing LLMs, Task Man- 531

ager, Data Engineer, Module Architect, and Model 532

Trainer. In benchmarking against seven SOTA 533

agentic systems across 14 radiology task-specific 534

datasets, M3Builder achieves a 94.29% model 535

building completion rate. In agent core selection, 536

we find Claude-3.7-Sonnet standing out among 537

seven SOTA LLMs. By integrating M3Builder 538

with other clinical agent workflows, we can em- 539

power medical agentic systems with self-evolving 540

capabilities that automatically expand their toolsets, 541

greatly reducing the extensive labor required to 542

manually prepare diverse MIML tools. 543

8

Limitations544

Although our proposed framework, M3Builder,545

has performed well across various medical imag-546

ing ML tasks, there are still some limitations.547

First, while M3Builder shows remarkable gener-548

alizability across diverse medical tasks and imag-549

ing modalities, the task set could be further ex-550

tended to more anatomical regions and imaging551

modalities. Besides, due to the scalability of our552

framework, it could be further extended to more553

medical ML tasks beyond medical imaging sce-554

narios. Future work will extend beyond medical555

imaging to broader medical tasks, develop more556

robust tool-building agent systems, implement au-557

tomated dataset preparation capabilities, and in-558

corporate visual processing to better approximate559

clinical expertise.560

References561

Saaket Agashe, Jiuzhou Han, Shuyu Gan, Jiachen Yang,562
Ang Li, and Xin Eric Wang. 2024. Agent s: An open563
agentic framework that uses computers like a human.564
arXiv preprint arXiv:2410.08164.565

Anthropic. The claude 3 model family: Opus, sonnet,566
haiku.567

Michela Antonelli, Annika Reinke, Spyridon Bakas,568
Keyvan Farahani, Annette Kopp-Schneider, Ben-569
nett A Landman, Geert Litjens, Bjoern Menze, Olaf570
Ronneberger, Ronald M Summers, and 1 others.571
2022. The medical segmentation decathlon. Nature572
communications, 13(1):4128.573

Mitra Baratchi, Can Wang, Steffen Limmer, Jan N van574
Rijn, Holger Hoos, Thomas Bäck, and Markus Ol-575
hofer. 2024. Automated machine learning: past,576
present and future. Artificial intelligence review,577
57(5):122.578

Daniil A Boiko, Robert MacKnight, Ben Kline, and579
Gabe Gomes. 2023. Autonomous chemical research580
with large language models. Nature, 624(7992):570–581
578.582

Hao Chen, Qi Dou, Lequan Yu, Jing Qin, and Pheng-583
Ann Heng. 2018. Voxresnet: Deep voxelwise resid-584
ual networks for brain segmentation from 3d mr im-585
ages. NeuroImage, 170:446–455.586

Codeium. 2024. Windsurf cascade. https://docs.587
codeium.com/windsurf/cascade.588

Dina Demner-Fushman, Marc D Kohli, Marc B Rosen-589
man, Sonya E Shooshan, Laritza Rodriguez, Sameer590
Antani, George R Thoma, and Clement J McDon-591
ald. 2016. Preparing a collection of radiology ex-592
aminations for distribution and retrieval. Journal593
of the American Medical Informatics Association,594
23(2):304–310.595

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. 2024. 596
Self-collaboration code generation via chatgpt. ACM 597
Transactions on Software Engineering and Method- 598
ology, 33(7):1–38. 599

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 600
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 601
Akhil Mathur, Alan Schelten, Amy Yang, Angela 602
Fan, and 1 others. 2024. The llama 3 herd of models. 603
arXiv preprint arXiv:2407.21783. 604

Matthias Feurer, Katharina Eggensperger, Stefan 605
Falkner, Marius Lindauer, and Frank Hutter. 2020. 606
Auto-sklearn 2.0: The next generation. arXiv 607
preprint arXiv:2007.04074, 24(8). 608

Paul Gauthier. 2023. Aider is ai pair program- 609
ming in your terminal. https://github.com/ 610
paul-gauthier/aider. 611

GitHub. 2023. Copilot edits. https: 612
//code.visualstudio.com/docs/copilot/ 613
copilot-edits. 614

Ibrahim Ethem Hamamci, Sezgin Er, Furkan Al- 615
mas, Ayse Gulnihan Simsek, Sevval Nil Esirgun, 616
Irem Dogan, Muhammed Furkan Dasdelen, Bastian 617
Wittmann, Enis Simsar, Mehmet Simsar, and 1 oth- 618
ers. 2024a. A foundation model utilizing chest ct 619
volumes and radiology reports for supervised-level 620
zero-shot detection of abnormalities. CoRR. 621

Ibrahim Ethem Hamamci, Sezgin Er, and Bjoern Menze. 622
2024b. Ct2rep: Automated radiology report genera- 623
tion for 3d medical imaging. In International Con- 624
ference on Medical Image Computing and Computer- 625
Assisted Intervention, pages 476–486. Springer. 626

Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu 627
Zheng, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, 628
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, Liyang 629
Zhou, Chenyu Ran, Lingfeng Xiao, Chenglin Wu, 630
and Jürgen Schmidhuber. 2024. MetaGPT: Meta pro- 631
gramming for a multi-agent collaborative framework. 632
In The Twelfth International Conference on Learning 633
Representations. 634

Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. 635
2023a. Mlagentbench: Evaluating language agents 636
on machine learning experimentation. arXiv preprint 637
arXiv:2310.03302. 638

Zhongzhen Huang, Xiaofan Zhang, and Shaoting Zhang. 639
2023b. Kiut: Knowledge-injected u-transformer for 640
radiology report generation. In Proceedings of the 641
IEEE/CVF conference on computer vision and pat- 642
tern recognition, pages 19809–19818. 643

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam 644
Perelman, Aditya Ramesh, Aidan Clark, AJ Ostrow, 645
Akila Welihinda, Alan Hayes, Alec Radford, and 1 646
others. 2024. Gpt-4o system card. arXiv preprint 647
arXiv:2410.21276. 648

9

https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://api.semanticscholar.org/CorpusID:268232499
https://docs.codeium.com/windsurf/cascade
https://docs.codeium.com/windsurf/cascade
https://docs.codeium.com/windsurf/cascade
https://github.com/paul-gauthier/aider
https://github.com/paul-gauthier/aider
https://github.com/paul-gauthier/aider
https://code.visualstudio.com/docs/copilot/copilot-edits
https://code.visualstudio.com/docs/copilot/copilot-edits
https://code.visualstudio.com/docs/copilot/copilot-edits
https://code.visualstudio.com/docs/copilot/copilot-edits
https://code.visualstudio.com/docs/copilot/copilot-edits
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o
https://openreview.net/forum?id=VtmBAGCN7o

Fabian Isensee, Paul F Jaeger, Simon AA Kohl, Jens649
Petersen, and Klaus H Maier-Hein. 2021. nnu-net:650
a self-configuring method for deep learning-based651
biomedical image segmentation. Nature methods,652
18(2):203–211.653

Clifford R. Jack, Matt A. Bernstein, Nick C Fox,654
Paul M. Thompson, Gene E. Alexander, Danielle J.655
Harvey, Bret J. Borowski, Paula J. Britson, Jen-656
nifer L Whitwell, Chadwick P. Ward, Anders M.657
Dale, Joel P. Felmlee, Jeffrey L. Gunter, Derek L. G.658
Hill, Ronald J. Killiany, Norbert Schuff, Sabrina Fox-659
Bosetti, Chen Lin, Colin Studholme, and 16 others.660
2008. The alzheimer’s disease neuroimaging ini-661
tiative (adni): Mri methods. Journal of Magnetic662
Resonance Imaging, 27.663

Bennett Landman, Zhoubing Xu, Juan Igelsias, Mar-664
tin Styner, Thomas Langerak, and Arno Klein. 2015.665
Miccai multi-atlas labeling beyond the cranial vault–666
workshop and challenge. In Proc. MICCAI multi-667
atlas labeling beyond cranial vault—workshop chal-668
lenge, volume 5, page 12. Munich, Germany.669

Erin LeDell and Sebastien Poirier. 2020. H2o automl:670
Scalable automatic machine learning. In Proceedings671
of the AutoML Workshop at ICML, volume 2020,672
page 24.673

Jiayu Lei, Xiaoman Zhang, Chaoyi Wu, Lisong Dai,674
Ya Zhang, Yanyong Zhang, Yanfeng Wang, Weidi675
Xie, and Yuehua Li. 2024. Autorg-brain: Grounded676
report generation for brain mri. arXiv preprint677
arXiv:2407.16684.678

Xiangyu Li, Gongning Luo, Kuanquan Wang, Hongyu679
Wang, Jun Liu, Xinjie Liang, Jie Jiang, Zheng-680
hao Song, Chunyue Zheng, Haokai Chi, and 1 oth-681
ers. 2023. The state-of-the-art 3d anisotropic in-682
tracranial hemorrhage segmentation on non-contrast683
head ct: The instance challenge. arXiv preprint684
arXiv:2301.03281.685

Hans Liebl, David Schinz, Anjany Sekuboyina, Luca686
Malagutti, Maximilian T Löffler, Amirhossein Bayat,687
Malek El Husseini, Giles Tetteh, Katharina Grau, Eva688
Niederreiter, and 1 others. 2021. A computed tomog-689
raphy vertebral segmentation dataset with anatomical690
variations and multi-vendor scanner data. Scientific691
data, 8(1):284.692

Tao Zhang Chong Li Mingrui Wang Chenglin Zhu693
Mingan Lin Zenan Zhou Weipeng Chen Lijun Liu,694
Tao Zhang. 2025. Baichuanmed-ocr-72b: A power-695
ful medical report ocr recognition model.696

Marius Lindauer, Katharina Eggensperger, Matthias697
Feurer, André Biedenkapp, Difan Deng, Carolin Ben-698
jamins, Tim Ruhkopf, René Sass, and Frank Hutter.699
2022. Smac3: A versatile bayesian optimization700
package for hyperparameter optimization. Journal of701
Machine Learning Research, 23(54):1–9.702

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,703
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi704
Deng, Chenyu Zhang, Chong Ruan, and 1 others.705

2024a. Deepseek-v3 technical report. arXiv preprint 706
arXiv:2412.19437. 707

Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon 708
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, 709
Jonathan Huang, and Kevin Murphy. 2018. Progres- 710
sive neural architecture search. In Proceedings of the 711
European conference on computer vision (ECCV), 712
pages 19–34. 713

Jingyu Liu, Jie Lian, and Yizhou Yu. 2020. Chestx- 714
det10: Chest x-ray dataset on detection of thoracic 715
abnormalities. Preprint, arXiv:2006.10550v3. 716

Junwei Liu, Yixuan Chen, Mingwei Liu, Xin Peng, 717
and Yiling Lou. 2024b. Stall+: Boosting llm-based 718
repository-level code completion with static analysis. 719
arXiv preprint arXiv:2406.10018. 720

Maximilian T Löffler, Anjany Sekuboyina, Alina Jacob, 721
Anna-Lena Grau, Andreas Scharr, Malek El Husseini, 722
Mareike Kallweit, Claus Zimmer, Thomas Baum, 723
and Jan S Kirschke. 2020. A vertebral segmentation 724
dataset with fracture grading. Radiology: Artificial 725
Intelligence, 2(4):e190138. 726

Chris Lu, Cong Lu, Robert Tjarko Lange, Jakob Foer- 727
ster, Jeff Clune, and David Ha. 2024. The ai scientist: 728
Towards fully automated open-ended scientific dis- 729
covery. arXiv preprint arXiv:2408.06292. 730

Jun Ma, Feifei Li, and Bo Wang. 2024. U-mamba: En- 731
hancing long-range dependency for biomedical im- 732
age segmentation. arXiv preprint arXiv:2401.04722. 733

Jun Ma, Yixin Wang, Xingle An, Cheng Ge, Ziqi Yu, 734
Jianan Chen, Qiongjie Zhu, Guoqiang Dong, Jian 735
He, Zhiqiang He, and 1 others. 2021. Toward data- 736
efficient learning: A benchmark for covid-19 ct 737
lung and infection segmentation. Medical physics, 738
48(3):1197–1210. 739

Daniel S Marcus, Tracy H Wang, Jamie Parker, John G 740
Csernansky, John C Morris, and Randy L Buckner. 741
2007. Open access series of imaging studies (oasis): 742
cross-sectional mri data in young, middle aged, non- 743
demented, and demented older adults. Journal of 744
cognitive neuroscience, 19(9):1498–1507. 745

Florian Pfisterer, Jan N Van Rijn, Philipp Probst, An- 746
dreas C Müller, and Bernd Bischl. 2021. Learning 747
multiple defaults for machine learning algorithms. In 748
Proceedings of the genetic and evolutionary compu- 749
tation conference companion, pages 241–242. 750

Aske Plaat, Max van Duijn, Niki van Stein, Mike Preuss, 751
Peter van der Putten, and Kees Joost Batenburg. 2025. 752
Agentic large language models, a survey. arXiv 753
preprint arXiv:2503.23037. 754

Timo Schick, Jane Dwivedi-Yu, Roberto Dessì, Roberta 755
Raileanu, Maria Lomeli, Eric Hambro, Luke Zettle- 756
moyer, Nicola Cancedda, and Thomas Scialom. 2023. 757
Toolformer: Language models can teach themselves 758
to use tools. Advances in Neural Information Pro- 759
cessing Systems, 36:68539–68551. 760

10

https://api.semanticscholar.org/CorpusID:3272607
https://api.semanticscholar.org/CorpusID:3272607
https://api.semanticscholar.org/CorpusID:3272607
https://arxiv.org/abs/2006.10550v3
https://arxiv.org/abs/2006.10550v3
https://arxiv.org/abs/2006.10550v3
https://arxiv.org/abs/2006.10550v3
https://arxiv.org/abs/2006.10550v3

Anjany Sekuboyina, Malek E Husseini, Amirhossein761
Bayat, Maximilian Löffler, Hans Liebl, Hongwei Li,762
Giles Tetteh, Jan Kukačka, Christian Payer, Darko763
Štern, and 1 others. 2021. Verse: a vertebrae labelling764
and segmentation benchmark for multi-detector ct765
images. Medical image analysis, 73:102166.766

Jasper Snoek, Kevin Swersky, Rich Zemel, and Ryan767
Adams. 2014. Input warping for bayesian optimiza-768
tion of non-stationary functions. In International769
conference on machine learning, pages 1674–1682.770
PMLR.771

Ivan Štajduhar, Mihaela Mamula, Damir Miletić, and772
Gözde Ünal. 2017. Semi-automated detection of773
anterior cruciate ligament injury from MRI. Comput.774
Methods Programs Biomed., 140:151–164.775

Yashar Talebirad and Amirhossein Nadiri. 2023. Multi-776
agent collaboration: Harnessing the power of intelli-777
gent llm agents. arXiv preprint arXiv:2306.03314.778

Cursor Team. 2023. Cursor: The ai code editor. https:779
//www.cursor.com/.780

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-781
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan782
Schalkwyk, Andrew M Dai, Anja Hauth, Katie Mil-783
lican, and 1 others. 2023. Gemini: a family of784
highly capable multimodal models. arXiv preprint785
arXiv:2312.11805.786

Chris Thornton, Frank Hutter, Holger H Hoos, and787
Kevin Leyton-Brown. 2013. Auto-weka: Combined788
selection and hyperparameter optimization of classi-789
fication algorithms. In Proceedings of the 19th ACM790
SIGKDD international conference on Knowledge dis-791
covery and data mining, pages 847–855.792

Junyang Wang, Haiyang Xu, Jiabo Ye, Ming Yan,793
Weizhou Shen, Ji Zhang, Fei Huang, and Jitao Sang.794
2024. Mobile-agent: Autonomous multi-modal mo-795
bile device agent with visual perception. arXiv796
preprint arXiv:2401.16158.797

Georg Wölflein, Dyke Ferber, Daniel Truhn, Ogn-798
jen Arandjelović, and Jakob Nikolas Kather. 2025.799
LLM agents making agent tools. Preprint,800
arXiv:2502.11705.801

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,802
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,803
Fei Huang, Haoran Wei, and 1 others. 2024. Qwen2.804
5 technical report. arXiv preprint arXiv:2412.15115.805

Kang Zhang, Xiaohong Liu, Jun Shen, Zhihuan Li,806
Ye Sang, Xingwang Wu, Yunfei Zha, Wenhua Liang,807
Chengdi Wang, Ke Wang, and 1 others. 2020a. Clin-808
ically applicable ai system for accurate diagnosis,809
quantitative measurements, and prognosis of covid-810
19 pneumonia using computed tomography. Cell,811
181(6):1423–1433.812

Kang Zhang, Xiaohong Liu, Jun Shen, Zhihuan Li,813
Ye Sang, Xingwang Wu, Yunfei Zha, Wenhua Liang,814

Chengdi Wang, Ke Wang, and 1 others. 2020b. Clin- 815
ically applicable ai system for accurate diagnosis, 816
quantitative measurements, and prognosis of covid- 817
19 pneumonia using computed tomography. Cell, 818
181(6):1423–1433. 819

Ziheng Zhao, Yao Zhang, Chaoyi Wu, Xiaoman Zhang, 820
Ya Zhang, Yanfeng Wang, and Weidi Xie. 2023. One 821
model to rule them all: Towards universal segmen- 822
tation for medical images with text prompts. arXiv 823
preprint arXiv:2312.17183. 824

Qiaoyu Zheng, Weike Zhao, Chaoyi Wu, Xiaoman 825
Zhang, Lisong Dai, Hengyu Guan, Yuehua Li, 826
Ya Zhang, Yanfeng Wang, and Weidi Xie. 2024. 827
Large-scale long-tailed disease diagnosis on radiol- 828
ogy images. Nature Communications, 15(1):10147. 829

Lucas Zimmer, Marius Lindauer, and Frank Hutter. 830
2021. Auto-pytorch: Multi-fidelity metalearning for 831
efficient and robust autodl. IEEE transactions on pat- 832
tern analysis and machine intelligence, 43(9):3079– 833
3090. 834

Martin Žukovec, Lara Dular, and Žiga Špiclin. 2021. 835
Modeling multi-annotator uncertainty as multi-class 836
segmentation problem. In International MICCAI 837
Brainlesion Workshop, pages 112–123. Springer. 838

A Appendix 839

A.1 Case Study. 840

Here we present terminal logs of a successful run- 841

ning case. In this case, we require the system to 842

train a model for Disease Diagnosis using 3D CT 843

Chest image data. As shown in Fig. 4, Task Ana- 844

lyzer first read thoroughly through all the dataset 845

descriptions, then chooses the CC-CCII dataset 846

and list the reasons to justify the choice. Task Ana- 847

lyzer also returns the detail information of CC-CCII 848

dataset for down-stream role agents. 849

Figure 4: Case Study: Terminal log of Task Analyzer.

11

https://www.cursor.com/
https://www.cursor.com/
https://www.cursor.com/
https://arxiv.org/abs/2502.11705

Following Task Analyzer, Data Engineer tra-850

verse the dataset files, splits the dataset into851

train/test sets. It refers to the example data index852

files, and generates a python script to generate the853

json files. The process is shown in Fig. 5. Finally,854

Data Engineer concludes its work, and shows a855

briefing to the user.856

Figure 5: Case Study: Terminal log of Data Engineer.

As shown in Fig. 6, Module Architect first857

checks that Data Engineer has generated all re-858

quired files, then refers to the example dataloader859

scripts, and generates its own dataloader file, which860

guarantees standardized data processing and for-861

matting. Before ending, it executes the generated862

dataloader file to check its correctness, by travers-863

ing and loading all the training and testing samples.864

Finally, it prints a briefing to conclude its work.865

Finally, Fig. 7 shows the workflow of Model866

Trainer. It first choose a training code framework,867

and a ML module according to the medical task,868

then assemble the dataloader, the ML module and869

the training codes to form an executable training870

script. As we can see in Fig. 7, the first training871

attempts fails. After checking the trace-back in-872

formation(not shown in the figure), it modifies the873

training scripts accordingly, and finally performs a874

successful run.875

A.2 Details about Inclusion Datasets876

We curated 14 datasets supporting different medi-877

cal imaging tasks. Each dataset is unzipped in our878

Figure 6: Case Study: Terminal log of Module Archi-
tect.

context protocol without further processing. Each 879

dataset is paired with a structured description in 880

the datacard. Once a new dataset is uploaded into 881

context protocol, the corresponding data descrip- 882

tion should be inserted into this dynamic datacard 883

file. The initialization of the datacard is shown as 884

bellow: 885

[{
"dataset name": "ADNI",
"dataset description": "ADNI is a 3D MRI dis-
ease diagnosis dataset that contains 1 subfolder
and 1 csv file. the subfolder(named ADNI_PT)
contains images(in .pt format), while the csv
file contains lines of sample info, where you
should focus mainly on 2 columns: ’Image
Data ID’ and ’Group’(which is the class label).
Remember, only samples with these labels
should be used: [’AD’,’MCI’,’CN’]! And you
should use at most 1000 samples for training
and 200 for testing. keep classes balanced!",
"dataset path": "/path/to/ADNI_Dataset" },
{
"dataset name": "KneeMRI",
"dataset description": "KneeMRI is a 2D MRI
disease diagnosis dataset that contains 1 sub-
folder and 1 csv file. the subfolder1 contains
images(in .pck format), while the csv file con-
tains lines of sample info, where you must

886

12

Figure 7: Case Study: Terminal log of Model Trainer.

focus mainly on 2 colomns: ’volumeFilename’
and ’aclDiagnosis’(which is the class label,
could be 0 or 1 or 2). And you should use
at most 1000 samples for training and 200 for
testing. keep classes balanced!",
"dataset path": "/path/to/KneeMRI"
}, ...
{
"dataset name": "OASIS",
"dataset description":"OASIS is a 3D Head
& Neck MRI organ segmentation dataset that
contains 2 subfolders - namely images and
masks - containing nii.gz format images and
corresponding organ masks, and 1 json file:
labels.json, containing an ordered label list
(please do get a complete label_list from it).",
"dataset path": "/path/to/OASIS"
}]

887

A.3 Details about the Toolset888

Here we present each tool function in the toolset:889

• list_files: Recursively scans the specified di-890

rectory to identify and return paths of all code891

files (supporting common programming exten-892

sions like .py, .java, .cpp, etc.). Features intel-893

ligent directory skipping by automatically ig-894

noring directories containing more than 1,000895

files to prevent processing excessively large896

file collections. Returns a newline-separated897

string of file paths for further processing.898

• read_files: Opens and reads the entire con-899

tent of a specified file, returning the complete900

text as a string. Supports UTF-8 encoding,901

making it suitable for examining source code, 902

configuration files, or any text document. Es- 903

sential for code analysis and file inspection 904

tasks without modifying the original content. 905

• copy_files: Creates an exact duplicate of a 906

single file from a source location to a destina- 907

tion path. Automatically generates any nec- 908

essary directory structure at the destination if 909

it doesn’t already exist. Preserves file meta- 910

data like timestamps and permissions using 911

shutil.copy2, ensuring the duplicate maintains 912

the characteristics of the original file. 913

• write_files: Generates a new file with speci- 914

fied content at the designated file path. Auto- 915

matically creates all necessary parent directo- 916

ries if they don’t exist, ensuring the file can be 917

written even to previously non-existent paths. 918

Particularly useful for programmatically cre- 919

ating new script files, configuration files, or 920

saving processed data. 921

• edit_files: Completely overwrites an existing 922

file with new content, replacing the original 923

data entirely. Designed for direct file modifi- 924

cation without the need to manually open and 925

edit files. Critical for automated code refac- 926

toring, text transformation, or updating con- 927

figuration files with revised settings in batch 928

operations. 929

• edit_file: Executes shell commands in the 930

operating system environment and captures 931

their output. Leverages the ShellTool from 932

LangChain to safely run commands and col- 933

lect results. Enables interaction with the sys- 934

tem shell to perform operations like running 935

programs, executing system utilities, or trig- 936

gering external processes from within the ap- 937

plication. 938

• preview_dirs: Performs a detailed analysis 939

of a directory’s structure by examining each 940

immediate subfolder. For each entry, counts 941

the total number of files and lists up to 100 942

file paths in natural sort order. Returns a struc- 943

tured dictionary with comprehensive informa- 944

tion about directories and files, facilitating 945

efficient navigation of complex file systems 946

while limiting output size for large directories. 947

• preview_files: Provides intelligent content 948

summaries of structured and unstructured data 949

13

files. For CSV files, displays the first 5 rows950

and total row count; for JSON, shows the first951

5 key-value pairs or elements and total count;952

for text files, presents the first 10,000 words953

and total word count. Enables rapid content954

assessment without loading entire large files955

into memory, particularly valuable for data956

exploration tasks.957

• load_med_data: Addresses different data file958

formats commonly used in medical imaging959

tasks (e.g. png, nii, dcm, tif), and load them960

into tensors.961

• check_3D: Examines spatial information of962

3D format images(nii, dcm, tif). 3D format963

images, as well as their corresponding anno-964

tation masks, usually suffer spatial configura-965

tion inconsistency, such as dimension disor-966

der, shape misalignment of images and masks.967

check_3D check these problems and guaran-968

tee consistent spatial configuration within a969

loading dataset.970

• normalize_image: Performs commonly used971

medical image normalization to a loaded im-972

age. For a given medical imaging modality,973

there are typically some conventional normal-974

ization steps and parameter ranges that are975

commonly adopted (e.g. intensity clipping,976

unit normalization). normalize_image address977

this by defining a set of normalization se-978

quence for each imaging modality.979

• verify_report: Verifies the format and con-980

tent of imaging reports, removes commonly981

seen text noise in the report, such as extra982

fields (beyond Findings and Impressions) and983

meaningless syntax (e.g. separators, unrec-984

ognizable characters introduces during OCR).985

Returns pure meaningful Findings and Impres-986

sions parts to guarantee clarity of text reports.987

• augment_image: Provides image augmenta-988

tion techniques for diverse imaging modalities.989

For each imaging modality, augment_image990

defines a sequence of modality-specific aug-991

mentation methods, in line with previous med-992

ical image machine learning work.993

A.4 Details about the Agent structure994

We use langgraph architecture for agent building995

and workflow graph compiling. As shown in Fig. 3,996

All the agents have their own toolsets, which are997

subset of our proposed toolset containing 8 tools 998

because of their specification and meaningless re- 999

dundant information provided. The function call- 1000

ing loop and debugging mechanism ensure the task 1001

completion performance. 1002

A.5 Details about the Agent Core Candidates 1003

We select 7 SOTA LLMs for comparison. Most of 1004

them are closed-source model which are usually 1005

more powerful. 1006

• Claude-3.7-Sonnet – Anthropic’s latest 1007

model released in February 2025, featuring 1008

significant advancements in reasoning capa- 1009

bilities, contextual understanding, and tool uti- 1010

lization. This model demonstrates exceptional 1011

performance in complex multi-step reasoning 1012

tasks while maintaining high computational 1013

efficiency. Claude-3.7-Sonnet exhibits partic- 1014

ularly strong capabilities in understanding nu- 1015

anced instructions and maintaining coherence 1016

across lengthy interactions, making it ideal for 1017

our complex evaluation scenarios. The model 1018

api we use is: “claude-3-7-sonnet-20250219”. 1019

• Claude-3.5-Sonnet – Released by Anthropic 1020

in 2024, this model represents a critical mile- 1021

stone in the Claude series, balancing perfor- 1022

mance and efficiency. We selected this model 1023

as the foundation for all our ablation studies 1024

due to its stable performance characteristics 1025

and consistent behavior across various exper- 1026

imental conditions. This strategic choice al- 1027

lowed us to isolate and measure the impact 1028

of individual components in our framework 1029

while maintaining a reliable baseline. The 1030

model excels in reasoning tasks requiring de- 1031

tailed comprehension and precise execution 1032

of instructions. The model api we use is: 1033

“claude-3-5-haiku-20241022”. 1034

• GPT-4o – OpenAI’s advanced multimodal 1035

model that seamlessly integrates sophisticated 1036

vision capabilities with powerful language 1037

understanding and generation. This model 1038

demonstrates remarkable versatility across 1039

domains and task types, with particularly 1040

strong performance in scenarios requiring 1041

cross-modal reasoning. Its ability to process 1042

both textual and visual information makes it 1043

valuable for our evaluation of real-world ap- 1044

plications where multimodal understanding is 1045

14

essential. The model api we use is: “gpt-4o-1046

2024-11-20”.1047

• DeepSeekV3 – A frontier model from1048

DeepSeek AI that pushes the boundaries of1049

language understanding and generation. This1050

model incorporates innovative architectural1051

improvements and training methodologies, re-1052

sulting in competitive performance on stan-1053

dard benchmarks. We note that according to1054

official documentation and our preliminary1055

testing, the current version of DeepSeekV31056

exhibits inconsistent stability in tool-calling1057

functionalities. This limitation was carefully1058

accounted for in our experimental design and1059

subsequent analysis to ensure fair compar-1060

isons across models. The model api we use is:1061

“deepseek-chat”.1062

• Qwen-2.5-Max – Alibaba’s flagship model1063

representing the pinnacle of their LLM re-1064

search, featuring extensive pretraining on di-1065

verse multilingual corpora. The model demon-1066

strates exceptional capabilities in both Chi-1067

nese and English language processing, with1068

impressive performance on complex reason-1069

ing, knowledge retrieval, and creative gener-1070

ation tasks. Its balanced capabilities across1071

domains make it particularly valuable for eval-1072

uating the cross-lingual generalizability of our1073

proposed methods. The model api we use is:1074

“qwen-max-0125”.1075

• Gemini-2.0-Flash – Google’s optimized1076

model designed to balance computational effi-1077

ciency with state-of-the-art performance. Our1078

experimental design initially incorporated1079

Gemini-2.0-Pro; however, due to its experi-1080

mental status at the time of our research and1081

consequent stability issues encountered dur-1082

ing preliminary testing, we strategically piv-1083

oted to the more stable Flash variant. This de-1084

cision ensured consistent and reliable results1085

throughout our extensive evaluation process1086

while still benefiting from Google’s advanced1087

LLM architecture. The Flash variant provides1088

excellent performance-to-efficiency ratio for1089

our complex evaluation scenarios. The model1090

api we use is: “gemini-2.0-flash”1091

• Llama-3.3-70B – Meta’s open-source large1092

language model with 70 billion parameters,1093

representing one of the most powerful pub-1094

licly available models. This model incorpo- 1095

rates advanced training techniques and archi- 1096

tectural innovations, resulting in exceptional 1097

performance across reasoning, coding, and 1098

general language understanding benchmarks. 1099

As an open-source model, Llama-3.3-70B of- 1100

fers unique transparency advantages and pro- 1101

vides an important reference point for compar- 1102

ing proprietary and open-source approaches 1103

in our evaluation framework. The model we 1104

use is from a proxy where the api is “meta- 1105

llama/Llama-3.3-70B-Instruct” 1106

Figure 8: The inner structure graph of our agents: Task
Manager, Data Engineer, Module Architect and Model
Trainer. All of them have the ability for tool using and
will keep debugging until task completed.

A.6 Details about LLM Agents’ System 1107

Prompts 1108

We utilize a set of system prompts to define the role 1109

and internal working logic of all agents. System 1110

prompts contains necessary information in free- 1111

text format, including role definition, task specifi- 1112

cation, available tools and corresponding descrip- 1113

tions, an example workflow and other important 1114

requirements. The workflow example acts as a 1115

few-shot hint to guide the agent’s workflow. We 1116

also insert self-reflection requirements at the end 1117

of each system prompt, guiding the agents check 1118

their work again before returning. 1119

A.6.1 Task Manager Prompt 1120

You are acting as an agent for selecting a
dataset that best matches a human user’s re-
quirements. You are provided with a list of
dataset descriptions: description_path, which
is a json containing a list of dictionaries. Every

1121

15

dictionary contains following entries: ["dataset
name", "dataset description", "dataset_path"].
You have access to the tools: [read_files]
Here is the typical workflow you should fol-
low: 1. Use read_files to read description_path,
understand its content. 2. choose exactly
one dataset that best matches the user’s re-
quirements. Remember, your choice should
mainly base on "dataset description". 3. Re-
turn the chosen dataset’s name, description,
and dataset_path,so a downstream peer agent
can know these information accurately. 4. in-
clude <end> to end the conversation.
IMPORTANT NOTE: If you think there really
is no dataset that meets the user’s requirements,
then return no dataset. You must always reflect
on your choice and return reasons for your
choice before ending.

1122

A.6.2 Data Engineer Prompt1123

You are acting as an agent for preparing train-
ing and testing data in a clinical radiology con-
text. I provide you with a raw, unprocessed
dataset and its corresponding description,
which can be found in selector_content. Your
mission is to generate three files—train.json,
test.json, and label_dict.json(if needed)—and
save them to the working directory: save_path.
And you must make sure that the format of the
json files matches some example files which
will be mentioned below. Do not modify
the original data files directly. IMPORTANT
NOTE: In selector content, you should be able
to identify the dataset’s name, the dataset de-
scription, and the dataset’s root path.
You have access to the following tools:
[list_files_in_second_level, pre-
view_file_content, write_file, read_files,
edit_file] Here is the typical workflow you
should follow: Based on the dataset’s de-
scription, use the list_files_in_second_level
tool to understand the organization and
structure of the dataset. Identify files that are
likely to contain metadata or labels. Use the
preview_file_content tool to read a portion of
these files so that you can understand their
structure and determine how to parse them
with your code. Based on the dataset’s descrip-
tion, You Must Use the traverse_dirs tool and
read_files tool to read the directory structure

1124

of examples_path, and find the example output
jsons based on the medical task, for the next
step to refer to. Once you feel that you have
a sufficient understanding, write a Python
script under director save_path (using the
write_file tool) that generates the following:
[train.json ,test.json and label_dict.json(if
needed)] Remember, If label_dict.json is not
provided by chosen example files, then you
must not generate it!!!
IMPORTANT: You Must Make sure that the
json files you output matches the format of
your chosen example files! Especially the dic-
tionary structure! If you wan to read a file
named ’labels.json’, use read_files instead of
preview_file_content!
train/test split: Ensure that the data is split into
training and testing sets in a reasonable ratio
(e.g., 80/20) and that the split is random. If
train/test split is already presented, you don’t
need to split, but you still need to generate
the json files. Besides, ensures that for each
training and testing sample the key-value pairs
in the dictionary are internally shuffled. Use
the edit_file tool to execute your script. If er-
rors occur during execution, you can use the
edit_file tool to modify your code until the
script runs successfully and produces the three
JSON files. Remember, your objective is to
automate the creation of shuffled train.json,
test.json, and label_dict.json(if needed) with-
out altering the raw data files directly. Re-
member, the formats of train.json, test.json and
label_dict.json(if exists) must follow the exam-
ple files. Before ending, you should reflect on
your work. If you think there is no error any-
more and all the json files are generated, please
conclude your work and include <end> to end
the conversations.

1125

A.6.3 Module Architect Prompt 1126

You are acting as an agent responsible for writ-
ing a dataloader for a dataset, and assemble
the complete model pipeline. Your ultimate
goal is to create a ’dataloader.py’, then orga-
nize the training workspace. The dataset in-
dex files are located at dataindex_path: datain-
dex_path and contain train.json, test.json, and
label_dict.json(may not exist). You must also
choose a template file located at template_path,
refer to it.

1127

16

A peer dataset processor has already generated
these index files, (informations can be found
in processor_msg) so your task is to write a
dataloader class that can read these files and
load the data into the training process. The dat-
aloader should be able to handle the training
and testing data, as well as the label dictio-
nary. Datast description is also provided in:
description
You have access to a series of utility functions,
which are as follows:
[traverse_dirs, preview_file_content, read_file,
write_file, edit_file] Except for the above PC-
level interaction tools, you also have access to
some medical imaging specialist tools. You
must choose to use some of them according to
the current medical task, inplant them into your
dataloader script properly. A sample workflow
might be:
Directory Inspection: Use traverse_dirs to read
the directory structure of the given path datain-
dex_path, identifying the presence of the train,
test, and label_dict(may not exist) JSON in-
dex files.Preview JSON Content: Employ pre-
view_file_content to inspect these JSON files
and understand their structures. Choose Tem-
plate: Based on the medical task, which can
be found in dataset description, choose a dat-
aloader code template from template_path for
reference. Review Template: Utilize read_file
to examine your chosen dataloader template
file and understand the proper format for writ-
ing the dataloader class. Remember that this
is not the end! you must go on to write
dataloader.py Code Development: Based on
the insights from the JSON structures and
the template, use write_file to write your dat-
aloader class to ’dataindex_path/dataloader.py’
(Include a main function if necessary). Save
and Test: After writing dataloader.py, you
must use edit_file to test and verify that the
script runs correctly!!! You must put your
dataloader.py under dataindex_path!!! Debug
and Validate: If errors occur, use edit_file and
edit_file as needed to debug the script until it
fully processes the entire dataset.
Remember: Your task is to write & validate a
dataloader that successfully iterates over the
dataset and verifies that it runs correctly dur-
ing training. Always refer to the template for
guidance on the expected format.

1128

You MUST use write_file to create a dat-
aloader.py under dataindex_path and verify
that it runs correctly!!! You MUST tell where
you place dataloader.py!!! You should write
dataloader according only to the json files and
the template. And try not to modify too much
of the template. If you see comments in the
template like "you must not modify this line",
then do not modify it. If you think your dat-
aloader.py is ready, and the dataloader is al-
ready validated, please conclude your work
and include <end> to end the conversation.
Important: When you use write_file tool, print
the parameters you pass to the tool function!!!
Before ending, you should reflect on your
work. If you think there is no error anymore
and all the json files are generated, please con-
clude your work and include <end> to end the
conversations.

1129

A.6.4 Model Trainer Prompt 1130

You are an AI assistant specialized in radiology
tasks, capable of writing training code, execut-
ing training processes, and debugging. Your
primary focus areas include disease diagnosis,
organ segmentation, anomaly detection, and
report generation tasks. You handle end-to-end
code writing, debugging, and training.
peer processor and dataloader agents have com-
pleted preliminary tasks of dataset preparation
and dataloader class writing, messages docu-
mented in processor_msg and dataloader_msg.
You will build upon this groundwork. Your
working directory is work_path, all operations
must be strictly confined to this directory. To
accomplish training tasks, you have access to
the following tools:
[traverse_dirs, read_files, write_file, edit_file,
run_script, copy_files] You can also access
train_script_path to choose and copy the
best matching train.py and train.sh to con-
text protocol. But you cannot edit files under
train_script_path.
Important notes: - The Datapath, Loss,
and Utils directories respectively contain
JSON/csv/JSONL data indices for training/-
validation and dataset class you need, loss
functions, and utility packages. While these
shouldn’t be modified, you must understand
their relationships and functions. - The Logout
directory stores training results and should not

1131

17

be manually written to. - The Model direc-
tory contains training code modules for dif-
ferent tasks. Generally, these shouldn’t be
modified, but you should read them to under-
stand their functionality and usage. Remem-
ber that if the medical task is Organ Segmnen-
tation, you do not have to read Modeldirec-
tory, because model is provided in train.py
already. - The directory train_script_path
contains different medical tasks’ respective
train.sh and train.py files, you should choose
the best matching train.sh and train.py based
on medical task, and copy them to context
protocol. - train.py contains the main train-
ing code template using transformers trainer
framework. You need to carefully read and
modify its contents as needed. - train.sh is
the script for running the main code, contain-
ing parameter settings that you need to under-
stand and configure. - train.py has some code
lines commented by sth like ’you should not
modify this line’, if you see this, don’t mod-
ify that line. The workflow consists of three
phases: 1. traverse train_script_path to choose
the best matching train.sh and train.py based
on medical task, and use copy_files to copy
to context protocol. 2. Understanding struc-
ture and reading files/code templates 3. Ini-
tial code adjustment and refinement. Modify
train.py and train.sh to make them ready. A
Hint: You always have to import the dataset
class from work_path/Datapath/dataloader.py
4. Script execution (use run_script tool to exe-
cute train.sh) and debug loop until successful
training completion Phase 1 requires traversing
train_script_path, choosing and copying the
best train.sh and train.py to context protocol.
Phase 2 requires traversing the working direc-
tory and reading all crucial code to understand
their connections. Phase 3 involves careful re-
view of train.py and train.sh, making necessary
modifications to achieve an executable version.
Phase 4 involves executing train.sh and iter-
atively fixing errors based on error messages
until successful execution.
IMPORTANT: You must execute train.sh and
make sure it’s running normally before you exit
Before each operation, you should consider its
purpose and verify its appropriateness, espe-
cially when uncertain or experiencing poten-
tial hallucinations. Use traverse or read tools

1132

to check and understand corresponding parts.
Always remember your final goal is to success-
fully run the training script. Before ending,
you should reflect on your work. If you think
there is no error anymore and all the json files
are generated, please conclude your work and
include <end> to end the conversations.

1133

A.7 Details about Prompt for Comparison 1134

Experiments 1135

For single anget systems such as ML-AgentBench, 1136

Aider, Cursor Composer, Windsurf Cascade and 1137

Github Copilot Edits. We use a prompt combining 1138

four role-specific agents’ prompt as below: 1139

End-to-End Machine Learning Pipeline Agent
Prompt Objective Build an end-to-end machine
learning pipeline that includes: Dataset selec-
tion and processing: Choose the dataset that
best fits the user’s requirements. JSON index
generation: Create train.json, test.json, and
(when applicable) label_dict.json files with-
out modifying any raw data. Dataloader de-
velopment: Write a dataloader.py script to
feed data into the training process. Training
script preparation and execution: Select and
prepare training scripts (train.sh and train.py),
execute them, and ensure training runs suc-
cessfully. All operations must remain strictly
within working directory. Provided Paths
Dataset Description File: description_path
= "/path/to/DataCard/descriptions.json" Save
Path / Data Index Path: save_path = "/path/-
to/TrainPipeline/Datapath" (dataindex_path =
save_path) Example JSON Files Directory: ex-
amples_path = "/path/to/ReferenceFiles/Data-
JsonExamples" Dataloader Template Direc-
tory: template_path = "/path/to/Reference-
Files/DataLoaderExamples" Working Direc-
tory: work_path = "/path/to/TrainPipeline"
Training Scripts Directory: train_script_path
= "/path/to/ReferenceFiles/TrainingScripts"
Phase 1: Dataset Selection Understanding
the Dataset Descriptions: Read the JSON
file at description_path to view all dataset
entries. Each dataset entry is a dictionary
with keys: ["dataset name", "dataset descrip-
tion", "dataset_path"]. Dataset Choice: Ac-
tion: Choose exactly one dataset that best fits
the user’s requirements, basing the decision
primarily on the "dataset description" entry.

1140

18

Outcome: Return the chosen dataset’s name,
dataset description, and dataset_path so that a
downstream peer agent receives this informa-
tion accurately. Note: If no dataset fulfills the
user’s requirements, provide reasons and end
the conversation by outputting <end>. Phase
2: JSON Index Generation Examination of the
Dataset Structure: Inspect the dataset direc-
tory structure using directory traversal meth-
ods. Identify files that likely contain metadata
or labels by previewing a portion of their con-
tents. Additionally, review the example outputs
in examples_path to understand the expected
JSON format for the medical task. Creating
the Splitting Script: Objective: Write a Python
script (to be saved under save_path) that gen-
erates the following files: train.json, test.json,
label_dict.json (only if such a file is provided
in the examples—the file should not be gen-
erated otherwise) Data Splitting: If the raw
dataset already provides a train/test split, sim-
ply reformat and output the JSONs. Otherwise,
perform an 80/20 random split. Additional
Requirement: For every sample in the JSON
files, the key-value pairs within each dictionary
should be randomly shuffled. Hint: When you
need to inspect file content or directory struc-
tures during development, invoke the appro-
priate file inspection functions. Action: Write
the full Python script accordingly, then test it
by executing the script. Debugging: Modify
the code as needed until it runs without errors.
Completion: Once the JSON files are success-
fully generated, append <end> to indicate the
phase is complete. Phase 3: Dataloader Cre-
ation Inspecting the Data Indices: Traverse
the directory at dataindex_path to confirm the
presence of train.json, test.json, and (if it ex-
ists) label_dict.json. Preview their content to
understand the JSON structure. Selecting a
Dataloader Template: From the directory tem-
plate_path, select the dataloader code template
that best aligns with the medical task (as de-
scribed in the dataset description). Read the
chosen template thoroughly to grasp its for-
mat and any constraints (for example, lines
with comments such as “you must not modify
this line” must remain unchanged). Writing
the Dataloader: Task: Develop dataloader.py
to load and iterate over the training and test-
ing data, handling the label dictionary if avail-

1141

able. Implementation: Write the code based
on the insights from the JSON structure and
the dataloader template. Save Location: Place
dataloader.py under dataindex_path. Testing:
Execute the dataloader to ensure it runs cor-
rectly. Make any necessary adjustments by
editing the file. Reporting: Clearly indicate
where dataloader.py has been placed. Comple-
tion: When the dataloader is functioning prop-
erly, include <end>. Phase 4: Training Script
Preparation and Execution Phase Overview:
Goal: Set up and run a training process us-
ing the chosen training scripts for the spe-
cific medical task. Script Selection: Traverse
train_script_path to find the best matching
train.sh and train.py based on the medical task
requirements. Action: Copy the selected files
into the workspace. Code Review and Integra-
tion: Review the directory structure: Datapath:
Contains the JSON indices. Loss/Utils: Con-
tains needed loss functions and utility pack-
ages. Model: Contains model modules (for
Organ Segmentation tasks, this may already
be provided). Update train.py and train.sh
as needed. They must import the dataset
class from work_path/Datapath/dataloader.py.
Caution: Do not modify any lines explicitly
marked “you must not modify this line.” Exe-
cution and Debugging: Action: Run the train-
ing script by executing train.sh. If errors oc-
cur, modify the scripts iteratively until training
executes successfully. Final Check: Ensure
that train.sh is running normally. Completion:
Once the training script is validated and func-
tions as intended, mark the phase completion
by including <end>. Key Focus Areas Dis-
ease Diagnosis Organ Segmentation Anomaly
Detection Report Generation Tasks Critical Re-
minders Operation Boundaries: All operations
must remain confined to the working directory
(work_path). When to Call Tools vs. Write
Code: Inspecting files or traversing directo-
ries? Use file inspection functions. When gen-
erating or modifying code? Write or edit the
code directly. Do Not Alter Raw Data: Always
generate derived files (such as JSON indices or
scripts) in the appropriate directories. Valida-
tion is Crucial: Continuously test your devel-
opment steps and ensure scripts run correctly
before moving on.

1142

19

Aider Execution 1 Execution 2

succ act debug succ act debug

DisDiag

ADNI 0 - - 0 - -
KneeMR 1 48 4 0 - -
CC-CCII 0 - - 0 - -
KidCT 0 - - 0 41 5

AnoDet

COV19 0 58 8 0 42 5
INS22 0 - - 0 - -
Panc 0 - - 0 42 5
XDet10 0 - - 0 - -

RepGen
CT-RATE 0 61 6 0 - -
GenomBra 0 - - 0 58 6
IU_Xray 0 - - 0 51 5

OrgSeg
BTCV 0 - - 0 - -
VerSe 0 67 7 0 49 6
OASIS 0 - - 0 - -

Table 9: Performance metrics of Aider across various
medical imaging tasks.(succ-number of successful build-
ing, act-number of actions, debug-number of debug
loops.)

Cursor Composer Execution 1 Execution 2

succ act debug succ act debug

DisDiag

ADNI 0 27 3 0 - -
KneeMR 0 - - 1 44 5
CC-CCII 0 - - 0 - -
KidCT 0 38 4 0 - -

AnoDet

COV19 0 - - 0 29 4
INS22 1 - - 0 - -
Panc 0 41 6 1 37 3
XDet10 1 - - 0 - -

RepGen
CT-RATE 0 - - 0 - -
GenomBra 0 54 6 0 - -
IU_Xray 0 49 5 0 - -

OrgSeg
BTCV 0 - - 1 42 7
VerSe 1 - - 0 - -
OASIS 0 - - 0 - -

Table 10: Performance metrics of Cursor Composer
across various medical imaging tasks.(succ-number
of successful building, act-number of actions, debug-
number of debug loops.)

A.8 Details about the Agent system1143

comparison Experiments1144

Here we run each task experiments twice, resulting1145

in a 28 execution in total. Here we reorganize them1146

categorized by radiology task-level: Organ Seg-1147

mentation, Anomaly Detection, Disease Diagnosis1148

and Report Generation. We detail our each execu-1149

tion under each agentic framework, using metrics1150

including Average Actions and Iterarions where1151

one action means a step of tool using and a iter-1152

ation means a step of debug for script execution.1153

The result are shown as below:1154

1155

1156

Windsurf Cascade Execution 1 Execution 2

succ act debug succ act debug

DisDiag

ADNI 0 29 5 0 32 4
KneeMR 0 41 5 0 - -
CC-CCII 0 - - 0 - -
KidCT 0 - - 0 38 5

AnoDet

COV19 0 - - 0 - -
INS22 0 - - 0 - -
Panc 0 32 4 0 36 4
XDet10 0 - - 0 40 5

RepGen
CT-RATE 0 - - 0 - -
GenomBra 0 48 5 0 - -
IU_Xray 0 - - 0 49 6

OrgSeg
BTCV 0 - - 0 39 5
VerSe 0 - - 0 - -
OASIS 0 - - 0 - -

Table 11: Performance metrics of Windsurf Cascade
across various medical imaging tasks.(succ-number
of successful building, act-number of actions, debug-
number of debug loops.)

Copilot Edits Execution 1 Execution 2

succ act debug succ act debug

DisDiag

ADNI 0 - - 0 - -
KneeMR 0 44 4 0 - -
CC-CCII 0 - - 0 39 3
KidCT 0 - - 0 51 5

AnoDet

COV19 0 46 3 0 41 3
INS22 0 - - 0 - -
Panc 0 55 5 0 - -
XDet10 0 39 3 0 - -

RepGen
CT-RATE 0 - - 0 52 4
GenomBra 0 - - 0 - -
IU_Xray 0 41 4 0 - -

OrgSeg
BTCV 0 - - 0 - -
VerSe 0 51 4 0 45 3
OASIS 0 - - 0 - -

Table 12: Performance metrics of Copilot Edits across
various medical imaging tasks.(succ-number of success-
ful building, act-number of actions, debug-number of
debug loops.)

Ours Execution 1 Execution 2

succ act debug succ act debug

DisDiag

ADNI 0 48 4 0 32 2
KneeMR 0 43 3 0 31 1
CC-CCII 0 43 2 0 26 1
KidCT 0 27 1 0 31 2

AnoDet

COV19 0 29 2 0 28 2
INS22 0 34 3 0 38 3
Panc 0 - - 0 27 2
XDet10 0 31 3 0 30 2

RepGen
CT-RATE 0 29 2 0 - -
GenomBra 0 38 4 0 - -
IU_Xray 0 31 1 0 30 2

OrgSeg
BTCV 0 29 1 0 30 3
VerSe 0 34 1 0 - -
OASIS 0 - - 0 35 2

Table 13: Performance metrics of Ours across various
medical imaging tasks.(succ-number of successful build-
ing, act-number of actions, debug-number of debug
loops.)

20

w/o Colab Execution 1 Execution 2

succ act debug succ act debug

DisDiag

ADNI 0 34 4 0 - -
KneeMR 0 37 5 0 - -
CC-CCII 0 - - 0 - -
KidCT 0 - - 0 29 4

AnoDet

COV19 0 40 5 0 - -
INS22 0 36 4 0 - -
Panc 0 - - 0 33 5
XDet10 0 41 5 0 - -

RepGen
CT-RATE 0 - - 0 - -
GenomBra 0 32 5 0 - -
IU_Xray 0 - - 0 35 4

OrgSeg
BTCV 0 - - 0 33 5
VerSe 0 36 5 0 - -
OASIS 0 32 4 0 - -

Table 14: Performance metrics of the Execution with-
out collaboration (single agent) across various medical
imaging tasks.(succ-number of successful building, act-
number of actions, debug-number of debug loops.)

w/o debug Execution 1 Execution 2

succ act debug succ act debug

DisDiag

ADNI 0 - - 0 - -
KneeMR 0 - - 1 33 1
CC-CCII 0 - - 0 - -
KidCT 0 - - 0 - -

AnoDet

COV19 0 - - 0 - -
INS22 1 22 1 0 - -
Panc 0 - - 1 26 1
XDet10 1 24 1 0 - -

RepGen
CT-RATE 0 - - 0 - -
GenomBra 0 - - 0 - -
IU_Xray 0 - - 0 - -

OrgSeg
BTCV 0 - - 1 31 1
VerSe 1 30 1 0 - -
OASIS 0 - - 0 - -

Table 15: Performance metrics of the Execution without
extensive debugging across various medical imaging
tasks(succ-number of successful building, act-number
of actions, debug-number of debug loops.).

w/o reflect Execution 1 Execution 2

succ act debug succ act debug

DisDiag

ADNI 1 37 4 0 - -
KneeMR 1 35 3 1 34 5
CC-CCII 1 31 4 1 36 4
KidCT 1 36 3 1 39 4

AnoDet

COV19 1 25 5 1 23 5
INS22 1 20 3 1 23 4
Panc 1 27 3 1 25 4
XDet10 0 - - 1 31 5

RepGen
CT-RATE 1 42 6 1 46 7
GenomBra 1 38 5 1 39 5
IU_Xray 0 - - 0 - -

OrgSeg
BTCV 1 28 2 1 27 2
VerSe 1 31 3 0 - -
OASIS 0 - - 1 27 2

Table 16: Performance metrics of the Execution without
reflection mechanism across various medical imaging
tasks.(succ-number of successful building, act-number
of actions, debug-number of debug loops.)

A.9 Details about the Agent Rols-specification 1157

Experiments. 1158

In the Role-specification analysis, we have men- 1159

tioned that we run each task twice, which leads to 1160

28 execution rounds in total. Here we reorganize 1161

them categorized by radiology task-level: Organ 1162

Segmentation, Anomaly Detection, Disease Diag- 1163

nosis and Report Generation and in the following 1164

are each execution details: 1165

21

OrgSeg Task Manager Data Engineer Module Architect Model Trainer

Run Act Iter Tkn Run Act Iter Tkn Run Act Iter Tkn Run Act Iter Tkn

1 1(1) 3 1 4k 1(1) 8 1 49k 1(1) 8 1 37k 1(1) 10 3 139k
2 1(1) 2 1 4k 1(1) 12 1 85k 1(1) 7 1 35k 1(1) 9 2 75k
3 1(1) 2 1 5k 0(1) 9 1 55k 1(1) 12 3 88k 0(1) 11 5 113k
4 1(1) 2 1 4k 1(1) 11 2 65k 0(1) 10 2 60k 0(1) 12 5 154k
5 1(1) 2 1 5k 1(1) 11 1 96k 1(1) 10 2 62k 1(1) 13 3 132k
6 1(1) 2 1 4k 1(1) 10 2 82k 1(1) 16 5 164k 1(1) 9 2 78k

Table 18: Performance metrics for different roles across tasks in OrganSeg, including Task Manager, Data Engineer,
Module Architect, and Model Trainer.

AnoDet Task Manager Data Engineer Module Architect Model Trainer

Run Act Iter Tkn Run Act Iter Tkn Run Act Iter Tkn Run Act Iter Tkn

1 1(1) 2 1 4k 1(1) 11 1 71k 1(1) 9 1 43k 1(1) 7 1 51k
2 1(1) 2 1 4k 1(1) 10 1 60k 1(1) 8 1 39k 1(1) 8 2 60k
3 1(1) 2 1 5k 1(1) 11 2 131k 1(1) 11 2 64k 1(1) 10 3 73k
4 1(1) 2 1 4k 1(1) 10 1 128k 0(1) 17 5 103k 1(1) 9 2 68k
5 1(1) 2 1 5k 1(1) 11 2 71k 1(1) 10 2 69k 0(1) 13 5 92k
6 1(1) 2 1 4k 1(1) 10 2 70k 1(1) 10 3 72k 1(1) 9 1 72k
7 1(1) 2 1 4k 1(1) 8 1 107k 1(1) 9 1 45k 1(1) 8 1 59k
8 1(1) 2 1 5k 1(1) 9 1 99k 1(1) 11 2 50k 1(1) 10 2 62k

Table 19: Performance metrics for different roles across tasks in AnoDet, including Task Manager, Data Engineer,
Module Architect, and Model Trainer.

DisDiag Task Manager Data Engineer Module Architect Model Trainer

Run Act Iter Tkn Run Act Iter Tkn Run Act Iter Tkn Run Act Iter Tkn

1 1(1) 2 1 5k 1(1) 7 1 153k 1(1) 9 1 39k 1(1) 30 4 754k
2 1(1) 2 1 4k 1(1) 8 1 103k 1(1) 10 2 44k 1(1) 13 2 95k
3 1(1) 2 1 4k 1(1) 11 2 140k 1(1) 11 2 74k 1(1) 19 4 330k
4 1(1) 2 1 4k 1(1) 9 1 112k 1(1) 10 2 69k 1(1) 9 1 100k
5 1(1) 2 1 5k 1(1) 10 2 161k 0(1) 23 5 255k 1(1) 8 2 79k
6 1(1) 2 1 4k 1(1) 8 1 92k 1(1) 8 1 66k 1(1) 8 1 79k
7 1(1) 2 1 4k 1(1) 8 2 89k 1(1) 10 2 81k 1(1) 7 1 66k
8 1(1) 2 1 5k 1(1) 10 1 77k 1(1) 9 1 70k 1(1) 10 1 82k

Table 20: Performance metrics for different roles across tasks in DisDiag, including Task Manager, Data Engineer,
Module Architect, and Model Trainer.

RepGen Task Analyzer Data Engineer Code Writer Model Trainer

Run Act Iter Tkn Run Act Iter Tkn Run Act Iter Tkn Run Act Iter Tkn

1 1(1) 2 1 4k 1(1) 4 1 14k 1(1) 5 1 18k 0(1) 14 5 103k
2 1(1) 2 1 5k 1(1) 7 1 22k 1(1) 10 2 33k 1(1) 10 2 41k
3 1(1) 2 1 4k 1(1) 11 1 94k 1(1) 16 5 171k 1(1) 9 2 80k
4 1(1) 2 1 4k 1(1) 10 1 80k 1(1) 8 1 47k 1(1) 11 1 62k
5 1(1) 2 1 4k 1(1) 11 3 110k 0(1) 17 5 219k 1(1) 13 2 79k
6 1(1) 2 1 4k 1(1) 9 1 77k 1(1) 9 1 58k 1(1) 10 1 55k

Table 21: Performance metrics for different roles across tasks in RepGen, including Task Analyzer, Data Engineer,
Code Writer, and Model Trainer.

22

	Introduction
	M3Builder
	Problem Formulation
	MIML Context Protocol
	Multi-Agent Collaboration Framework

	M3Bench
	Task Inclusion & Data Preparation
	Agent Core Selection
	SoTA Comparison
	Evaluation Metrics

	Results and Analysis
	Agent Core Selection
	Ablation Study
	SoTA Comparison

	Related Work
	LLM-Powered Agentic Systems
	Automatic Machine Learning

	Conclusion
	Appendix
	Case Study.
	Details about Inclusion Datasets
	Details about the Toolset
	Details about the Agent structure
	Details about the Agent Core Candidates
	Details about LLM Agents' System Prompts
	Task Manager Prompt
	Data Engineer Prompt
	Module Architect Prompt
	Model Trainer Prompt

	Details about Prompt for Comparison Experiments
	Details about the Agent system comparison Experiments
	Details about the Agent Rols-specification Experiments.

