
odeN: Simultaneous Approximation of Multiple Motif Counts in
Large Temporal Networks

Ilie Sarpe
Department of Information Engineering

University of Padova
Padova, Italy

sarpeilie@dei.unipd.it

Fabio Vandin
Department of Information Engineering

University of Padova
Padova, Italy

fabio.vandin@unipd.it

ABSTRACT

Counting the number of occurrences of small connected subgraphs,
called temporal motifs, has become a fundamental primitive for the
analysis of temporal networks, whose edges are annotated with the
time of the event they represent. One of the main complications
in studying temporal motifs is the large number of motifs that
can be built even with a limited number of vertices or edges. As a
consequence, since in many applications motifs are employed for
exploratory analyses, the user needs to iteratively select and ana-
lyze several motifs that represent different aspects of the network,
resulting in an inefficient, time-consuming process. This problem is
exacerbated in large networks, where the analysis of even a single
motif is computationally demanding. As a solution, in this work
we propose and study the problem of simultaneously counting the
number of occurrences of multiple temporal motifs, all correspond-
ing to the same (static) topology (e.g., a triangle). Given that for
large temporal networks computing the exact counts is unfeasible,
we propose odeN, a sampling-based algorithm that provides an
accurate approximation of all the counts of the motifs. We provide
analytical bounds on the number of samples required by odeN
to compute rigorous, probabilistic, relative approximations. Our
extensive experimental evaluation shows that odeN enables the
approximation of the counts of motifs in temporal networks in a
fraction of the time needed by state-of-the-art methods, and that it
also reports more accurate approximations than such methods.

CCS CONCEPTS

• Mathematics of computing → Probabilistic algorithms; •
Theory of computation→ Graph algorithms analysis.

KEYWORDS

temporal motifs, sampling algorithm, temporal networks, random-
ized algorithm

ACM Reference Format:

Ilie Sarpe and Fabio Vandin. 2021. odeN: Simultaneous Approximation of
Multiple Motif Counts in Large Temporal Networks. In Proceedings of the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482459

30th ACM International Conference on Information and Knowledge Manage-
ment (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3482459

1 INTRODUCTION

Networks are ubiquitous representations that model a wide range of
real-world systems, such as social networks [9], citation networks
[10], biological systems [12], and many others [29]. One of the
most fundamental primitives in network analysis is the mining of
motifs [27, 28, 38] (or graphlets [7, 32]), which requires to count
the occurrences of small connected subgraphs of 𝑘 nodes. Motifs
represent key building blocks of networks, and they provide useful
insights in wide range of applications such as network classification
[26, 39], network clustering [3], and community detection [2].

Modern networks contain rich information about their edges
or nodes [8, 18, 34, 45] in addition to graph structure. One of the
most important information is the time at which the interactions,
represented by edges, occur. Networks for which such informa-
tion is available are called temporal [14, 15]; novel insights about
the underlying dynamics of the systems can be uncovered by the
analysis of such networks [20–22]. In recent years, many primi-
tives [16, 19, 31, 37] have been proposed as counterpart, in temporal
networks, to the study of subgraph patterns for nontemporal net-
works, with each primitive capturing different temporal aspects of
a network. One of the most important such primitives is the study
of temporal motifs [31]. Temporal motifs are small connected sub-
graphs with 𝑘 nodes and ℓ edges occurring with a prescribed order
within a time interval of duration 𝛿 . Temporal motifs describe the
patterns shaping interactions over the network, e.g., networks from
similar domains tend to have similar temporal motif counts [31],
and their analysis is useful in many applications, e.g., anomalies
detection [4], network classification [40], and social networks [6].

The temporal dimension poses several challenges in the analyses
of motifs. A major challenge is represented by the large number
of temporal motifs that can be build even with a limited number
of vertices and edges. For example, even considering directed (and
connected) temporal motifs with only 3 vertices and 3 edges, there
are 32 such motifs. In several domains when motifs are studied in
the exploratory analysis of a temporal network it is almost impos-
sible for the data analyst to known a priori which motif is the most
interesting and useful. In social networks, a set of 3 vertices repre-
sents the smallest non trivial community, and different temporal
motifs with 3 vertices describe different patterns of interactions in
such community. Hence, studying all such motifs can provide novel
insights on the interactions within such communities. In network

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1568

https://doi.org/10.1145/3459637.3482459
https://doi.org/10.1145/3459637.3482459

classification, considering the counts of all the 32 motifs with 3
vertices and 3 edges lead to models with improved accuracy [40].

However, since state-of-the-art approaches for general temporal
motifs only allow the analysis of one motif at the time, the user
needs to iteratively select and analyze the various motifs, resulting
in an inefficient and time consuming process, in particular for large
networks.

In this paper, we define and study the problem of simultaneously
counting the occurrences of various temporal motifs. In particu-
lar, we consider all motifs corresponding to the same static target
template (e.g., all triangles - see Fig. 1a). This problem is extremely
challenging, since computing the count of even a single temporal
motif is NP-Hard in general [23], with existing state-of-the-art ap-
proaches having complexity exponential in the number of edges of
the motif to obtain even a single motif’s count [23, 36, 42].

The task of counting temporal motifs is hindered by the sheer size
of modern datasets and, therefore, scalable techniques are needed to
deal with such amount of data. Since exact approaches [13, 24, 31]
are impractical, rigorous and efficient approximation algorithms
providing tight guarantees are needed. In this work we develop
odeN, a sampling algorithm that provides a high quality approxi-
mation for the problem of counting multiple temporal motifs with
the same static topology. Our main contributions are as follows:

• We propose the motif template counting problem, where,
given a temporal network, a 𝑘-node target template graph𝐻 ,
the number ℓ of edges of each temporal motif, and a bound 𝛿
on the duration of the temporal motifs, the problem requires
to output all the counts of the temporal motifs whose static
topology corresponds to 𝐻 and having exactly ℓ temporal
edges, occurring within 𝛿-time.
• We propose odeN, a randomized sampling algorithm pro-
viding a high quality approximation for the motif template
counting problem. odeN’s approach is to sample a set of mo-
tif occurrences, ensuring that they all share the same static
topology 𝐻 . Thus, odeN takes advantage of the constraint
that all motifs must share a common target template 𝐻 , ag-
gregating the computation of all motif counts in a sample.
odeN’s approximation, as in other data mining applications,
is controlled by two parameters 𝜀, 𝜂, which control respec-
tively the quality and the confidence of the approximations.
• We show a tight and efficiently computable bound on the
number of samples required by odeN for the approximation
to be within 𝜀 error with confidence > 1 − 𝜂 for all temporal
motif’s counts.
• We perform large scale experiments using datasets with up
to billions of temporal edges, showing that odeN requires a
fraction of the time required by state-of-the-art approxima-
tion algorithms for single motif counts, and that it reports
sharper estimates. We then provide a parallel implemen-
tation of odeN displaying almost linear speedup in many
configurations. We also show how odeN provides novel in-
sights on the dynamics of a real-world temporal network.

2 PRELIMINARIES

In this section we introduce the basic notions that we will use
throughout the work, and we define the computational problem

1

2

3

4

5

6

7

8

Target
Template �

?

7
2

5

3, 8
11

6, 18 9

14,27

20, 35

10, 15

13

19

21 24

Temporal
Network)

(a)

v2 v3

v1

ordering σ

〈(v1, v2), (v3, v1), (v2, v3)〉

t3

t1 t2

(b)

2 6

5

20

6 9

2 6

5

35

6 9

2 6

5

20

18 9

2 6

5

35

18 9

(c)

Figure 1: (1a): Motif template counting problem overview:

given a temporal network and a (static) target template, com-

pute the counts of all temporal motifs that map on the tem-

plate. (1b): Temporal motif, with 𝑘 = 3, ℓ = 3, and its order-

ing 𝜎 . (1c): Sequences of edges of the network in (1a) among

nodes {2, 5, 6} thatmap topologically on themotif in (1b). For

𝛿 = 15 only the green sequence is a 𝛿-instance of the motif,

since the timestamps respect 𝜎 and 𝑡 ′
ℓ
− 𝑡 ′1 = 20 − 6 ≤ 𝛿 . The

red sequences are not 𝛿-instances, since they do not respect

such constraint or do not respect the ordering 𝜎 .

of counting multiple temporal motifs sharing a common target
template graph. We start by defining temporal networks.

Definition 2.1. A temporal network is a pair 𝑇 = (𝑉 , 𝐸) where,
𝑉 = {𝑣1, . . . , 𝑣𝑛} and 𝐸 = {(𝑥,𝑦, 𝑡) : 𝑥,𝑦 ∈ 𝑉 , 𝑥 ≠ 𝑦, 𝑡 ∈ R+} with
|𝑉 | = 𝑛 and |𝐸 | =𝑚.

Given (𝑥,𝑦, 𝑡) ∈ 𝐸, we say that 𝑡 is the timestamp of the directed
edge (𝑥,𝑦). Given a temporal network 𝑇 , by ignoring the times-
tamps of its edges we obtain the associated undirected projected
static network, defined as follows.

Definition 2.2. The undirected projected static network of a tempo-
ral network𝑇 = (𝑉 , 𝐸) is the pair𝐺𝑇 = (𝑉 , 𝐸𝑇) that is an undirected
network, such that 𝐸𝑇 = {{𝑥,𝑦} : (𝑥,𝑦, 𝑡) ∈ 𝐸}.

We will often use the term static network to denote a network
whose edges are without timestamps. Next we introduce the defini-
tion of temporal motifs as defined by Paranjape et al. [31], which
are small, connected subgraphs representing patterns of interest.

Definition 2.3. A 𝑘-node ℓ-edge temporal motif 𝑀 is a pair𝑀 =

(K, 𝜎) where K = (𝑉K , 𝐸K) is a directed and weakly connected
multigraph where 𝑉K = {𝑣1, . . . , 𝑣𝑘 }, 𝐸K = {(𝑥,𝑦) : 𝑥,𝑦 ∈ 𝑉K , 𝑥 ≠

𝑦} s.t. |𝑉K | = 𝑘 and |𝐸K | = ℓ , and 𝜎 is an ordering of 𝐸K .

Note that a 𝑘-node ℓ-edge temporal motif 𝑀 = (K, 𝜎) is also
identified by the sequence ⟨(𝑥1, 𝑦1), . . . , (𝑥ℓ , 𝑦ℓ)⟩ of edges ordered
according to 𝜎 ; we will often use such representation for a motif𝑀
(see Fig. (1b) for an example). Given a 𝑘-node ℓ-edge temporal motif

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1569

𝑀 , the values of 𝑘 and ℓ are determined by 𝑉K and 𝐸K . We will
therefore use the term temporal motif, or simply motif, when 𝑘 and
ℓ are clear from context. Given a temporal motif𝑀 = ((𝑉K , 𝐸K), 𝜎),
we denote with 𝐺𝑢 [𝑀] the undirected graph corresponding to the
underlying undirected graph structure of the multigraph K of 𝑀 ,
that is 𝐺𝑢 [𝑀] = (𝑉K , 𝐸𝑢𝑀) where 𝐸

𝑢
𝑀

= {{𝑥,𝑦} : (𝑥,𝑦) ∨ (𝑦, 𝑥) ∈
𝐸K } (i.e., 𝐸𝑢𝑀 is the set of undirected edges associated to the multiset
𝐸K). Notice that directed edges of the form (𝑥,𝑦), (𝑦, 𝑥) as well as
multiple directed edges (𝑥,𝑦), (𝑥,𝑦), . . . from 𝐸K are represented
by the same undirected edge {𝑥,𝑦} in 𝐸𝑢

𝑀
.

For a fixed temporal motif 𝑀 , we are interested in identifying
its realizations in 𝑇 appearing within at most 𝛿-time duration, as
captured by the following definition.

Definition 2.4. Given a temporal network 𝑇 = (𝑉 , 𝐸) and 𝛿 ∈
R+, a time ordered sequence 𝑆 = ⟨(𝑥 ′1, 𝑦

′
1, 𝑡
′
1), . . . , (𝑥

′
ℓ
, 𝑦′

ℓ
, 𝑡 ′
ℓ
)⟩ of ℓ

unique temporal edges from 𝑇 is a 𝛿-instance of the temporal motif
𝑀 = ⟨(𝑥1, 𝑦1), . . . , (𝑥ℓ , 𝑦ℓ)⟩ if:

(1) there exists a bijection 𝑓 on the vertices such that 𝑓 (𝑥 ′
𝑖
) = 𝑥𝑖

and 𝑓 (𝑦′
𝑖
) = 𝑦𝑖 , 𝑖 = 1, . . . , ℓ ; and

(2) the edges of 𝑆 occur within 𝛿 time, i.e., 𝑡 ′
ℓ
− 𝑡 ′1 ≤ 𝛿 .

Exploring different values of 𝛿 in the above definition often
leads to different insights on the temporal network that may be
discovered through the analysis of the motifs [1, 14, 19, 30]. Note
that in a 𝛿-instance of the temporal motif 𝑀 = (K, 𝜎) the edge
timestamps must be sorted according to the ordering 𝜎 (see Fig. (1c)
for an example). In fact, 𝜎 plays a key role in defining a temporal
motif, with different orderings of the same multigraphK reflecting
diverse dynamic properties captured by the motif.

For a given directed multigraph K with |𝐸K | = ℓ edges, in
general not all the ℓ! orderings of its edges define distinct temporal
motifs. We therefore introduce the following equivalence relation.

Definition 2.5. Let𝑀1 and𝑀2 be two temporal motifs. Let𝑀1 =
⟨(𝑥11 , 𝑦

1
1), . . . , (𝑥

1
ℓ
, 𝑦1

ℓ
)⟩, and 𝑀2 = ⟨(𝑥21 , 𝑦

2
1), . . . , (𝑥

2
ℓ
, 𝑦2

ℓ
)⟩ be the se-

quences of edges of𝑀1 and𝑀2, respectively. We say that𝑀1 and𝑀2
are not distinct (denoted with𝑀1 �𝜏 𝑀2) if there exists a bijection
𝑔 on the vertices such that 𝑔(𝑥1

𝑖
) = 𝑥2

𝑖
and 𝑔(𝑦1

𝑖
) = 𝑦2

𝑖
, 𝑖 = 1, . . . , ℓ .

We provide an example of the definition above in Figure 2.
Given two networks (undirected or temporal) 𝐺,𝐺 ′ we say that

𝐺 ′ = (𝑉 ′, 𝐸 ′) is a subgraph of 𝐺 = (𝑉 , 𝐸) (denoted with 𝐺 ′ ⊆ 𝐺)
if 𝑉 ′ ⊆ 𝑉 and 𝐸 ′ ⊆ 𝐸. Note that we require a subgraph to be
edge induced. To conclude the preliminary notions, we recall the
definition of static graph isomorphism.

Definition 2.6. Given two graphs𝐺 = (𝑉𝐺 , 𝐸𝐺) and𝐻 = (𝑉𝐻 , 𝐸𝐻)
we say that the two graphs are isomorphic, denoted with 𝐺 ≃ 𝐻

if and only if there exists a bijection 𝑓 : 𝑉𝐺 ↦→ 𝑉𝐻 on the vertices
such that 𝑒 = (𝑢, 𝑣) ∈ 𝐸𝐺 ⇔ 𝑒 ′ = (𝑓 (𝑢), 𝑓 (𝑣)) ∈ 𝐸𝐻 .

Let U(𝑀,𝛿) = {𝐼 : 𝐼 is a 𝛿-instance of 𝑀} be the set of (all) 𝛿-
instances of the motif𝑀 in𝑇 . The count of𝑀 is𝐶𝑀 (𝛿) = |U(𝑀,𝛿) |,
denoted with 𝐶𝑀 when 𝛿 is clear from the context.

Given a static undirected graph 𝐻 , which we call the target
template, we are interested in solving the problem of computing
the number of 𝛿-instances of all temporal motifs with ℓ edges
and all corresponding to the same static graph 𝐻 . More formally,
given the target template 𝐻 = (𝑉𝐻 , 𝐸𝐻), which is a simple and

x y

zM1

∼=τ

x′ y′

z′M2

t1

t2t3

t2

t3t1

x y

zM1

�τ

x′ y′

z′M3

t1

t2t3

t1

t3t2

Figure 2: (Left): The two motifs are not distinct: let 𝜎1 =

⟨(𝑦, 𝑥), (𝑦, 𝑧), (𝑥, 𝑧)⟩ and 𝜎2 = ⟨(𝑥 ′, 𝑧′), (𝑥 ′, 𝑦′), (𝑧′, 𝑦′)⟩ corre-
sponding to 𝑀1 and 𝑀2, then the function 𝑓 : 𝑉 1

K ↦→ 𝑉 2
K de-

fined by 𝑓 (𝑥) = 𝑧′, 𝑓 (𝑦) = 𝑥 ′, 𝑓 (𝑧) = 𝑦′ preserves both the

topology and the ordering as from Definition 2.5. (Right):

The two motifs are distinct since there is no map 𝑓 : 𝑉 1
K ↦→

𝑉 3
K preserving both the topology and ordering.

connected graph, and ℓ ≥ |𝐸𝐻 | ∈ Z+, letM(𝐻, ℓ) be the set of
distinct temporal motifs with ℓ edges whose underlying undirected
graph structure corresponds to 𝐻 , that isM(𝐻, ℓ) contains mo-
tifs 𝑀𝑖 = ((𝑉 𝑖

K , 𝐸
𝑖
K), 𝜎𝑖), 𝑖 = 1, 2, . . . , such that i) 𝐺𝑢 [𝑀𝑖] ≃ 𝐻 ; ii)

|𝐸𝑖K | = ℓ ; and iii)𝑀𝑖 �𝜏 𝑀𝑗 ,∀𝑗 ≠ 𝑖 .
Let us explain intuitively the constrains above. First, 𝐻 imposes

a constraint on the undirected static topology the temporal motifs
of interest (that are directed subgraphs) should have. That is, it
requires all the motifs to have the same underlying graph structure
(𝐺𝑢 [𝑀]), which must be isomorphic to 𝐻 . This is a useful way to
represent multiple related temporal motifs. For example, in social
network analysis by fixing 𝐻 as an undirected triangle we consider
inM(𝐻, ℓ) all temporal motifs that characterize the communication
between groups of three friends (i.e., each motif will represent a
different form of communication among all such groups [31]). The
second constraint requires each motif𝑀𝑖 ∈ M(𝐻, ℓ) to have exactly
ℓ ≥ |𝐸𝐻 | edges, with ℓ provided in input by the user. Fixing the
parameter ℓ is motivated by the fact that motifs with different values
of ℓ (evenwith the same target template structure𝐻) reflect different
patterns of interaction (e.g, a group of friends that exchanges ℓ = 3
or ℓ = 4messages). As we will show empirically in Section 5.4, such
counts vary significantly with ℓ for fixed 𝐻 and 𝛿 . Finally, the third
constraint ensures that we only count distinct motifs, i.e., motifs
representing different patterns.

We now define the motif template counting problem.

Problem 1. Motif template counting problem. Given a tem-
poral network 𝑇 , a static undirected target graph 𝐻 = (𝑉𝐻 , 𝐸𝐻),
ℓ ∈ Z+, ℓ ≥ |𝐸𝐻 |, and a parameter 𝛿 ∈ R+, find the counts𝐶𝑀𝑖

(𝛿) of
motifs𝑀𝑖 ∈ M(𝐻, ℓ), 𝑖 = 1, . . . , |M(𝐻, ℓ) | in 𝑇 .

We now provide an example of the different motifs to be counted
for different values of ℓ with a fixed target template 𝐻 .

Example 2.7. Let 𝐻 = ({𝑣1, 𝑣2}, {{𝑣1, 𝑣2}}), that is, the target
template is an edge. Let 𝑒1 = (𝑣1, 𝑣2) and 𝑒2 = (𝑣2, 𝑣1). By vary-
ing ℓ ∈ {2, 3} the motifs inM(𝐻, ℓ), for which we want to com-
pute the counts, are: 𝑀1 = ⟨𝑒1, 𝑒1⟩ and 𝑀2 = ⟨𝑒1, 𝑒2⟩ for ℓ = 2
(i.e., |M(𝐻, 2) | = 2) while 𝑀1 = ⟨𝑒1, 𝑒1, 𝑒1⟩, 𝑀2 = ⟨𝑒1, 𝑒2, 𝑒1⟩, 𝑀3 =

⟨𝑒1, 𝑒2, 𝑒2⟩, 𝑀4 = ⟨𝑒1, 𝑒1, 𝑒2⟩ for ℓ = 3 (i.e., |M(𝐻, 3) | = 4).

Since solving the counting problem exactly is NP-Hard in gen-
eral1 even for one single temporal motif, we aim at providing high-
quality approximations to the motif counts as follows.
1The hardness depends on the topology of the motif. For example for triangles and
single edges there exist polynomial time-algorithms, even if they are impracticable

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1570

Problem 2. Motif template approximation problem. Given
the input parameters of Problem 1 and additional parameters 𝜀 ∈
R+, 𝜂 ∈ (0, 1), compute approximations 𝐶 ′

𝑀𝑖
(𝛿) of counts 𝐶𝑀𝑖

(𝛿)
of motifs 𝑀𝑖 ∈ M(𝐻, ℓ), 𝑖 = 1, . . . , |M(𝐻, ℓ) |, such that P[∃𝑖 ∈
{1, . . . , |M(𝐻, ℓ) |} : |𝐶 ′

𝑀𝑖
(𝛿) − 𝐶𝑀𝑖

(𝛿) | ≥ 𝜀𝐶𝑀𝑖
(𝛿)] ≤ 𝜂, that is

𝐶 ′
𝑀𝑖
(𝛿) is a relative 𝜀-approximation to the count 𝐶𝑀𝑖

(𝛿) with prob-
ability ≥ 1 − 𝜂 for all 𝑖 = 1, . . . , |M(𝐻, ℓ) | simultaneously.

3 RELATEDWORKS

Much work has been done on enumerating and approximating 𝑘-
node motifs in (nontemporal) networks. We refer the interested
reader to the surveys [33, 43]. However, such works cannot be easily
adapted to temporal motifs since they do not properly account for
the temporal information [14, 31]. Many different definitions of
temporal networks and temporal patterns have been proposed: here
we will focus only on those works that are relevant for our work,
the interested reader may refer to [14, 15, 17, 25] for a more general
overview.

Our work builds on the work of Paranjape et al. [31] which
first introduced the definition of temporal motif used here, and
the problem of counting single temporal motifs. The authors pro-
vided a general algorithm for counting a single temporal motif by
enumerating all the subsequences of edges that map on a single
static subgraph. Their approach is not feasible on large datasets
since it requires exhaustive enumeration of all subgraphs of the
undirected projected static network 𝐺𝑇 that are isomorphic to the
target template 𝐻 . The authors also proposed efficient algorithms
and data-structures for counting 3-node 3-edge motifs, which may
be used for the exact counting subroutines within odeN sampling
framework. In addition to the algorithmic contributions, the authors
also showed that networks from similar domains tend to exhibit
similar temporal motif counts. They also showed how motif counts
can provide significant insights on the communication patterns in
many networks, highlighting the importance of studying temporal
motifs in temporal networks.

Other exact algorithms have been proposed for the problem of
counting a single motif, or for slightly different problems. Mackey
et al. [24] presented a backtracking algorithm for counting a single
temporal motif that can be use for any motif. Boekhout et al. [6]
developed exact algorithms for counting temporal motifs in multi-
layer temporal networks (i.e., each edge is a tuple (𝑥,𝑦, 𝑡, 𝑎) with
𝑎 denoting the layer of each edge), they also discuss efficient data-
structures for counting 4-node 4-edge motifs, which may also be
adapted for the exact counting subroutines in our sampling frame-
work odeN. Being exact, both such algorithms do not scale on
massive datasets due to large time and memory requirements.

Several approximation algorithms have been proposed in re-
cent years for estimating the count of a single motif. Liu et al. [23]
proposed a temporal-partition based sampling approach. Wang et
al. [42] introduced a sampling-based algorithm that selects tempo-
ral edges with a fixed probability specified by the user. Lastly, Sarpe
and Vandin [36] proposed PRESTO, an algorithm based on uniform
sampling of small windows of the temporal network 𝑇 . All such
sampling algorithms can be used to analyze a single temporal motif

on very large networks. Interestingly, counting temporal star-shaped motifs is NP-
Hard [23], while on static networks such motifs can be counted in polynomial time.

but become inefficient as the number of motifs to be counted grows,
such as in Problem 2. In fact, they cannot leverage the additional
information that all motifs 𝑀1, . . . , 𝑀 |M(𝐻,ℓ) | must share a com-
mon static topology isomorphic to 𝐻 . As stated in Section 1, when
analysing a temporal network it is hard to know a-priori which mo-
tif is representing important functions for the network, therefore
one often relies on testing all possible orderings 𝜎 over one fixed
target template 𝐻 for fixed ℓ, 𝛿 [31, 40] (as in Prob. 1) resulting in a
time consuming and inefficient procedure. Our approach instead
supports the direct analysis of multiple temporal motifs, enabling
the study of hundreds of temporal motifs on massive networks in a
very limited time.

4 ODEN

In this section we present odeN, our algorithm to address the motif
template approximation problem (Prob. 2). We start in Section 4.1
with an overview of odeN. We then describe the algorithm in
Section 4.2, analyze its time complexity in Section 4.3 and its theo-
retical guarantees, including an efficiently computable bound on
the number of samples required to obtain the desired probabilistic
guarantees, in Section 4.4.

4.1 Overview of odeN

Our algorithm odeN estimates of the counts of motifs inM(𝐻, ℓ).
The main idea is to avoid the explicit generation all the motifs
𝑀𝑖 ∈ M(𝐻, ℓ), 𝑖 = 1, . . . , |M(𝐻, ℓ) | to count them one at the time
as it is required by existing algorithms that approximate a single
motif count. odeN instead leverages the fact that the topology of all
motifs must to be isomorphic to the target template 𝐻 , by reusing
the computation while estimating the motif counts.

An overview of the main strategy adopted by our algorithm is
presented in Figure 3. Given the input parameters of Problem 2,
where 𝐻 is the target template, the idea behind our procedure is to
consider the undirected static projected graph 𝐺𝑇 of the input tem-
poral network 𝑇 and proceed as follows: i) find a set of subgraphs
in the static graph𝐺𝑇 that are isomorphic to 𝐻 by first sampling an
edge 𝑒𝑅 of 𝐺𝑇 with some probability 𝑝𝑒𝑅 , where 𝑝𝑒𝑅 depends, po-
tentially, on 𝑒𝑅 and the temporal network𝑇 , and then enumerating
all subgraphs of𝐺𝑇 isomorphic to 𝐻 and containing 𝑒𝑅 ; ii) for each
such subgraph, consider the corresponding temporal subgraph and
compute all the counts of the subsequences of ℓ edges occurring
within 𝛿-time in such temporal subgraph; iii) for each such sub-
sequence identified, find the corresponding motif inM(𝐻, ℓ), for
which the subsequence is a 𝛿-instance of, and update a count for
each motif identified; iv) weight each motif count opportunely in
order to maintain an unbiased estimate of global motif counts; v)
repeat steps i)-iv) a sufficient number of iterations to guarantee the
desired (𝜀, 𝜂)-approximation (see Problem 2).

4.2 Algorithm Description

odeN is described in Algorithm 1. It first computes 𝐺𝑇 = (𝑉 , 𝐸𝑇),
the undirected projected static graph of 𝑇 (line 1), and initializes
𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 (line 2) used to store the estimates of motif counts, which
are used to compute the estimators 𝐶 ′

𝑀𝑖
, 𝑖 = 1, . . . , |M(𝐻, ℓ) |. Then

it repeats 𝑠 times (line 3) the following procedure: i) pick a random
edge 𝑒𝑅 from𝐺𝑇 (line 4) according to some probability distribution

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1571

Figure 3: Overview of odeN’s approximation strategy. Let

𝐻 be a triangle, and ℓ = 3, 𝛿 = 40. odeN first collects the

static projected network 𝐺𝑇 , then samples an edge 𝑒𝑅 ∈ 𝐺𝑇

randomly (𝑒𝑅 = {1, 2} in the figure) and enumerates all the

subgraphs of 𝐺𝑇 isomorphic to 𝐻 containing 𝑒𝑅 . For each

subgraph it collects the corresponding temporal network,

counts the 𝛿-instances of the motifs, and combines the dif-

ferent counts to obtain unbiased estimates of motif counts.

This procedure is repeated to obtain concentrated estimates.

over the edges of 𝐸𝑇 ; ii) enumerate all the subgraphs ℎ of 𝐺𝑇 such
that ℎ ≃ 𝐻 and 𝑒𝑅 ∈ ℎ (line 5); note that this enumeration step is
local to 𝑒𝑅 ; iii) for each such ℎ (line 6), collect the corresponding
temporal graph, i.e., all edges in 𝑇 for which their static projected
edge is an edge ofℎ (line 7), sort the sequence of edges of such graph
by increasing timestamps and apply some pruning criteria (lines
8-9); iv) if the sequence is not pruned, then update the estimates
of the number of 𝛿-instances of each temporal motif by calling
the routine FastUpdate (line 10). FastUpdate features an efficient
implementation of the general algorithm by Paranjape et al. [31],
for which we devised efficient encodings of the motifs within inte-
gers through bitwise operations. Such function updates 𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠

in order to maintain for each motif the count that will be used to
output its unbiased estimate (see Appendix B of [35] for details). Let
𝐶𝑀𝑖
(𝑒) be the number of 𝛿-instances in𝑇 of𝑀𝑖 , 𝑖 = 1, . . . , |M(𝐻, ℓ) |

whose undirected projected static network contains edge 𝑒 ∈ 𝐺𝑇 .
FastUpdate updates the estimate of the counts for each motif 𝑀𝑖

by summing its unbiased estimate obtained at the 𝑗-th iteration
(i.e., 𝑋 𝑗

𝑀𝑖
= 𝐶𝑀𝑖

(𝑒𝑅)/(|𝐸𝐻 |𝑝𝑒𝑅)). Once the procedure is repeated 𝑠
times, for each motif 𝑀𝑖 ∈ M(𝐻, ℓ), 𝑖 = 1, . . . , |M(𝐻, ℓ) |, odeN
computes the final estimate 𝐶 ′

𝑀𝑖
= 1

𝑠

∑𝑠
𝑗=1 𝑋

𝑗

𝑀𝑖
where 𝑋

𝑗

𝑀𝑖
=

1
|𝐸𝐻 |

∑
𝑒∈𝐺𝑇

𝐶𝑀𝑖
(𝑒)𝑋𝑒/𝑝𝑒 is the estimate obtained at the 𝑗-th it-

eration (with𝑋𝑒 being a bernoulli random variable denoting if edge
𝑒 ∈ 𝐺𝑇 is sampled at the 𝑗-th iteration, s.t. P[𝑋𝑒 = 1] = 𝑝𝑒) and out-
puts it together with the motif (we output 𝜎𝑖 over the node-set 𝑉𝐻)
(lines 12-13). We show in Lemma 4.1 that odeN outputs unbiased
estimates for all the motif counts.

Algorithm 1: odeN
Input: 𝑇 = (𝑉 , 𝐸), 𝐻 = (𝑉𝐻 , 𝐸𝐻), 𝛿, 𝑠, ℓ
Output: (𝑀𝑖 ,𝐶

′
𝑀𝑖
), 𝑖 = 1, . . . , |M(𝐻, ℓ) | where 𝐶 ′

𝑀𝑖
is an

estimate of 𝐶𝑀𝑖
for the motifs inM(𝐻, ℓ).

1 𝐺𝑇 = (𝑉 , 𝐸𝑇) ← UndirectedStaticProjection(𝑇)
2 𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 ← {}
3 for 𝑗 ← 1 to 𝑠 do
4 𝑒𝑅 = {𝑥𝑅, 𝑦𝑅} ← RandomEdge(𝑝 (𝑒) : 𝑒 ∈ 𝐸𝑇)
5 H ← {ℎ ⊆ 𝐺𝑇 : ℎ ≃ 𝐻, {𝑥𝑅, 𝑦𝑅} ∈ ℎ}
6 foreach ℎ ∈ H do

7 𝑆 ← {(𝑥,𝑦, 𝑡), (𝑦, 𝑥, 𝑡) ∈ 𝐸 : {𝑥,𝑦} ∈ ℎ}
8 SortInPlace(𝑆) ⊲ By increasing timestamps

9 if *Pruning criteria are not met* then

10 FastUpdate(𝛿, 𝑆,𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 , 𝑝 (𝑒𝑅), 𝐻)

11 foreach (𝑀,𝑋𝑀) ∈ 𝐶𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 do

12 𝐶 ′
𝑀
← 𝑋𝑀

𝑠

13 output (𝑀,𝐶 ′
𝑀
)

We briefly discuss the pruning criteria used in line 9. Given a
candidate temporal graph 𝑆 for which 𝐺𝑆 ≃ 𝐻 holds, we check in
linear time if 𝑆 can contain a 𝛿-instance of a motif or not: since 𝑆 is
already sorted by increasing timestamps (see line 8), we efficiently
check if there are at least ℓ edges within 𝛿-time. If not, then we
prune the sequence (since by definition a 𝛿-instance of a motif with
𝑘-nodes, and ℓ-edges must have ℓ edges occurring within 𝛿-time).
We thus avoid calling the subroutine FastUpdate, which has an
exponential complexity in general (see Section 4.3), on 𝑆 .

We now discuss the probability distribution used to sample a
random edge 𝑒𝑅 from𝐺𝑇 (line 4), while we describe the subroutine
FastUpdate that updates the motif estimates at each iteration (line
10) and the algorithms employed for the static enumeration in
Appendix B of [35] for space constraints (Sections B.1 and B.2).

Since our final estimate is an average over 𝑠 samples of the
variables 𝑋 𝑗

𝑀𝑖
, 𝑖 = 1, . . . , |M(𝐻, ℓ) |, 𝑗 = 1, . . . , 𝑠 , and given that 𝑋 𝑗

𝑀𝑖

is an unbiased estimate (see Lemma 4.1) the final estimate is also a
consistent estimator (i.e., it converges to𝐶𝑀𝑖

as 𝑠 →∞) if each edge
has a positive probability of being sampled2. Thus any probability
mass assigning positive probabilities on edges can be adopted. We
considered different distributions over the edges of 𝐸𝑇 :

(1) Uniform: 𝑝𝑒 = 1/|𝐸𝑇 |, 𝑒 ∈ 𝐸𝑇 ;
(2) Static degree based: 𝑝𝑒 = 𝑑 (𝑒)/(∑𝑒′∈𝐸𝑇 𝑑 (𝑒 ′)), 𝑒 ∈ 𝐸𝑇 where

𝑑 (𝑒 = {𝑥,𝑦}) = 𝑑 (𝑥) + 𝑑 (𝑦) is the degree of the edge as sum
of the degree of its nodes 𝑥,𝑦 ∈ 𝑉 in 𝐺𝑇 ;

(3) Temporal degree based: 𝑝𝑒 = 𝜙 (𝑒)/(∑𝑒′∈𝐸𝑇 𝜙 (𝑒 ′)) with
𝜙 (𝑒 = {𝑥,𝑦}) = |{𝑡 : ∃(𝑥, 𝑧, 𝑡) ∨ (𝑧, 𝑥, 𝑡) ∈ 𝐸}| + |{𝑡 :
∃(𝑧,𝑦, 𝑡) ∨ (𝑦, 𝑧, 𝑡) ∈ 𝐸, 𝑧 ≠ 𝑥}|, 𝑒 ∈ 𝐸𝑇 ;

(4) Temporal edge weight based: 𝑝𝑒={𝑥,𝑦 } = |{(𝑥,𝑦, 𝑡), (𝑦, 𝑥, 𝑡) ∈
𝐸}|/𝑚, 𝑒 ∈ 𝐸𝑇 ;

We empirically found the distribution (4) to be the fastest to
converge for small number 𝑠 of iterations, thus we use it in our

2More formally it is only necessary to assign to each 𝛿-instance a known positive
sampling probability.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1572

analysis. We observe that many other candidate distributions can be
designed (e.g., combining two of those already listed with weights
𝜉, 1 − 𝜉, 𝜉 ∈ (0, 1)) making our framework extremely versatile.

We conclude by summarizing some nice properties of our algo-
rithm: 1) it computes the estimates only for the temporal motifs
occurring in the input temporal network 𝑇 (except for the very
unpractical case where the motifs inM(𝐻, ℓ) have all zero counts)
without generating all the possible candidates, while existing sam-
pling techniques require to first generate all the candidates and then
to execute the algorithms on such candidates, even for motifs with
zero counts; 2) it takes advantage of the constraint that all motifs
share the same underlying topology (𝐻), saving computation when
estimating the different counts; 3) it is trivially parallelizable: all
the 𝑠 iterations can be executed in parallel; 4) it can easily use most
of the fast state-of-the-art subgraph enumeration algorithms devel-
oped for the exact subgraph isomorphism problem (see Appendix
B.2 of [35]).

4.3 Time Complexity

In this section we briefly describe the time complexity of odeN.
odeN needs to compute the probabilities 𝑝 (𝑒) of edges in advance,
which requires a 𝑂 (|𝐸𝑇 |) preprocessing step. Interestingly, this
step does not depend on the target template 𝐻 , so it can be reused
for different target templates 𝐻 . One of the most expensive steps
in Algorithm 1 is the local enumeration to identify the set H
which in general requires exponential time (line 5). For specific
topologies this step can be implemented very efficiently with sym-
metry breaking conditions and min-degree expansion. For exam-
ple, if 𝐻 is a triangle this “local” enumeration to 𝑒𝑅 = {𝑥𝑅, 𝑦𝑅}
can be done in 𝑂 (min(𝑑𝑥𝑅 , 𝑑𝑦𝑅)) time. Let |H∗ | be the maximum
cardinality of a set of subgraphs isomorphic to 𝐻 and adjacent
to an edge in 𝐺𝑇 . Let |𝑆∗ | denote the maximum cardinality of a
set 𝑆 collected (in line 7) by our algorithm odeN. Sorting 𝑆∗ re-
quires 𝑂 (|𝑆∗ | log |𝑆∗ |) time. The subroutine FastCount has a com-
plexity dominated by 𝑂 ((|𝑆∗ | + ℓ) |𝐸𝐻 |ℓ) (see [31] and App. B.1
of [35] for more details). So overall the complexity of our proce-
dure is𝑂 (|𝐸𝑇 | + 𝑠 (𝜁𝑒𝑛𝑢𝑚 + |H∗ | (|𝑆∗ | log(|𝑆∗ |) + |𝐸𝐻 |ℓ (|𝑆∗ | + ℓ)))),
where 𝜁𝑒𝑛𝑢𝑚 is the time required by the static enumerator used
as subroutine to compute the set H∗. Such step in general is ex-
ponential in the number of edges of |𝐸𝑇 | and depends on the ex-
act technique used as subroutine. The final complexity accounts
for the cycle (in line 3) that is repeated 𝑠 times. The parallel ver-
sion of our algorithm, which executes the cycle of line 3 in paral-
lel on 𝜔 processing units available, leads to a time complexity of
𝑂 (|𝐸𝑇 | + 𝑠/𝜔 (𝜁𝑒𝑛𝑢𝑚 + |H∗ | (|𝑆∗ | log(|𝑆∗ |) + |𝐸𝐻 |ℓ (|𝑆∗ | + ℓ)))).

4.4 Theoretical Guarantees

In this section we present the theoretical guarantees provided by
odeN. All proofs are provided in Appendix D of [35].

Recall that our algorithm outputs, for each motif 𝑀𝑖 ∈
M(𝐻, ℓ), 𝑖 = 1, . . . , |M(𝐻, ℓ) |, the following estimate: 𝐶 ′

𝑀𝑖
=

1
𝑠

∑𝑠
𝑗=1 𝑋

𝑗

𝑀𝑖
= 1

𝑠 |𝐸𝐻 |
∑𝑠

𝑗=1
∑
𝑒∈𝐺𝑇

𝐶𝑀 (𝑒)𝑋𝑒/𝑝𝑒 . The following
shows that such estimates are unbiased estimates of 𝐶𝑀𝑖

, 𝑖 =

1, . . . , |M(𝐻, ℓ) |.

Lemma 4.1. For eachmotif-count pair (𝑀𝑖 ,𝐶
′
𝑀𝑖
) reported in output

by odeN, 𝐶 ′
𝑀𝑖

is an unbiased estimate to 𝐶𝑀𝑖
, that is E[𝐶 ′

𝑀𝑖
] = 𝐶𝑀𝑖

Let 𝛼 = min{𝑥,𝑦 }∈𝐸𝑇 {|{(𝑥,𝑦, 𝑡), (𝑦, 𝑥, 𝑡) ∈ 𝐸}|}, i.e., the mini-
mum number of temporal edges of 𝑇 that map on an edge in 𝐺𝑇 .
We now give an upper bound to the variance of the estimates pro-
vided by Algorithm 1 for each motif reported in output.

Lemma 4.2. For eachmotif-count pair (𝑀𝑖 ,𝐶
′
𝑀𝑖
) reported in output

by odeN, it holds Var[𝐶 ′
𝑀𝑖
] ≤

𝐶2
𝑀𝑖

𝑠

(
𝑚

𝛼 |𝐸𝐻 | − 1
)

To give a bound on the number 𝑠 of samples required by odeN
to output a 𝜀-approximation that holds on all motifs in output
with probability > 1 − 𝜂, we combine Bennett’s inequality [5],
an advanced result on the concentration of sums for independent
random variables as reported in [36], with a union bound, obtaining
the following main result.

Theorem 4.3. Let 𝑠 be the number of iterations of odeN, let 𝜀 ∈ R+,
and 𝜂 ∈ (0, 1). If 𝑠 ≥

(
𝑚

𝛼 |𝐸𝐻 | − 1
)

1
(1+𝜀) ln(1+𝜀)−𝜀 ln

(
2 |M(𝐻,ℓ) |

𝜂

)
then

P[∃𝑖 ∈ {1, . . . , |M(𝐻, ℓ) |} : |𝐶 ′𝑀𝑖
−𝐶𝑀𝑖

| ≥ 𝜀𝐶𝑀𝑖
] ≤ 𝜂.

5 EXPERIMENTAL EVALUATION

We implemented odeN and tested it on several large datasets (see
Section 5.1 for details on setup, and data). Our experimental evalu-
ation has the following goals: compare odeN with state-of-the-art
algorithms for approximating motif counts (Section 5.2); evaluate
the scalability of a simple parallel implementation of odeN (Sec-
tion 5.3); provide a case study highlighting the usefulness of using
odeN (Section 5.4) to analyze real-world temporal networks.

5.1 Setup, and Datasets

We briefly describe the setup and the large-scale datasets used in
our experimental evaluation.

We implemented our algorithm odeN in C++20 and compiled
it under gcc 9.3 with optimization flag enabled (implementation
available at https://github.com/VandinLab/odeN), additional details
on the implementation are in Appendix C of [35]. We compared
odeN with four different baselines, denoted as PRESTO-A (PR-A),
PRESTO-E (PR-E) [36], LS [23], and ES [42]. We used the original
implementations available from the authors. We performed all ex-
periments under Ubuntu 20.04 on a machine with 64 cores, Intel
Xeon E5-2698 2.3GHz, running each algorithm single threaded and
with 300GB of maximum RAM allowed.

The datasets used in our experimental evaluation are reported in
Table 1, which shows the number of nodes and edges of 𝑇 , the pre-
cision of the timestamps, the timespan of the network, the number
|𝐸𝑇 | of undirected edges in the corresponding undirected projected
static network 𝐺𝑇 , the maximum degree 𝑑max of a node in 𝐺𝑇 and
the maximum number𝑤max of temporal edges that are mapped on
the same static edge in𝐺𝑇 . The datasets are from different domains:
SO is a network that models interactions from the Stack-Overflow
platform [31], BI is a network of Bitcoin transactions [23], RE a
network built from comments on the platform Reddit [23], and EC
is a bipartite temporal network build from IPv4 packets exchanged

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1573

https://github.com/VandinLab/odeN

Table 1: Datasets used and their statistics. See Section 5.1 for

details on the statistics reported.

Name 𝑛 𝑚 |𝐸𝑇 | 𝑑max 𝑤max Precision Timespan

SO 2.58M 47.9M 28.1M 44K 594 sec 2774 (days)
BI 48.1M 113M 84.3M 2.4M 24.2K sec 2585 (days)
RE 8.40M 636M 435.3M 0.3M 165K sec 3687 (days)
EC 11.16M 2.32B 66.8M 0.3M 3.8M 𝜇-sec 62.0 (mins)

between Chicago and Seattle [36]. See the original papers for more
details on the networks and the processes they model.

When measuring the running times for the various algorithms
we exclude the time to read the dataset. Since ES’s implementation
supports only values of ℓ up to 4, we do not report results for ES and
ℓ > 4. Unless otherwise stated we used 𝛿 = 86400 for SO and RE,
𝛿 = 43200 on BI, and 𝛿 = 50000 on EC, as done in previousworks [23,
31, 42]. Since all algorithms used in our comparison have different
parameters and only odeN counts multiple motifs simultaneously,
we used the following procedure to choose the parameters. For a
given target template𝐻 and ℓ , we run PRESTO-A, PRESTO-E, LS, and
ES for each motif inM(𝐻, ℓ) with fixed parameters, and computed
their running time as the sum of the running times required by
the single motifs in M(𝐻, ℓ). We then fixed the parameters of
odeN so that its running time would be at most the same as the
other methods, or be close to it. All the parameters used in the
experiments (including sample sizes) are reported with the source
code. To extract the exact counts of motifs we used a modified
version of the algorithm by Mackey et al. [24]. We do not report
the running times of such algorithm since, even though it employs
parallelism, it still runs several orders of magnitude slower than
approximate approaches.

5.2 Approximation Quality and Running Time

In this section we compared the quality of the estimates and the
running times of odeN and the baseline sampling approaches.

To evaluate the approximations qualities we used the MAPE
(Mean Average Percentage Error) metric over ten executions of each
algorithm and parameter configuration. The MAPE is computed
as follows: let 𝐶 ′

𝑀𝑖
be the estimate of 𝐶𝑀𝑖

, 𝑖 = 1, . . . , |M(𝐻, ℓ) |,
returned by an algorithm, then the relative error of such estimate
is |𝐶 ′

𝑀𝑖
−𝐶𝑀𝑖

|/𝐶𝑀𝑖
. The MAPE is the average over the ten runs of

the relative errors, in percentage. On each of the ten runs we also
measured the running time of each algorithm, for which we will
report the arithmetic mean.

We first discuss the quality of the estimates for different datasets
when 𝐻 is a triangle and ℓ ∈ {4, 5}. For ℓ = 4 there are |M(𝐻, ℓ) | =
96 triangles, while for ℓ = 5, |M(𝐻, ℓ) | is 800. So as long as ℓ in-
creases the approximation task becomes more challenging, due to
the exponential growth of the number of motifs. We also observe
that, to the best of our knowledge, such a huge number of temporal
motifs was never tested before on large datasets due to the limita-
tions of existing algorithms, while, as we will show, odeN renders
the approximation task practical even on hundreds of motifs.

The results on the SO dataset are shown in Figure 4a. odeN pro-
vides much sharper estimates than state-of-the-art sampling tech-
niques for single motif estimations on motifs 𝑀1, . . . , 𝑀 |M(𝐻,ℓ) | :
the relative error on ℓ = 4-edge triangles is bounded by 5%, and

PRESTO-APRESTO-E LS ES odeN

100

101

%
 R

el
at

iv
e

Er
ro

r (
M

AP
E)

Methods comparison StackOverflow, = 4

PRESTO-A PRESTO-E LS odeN

100

101

102

%
 R

el
at

iv
e

Er
ro

r (
M

AP
E)

Methods comparison StackOverflow, = 5

(a)

PRESTO-APRESTO-E LS ES odeN

101

102

%
 R

el
at

iv
e

Er
ro

r (
M

AP
E)

Methods comparison Bitcoin, = 4

PRESTO-APRESTO-E LS ES odeN

101

102

%
 R

el
at

iv
e

Er
ro

r (
M

AP
E)

Methods comparison Reddit, = 4

(b)

PRESTO-A PRESTO-E LS odeN

101

102

%
 R

el
at

iv
e

Er
ro

r (
M

AP
E)

Methods comparison EquinixChicago, = 4

PRESTO-APRESTO-E LS ES odeN

101

%
 R

el
at

iv
e

Er
ro

r (
M

AP
E)

Methods comparison Stackoverflow, = 4

(c)

Figure 4: Approximation error on different datasets. (4a): SO

dataset, 𝐻 is a triangle, for ℓ = 4 (left) and ℓ = 5 (right). (4b):
𝐻 is a triangle, ℓ = 4, BI dataset (left) and RE dataset (right).

(4c): EC dataset, 𝐻 is an edge, ℓ = 4 (left); SO dataset, 𝐻 is a

square, ℓ = 4.

for ℓ = 5-edge triangles (where |M(𝐻, ℓ) | = 800) the relative error
is bounded by 12% while state-of-the-art algorithms report much
less accurate estimates, with twice the relative error of odeN, on
each configuration. We report the running times to obtain such
estimates in Table 2. Interestingly, odeN is more than 3× faster with
ℓ = 4 than any sampling algorithm and 1.7× faster with ℓ = 5. For
the other datasets, since extracting all the exact counts for ℓ > 4 is
extremely time consuming, requiring up to months of computation,
we will not discuss the approximation qualities for ℓ = 5 (since we
do not have the exact counts to evaluate them).

On dataset BI (Figure 4b left) odeN provides more concentrated
estimates for the |M(𝐻, ℓ) | = 96 triangles than other algorithms
but ES, which also has a smaller running time than odeN. This may
be related to the static graph structure of BI, which has some very
high-degree nodes (see Table 1). Therefore odeNmay sample edges
with very high degree nodes, introducing an over counting in its
estimates. Nonetheless, for higher values of ℓ this issue is amortized
over the growing number of motifs |M(𝐻, ℓ) |.

On dataset RE (Figure 4b right) the estimates by odeN are all
within 13% of relative error and improve significantly over state-
of-the-art sampling algorithms, up to one order of magnitude of
precision. Such estimates were notably obtained with significantly

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1574

Table 2: Running times (in seconds) to obtain the results in

Figure 4 (results are showed following the order in Figure 4).

Under𝐻 we report the topolology of𝐻 used: T for triangles, E
for edges, and S for squares. “-” denotes not applicable, while

“✗” denotes out of RAM.

Dataset ℓ 𝐻 PR-A PR-E LS ES odeN

SO 4 T 533.4 537.7 555.5 567.2 174.4

SO 5 T 4405 4408 4390 - 2515

BI 4 T 2048.6 2065.2 2754.6 1602.9 1948.9
RE 4 T 9787.1 10165.8 14289.7 13172.3 6814.9

EC 4 E 2581.5 3014.9 2981.9 ✗ 1234.3

SO 4 S 15613.7 16718.7 14344.6 26118.3 4517.9

smaller running time than state-of-the-art sampling algorithms,
improving up to 2× the running time of ES and 1.4× over PRESTO
(as reported in Table 2).

Finally, on the EC datasets, which is a bipartite temporal network
with more than 2 billion edges we evaluated the approximation
qualities with 𝐻 being an edge and ℓ = 4 (for which |M(𝐻, ℓ) | =
8), such motifs have fundamental importance in the analysis of
temporal networks since they can be seen as building blocks [15,
44]. We report the results on such motifs in Figure 4c (left) (ES is
not shown since it did not terminate with the allowed memory
budget). The estimates of odeN are well concentrated and within
20% of relative error, while other sampling approaches provide
approximations with a relative error up to 90% or more. Moreover,
odeN’s results were obtained with a speedup of at least 2× over all
the other sampling algorithms, rendering the approximations task
feasible in a small amount of time on very large temporal networks.

To illustrate the enormous advantage of odeN over existing state
of the art exact and approximation algorithms, we compared the
various algorithms on dataset SO when 𝐻 is set to be a square
and ℓ = 4, for which |M(𝐻, ℓ) | = 48. As [42] observed, among
the 4-edge square motifs there are 16 motifs that do not grow as a
single component (i.e., their orderings start with ⟨(1, 2) (3, 4) · · · ⟩).
Estimating the counts of such motifs is particularly hard for most of
the current state-of-the-art sampling algorithms since they generate
a large number of partial matchings, while such aspect does not
impact odeN. The results are shown in Figure 4c (right). odeN
provides tight approximations under 9% of relative error for all
four-edge square motifs, while other sampling algorithms fail to
provide sharp estimates for some of the motifs. Surprisingly, as
shown in Table 2, to obtain such estimates odeN required less than
1.3 hours of computation while the exact computation of the counts
required more than two weeks, and odeN it is at least 3× times
faster than all algorithms, and it is 5.4× times faster than ES.

Overall, these results show that our algorithm odeN achieves
much more precise estimates within a significant smaller running
time than state of the art sampling algorithms when estimating
the counts𝐶𝑀1 , . . . ,𝐶𝑀|M(𝐻,ℓ) | for different values of ℓ and different
topologies of the target template 𝐻 (see Problem 1 in Section 2).

5.3 Parallel Implementation

In this section we briefly describe the advantages of a simple parallel
implementation of Algorithm 1. As discussed in Section 4.2 the

2 4 8 16
Threads

2

4

6

8

10

Sp
ee

du
p

ov
er

 se
qu

en
tia

l

s = 1 106

s = 2 106

s = 3 106

2 4 8 16
Threads

2

3

4

5

6

7

8

9

10

Sp
ee

du
p

ov
er

 se
qu

en
tia

l

 = 43200
 = 86400
 = 129600

Figure 5: Speed-up of odeN’s parallel implementation.

(Left): Varying 𝑠 and fixed 𝛿 ; (Right) Varying 𝛿 and fixed 𝑠.

for cycle (from line 3) can be trivially parallelized, therefore we
implemented such strategy through a thread pooling design pattern.

We describe the results obtained with 𝐻 set to be a triangle,
ℓ = 4, and on the dataset SO; similar results are observed for other
datasets. We tested the speedup achieved with 𝜔 ∈ {2, 4, 8, 16}
threads over the sequential implementation. Let 𝑇𝜔 the average
running time with 𝜔 threads over ten execution of odeNwith fixed
parameters, with 𝑇1 being the average time for running the algo-
rithm sequentially. We report the value of 𝑇1/𝑇𝜔 , 𝜔 ∈ {2, 4, 8, 16},
i.e., the speedup over the sequential implementation. Fig. 5 (Left)
shows the speedup across different values of the sample size 𝑠 , with
𝛿 = 86400. We observe an almost linear speedup up to 4 threads
and then a slightly worse performance, especially for small sample
sizes, that may be related to the time needed to process each sam-
ple. Fig. 5 (Right) shows how the speedup changes for 𝑠 = 2 · 106
and different values of 𝛿 . We note that our algorithm odeN seems
not to be impacted by the value of 𝛿 , and always attaining similar
performances. Interestingly, as captured by our analysis in Section
4.3, the algorithm does not reach a fully linear speedup since we
did not parallelized the computation of the sampling probabilities
𝑝 (𝑒), 𝑒 ∈ 𝐸𝑇 . As a remark, our parallel implementation is not op-
timized, and more advanced parallel strategies may substantially
increase its speedup.

5.4 A Case Study

In this section we illustrate how counting multiple motifs, corre-
sponding to the same target template 𝐻 , with odeN can be used to
extract useful insights from a temporal network. We consider a real-
world activity network from Facebook [41]. In such network, each
node represents a user and a temporal edge (𝑢, 𝑣, 𝑡) indicates that
user 𝑢 posted on 𝑣 ’s wall at time 𝑡 (see the original publication [41]
for more details). The network contains information collected from
September 2006 to January 2009. After removing self-loops, the net-
work has 𝑛=45.7K nodes,𝑚=826K temporal edges, and |𝐸𝑇 |=179K
static (undirected) edges. We will fist show how analyzing the motif
counts obtained with odeN provides complementary insights to
those in [41], that relied onmostly static analyses.We then conclude
by discussing how the counts of the network evolve by varying
only the parameter ℓ (i.e., fixing 𝐻, 𝛿), showing that such counts
surprisingly differ with different values of such parameter.

In the original paper [41], the authors partitioned the Facebook
network in nine different snapshots (obtaining nine projected static

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1575

networks), with each snapshot spanning 90 days of interactions
in the network. The authors observed that consecutive snapshots
have small resemblance, i.e., on average only 45% of the edges
are preserved through consecutive snapshots. The authors also
observed that despite this difference all the snapshots have similar,
almost invariant, structural properties in terms of their clustering
coefficient, average degree distribution, and others. We used odeN
(with 𝜀 = 1, 𝜂 = 0.1) to compare the temporal networks associated
to the snapshots by computing the counts of the 8 temporal motifs
inM(𝐻, ℓ = 3) with 𝐻 being a triangle and 𝛿 = 86400 = 1 day. On
each snapshot, after extracting the motif counts, we computed for
eachmotif𝑀 its normalized count on the snapshot as𝐶𝑀/

∑8
𝑖=1𝐶𝑀𝑖

.
The results are reported in Fig. (6a) (see Appendix E of [35] for a
visual representation of the motifs). Interestingly, even if in [41] the
authors highlight small resemblance through different snapshots,
the counts of the motifs are stable across the different snapshots,
especially by looking at the first three and the last two snapshots.
Surprisingly on snapshots 6 and 7, which correspond to the period
of observation of mid-2008, we observe that there is a significant
variation in the motif counts w.r.t. the previous months. This is the
period where the authors of [41] observed a change in Facebook’s
interface (that led to a drop in the growth of the network) that
seems to be correlated to the variation on the motif counts. Even
more surprisingly, this aspect is not captured by a static analysis
of the snapshots as performed in [41]. Thus, our temporal motifs
analysis through odeN is able to capture a variation in the growth
of the network that the static analysis cannot highlight. (We discuss
how the motifs and their counts can be used to characterize the
activity on the network in Appendix E of [35]).

We then analyzed how the different motif counts of the whole
network change by varying the parameter ℓ . We fixed 𝐻 a triangle
and run odeN with 𝜀 = 1, 𝜂 = 0.1, 𝛿 = 86400. The results are shown
in Figure (6b).We observe that the counts of𝑀1, . . . , 𝑀 |M(𝐻,ℓ) | vary
significantly by increasing ℓ . For ℓ = 3 almost all the motifs have
the same counts, while for larger ℓ there are some motifs with very
high counts (i.e., overrepresented) and some other motifs that are
underrepresented. Overall the highest counts range from 104 to 106
from ℓ = 3 up to ℓ = 6. To understand if these counts increase only
by chance, we performed a widely used statistical test (e..g, [11, 20])
by computing the 𝑍 -scores of the different motif counts under the
following null model [28]. We generated 500 random networks
by the timeline shuffling random model [11], which redistributes
all the timestamps by fixing the directed projected static network.
For each motif 𝑀𝑖 , 𝑖 = 1, . . . , |M(𝐻, ℓ) | we computed a 𝑍 -score
that is defined as follows: let 𝐶𝑀𝑖

be the count of the motif in
the original network and let 𝐶1

𝑀𝑖
, . . . ,𝐶500

𝑀𝑖
be its counts on the

𝑗-th random network 𝑗 ∈ {1, . . . , 500}. The 𝑍 -score is computed
as, 𝑍𝑀𝑖

= (𝐶𝑀𝑖
−∑500

𝑗=1𝐶
𝑗

𝑀𝑖
/500)/std(𝐶1

𝑀𝑖
, . . . ,𝐶500

𝑀𝑖
) where std(·)

denotes the standard deviation. The results are in Fig. (6c), and they
show that the counts in Fig. (6b) are very significant and not due
to random fluctuations (higher 𝑍 -scores indicate that such motif
counts are significantly more frequent in 𝑇 than in the networks
permutated randomly). Interestingly, the 𝑍 -scores in Figure (6c)
follow a similar law to the counts in Figure (6b), with the highest
𝑍 -scores increasing significantly every time ℓ increases. Notably
the highest 𝑍 -scores of motifs with ℓ = 6 are more than 3 orders

1 2 3 4 5 6 7 8 9
Temporal Network Snapshot

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

No
rm

al
ize

d
Co

un
t

M1
M2

M3
M4

M5
M6

M7
M8

(a)

Motif (sorted by count)

104

105

106

M
ot

if
co

un
t

Distribution of the motif counts with varying

 = 3
 = 4
 = 5
 = 6

(b)

Motif (sorted by Z-score)

103

104

105

106

Z-
sc

or
e

of
 th

e
m

ot
if

Distribution of the motif counts Z-scores with varying

 = 3
 = 4
 = 5
 = 6

(c)

Figure 6: (6a): Counts of the motifs inM(𝐻, 3) with 𝐻 a tri-

angle on each temporal network corresponding to one snap-

shot in [41]. (6b): Counts on the full Facebook network with

varying ℓ . (6c): 𝑍 -scores of the motif counts with varying ℓ .

of magnitude larger than the 𝑍 -scores of motifs with ℓ = 3. (We
discuss some of the significant motifs in Appendix E of [35]).

6 CONCLUSIONS

In this work we introduced odeN, our algorithm to obtain rigor-
ous, high-quality, probabilistic approximations of the counts of
multiple motifs with the same static topology in large temporal
networks. Our experimental evaluation shows that odeN allows to
analyze several motifs in large networks in a fraction of the time
required by state-of-the-art approaches. We believe that our algo-
rithm odeN will be of practical interest in the analysis of temporal
networks, complementing many of the existing tools and helping
in understanding complex networked systems and their patterns.

There are several interesting directions for future research, in-
cluding devising better edge probability distributions for odeN
and choosing such distribution based on the characteristics of the
dataset, since different datasets can have very different temporal
edges distributions (e.g., with skewed behaviours [36]) and, thus,
there may not exist a unique distribution that is effective for all
temporal networks. Another direction of future research is the
derivation of improved bounds for the number of samples required
by odeN, using for example statistical learning theory concepts,
such as pseudodimensions or Rademacher averages.

ACKNOWLEDGMENTS

This work was supported, in part, by MIUR of Italy, under PRIN
Project n. 20174LF3T8 AHeAD, and grant L. 232 (Dipartimenti di
Eccellenza), and by the U. of Padova project “SID 2020: RATED-X”.

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1576

REFERENCES

[1] Paolo Bajardi, Alain Barrat, Fabrizio Natale, Lara Savini, and Vittoria Colizza.
2011. Dynamical Patterns of Cattle Trade Movements. PLoS ONE 6, 5 (may 2011),
e19869. https://doi.org/10.1371/journal.pone.0019869

[2] V. Batagelj and M. Zaversnik. 2003. An O(m) Algorithm for Cores Decomposition
of Networks. Advances in Data Analysis and Classification, 2011. Volume 5, Number
2, 129-145 (Oct. 2003). arXiv:cs.DS/cs/0310049

[3] Jeffrey Baumes, Mark K. Goldberg, Mukkai S. Krishnamoorthy, Malik Magdon-
Ismail, and Nathan Preston. 2005. Finding communities by clustering a graph
into overlapping subgraphs. In AC 2005, Proceedings of the IADIS International
Conference on Applied Computing, Algarve, Portugal, February 22-25, 2005, Volume
1, Nuno Guimarães and Pedro T. Isaías (Eds.). IADIS, 97–104.

[4] Caleb Belth, Xinyi Zheng, and Danai Koutra. 2020. Mining Persistent Activity
in Continually Evolving Networks. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. ACM. https:
//doi.org/10.1145/3394486.3403136

[5] George Bennett. 1962. Probability Inequalities for the Sum of Independent
Random Variables. J. Amer. Statist. Assoc. 57, 297 (mar 1962), 33–45. https:
//doi.org/10.1080/01621459.1962.10482149

[6] Hanjo D Boekhout, Walter A Kosters, and Frank W Takes. 2019. Efficiently count-
ing complex multilayer temporal motifs in large-scale networks. Computational
Social Networks 6, 1 (2019), 1–34.

[7] Marco Bressan, Stefano Leucci, and Alessandro Panconesi. 2019. Motivo: Fast
Motif Counting via Succinct Color Coding and Adaptive Sampling. Proceedings of
the VLDB Endowment 12, 11 (2019), 1651–1663. https://doi.org/10.14778/3342263.
3342640

[8] Matteo Ceccarello, Carlo Fantozzi, Andrea Pietracaprina, Geppino Pucci, and
Fabio Vandin. 2017. Clustering uncertain graphs. Proceedings of the VLDB
Endowment 11, 4 (dec 2017), 472–484. https://doi.org/10.1145/3186728.3164143

[9] Eunjoon Cho, Seth A. Myers, and Jure Leskovec. 2011. Friendship and mobility.
In Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining - KDD '11. ACM Press. https://doi.org/10.1145/2020408.
2020579

[10] Ying Ding. 2011. Scientific collaboration and endorsement: Network analysis
of coauthorship and citation networks. Journal of Informetrics 5, 1 (jan 2011),
187–203. https://doi.org/10.1016/j.joi.2010.10.008

[11] Laetitia Gauvin, Mathieu Génois, Márton Karsai, Mikko Kivelä, Taro Takaguchi,
Eugenio Valdano, and Christian L. Vestergaard. 2018. Randomized reference
models for temporal networks. (June 2018). arXiv:physics.soc-ph/1806.04032

[12] M. Girvan and M. E. J. Newman. 2002. Community structure in social and
biological networks. Proceedings of the National Academy of Sciences 99, 12 (jun
2002), 7821–7826. https://doi.org/10.1073/pnas.122653799

[13] Saket Gurukar, Sayan Ranu, and Balaraman Ravindran. 2015. COMMIT. In
Proceedings of the 2015 ACM SIGMOD International Conference on Management of
Data. ACM. https://doi.org/10.1145/2723372.2737791

[14] Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics Reports 519,
3 (oct 2012), 97–125. https://doi.org/10.1016/j.physrep.2012.03.001

[15] Petter Holme and Jari Saramäki (Eds.). 2019. Temporal Network Theory. Springer
International Publishing. https://doi.org/10.1007/978-3-030-23495-9

[16] Y. Hulovatyy, H. Chen, and T. Milenković. 2015. Exploring the structure and
function of temporal networks with dynamic graphlets. Bioinformatics 31, 12
(jun 2015), i171–i180. https://doi.org/10.1093/bioinformatics/btv227

[17] Ali Jazayeri and Christopher C Yang. 2020. Motif discovery algorithms in static
and temporal networks: A survey. Journal of Complex Networks 8, 4 (aug 2020).
https://doi.org/10.1093/comnet/cnaa031

[18] Chrysanthi Kosyfaki, Nikos Mamoulis, Evaggelia Pitoura, and Panayio-
tis Tsaparas. 2018. Flow Motifs in Interaction Networks. (Oct. 2018).
arXiv:cs.SI/1810.08408

[19] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari Saramäki.
2011. Temporal motifs in time-dependent networks. Journal of Statistical Me-
chanics: Theory and Experiment 2011, 11 (nov 2011), P11005. https://doi.org/10.
1088/1742-5468/2011/11/p11005

[20] L. Kovanen, K. Kaski, J. Kertesz, and J. Saramaki. 2013. Temporal motifs reveal
homophily, gender-specific patterns, and group talk in call sequences. Proceedings
of the National Academy of Sciences 110, 45 (oct 2013), 18070–18075. https:
//doi.org/10.1073/pnas.1307941110

[21] Rohit Kumar and Toon Calders. 2018. 2SCENT. Proceedings of the VLDB Endow-
ment 11, 11 (jul 2018), 1441–1453. https://doi.org/10.14778/3236187.3269460

[22] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. 2006. Structure and evolution
of online social networks. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining - KDD '06. ACM Press. https:
//doi.org/10.1145/1150402.1150476

[23] Paul Liu, Austin R. Benson, and Moses Charikar. 2019. Sampling Methods
for Counting Temporal Motifs. In Proceedings of the Twelfth ACM Interna-
tional Conference on Web Search and Data Mining (Melbourne VIC, Australia)
(WSDM ’19). Association for Computing Machinery, New York, NY, USA, 294–302.
https://doi.org/10.1145/3289600.3290988

[24] Patrick Mackey, Katherine Porterfield, Erin Fitzhenry, Sutanay Choudhury, and
George Chin Jr. 2018. A Chronological Edge-Driven Approach to Temporal
Subgraph Isomorphism. (Jan. 2018). arXiv:cs.DS/1801.08098

[25] Naoki Masuda and Renaud Lambiotte. 2016. A Guide to Temporal Networks.
WORLD SCIENTIFIC (EUROPE). https://doi.org/10.1142/q0033

[26] Tijana Milenković and Nataša Pržulj. 2008. Uncovering Biological Network Func-
tion via Graphlet Degree Signatures. Cancer Informatics 6 (jan 2008), CIN.S680.
https://doi.org/10.4137/cin.s680

[27] R. Milo. 2002. Network Motifs: Simple Building Blocks of Complex Networks.
Science 298, 5594 (oct 2002), 824–827. https://doi.org/10.1126/science.298.5594.824

[28] R. Milo. 2004. Superfamilies of Evolved and Designed Networks. Science 303,
5663 (mar 2004), 1538–1542. https://doi.org/10.1126/science.1089167

[29] Mark Newman. 2010. Networks. Oxford University Press. https://doi.org/10.
1093/acprof:oso/9780199206650.001.0001

[30] Pietro Panzarasa, Tore Opsahl, and Kathleen M. Carley. 2009. Patterns and
dynamics of users' behavior and interaction: Network analysis of an online
community. Journal of the American Society for Information Science and Technology
60, 5 (may 2009), 911–932. https://doi.org/10.1002/asi.21015

[31] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. 2017. Motifs in temporal
networks. In Proceedings of the Tenth ACM International Conference on Web Search
and Data Mining. 601–610.

[32] N. Przulj. 2007. Biological network comparison using graphlet degree distribution.
Bioinformatics 23, 2 (jan 2007), e177–e183. https://doi.org/10.1093/bioinformatics/
btl301

[33] Pedro Ribeiro, Pedro Paredes, Miguel EP Silva, David Aparicio, and Fernando
Silva. 2019. A survey on subgraph counting: concepts, algorithms and applications
to network motifs and graphlets. arXiv preprint arXiv:1910.13011 (2019).

[34] Ryan A. Rossi, Nesreen K. Ahmed, Aldo Carranza, David Arbour, Anup Rao,
Sungchul Kim, and Eunyee Koh. 2021. Heterogeneous Graphlets. ACM Trans-
actions on Knowledge Discovery from Data 15, 1 (jan 2021), 1–43. https:
//doi.org/10.1145/3418773

[35] Ilie Sarpe and Fabio Vandin. 2021. odeN: Simultaneous Approximation of Multiple
Motif Counts in Large Temporal Networks (Extended Version). arXiv (2021).
https://arxiv.org/abs/2108.08734

[36] Ilie Sarpe and Fabio Vandin. 2021. PRESTO: Simple and Scalable Sampling Tech-
niques for the Rigorous Approximation of Temporal Motif Counts. SIAM Interna-
tional Conference on Data Mining (2021). https://doi.org/10.1137/1.9781611976700.
17

[37] Alice C. Schwarze and Mason A. Porter. 2020. Motifs for processes on networks.
(July 2020). arXiv:physics.soc-ph/2007.07447

[38] Shai S. Shen-Orr, Ron Milo, Shmoolik Mangan, and Uri Alon. 2002. Network
motifs in the transcriptional regulation network of Escherichia coli. Nature
Genetics 31, 1 (apr 2002), 64–68. https://doi.org/10.1038/ng881

[39] Nino Shervashidze, S. V. N. Vishwanathan, Tobias Petri, Kurt Mehlhorn, and
KarstenM. Borgwardt. 2009. Efficient graphlet kernels for large graph comparison.
In Proceedings of the Twelfth International Conference on Artificial Intelligence
and Statistics, AISTATS 2009, Clearwater Beach, Florida, USA, April 16-18, 2009
(JMLR Proceedings), David A. Van Dyk and Max Welling (Eds.), Vol. 5. JMLR.org,
488–495. http://proceedings.mlr.press/v5/shervashidze09a.html

[40] Kun Tu, Jian Li, Don Towsley, Dave Braines, and Liam D. Turner. 2019. gl2vec. In
Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining. ACM. https://doi.org/10.1145/3341161.3342908

[41] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P. Gummadi. 2009.
On the evolution of user interaction in Facebook. In Proceedings of the 2nd ACM
workshop on Online social networks - WOSN '09. ACM Press. https://doi.org/10.
1145/1592665.1592675

[42] Jingjing Wang, Yanhao Wang, Wenjun Jiang, Yuchen Li, and Kian-Lee Tan. 2020.
Efficient Sampling Algorithms for Approximate Temporal Motif Counting. In
Proceedings of the 29th ACM International Conference on Information & Knowledge
Management. ACM. https://doi.org/10.1145/3340531.3411862

[43] Shuo Yu, Yufan Feng, Da Zhang, Hayat Dino Bedru, Bo Xu, and Feng Xia. 2020.
Motif discovery in networks: A survey. Computer Science Review 37 (2020),
100267.

[44] Qiankun Zhao, Yuan Tian, Qi He, Nuria Oliver, Ruoming Jin, and Wang-Chien
Lee. 2010. Communication motifs. In Proceedings of the 19th ACM international
conference on Information and knowledge management - CIKM '10. ACM Press.
https://doi.org/10.1145/1871437.1871694

[45] Bo Zong, Xusheng Xiao, Zhichun Li, Zhenyu Wu, Zhiyun Qian, Xifeng Yan,
Ambuj K. Singh, and Guofei Jiang. 2015. Behavior query discovery in system-
generated temporal graphs. Proceedings of the VLDB Endowment 9, 4 (dec 2015),
240–251. https://doi.org/10.14778/2856318.2856320

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

1577

https://doi.org/10.1371/journal.pone.0019869
https://arxiv.org/abs/cs.DS/cs/0310049
https://doi.org/10.1145/3394486.3403136
https://doi.org/10.1145/3394486.3403136
https://doi.org/10.1080/01621459.1962.10482149
https://doi.org/10.1080/01621459.1962.10482149
https://doi.org/10.14778/3342263.3342640
https://doi.org/10.14778/3342263.3342640
https://doi.org/10.1145/3186728.3164143
https://doi.org/10.1145/2020408.2020579
https://doi.org/10.1145/2020408.2020579
https://doi.org/10.1016/j.joi.2010.10.008
https://arxiv.org/abs/physics.soc-ph/1806.04032
https://doi.org/10.1073/pnas.122653799
https://doi.org/10.1145/2723372.2737791
https://doi.org/10.1016/j.physrep.2012.03.001
https://doi.org/10.1007/978-3-030-23495-9
https://doi.org/10.1093/bioinformatics/btv227
https://doi.org/10.1093/comnet/cnaa031
https://arxiv.org/abs/cs.SI/1810.08408
https://doi.org/10.1088/1742-5468/2011/11/p11005
https://doi.org/10.1088/1742-5468/2011/11/p11005
https://doi.org/10.1073/pnas.1307941110
https://doi.org/10.1073/pnas.1307941110
https://doi.org/10.14778/3236187.3269460
https://doi.org/10.1145/1150402.1150476
https://doi.org/10.1145/1150402.1150476
https://doi.org/10.1145/3289600.3290988
https://arxiv.org/abs/cs.DS/1801.08098
https://doi.org/10.1142/q0033
https://doi.org/10.4137/cin.s680
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.1089167
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1002/asi.21015
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1093/bioinformatics/btl301
https://doi.org/10.1145/3418773
https://doi.org/10.1145/3418773
https://arxiv.org/abs/2108.08734
https://doi.org/10.1137/1.9781611976700.17
https://doi.org/10.1137/1.9781611976700.17
https://arxiv.org/abs/physics.soc-ph/2007.07447
https://doi.org/10.1038/ng881
http://proceedings.mlr.press/v5/shervashidze09a.html
https://doi.org/10.1145/3341161.3342908
https://doi.org/10.1145/1592665.1592675
https://doi.org/10.1145/1592665.1592675
https://doi.org/10.1145/3340531.3411862
https://doi.org/10.1145/1871437.1871694
https://doi.org/10.14778/2856318.2856320

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Works
	4 odeN
	4.1 Overview of odeN
	4.2 Algorithm Description
	4.3 Time Complexity
	4.4 Theoretical Guarantees

	5 Experimental Evaluation
	5.1 Setup, and Datasets
	5.2 Approximation Quality and Running Time
	5.3 Parallel Implementation
	5.4 A Case Study

	6 Conclusions
	Acknowledgments
	References

