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ABSTRACT

Autoregressive (AR) decoding is a major latency bottleneck for large language
models. Speculative decoding (SD) accelerates AR by letting a drafter propose
multi-token blocks that a verifier accepts or rejects. However, many SD sys-
tems require heavy offline training or extra components. These choices raise
data/compute cost and can yield brittle drafters under distribution drift. We intro-
duce Draft, Verify, & Improve (DVI), a training-aware self-speculative framework
that combines inference with continual online learning. We partition an LLM into
a drafter and a verifier, and during generation, verifier accept/reject decisions are
converted into supervision signals and used to update the drafter head. A sim-
ple KL→RL schedule bootstraps calibration via online distillation and then adds
reward-masked cross-entropy with a on-policy policy-gradient term, preserving
lossless, single model deployment. On Spec-Bench, DVI achieves a 2.16× wall-
time speedup, on par with SoTA approaches like EAGLE-2, while orders of mag-
nitude less data for training, and ablations show that DVI outperforms KL-only
online distillation. DVI demonstrates that training-aware self-speculation can de-
liver state-of-the-art, lossless speedups with minimal training overhead.
Code will be released upon publication.

1 INTRODUCTION

Large Language Models (LLMs) are continuing to rise in popularity, finding new use-cases ranging
from powering conversational assistants to web agents. However, models continue to suffer high
latency due to their autoregressive (AR) nature. AR decoding acts as the primary bottleneck for
LLM inference as each token depends on the previous one, causing end-to-end latency to scale
sequence length and per-step compute.

Speculative decoding (SD) addresses this by proposing multiple tokens at once instead of one token
at a time (Chen et al., 2023; Leviathan et al., 2023). SD uses a lightweight drafting model, and uses
the larger, high-fidelity target model to verify or reject each drafted token. The accepted tokens are
then committed and generated, preserving target-model correctness while reducing wall-clock time.
While SD has exploded in popularity, many SD works still face practical limitations. Speedups
are dependent on high token acceptance rates, which in turn hinge on the drafter’s fidelity. If the
drafted tokens diverge, the verifier takes over, and falls back to AR decoding, plus the added drafting
computation.

In traditional SD, many works train a dedicated drafting model, or distill a drafting model from the
larger target model (Chen et al., 2023; Leviathan et al., 2023). Other works explore self-speculation,
where the model itself is partitioned into drafting layers and verification layers (Zhang et al., 2023;
Liu et al., 2024a). Regardless of which approach, most techniques rely heavily on a robust training
phase to train the drafting model. This heavy offline drafter training introduces practical gaps for
SD.

Many SD pipelines require training a drafting model for multiple epochs over large datasets, or
intensive model distillation from full teacher distributions over data (Ankner et al., 2024; Cai et al.,
2024; Li et al., 2024a;b; Zhang et al., 2023). Even training a lightweight adapter requires hours of
training (Liu et al., 2024a).
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This reliance on heavy offline training enables drafter brittleness under distribution shift. As con-
versation, task, or traffic drifts, the fixed drafters lose acceptance, killing any potential speedup, if
the distribution is not covered by the training data (Liu et al., 2024b). These slowdowns compound
in traditional SD settings, where the pipeline relies on separate drafter and verifier models, due to
the added computational cost of running both models, and the ensuring KV cache overhead, system
complexity, and increased memory demands.

Therefore, we propose Draft, Verify, & Improve (DVI), a training-aware self-speculative decoding
framework. DVI splits a single backbone model at an intermediate layer, attaching a drafter head
and a frozen verifier head. This partitioning creates a computationally efficient drafting model and
verifying model. At inference, the drafter proposes multi-token blocks which the verifier accepts or
rejects.

Whereas most SD pipelines will just commit the accepted tokens and move on, DVI instead treats
these commit decisions as learning signals: the drafter is updated online from accept/reject feed-
back while the verifier remains unchanged. This preserves a one-model serving geometry with no
auxiliary drafter or extra KV cache while enabling continual drafter adaptation to live traffic.

During generation, the drafter proposes kspec tokens from prefix tokens hk; the frozen verifier eval-
uates the same prefix from hL and commits the longest agreeing prefix between the drafter and
verifier. The frozen verifier ensures speculation remains lossless. DVI logs the per-token state at
hk, denoting a accept or reject, into a lightweight buffer and performs small, frequent updates to
the drafter using a KL→RL schedule: a KL-guided warmup to the verifier distribution followed
by reward-masked cross-entropy and an on-policy policy-gradient term Williams (1992). Training
can be done in an online manner, as it mirrors the inference workflow of drafting and verifying,
minimizing train/serve skew.

We evaluate DVI on Spec-Bench, a public SD benchmark suite spanning translation, summarization,
QA, math, and retrieval-augmented generation. DVI achieves near-2× average wall-time speedups
with a single pass over a small prompt stream. Acceptance improves steadily during online updates,
and the method maintains strong performance without any additional offline training or auxiliary
models.

We perform ablations to verify that our training pipeline is robust. We demonstrate that optimizing
the drafter purely by distillation or purely by sparse rewards is insufficient. A KL/distillation-only
variant, performing online KD from the frozen verifier, creates a speedup, but falls short of matching
DVI performance.

These results motivate DVI’s KL→RL schedule: an online KD warmup that calibrates the shallow
drafter in the verifier’s logit space, followed by a on-policy correction that assigns credit only where
speculation succeeds. This combination overcomes both the KL plateau and the instability of sparse-
reward training, directly optimizing acceptance where it matters.

Contributions:

• We propose DVI, a self-speculation method with a frozen verifier and an online-learned
drafter head that converts commit decisions into self-supervision.

• DVI offers a data-efficient, cheap method to train a SD model. We create competitive
speedups using a small number of live prompts, with no separate offline dataset or long
pretraining.

• We validate DVI’s effectiveness by performing experiments with Spec-Bench, demonstrat-
ing competitive speedups compared to other SoTA SD methods.

The paper is structured as follows: Section 2 introduces related works. Section 3 presents the DVI
pipeline, objective, and training schedule. Section 4 reports speedups, comparisons against other
SD methods, and ablations. Section 5 concludes the paper.
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2 RELATED WORK

2.1 SPECULATIVE DECODING BASICS

Traditional modern speculative decoding (SD) accelerates autoregressive generation by letting a
small draft model propose a block of k tokens and a large target model verify them in parallel. The
target model then commits the longest agreeing prefix and continues generation. In this setting, the
committed tokens from the verifier are exactly from the target model’s decoding distribution (e.g.,
greedy or sampling) — creating “lossless” speculation (Leviathan et al., 2023; Chen et al., 2023).

Liu et al. (2024b), periodically fine-tunes an external drafter model online via knowledge distillation
(KD) (Liu et al., 2024b). By aligning to live query distributions, it shows that continual adaptation
is possible, albeit with an auxiliary drafter and pretraining warm-start.

2.2 SELF-SPECULATION

Instead of a separate drafting model, self-speculation splits a single backbone model into shallow
drafting layers, and deep verification layers. Zhang et al. (2023) introduced self-speculation for
LLMs by skipping or shortening intermediate layers to form a fast internal drafter and then running
the full model to verify.

This simpler approach removes the complexity of managing multiple models, finding suitable draft-
ing models for target models, and reduces computation.

Later work improves upon this, with more complex and flexible architectures. For example, Liu
et al. (2024a) achieves self speculation by adding a lightweight adapter over the shallow subnetwork
and introducing dynamic early-exit during drafting to curb drafter latency when confidence is low.

2.3 OTHER ACCELERATION FAMILIES

Instead of speculating, Cai et al. (2024) augments the backbone model with multiple time-
independent heads that predict multi-step continuations. The resulting branches are verified with
tree-attention verifier every step. Ankner et al. (2024) replaces Medusa’s independent heads with
sequentially dependent heads, improving draft accuracy (and thus acceptance) under the same veri-
fication framework.

Li et al. (2024a) drafts features (second-to-top-layer states) one step ahead and uses the target LM
head to form tokens, producing well-calibrated draft trees. Li et al. (2024b) adds context-aware
dynamic trees, yielding improved speedups. While these approaches create massive speedups, they
also require significant amounts of training, even relative to approaches like Medusa.

3 DVI: DRAFT → VERIFY → IMPROVE

This section formalizes Draft, Verify, & Improve (DVI) for self-speculative decoding using a single
backbone model with a LoRA-parameterized draft head.

3.1 PRELIMINARIES AND NOTATION

Consider a decoder-only language model with transformer layers indexed 0:L. We choose a split
index k with 0 < k < L and write the shallow and deep hidden states as

hk,t = f0→k(x0:t), hL,t = fk→L(hk,t),

where x0:t is the token prefix, f0→k is the draft path (layers 0→k), and fk→L is the target path
(layers k→L).

We attach two vocabulary classifiers:

pϕ(· | hL,t) = softmax(W (V )hL,t) (target path; frozen),

pθ(· | hk,t) = softmax
(
(W (S) + γsAsBs)hk,t

)
(draft path; trainable LoRA).

3
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Split Layer 

Training Signal

Draft Head
(LoRA  )

Verifier Head
(Frozen  )

Verifier Layers

Drafting Layers

A B C D

First Mistmatch

A B X Y

Commit Verifier Token

A B X

Draft Proposals:

Verifier (Target) Tokens:

Committed Tokens:

Longest Agreeing Prefix

Reward = 1 Reward = 1 Reward = 0 Excluded

Resulting Buffer Tuple:

Figure 1: Left: Multi-token speculation, where the drafter proposes a block of tokens and the verifier
accepts the longest agreeing prefix before emitting the first mismatch. We log one tuple per drafted
position up to and including the first reject, (hk, a, logitsϕ, r, prev id), with r=1 for accepted tokens
and r=0 for the first reject. This converts verifier feedback into continual self-supervision. Right:
DVI architecture, where the backbone is split at layer k, with shallow drafting layers (purple) feeding
the LoRA draft head pθ(· | hk) and deep verification layers (blue) feeding the frozen verifier head
pϕ(· | hL). The logged tuples from the rollout buffer drive updates to the draft head, while the
verifier and backbone remain fixed. This closes the loop between online speculation and training,
ensuring adaptation without additional models or offline data.

Here W (S) is a frozen base projection at the draft path output, and (As, Bs) are trainable LoRA
modules (Hu et al., 2021). Throughout training, only θ ≡ {As, Bs} is updated online; all backbone
weights remain fixed. LoRA is applied only to the draft head at hk,t.

We adopt the canonical longest-prefix verification used in SD: at each position t, the target path
deterministically emits the next token under a fixed sampler. Like many other SD works,we employ
greedy decoding,

y⋆t+1 = argmax
y

pϕ(y | hL,t),

and the procedure is lossless because verification preserves the target sampler’s output. Additionally,
we consider only single-sequence verification (no tree search).

3.2 SELF-SPECULATIVE FACTORIZATION

As mentioned before, DVI is self-speculative: the backbone model is partitioned into a draft path
(layers 0→k) and a target path (layers k→L). The LoRA-augmented draft head at hk,t proposes
tokens quickly; the frozen target head at hL,t verifies the tokens. This single-model setup avoids
separate drafting and target models, the ensuing extra KV cache, and larger system level complexity,
while providing a LoRA adapters for online learning.

Drafting a kspec-token block requires one shallow forward; if m tokens are accepted, the deep com-
putation is amortized over those m outputs in a single verification pass.

3.3 SPECULATIVE ROLLOUT AND LEARNING SIGNAL

We can see what one speculation and verification looks like given the notation above.

At decoding step t, we compute the shallow state once given the prefix tokens (commonly user input
or training data),

hk,t = f0→k(x0:t).

The draft path rolls out up to kspec candidates

t̃t+1:t+kspec ∼ pθ(· | hk,·),

4
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Given the drafted candidates, we verify for each prefix length i = 1, . . . , kspec,

hL,t+i−1 = fk→L(hk,t+i−1), y⋆t+i = argmax pϕ(· | hL,t+i−1).

Let
m = max

{
i ∈ {0, . . . , kspec} : t̃t+j = y⋆t+j for all j ≤ i

}
.

We the commit the m agreeing tokens and reject everything at and after the first mismatch by emit-
ting y⋆t+m+1. Decoding then continues autoregressively from the new prefix.

The resulting accept/reject outcomes yield a clean, low-variance signal. For drafted positions up to
and including the first reject, we log to an online replay buffer(

hk,t+i−1, at+i = t̃t+i,
ϕ
t+i, rt+i, i

)
,

where ϕ
t+i are target-path logits and

rt+i =


1, 1 ≤ i ≤ m (accepted),
0, i = m+ 1 (first reject),
undefined, i > m+ 1 (counterfactual; not verified).

We exclude i > m+1 from supervised terms to avoid counterfactual bias. The buffer mirrors infer-
ence (same kspec and commit rule), reducing train/serve skew, and generalizing to online learning.

3.4 OBJECTIVES AND UPDATE SCHEDULE

To prevent an RL-cold start with low acceptance, early updates imitate the target path (online KD) to
stabilize gradients in the low-rank subspace; later, the draft path optimizes acceptance on observed
traffic. We implement a composite objective with a KL-to-RL schedule acting on the LoRA adapters
θ.

For a minibatch B sampled from the online buffer, we minimize

Lfast = λpg Lpg + λkl KL
(
pθ ∥ p(τ)ϕ

)
+ wce LCE − went H[pθ],

where pθ(· | hk,t) = softmax
(
(W (S) + γsAsBs)hk,t

)
and p

(τ)
ϕ = softmax(ϕ/τ).

The reward-masked term

Lpg = − 1

|P|
∑
i∈P

log pθ(at+i | hk,t+i−1)

uses only accepted positions P to focus credit where speculation succeeded, and KL(pθ∥p(τ)ϕ ) per-
forms online KD for calibration.

Once the cold start is avoided, we add a light, on-policy correction on fresh tuples:

Lpolicy = wrl E(s,a,r)∼on-policy
[
− (r − b) log pθ(a | s)

]
+ β(t)KL

(
pθ ∥ pϕ

)
,

where b is a baseline for variance reduction (we use an EMA of recent rewards) and β(t) gently
decays to retain calibration. We include both accepted and first-reject positions; positions beyond
the first reject are excluded (counterfactual).

We anneal the relative weights over wall-clock updates t:

(λpg, λkl)(t) =


(0, λ0), t < Twarmup,(
t−Twarmup

Tramp
λmax

pg , λ0 − t−Twarmup

Tramp
(λ0 − λmin

kl )
)
, ramp,

(λmax
pg , λmin

kl ), after.

Warmup emphasizes online KD to avoid unstable gradients in a misaligned subspace; the ramp
increases reward-masked learning that directly raises acceptance.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

All experiments use the Spec-Bench benchmark (Xia et al., 2024). Spec-Bench is a public specu-
lative decoding benchmark that measures model speedups and accepted tokens over six evaluation
settings (MT-Bench, Translation, Summarization, QA, Math, and RAG). All experiments use the
same base Vicuna-7B (Zheng et al., 2023) model as requested by the benchmark, with the serving
configuration fixed across all methods (identical tokenizers, decoding policies, context limits, and
so on).

Table 1: Comparison of training data budgets across speculative decoding methods. DVI uses orders
of magnitude fewer prompt exposures than prior approaches.

Method ShareGPT Epochs Prompt Optimiser Relative
Samples exposures steps budget

DVI (our work) 2,000 1 2,000 2,000 1×
Medusa (Cai et al., 2024) 60,000 2 120,000 ≈945 ∼60× more
Kangaroo (Liu et al., 2024a) 60,000 20 1,200,000 ≈4,700 ∼600× more
EAGLE (Li et al., 2024a) 60,000 40 2,400,000 ≈300,000 ∼1,200× more

For the DVI model, we split the model such that layer 2 is the drafter, while layers 3 through 32 are
the verifier. Since the verifier is the frozen baseline weights, we can guarantee lossless speculation.
In the experimental setting, we use a drafting proposal depth of 4 (kspec=4). We train the DVI model
for 2000 steps over 2000 prompts, such that the model sees each prompt only once.

Competing methods are taken as-is from their public checkpoints and implementations surfaced
through Spec-Bench and Hugging Face. We do not retrain baselines; where the harness exposes a
method knob (e.g., draft depth), we use the recommended defaults.

We train DVI on 2,000 samples of ShareGPT, aligning our training data with other methods in the
literature. Methods like EAGLE, Medusa, Hydra, and Kangaroo all train their models on ShareGPT
as well. We illustrate in Table 1 that the competing methods are trained for orders of magnitude
longer than DVI, in an offline setting. Comparatively, DVI sees a fraction of the prompts that the
other methods do, making inherently cheaper to train and more data efficient than other methods.

Following Spec-Bench, we report mean accepted tokens (MAT) per verification step, and wall-time
speedup versus the baseline model’s standard autoregressive decoding. Note that MAT is not a one-
to-one predictor of model speedup. Having a deeper drafting model for example, will yield a higher
MAT, but at the cost of added computation, risking a lower speedup. Methods that propose more
tokens will inherently have higher MAT, but it may also induce extra computation that offsets this
advantage.

More implementation details are noted in Appendix A.

Table 2: Spec-Bench comparison across speculative decoding methods. Each cell shows mean
accepted tokens (MAT) and walltime speedup; the rightmost column reports the overall average
speedup.

Method MT Bench Translation Summarization QA Math RAG Avg.
MAT Speedup MAT Speedup MAT Speedup MAT Speedup MAT Speedup MAT Speedup

EAGLE-2 4.75 2.64× 3.22 1.73× 3.96 2.15× 3.70 1.96× 4.73 2.59× 4.09 2.02× 2.18×
EAGLE-1 3.83 2.38× 2.84 1.72× 3.32 2.03× 3.12 1.88× 3.87 2.39× 3.27 1.88× 2.05×
Hydra 3.59 2.31× 2.80 1.80× 2.70 1.73× 2.85 1.84× 3.61 2.31× 2.90 1.74× 1.96×
Medusa 2.51 1.91× 2.13 1.59× 2.02 1.53× 2.09 1.59× 2.50 1.88× 2.10 1.48× 1.66×
PLD 1.69 1.61× 1.10 1.03× 2.72 2.54× 1.37 1.14× 1.86 1.59× 1.72 1.85× 1.62×
SpS 2.33 1.62× 1.46 1.10× 2.44 1.65× 2.17 1.45× 2.20 1.46× 2.31 1.63× 1.48×
DVI (ours) 3.07 1.97× 3.53 2.24× 3.55 2.02× 3.61 2.14× 3.04 2.02× 3.53 2.58× 2.16×
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4.2 RESULTS

DVI achieves competitive walltime speedups with methods like EAGLE-2, while remaining lossless,
and using orders-of-magnitude less training data. As shown in Table 2, DVI attains a highest speedup
in Translation, QA, and RAG, while EAGLE-2 leads in MT Bench, Summarization, and Math.
DVI’s average speedup of 2.16× is on par with EAGLE-2’s 2.18× despite EAGLE-2 having a
1000× larger training budget as shown in Table 1.

At a more granular level, these results indicate that DVI is particularly effective for workloads with
strong local lexical structure and retrieval grounding (assistant-style tasks), whereas deep tree draft-
ing is more beneficial for long-range reasoning and structured planning.

We should not discount the role that training data plays. ShareGPT covers a wide range and variety
of tasks, and the 2,000 samples we take from it are not necessarily evenly distributed. Therefore,
DVI may perform better on tasks like MT Bench if exposed to more multi-turn conversations and so
on.

Although EAGLE-2 attains a higher mean accepted tokens (MAT), its average wall-time speedup
is only marginally higher than DVI. This gap implies that DVI converts agreement into throughput
more efficiently. With a shallow drafter and small proposal depth, DVI avoids the extra tree-building
and verification work required by multi-head or tree-based approaches, yielding a higher speedup-
per-accepted-token and explaining why similar end-to-end gains emerge despite lower MAT.

4.3 ABLATIONS

We isolate the contribution of each training signal in DVI by ablating the objective into three single-
term variants:

1. KL-only, equivalent to online distillation.

2. PG-only, which is simply on-policy REINFORCE.

3. CE-only, reward-masked cross entropy.

For these ablations, all runs share the exact same backbone, split layer k, proposal depth kspec=4,
optimizer, batch size, data stream, and hardware as our main setup.

We first observe the learning dynamics of the model, captured by the batch acceptance rate through-
out training. We then benchmark the resulting models on Spec-Bench to get their end-state MAT
and wall-time speedup. We define the batch acceptance rate to be the fraction of drafted tokens
accepted in each optimization step (higher is better). Note that batch acceptance rate is not a perfect
indicator model performance on Spec-Bench, as the speculative batches are directly from training
on ShareGPT. Thus, models can attain higher batch acceptance without becoming robust on other
distributions, like tasks in Spec-Bench.
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(a) KL-ONLY: stable, monotone
gains.
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(b) PG-ONLY: flat, noisy learning
curve.
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(c) CE-ONLY: flat learning curve.

Figure 2: Objective ablations: Batch acceptance rate vs. training steps. Curves computed on the
same data stream, split, and kspec as the main setup.

KL-Only: We observe that online KD is sufficient to raise acceptance. The batch-acceptance
curve increases steadily and smoothly across training (Fig. 2a), indicating consistent improvements
in draft/verifier agreement. However, the the acceptance curve begins to level out around a 80%
batch acceptance rate, indicating that there are limits to KL alone.
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Table 3: Objective ablations on Spec-Bench (final). Higher is better.

Objective Mean accepted tokens (MAT) Speedup

KL-ONLY 1.933 1.435×
PG-ONLY 0.035 0.341×
CE-ONLY 0.039 0.335×

This is further verified by the end results, as the KL-only training attains the highest speedup among
single-term objectives (Table 3), but still falls short of our full DVI pipeline. This demonstrates
that because gradients are dense and low variance, KL alone can bootstrap a useful drafter, which
empirically validates our KL-heavy warmup to avoid a cold start in RL.

PG-Only: We observe that sparse rewards and censored feedback hinder learning. Acceptance
remains near zero and exhibits noise rather than an upward trend (Fig. 2b). The end-state MAT and
speedup indicate the model is ∼ 3× slower than a baseline model (Table 3).

With a frozen verifier and shallow draft, rewards are extremely sparse as only agreement with the
verifier provides r=1. This “bandit with censoring” produces high-variance gradients and weak
credit assignment. Without KD to keep logits calibrated, exploration drifts, further reducing agree-
ment and compounding variance. These results support keeping PG as a light, on-policy correction
after KD stabilization.

CE-only: We observe that reward-masked supervision is too weak without calibration. Similar to
the PG-only objective, acceptance stays flat over training (Fig. 2c), and end-state MAT and speedup
indicate a model ∼ 3× slower than the baseline model (Table 3). Because only accepted tokens are
labeled, the CE target distribution is censored and narrow. Similar to PG-only, the distribution-level
guidance of KL is necessary to improve acceptance.

Insights The ablations confirm that

1. KL-only reliably increases acceptance (dense, low-variance signal).
2. PG-only and CE-only struggle under sparse/censored feedback.

It should be note that many sampling-based SD methods and Online SD methods rely almost ex-
clusively on KL / distillation for teaching the drafter (Liu et al., 2024b; Zhou et al., 2023). We
demonstrate that in a greedy decoding setting, strict distillation is significantly slower than DVI’s
approach.

These results empirically justify DVI’s staged objective as described in Section 3. The schedule
avoids RL cold start, preserves losslessness under the same sampler, and keeps training cheap and
robust.

5 CONCLUSION

We presented Draft, Verify, & Improve (DVI), a training-aware self-speculation method that closes
the loop between inference and learning. DVI splits a single backbone into shallow drafting and
deep verifying paths, keeps the verifier frozen, and updates a lightweight LoRA drafter online from
accept/reject feedback.

When evaluated on Spec-Bench, DVI delivers 2.16× end-to-end speedups on average, matching
SoTA methods like EAGLE-2, and surpassing them on Translation, QA, and RAG. DVI attains
these gains with a dramatically smaller training budget: 2,000 online prompts versus the millions of
prompt exposures used by other methods.

Ablation studies validate our training pipeline. Online KL (distillation) alone produces steady
acceptance gains, but plateaus; PG-only and reward-masked CE-only objectives struggle due to
sparse/censored rewards and poor calibration. Our proposed KL→RL schedule stabilizes early
learning and adds targeted on-policy improvements, yielding the full DVI performance.
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A EXPERIMENTAL SETUP AND REPRODUCIBILITY

Hardware. All experiments were run on a single NVIDIA H100 GPU. To check hardware sensi-
tivity, we repeated a subset of runs on an NVIDIA A40; qualitative conclusions and relative rankings
were unchanged. Due to compute and time constraints, we did not replicate all experiments on dif-
ferent GPUs.
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Model and decoding configuration. All results use the Vicuna-7B backbone specified by SPEC-
BENCH. We adopt the self-speculative split from the main text: the draft path comprises the shallow
layers up to index k=2 and the target path comprises the remaining layers (3→L). The drafter head
is LoRA-parameterized and trainable; the verifier head and backbone are frozen. Unless otherwise
stated, we use greedy decoding (temperature 0) for verification, proposal depth kspec=4, and the
tokenizer and context limits mandated by the benchmark.

Evaluation protocol. We evaluate through the SPEC-BENCH harness, which standardizes tok-
enization, decoding policy, batching, and logging across methods by testing them in the same en-
vironment and hardware. Competing methods are invoked via the official public implementations
referenced by SPEC-BENCH (e.g., GitHub/Hugging Face integrations).

We do not retrain external baselines; when a method exposes a user knob (e.g., draft depth), we
use the authors’ recommended defaults as surfaced by the harness. Metrics follow the benchmark:
mean accepted tokens (MAT) and end-to-end wall-time speedup relative to greedy autoregressive
decoding of the baseline model.

Absolute vs. relative speedups. Despite using the official public implementations within a com-
mon harness, we observe absolute speedups that are lower than the numbers reported in the respec-
tive papers for all methods. Replicating on an NVIDIA A40 produced similar absolute speedups to
the H100 in our setup, e.g. lower than reported in respective papers.

Importantly, the relative ordering is consistent with prior reports: EAGLE-family methods are
fastest, followed by Hydra, then Medusa, etc. Our conclusions therefore focus on the apples-to-
apples comparisons within the shared SPEC-BENCH environment and the relative efficiency of DVI
under identical settings.

Reproducibility We will release code, configuration files (including split index, kspec, and decod-
ing settings), and scripts to reproduce all tables and figures upon publication.
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