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Abstract

The standard approach for Partially Observable Markov Decision Processes (POMDPs) is to
convert them to a fully observed belief-state MDP. However, the belief state depends on the
system model and is therefore not viable in reinforcement learning (RL) settings. A widely
used alternative is to use an agent state, which is a model-free, recursively updateable function
of the observation history. Examples include frame stacking and recurrent neural networks.
Since the agent state is model-free, it is used to adapt standard RL algorithms to POMDPs.
However, standard RL algorithms like Q-learning learn a stationary policy. Our main thesis
that we illustrate via examples is that because the agent state does not satisfy the Markov prop-
erty, non-stationary agent-state based policies can outperform stationary ones. To leverage
this feature, we propose PASQL (periodic agent-state based Q-learning), which is a variant of
agent-state-based Q-learning that learns periodic policies. By combining ideas from periodic
Markov chains and stochastic approximation, we rigorously establish that PASQL converges
to a cyclic limit and characterize the approximation error of the converged periodic policy.
Finally, we present a numerical experiment to highlight the salient features of PASQL and
demonstrate the benefit of learning periodic policies over stationary policies.

1 Introduction

Recent advances in reinforcement learning (RL) have successfully integrated algorithms with strong
theoretical guarantees and deep learning to achieve significant successes [Mni+13; Sil+16]. How-
ever, most RL theory is limited to models with perfect state observations [SB08; BT96]. Despite
this, there is substantial empirical evidence showing that RL algorithms perform well in partially
observed settings [Wie+07; Wie+10; Hau00; HS15; Gru+18; Kap+19; Haf+20; Haf+21]. Recently,
there has been a significant advances in the theoretical understanding of different RL algorithms for
POMDPs [Sub+22; KY22; Sey+23; DRZ22] but a complete understanding is still lacking.

Planning in POMDPs. When the system model is known, the standard approach [Ast65; SS73;
CKL94] is to construct an equivalent MDP with the belief state (which is the posterior distribution
of the environment state given the history of observations and actions at the agent) as the information
state. The belief state is policy independent and has time-homogeneous dynamics, which enables the
formulation of a belief-state based dynamic program (DP). There is a rich literature which leverages
the structure of the resulting DP to propose efficient algorithms to solve POMDPs [SS73; CKL94;
CLZ97; Cha07; Zha09; PGT+03; SS04; SV05]. See [KWW22] for a review. However, the belief
state depends on the system model, so the belief-state based approach does not work for RL.

RL in POMDPs. An alternative approach for RL in POMDPs is to consider policies which depend
on an agent state {z };>1, where Z;, € Z, which is a recursively updateable compression of the
history: the agent starts at an initial state zy and recursively updates the agent state as some function
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Figure 1: The cells indicate the state of the environment. Cells with the same background color have the same
observation. The cells with a thick red boundary correspond to elements of the set Do := {n(n +1)/2+1:
n € IN}, where the action 0 gives a reward of +1 and moves the state to the right, while the action 1 gives a
reward of —1 and resets the state to 1. The cells with a thin black boundary correspond to elements of the set
D: = IN\ Do, where the action 1 gives the reward of +1 and moves the state to the right while the action 0
gives a reward of —1 and resets the state to 1. Discount factor v = 0.9.

of the current agent-state, next observation, and current action. A simple instance of agent-state is
frame stacking, where a window of previous observations is used as state [WS94; Mni+13; KY22].
Another example is to use a recurrent neural network such as LSTM or GRU to compress the history
of observations and actions into an agent state [Wie+07; Wie+10; HS15; Kap+19; Haf+20]. In
fact, as argued in [DVZ22; Lu+23] such an agent state is present in most deep RL algorithms for
POMDPs. We refer to such a representation as an “agent state” because it captures the agent’s
internal state that it uses for decision making.

When the agent state is an information state, i.e., satisfies the Markov property, i.e.,
P(zt41]21:¢,a1:4) = P(2t41]|2¢,a¢) and is sufficient for reward prediction, i.e., E[R¢|y1.t, a1.4] =
E[R¢|zt, at] (Where y; is the observation, a; is the action, and R; is the per-step reward), the optimal
agent-state based policy can be obtained via a dynamic program (DP) [Sub+22]. An example of
such an agent state is the belief state. But, in general, the agent state is not an information state. For
example, frame stacking and RNN do not satisfy the Markov property, in general. It is also possible
to have agent-states that satisfy the Markov property but are not sufficient for reward prediction (e.g.,
when the agent state is always a constant). In all such settings, the best agent-state policy cannot
be obtained via a DP. Nonetheless, there has been considerable interest to use RL to find a good
agent-state based policy.

One of the most commonly used RL algorithms is off-policy Q-learning, which we call agent-state
Q-learning (ASQL). In ASQL for POMDPs, the Q-learning iteration is applied as if the agent state
satisfied the Markov property even though it does not. The agent starts with an initial Q1(z, a), acts
according to a behavior policy g, i.e., chooses a; ~ p(z;), and recursively updates

Qi+1(2z,a) = Qi(z,a) + ax(z,a) | Ry + 7 max Qi(zi41,a") — Qu(z, a)} (ASQL)

where R, is the reward at time ¢ and the learning rates {c };>1 is chosen such that ay(z,a) = 0 if
(z,a) # (2t,a¢). The convergence of ASQL has been recently presented in [KY22; Sey+23] which
show that under some technical assumptions, ASQL converges to a limit. The policy determined by
ASQL is the greedy policy w.r.t. this limit.

Limitation of Q-learning with agent state. The greedy policy determined by ASQL is stationary
(i.e., uses the same control law at every time). In infinite horizon MDPs (and, therefore, also in
POMDPs when using the belief state as an agent state), stationary policies perform as well as non-
stationary policies. This is because the agent-state satisfies the Markov property. However, in ASQL
the agent state generally does not satisfy the Markov property. Therefore, restricting attention to
stationary policies may lead to a loss of optimality!

As an illustration, consider the POMDP shown in Fig. 1, which is described in detail in App. A.2 as
Ex. 2. Suppose the system starts in state 1. Since the dynamics are deterministic, the agent can infer
the current state from the history of past actions and can take the action to increment the current
state and receive a per-step reward of +1. Thus, the performance .J;, of belief-state based policies
is J}, = 1/(1—+y). Contrast this with the performance J, of deterministic agent-state base policies
with agent state equal to current observation, which is given by J&, = (1+v—~2)/(1—~3) < J}-
In particular, for v = 0.9, Ji, = 10 which is larger than Jg, = 4.022.

We show that the gap between Jg, and .J3, can be reduced by considering non-stationary policies.
Ex. 2 has deterministic dynamics, so the optimal policy can be implemented in open-loop via a
sequence of control actions {a;} }¢>1, where a} = 1{¢ € D;}. This open-loop policy can be imple-
mented via any information structure, including agent-state based policies. Thus, a non-stationary
deterministic agent-state based policy performs better than stationary deterministic agent-state
based policies. A similar conclusion also holds for models with stochastic dynamics.



The main idea. Arbitrary non-stationary policies cannot be used in RL because such policies have
countably infinite number of parameters. In this paper, we consider a simple class of non-stationary
policies with finite number of parameters: periodic policies. An agent-state based policy 7 =
(1,2, ... ) is said to be periodic with period L if 7; = m whenever t = ¢/ (mod L).

To highlight the salient feature of periodic policies, we perform a brute force search over all deter-
ministic periodic policies of period L, for L = {1,...,10}, in Ex. 2. Let J} denote the optimal
performance for policies of period L. The result is shown below (see App. A.2 for details):

L 1 2 3 4 5 6 7 8 9 10
Jr  4.022 4.022 7479 6.184 8.810 7479 9340 8.488 9.607 8.810

The above example highlights some salient features of periodic policies: (i) Periodic determinis-
tic agent-state based policies may outperform stationary deterministic agent-state based policies.
(i) {J7 }L>1 is not a monotonically increasing sequence. This is because Iy, the set of all peri-
odic deterministic agent-state based policies of period L, is not monotonically increasing. (iii) If
L divides M, then J; < J},. This is because II;, C II;. In other words, if we take any integer
sequence {L, },>1 that has the property that L,, divides L,1, then the performance of the poli-
cies with period L,, is monotonically increasing in n. For example, periodic policies with period
L € {n! : n € N} will have monotonically increasing performance. (iv) In the above example, the
set Dg is chosen such that the optimal sequence of actions' is not periodic. Therefore, even though
periodic policies can achieve a performance that is arbitrarily close to the optimal belief-based poli-
cies, they are not necessarily globally optimal (in the class of non-stationary agent-state based poli-
cies). Thus, the periodic deterministic policy class is a middle ground between the stationary deter-
ministic and non-stationary policy classes and provides us a simple way of leveraging the benefits
of non-stationarity while trading-off computational and memory complexity.

The main contributions of this paper are as follows.

1. Motivated by the fact that non-stationary agent-state based policies outperform stationary ones,
we propose a variant of agent-state based Q-learning (ASQL) that learns periodic policies. We
call this algorithm periodic agent-state based Q-learning (PASQL).

2. We rigorously establish that PASQL converges to a cyclic limit. Therefore, the greedy policy
w.r.t. the limit is a periodic policy. Due to the non-Markovian nature of the agent-state, the limit
(of the Q-function and the greedy policy) depends on the behavioral policy used during learning.

3. We quantify the sub-optimality gap of the periodic policy learnt by PASQL.

4. We present numerical experiments to illustrate the convergence results, highlight the salient fea-
tures of PASQL, and show that the periodic policy learned by PASQL indeed performs better
than stationary policies learned by ASQL.

2 Periodic agent-state based Q-learning (PASQL) with agent state

2.1 Model for POMDPs

A POMDP is a stochastic dynamical system with state s; € S, input a; € A, and output y; € Y,
where we assume that all sets are finite. The system operates in discrete time with the dynamics
given as follows: The initial state s; ~ p and for any time ¢ € IN, we have

P(st11,Yer1 | S1:65 Y105 01:6) = P(Se41, Yeg1 | 865 a0) = P(Se41, Yet1 | 8¢, a1)
where P is a probability transition matrix. In addition, at each time the system yields a reward
R; = r(st, at). We will assume that R; € [0, Rpyax]. The discount factor is denoted by v € [0, 1).
Let @ = (71, 72,...) denote any (history dependent and possibly randomized) policy. Then the
action at time ¢ is given by a; ~ ¢ (y1.¢, a1.4—1). The performance of policy 7 is given by

oo
JT=E as~T(Y1:t,at—1) Z ’Ytilr(stv at)

(st+1:yt+1)~P(s¢,ar) Lt=1

Sle:|

"Recall that the system dynamics are deterministic, so optimal policy can be implemented in open loop.



The objective is to find a (history dependent and possibly randomized) policy 7 to maximize .J7.

Agent state for POMDPs. An agent-state is model-free recursively updateable function of the
history of observations and actions. In particular, let Z denote agent-state space. Then, the agent
state process {z: }+>0, 2 € Z, starts with an initial value zo, and is then recursively computed as
zt+1 = O(2¢, ys+1, az) for a pre-specified agent-state update function ¢.

We use m = (71,2, ... ) to denote an agent-state based policy,” i.e., a policy where the action at
time ¢ is given by a; ~ m:(z;). An agent-state based policy is said to be stationary if for all ¢ and
', we have m(a|z) = mp(alz) for all (z,a) € Z x A. An agent-state based policy is said to be
periodic with period L if for all ¢ and ¢’ such that ¢t = ¢ (mod L), we have m;(a|z) = my (a|z) for
all (z,a) € Z x A

2.2 PASQL: Periodic agent-state based Q-learning algorithm for POMDPs

We now present a periodic variant of agent-state based Q-learning, which we abbreviate as PASQL.
PASQL is an online, off-policy learning algorithm in which the agent acts according to a behavior
policy 1 = (1, 2, - . . ) which is a periodic (stochastic) agent-state based policy 1 with period L.

Let [[t] :== (¢ mod L) and L == {0,1,...,L — 1}. Let (21, a1, Ry, 22, a2, Rz, ... ) be a sample path
of agent-state, action, and reward observed by the agent. In PASQL, the agent maintains an L-tuple

of Q-functions (Q?,Q},...,QF~1), t > 1. The {-th component, £ € L, is updated at time steps
when [t] = £. In particular, we can write the update as

Qf+1(z, a) = Q(z,a)+al(z,a) | R, —&—7512/)\( QE€+1ﬂ(zt+1, a)—Q(z, a)], V¢ c L, (PASQL)

where the learning rate sequence {(a?,...,aF ')};>; is chosen such that af(z,a) = 0 if
(¢, z,a) # ([t], zt, a¢) and satisfies Assm. 1. PASQL differs from ASQL in two aspects: (i) The
behavior policy u is periodic. (ii) The update of the Q-function is periodic. When L = 1, PASQL
collapses to ASQL.

The standard convergence analysis of Q-learning for MDPs shows that the Q-function convergences
to the unique solution of the MDP dynamic program (DP). The key challenge in characterizing
the convergence of PASQL is that the agent state {Z, },>1 does not satisfy the Markov property.
Therefore, a DP to find the best agent-state based policy does not exist. So, we cannot use the
standard analysis to characterize the convergence of PASQL. In Sec. 2.3, we provide a complete
characterization of the convergence of PASQL.

The quality of the converged solution depends on the expressiveness of the agent state. For example,
if the agent state is not expressive (e.g., agent state is always constant), then even if PASQL con-
verges to a limit, the limit will be far from optimal. Therefore, it is important to quantify the degree
of sub-optimality of the converged limit. We do so in Sec. 2.4.

2.3 Establishing the convergence of tabular PASQL

To characterize the convergence of tabular PASQL, we impose two assumptions which are standard
for analysis of RL algorithms [JSJ94; BT96]. The first assumption is on the learning rates.

Assumption 1 For all (¢, z, a), the learning rates {a}(z,a)};>1 are measurable with respect to the
sigma-algebra generated by (21.¢, a1.¢) and satisfy af(z,a) = 0if (£, z,a) # ([t], 2, a¢). Moreover,
Yo @k(z,a) = ccand Y, (af (2, a))? < oo, almost surely.

The second assumption is on the behavior policy p. We first state an immediate property.

Lemma 1 For any behavior policy p, the process {(St, Zi) }+>1 is Markov. Therefore, the processes
{(St, Z, Ap) }i>1 and {(S1, Yy, Zy, Ay) }e>1 are also Markov

Assumption 2 The behavior policy y is such that the Markov chain {(S,Y:, Z;, A;) }1>1 is time-
periodic® with period L and converges to a cyclic limiting distribution (CS, o C ﬁ —1), where
2 (s.) Cﬁ(s, y,z,a) > 0forall (¢, 2,a) (ie., all (¢, z, a) are visited infinitely often).

>We use 7 to denote history dependent policies and 7 to denote agent-state based policies.

3Time-periodic Markov chains are a generalization of time-homogeneous Markov chains. We refer the
reader to App. B for an overview of time-periodic Markov chains and cyclic limiting distributions, including
sufficient conditions for the existence of such distributions.



For the ease of notation, we will continue to use Cﬁ to denote the marginal and conditional dis-
tributions w.r.t. (Z In particular, for marginals we use C (y,2,a) to denote ) _ g C (s,y,2,a)
and so on; for conditionals, we use ( |z,a) to denote Ce(s z, a)/CZ(z a) and so on. Note that
(s, 2z,y,a) = ¢fi(s, 2)u(a | 2)P y|s a). Thus, we have that /(s | z,a) = /(s | 2).

Theorem 1 Under Assms. 1 and 2, the process {(Q%,...,QF 1)}i>1 converges to a limit
( 2, ey Qﬁ_l) a.s., where the limit is the unique fixed point of the DP for a periodic MDP:*

Q'\(z,0) =71l,(z,a) +v Y Pi(<|z,a) max QU d), Vel V(z,a)eZxA (1)
a’'e

z'e’l
where the periodic rewards ( e ,r{fl) and dynamics (PE, ce PﬂL’l) are given by
rﬁ(z,a) = ZT(S,(Z)Cﬁ(S | 2), (Z|z,0) =D g y/’a)}P(y’|s,a)(ﬁ(s\z). )
s€S (5 y)eESxY

See App. E for proof. Some salient features of the result are as follows:

¢ In contrast to Q-learning for MDPs, the limiting value Qfl depends on the behavioral policy p.
This dependence arises because the agent state Z; is not an information state and thus is not
policy-independent. See [Wit75] for a discussion on policy independence of information states.

* We can recover some existing results in the literature as special cases of Thm. 1. If we take L = 1,
Thm. 1 recovers the convergence result for ASQL obtained in [Sey+23, Thm. 2]. In addition, if
the agent state is a sliding window memory, Thm. 1 recovers the convergence result obtained in
[KY22, Thm. 4.1]. Note that the results of Thm. 1 for these special cases is more general because
the previous results were derived under a restrictive assumption on the learning rates.

The policy learned by PASQL is the periodic policy 7, = (), ..., 7 ~!) given by
7T£ (z) = arg max Qﬁ(z, a), Wel,zeZ (PASQL-policy)
a€A

Since PASQL learns a periodic policy, it circumvents the limitation of ASQL described in the in-
troduction. Thm. 1 addresses the main challenge in the convergence analysis of PASQL: the non-
Markovian dynamics of {Z;};>1. A natural follow-up question is: How good is the learnt pol-
icy (PASQL-policy) compared to the optimal? We address this in the next section.

2.4 Characterizing the optimality-gap of the converged limit

History-dependent policies and their value functions. Let iy = (y1.¢, a1..—1) denote the history
of observations and actions until time ¢. and let o;: h;y — z; denotes the map from histories to
agent-states obtained by unrolling the memory update function ¢, i.e., o1(h1) = &(20, Y1, a0),
where z is the initial agent state, ag is a dummy action used to initialize the process, o2(h2) =

P(o1(h1),y2,a1), etc.
For any history dependent policy 7 = (71,72,---), where 7: hy > az, let Vi7(hy) =
E7 [Zf’:t YR ] ht} denote the value function of policy 7 starting from history h; at time ¢.

Let V;*(hy) = supx V;¥(h:) denote the optimal value function, where the supermum is over all
h1st0ry dependent policies. In Thm. 1, we have shown that PASQL converges to a limit. Let
Ty = (1, Tpy2, ... ) denote the history dependent policy corresponding to the periodic policy

(79 7L=1) given by (PASQL-policy), i.e., 7, + (h¢) = 7l (54(h;)), In this section, we present

o Ty

a bound on the sub-optimality gap V;*(hy) — V" ().

Integral probability metrics. Let J be a convex and balanced® subset of (measureable) real-valued
functions on S. The integral probability metric (IPM) w.r.t. §, denoted by dg, is defined as follows:
any probability measures &; and &3 on S, we have dz(&1,&2) = Supf63|f fd& — f fd@‘ More-
over, for any real-valued function f on S, define pgz := inf{p > 0: f/p € F} to be the Minkowski
functional w.r.t. §. Note that if for every positive p, f/p & §, then pz(f) = .

4See App. C for an overview of periodic MDPs.
3% is balanced means that for every f € § and scalar a such that |a| < 1, we have af € §.



Many commonly used metrics on probability spaces are IPMs. For example, (i) Total variation dis-
tance for which § = {span(f) < 1}, where span(f) = max f — min f is the span seminorm of f.
In this case, pz(f) = span(f). (i) Wasserstein distance for which § = {Lip(f) < 1}, where
Lip(f) is the Lipschitz constant of f. In this case, pz(f) = Lip(f). Other examples include Kan-
torovich metric, bounded Lipschitz metric, and maximum mean discrepancy. See [Miil97; Sub+22]
for more details.

Sub-optimality gap. Let T(¢,¢) := {7 >t : [7] = ¢}. Furthermore, for any ¢ € L and ¢, define

Ef ‘= sup Ssup ]E[RT | hrva‘r] - Zr(57a7)<ﬁ(5 I UT(hT)7aT) )
TET(t,L) hr,ar s€S

6t = sup sup dg(P(Zr41 =" | hT,aT),Pﬁ(ZTH =lo-(hs),ar)).
TET(t,0) hr,ar

Then, we have the following sub-optimality gap for 7,,.
Theorem 2 Let V(2) := maxaeca Qf, (2, a). Then,

x 7 2
sup [V (he) = VI (b)] < =5 3o [l + 20 sV D]
t el

See App. F for proof. The salient features of the sub-optimality gap of Thm. 2 are as follows.

* We can recover some existing results as special cases of Thm. 2. When we take L = 1, Thm. 2
recovers the sub-optimality gap for ASQL obtained in [Sey+23, Thm. 3]. In addition, when the
agent state is a sliding window memory, Thm. 2 is similar to the sub-optimality gap obtained in
[KY22, Thm. 4.1]. Note that the results of Thm. 2 for these special cases is more general because
the previous results were derived under a restrictive assumption on the learning rates.

* The sub-optimality gap in Thm. 2 is on the sub-optimality w.r.t. the optimal history-dependent
policy rather than the optimal non-stationary agent-state policy. Thus, it inherently depends on
the quality of the agent state. Consequently, even if L — oo, the sub-optimality gap does not go
to zero.

* Itis not easy to characterize the sensitivity of the bound to the period L. In particular, increasing L
means changing behavioral policy 4, and therefore changing the converged limit (¢J, ..., ¢ ™),
which impacts the right hand side of (3) in a complicated way. So, it is not necessarily the case
that increasing L reduces the sub-optimality gap. This is not surprising, as we have seen earlier
in Ex. 2 presented in the introduction that even the performance of periodic agent-state based
policies is not monotone in L.

3 Numerical experiments

In this section, we present a numerical
example to highlight the salient fea-
tures of our results. We use the follow-
ing POMDP model.

Example 1 Consider a POMDP with
S =1{0,1,...,5}, A = {0,1}, Y =
{0,1} and v = 0.9. The dynamics are ~ (2) Dynamics under action 0. (b) Dynamics under action 1.
as shown in Fig. 2. The observation is  Figure 2: The model for Ex. 1, where states which have the same
0 in states {0, 1,2} which are shaded color give the same observation; the green edges give a reward of
white and is 1 in states {3, 4,5} which +1 and blue edges give a reward of +0.5.

are shaded gray. The transitions shown in green give a reward of +1; those in in blue give a reward
of 4-0.5; others give no reward.

We consider a family of models, denoted by M(p), p € [0, 1], which are similar to Ex. 1 except the
controlled state transition matrix is pI + (1 — p) P, where P is the controlled state transition matrix
of Ex. 1 shown in Fig. 2. In the results reported below, we use p = 0.01. The hyperparameters for
the experiments are provided in App. H.

Convergence of PASQL with L = 2. We assume that the agent state Z; = Y, and take period L =
2. We consider three behavioral policies: px = (ul, ), k € K := {1,2,3}, where p{: {0,1} —
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Figure 3: PASQL iterates for different behavioral policies (in blue) and the limit predicted by Thm. 1 (in red).

A({0,1}), £ € {0,1}. The policy u is completely characterized by four numbers which we write
in matrix form as: [19(0]0), ut(0[1); 19 (0]1), i (0]1)]. With this notation, the three policies are
given by p; == [0.2,0.8;0.2,0.8] , u2 == [0.5,0.5;0.5,0.5] , u3 = [0.8,0.2;0.8,0.2] .

For each behavioral policy ji, k € K, run PASQL for 25 random seeds. The median + interquantile
range of the iterates {Qf(z,a)};>1 as well as the theoretical limits @, (z,a) (computed using
Thm. 1) are shown in Fig. 3. The salient features of these results are as follows:

* PASQL converges close to the theoretical limit predicted by Thm. 1.

* As highlighted earlier, the limiting value Qﬁ . depends on the behavioral policy pu.

* When the aperiodic behavior policy p2 is used, the Markov chain {(S;, Y}, Z;, A;) }4>1 is aperi-
odic, and therefore the limiting distribution (jﬁz and the corresponding Q-functions Qﬁ2 do not
depend on ¢. This highlights the fact that we have to choose a periodic behavioral policy to
converge to a non-stationary policy (PASQL-policy).

Comparison of converged policies. Finally, we compute the pe-
riodic greedy policy 7, = (772 K 77;1%) given by (PASQL-policy), Table 1: Performance of converged
k € K, and compute its performance J™* via policy evaluation periodic policies.

on the product space S x Z (see App. G). We also do a brute force
search over all L = 2 periodic deterministic agent-state policies 5 JTur JTe2 o JTes
to compute the optimal performance J3 over all such policies. 6.793 6.793 1.064 0.532
The results, displayed in Table 1, illustrate the following:

* The greedy policy 7, depends on the behavioral policy. This is not surprising given the fact that
the limiting value Qﬁk depends on .

* The policy 7, achieves the optimal performance, whereas the policies 7, and 7, do not per-
form well. This highlights the importance of starting with a good behavioral policy. See Sec. 5
for a discussion on variants such as e-greedy.

Advantage of learning periodic policies. As stated in the in-  Table 2: Performance of converged
troduction, the main motivation of PASQL is that it allows us to  stationary policies.

learn non-stationary policies. To see why this is useful, we run
ASQL (which is effectively PASQL with L = 1). We again con- Wk JTur JTua o JTus
sider three behavioral policies: fig, k € K :== {1,2,3}, where 2.633 0.0 1.064 2.633
ir: {0,1} — A({0,1}), where (using similar notation as for
L =2 case) ji; :=1[0.2;0.2], iz := [0.5;0.5] , iz == [0.8;0.8] .

For each behavioral policy i, £ € K, run ASQL for 25 random seeds. The results are shown
in App. A.1. The performance of the greedy policies 75, and the performance of the best period




L = 1 deterministic agent-state-based policy computed via brute force is shown in Table 2. The key
implications are as follows:

* As was the case for PASQL, the greedy policy 7, depends on the behavioral policy. As men-
tioned earlier, this is a fundamental consequence of the fact that the agent state is not an informa-
tion state. Adding (or removing) periodicity does not change this feature.

* The best performance of ASQL is worse than the best performance of PASQL. This highlights
the potential benefits of using periodicity. However, at the same time, if a bad behavioral policy
is chosen (e.g., policy us3), the performance of PASQL can be worse than that of ASQL for a
nominal policy (e.g., policy fi2). This highlights that periodicity is not a magic bullet and some
care is needed to choose a good behavioral policy. Understanding what makes a good periodic
behavioral policy is an unexplored area that needs investigation.

4 Related work

Policy search for agent state policies. There is a rich literature on planning with agent state-based
policies that build on the policy evaluation formula presented in App. G. See [KWW22] for review.
These approaches rely on the system model and cannot be used in the RL setting.

State abstractions for POMDPs are related to agent-state based policies. Some frameworks for
state abstractions in POMDPs include predictive state representations (PSR) [RGT04; BSG11;
HFP14; KJS15b; KJS15a; JKS16], approximate bisimulation [CPP09; Cas+21], and approximate
information states (ALS) [Sub+22] (which is used in our proof of Thm. 2). Although there are various
RL algorithms based on such state abstractions, the key difference is that all these frameworks focus
on stationary policies in the infinite horizon setting. Our key insight that non-stationary/periodic
policies improve performance is also applicable to these frameworks.

ASQL for POMDPs. As stated earlier, ASQL may be viewed as the special case of PASQL when
L = 1. The convergence of the simplest version of ASQL was established in [SJJ94] for Z; = Y,
under the assumption that the actions are chosen i.i.d. (and do not depend on z;). In [PP02] it
was established that QO is the fixed point of (ASQL), but convergence of {Q:};>1 to Q?L was
not established. The convergence of ASQL when the agent state is a finite window memory was
established in [KY22]. These results were generalized to general agent-state models in [Sey+23].
The regret of an optimistic variant of ASQL was presented in [DVZ22]. However, all of these papers
focus on stationary policies.

Our analysis is similar to the analysis of [KY22; Sey+23] with two key differences. First, their
convergence results were derived under the assumption that the learning rates are the reciprocal of
visitation counts. We relax this assumption to the standard learning rate conditions of Assm. 1 using
ideas from stochastic approximation. Second, their analysis is restricted to stationary policies. We
generalize the analysis to periodic policies using ideas from time-periodic Markov chains.

Q-learning for non-Markovian environments. As highlighted earlier, a key challenge in under-
standing the convergence of PASQL is that the agent-state is not Markovian. The same conceptual
difficulty arises in the analysis of Q-learning for non-Markovian environments [MH+18; Cha+24;
DY24]. Consequently, our analysis has stylistic similarities with the analysis in [MH+18; Cha+24;
DY?24] but the technical assumptions and the modeling details are different. And more importantly,
they restrict attention to stationary policies. Given our results, it may be worthwhile to explore if
periodic policies can help in non-Markovian environments as well.

Continual learning and non-stationary MDPs. Non-stationarity is an important consideration in
continual learning (see [Abe+24] and references therein). However, in these settings, the environ-
ment is non-stationary. Our setting is different: the environment is stationary, but non-stationary
policies help because the agent state is not Markov.

Hierarchical learning. The options framework [Pre00; SPS99; Die00; BHP17] is a hierarchical
approach that learns temporal abstractions in MDPs and POMDPs. Due to temporal abstraction, the
policy learned by the options framework is non-stationary. The same is true for other hierarchical
learning approaches proposed in [WS97; CSL21; Vez+17]. In principle, PASQL could be considered
as a form of temporal abstraction where time is split into trajectories of length L and then a policy of
length L is learned. However, the theoretical analysis for options is mostly restricted to MDP setting



and the convergence guarantees for options in POMDPs are weaker [Ste+18; Qia+18; LVCI18].
Nonetheless, the algorithmic tools developed for options might be useful for PASQL as well.

Double Q-learning. The update equation of PASQL are structurally similar to the update equations
used in double Q-learning [Has10; VGS16]. However, the motivation and settings are different: the
motivation for Double Q-learning is to reduce overestimation bias in off-policy learning in MDPs,
while the motivation for PASQL is to induce non-stationarity while learning in POMDPs. Therefore,
the analysis of the two algorithms is very different. More importantly, the end goals differ: double
Q-learning learns a stationary policy while PASQL learns a periodic policy.

Use of non-stationary/periodic policies in MDPs is investigated in [SL12; LS15; Ber13] in the
context of approximate dynamic programming (ADP). Their main result was to show that using
non-stationary or periodic policies can improve the approximation error in ADP. Although these
results use periodic policies, the setting of ADP in MDPs is very different from ours.



5 Discussion

Deterministic vs. stochastic policies. In this work, we restricted attention to periodic deterministic
policies. In principle, we could have also considered periodic stochastic policies. For stationary
policies (i.e., when period is one), stochastic policies can outperform deterministic policies [SJJ94]
as illustrated by Ex. 3 in App. A.3. However, we do not consider stochastic policies in this work be-
cause we are interested in understanding Q-learning with agent-state and Q-learning results in a de-
terministic policy. There are two options to obtain stochastic policies: using regularization [GSP19],
which changes the objective function; or using policy gradient algorithms [Sut+99; BB01], which
are a different class of algorithms than Q-learning.

However, as illustrated in the motivating Ex. 2 presented in the introduction, non-stationary policies
can do better than stationary stochastic policies as well. So, adding non-stationarity via periodicity
remains an interesting research direction when learning stochastic policies as well.

PASQL is a special case of ASQL with state augmentation. In principle, PASQL could be consid-
ered as a special case of ASQL with an augmented agent state Z; = (Z;, [t]). However, the conver-
gence analysis of ASQL in [KY22; Sey+23] does not imply the convergence of PASQL because the
results of [KY22; Sey+23] are derived under the assumption that Markov chain {(S;, Yz, Z;, A¢) }e>1
is irreducible and aperiodic, while we assume that the Markov chain is periodic. Due to our weaker
assumption, we are able to establish convergence of PASQL to time-varying periodic policies.

Non-stationary policies vs. memory augmentation. Non- ]

stationarity is a fundamentally different concept than memory @

augmentation. As an illustration, consider the T-shaped grid ‘ s ’ 1 | z | 2 | | | |2" T

world shown in Fig. 4, which has a corridor of length 2n. In fe — Gy
n cells L1

App. A4, we show that for this example, a stationary policy
\yhich uses a sliding window of past m observations and ac- Figure 4: A T-shaped grid world. Agent
tions as the agent state needs a memory of at least m > 21 ¢ at s where it learns whether the
to reach the goal state. In contrast, a periodic policy with goal state is G1 or Go. It has to go
period L = 3 can reach the goal state for every n. This exam-  through the corridor {1, . .., 2n}, with-
ple shows that periodicity is a different concept from memory out knowing where it is, reach T and go
augmentation and highlights the fact that mechanisms other up or down to reach the goal state.
than memory augmentation can achieve optimal behavior.

The analysis of this paper is applicable to general memory augmented policies, so we do not need to
choose between memory augmentation and periodicity. Our main message is that once the agent’s
memory is fixed based on practical considerations, adding periodicity could improve performance.

Choice of the period L. If the agent state Z; is a good approximation to the belief state, then ASQL
(or, equivalently, PASQL with L = 1) would converge to an approximately optimal policy. So, using
PASQL a period L > 1 is useful when the agent state is not a good approximation of the belief state.

As shown by Ex. 2 in the introduction, the performance of the best periodic policy does not increase
monotonically with the period L. However, if we consider periods in the set {n! : n € IN}, then
the performance increases monotonically. However, PASQL does not necessarily converge to the
best periodic policy. The quality of the converged policy (PASQL-policy) depends on the behavior
policy p.. The difficulty of finding a good behavioral policy increases with L. In addition, increasing
the period increases the memory required to store the tuple (Q°, . .., Q%) and the number of samples
needed to converge (because each component is updated only once every L samples). Therefore, the
choice of the period L should be treated as a hyperparameter that needs to be tuned.

Choice of the behavioral policy. The behavioral policy impacts the converged limit of PASQL,
and consequently it impacts the periodic greedy policy that is learned. As we pointed out in the
discussion after Thm. 1, this dependence is a fundamental consequence of using an agent state
that is not Markov and cannot be avoided. Therefore, it is important to understand how to choose
behavioral policies that lead to convergence to good policies.

Generalization to other variants. Our analysis is restricted to tabular off-policy Q-learning where a
fixed behavioral policy is followed. Our proof fundamentally depends on the fact that the behavioral
policy induces a cyclic limiting distribution on the periodic Markov chain {(S;,Y:, Z;, As) be>1.
Such a condition is not satisfied in variants such as e-greedy Q-learning and SARSA. Generalizing
the technical proof to cover these more practical algorithms (including function approximation) is
an important future direction.
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A Illustrative examples

A.1 Ex. 1: Learning curves for ASQL

For each behavioral policy fix, k¥ € K, we run PASQL for 25 random seeds. The median + in-
terquantile range of the iterates {Q:(z, a)}+>1 as well as the theoretical limits @, (2, a) (computed
as per Thm. 1 for L = 1) are shown in Fig. 5. These curves show that the result of Thm. 1 is valid
for the stationary case (L = 1) as well.
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Figure 5: ASQL iterates for different behavioral policies (in blue) and the limit predicted by Thm. 1 (in red).

A.2 EXx. 2: non-stationary policies can outperform stationary policies

Example 2 Consider a POMDP with S = Z~o, A = {0,1}, and Y = {0,1}. The system starts
in an initial state s; = 1 and has deterministic dynamics. To describe the dynamics and the reward
function, we define Dy := {n(n+1)/2+1:n € Z>o}, D; = N\Dg, and D = Dy x{0}UD;x{1} C
S x A. Then, the dynamics, observations, and rewards are given by

s _ St + 17 (St7 at) € D7 _ 07 St is Odd7 T'(S a) _ +17 (55 a) € D7
BT, otherwise, "7 11, s iseven, "7 =1 otherwise.

Thus, the state is incremented if the agent takes action 0 when the state is in Dy and takes action 1
when the state is in D;. Taking these actions yield a reward of +1. Not taking such an action results
in a reward of —1 and resets the state to 1. The agent does not observe the state, but only observes
whether the state is odd or even. A graphical representation of the model is shown in Fig. 1.

Figure 1: Graphical representation of Ex. 2. The cells indicate the state of the environment. Cells with the
same background color have the same observation. The cells with a thick red boundary correspond to elements
of the set Do := {n(n +1)/2+ 1 : n € IN}, where the action 0 gives a reward of +1 and moves the state to
the right, while the action 1 gives a reward of —1 and resets the state to 1. The cells with a thin black boundary
correspond to elements of the set D1 = IN \ Do, where the action 1 gives the reward of 41 and moves the state
to the right while the action 0 gives a reward of —1 and resets the state to 1. Discount factor v = 0.9.

For policy class [T, (the class of all belief-based deterministic policies), since the system starts
in a known initial state and the dynamics are deterministic, the agent can compute the current state

16



(thus, the belief is a delta function on the current state). Thus, the agent can always choose the
correct action depending on whether the state is in Dy and D;. Hence J}, = 1/(1 — «y), which is
the highest possible reward.

For policy class Ilg;, (the class of all agent-state based deterministic policies), there are four
possible deterministic policies. For odd observations, the agent may take action 0 and 1. Similarly,
for even observations, the agent may take action 0 or 1. Note that the system starts in state 1, which
is in Dg. Therefore, if the agent chooses action 1 when the observation is odd, it receives a reward
of —1 and stays at state 1. Therefore, the discounted total reward is —1/(1 — «y), which is the
least possible value. Therefore, any policy that chooses 1 on odd observations cannot be optimal.
Therefore, the optimal (deterministic) action on odd observations is to pick action 0. Thus, there are
two policies that we need to evaluate.

« If the agent chooses action 0 at both odd and even observations, the state cycles between 1 —
2—+3—1—2— 3. with the reward sequence (+1,+1,—1,+1,+1, —1,...). Thus, the
cumulative total reward of this policy is (1 + vy —2)/(1 —~2).

« If the agent chooses action O at odd observations and action 1 at even observations, the state
cycles between 1 — 2 — 1 — 2- - - with the reward sequence (+1,—1,+1,—1,...). Thus, the
cumulative total reward of this policy is 1/(1 + 7).

It is easy to verify that for v € (0,1), 1/(1 +7) < (1 4+~ —~2)/(1 —~3). Thus,

Jr = 1+ Y 72
SD 1— 73 .

We also consider policy class IIs: the class of all stationary stochastic agent-state based poli-
cies. For policy class Ilgs, the policy is characterized by two numbers (pg,p1) € [0, 1], where p,
denotes the probability of choosing action 1 when the observation is y, y € {0, 1}. We compute the
approximately optimal policy by doing a brute force search over (pg, p1) by discretizing them two
decimal places and for each choice, running a Monte Carlo simulation of length 1, 000 and averag-
ing it over 100 random seeds. We find that there is negligible difference between the performance
of stochastic and deterministic policies.

Finally, we consider policy class Iy, which is the class of periodic deterministic agent-state based
policies. A policy 7 € IIy, is characterized by two vectors po, p1 € {0,1}%, where p, , denotes
the action chosen when ¢ mod L = ¢ and the observation is y. We do an exhaustive search over all
deterministic policies of length L, L € {1,...,10} to compute the numbers shown in the main text.

A.3 Ex. 3: stochastic policies can outperform deterministic policies

When the agent state is not an information state, the optimal stochastic stationary policy will perform
better than (or equal to) the optimal deterministic stationary policy as observed in [SJJ94]. Here is
an example to illustrate this for a simple toy POMDP.

1 1 0.5 1 0.5
0.5 0.5
(a) Dynamics under action 0 (b) Dynamics under action 1

Figure 6: The dynamics for Ex. 3.

Example 3 Consider a POMDP with S = {0,1,2}, A = {0,1} and Y = {0}. The system starts
at an initial state s; = 0 and the dynamics under the two actions are shown in Fig. 6. The agent
does not observe the state, i.e., Y; = 0. The rewards under action 0 are r(-,0) = [—1,0, 2] and the
rewards under action 1 are r(s,1) = —0.5, forall s € S.
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We consider agent state Z; = Y;. Let Il -4
denote the of all stationary stochastic policies
and Ilg, denote the class of of all stationary =

deterministic policic A policy m € Ilgs is pa- -8
rameterized by a single parameter p € [0, 1], 10 | | | |
which indicates the probability of choosing ac- 0-00 0-25 050 075 100

tion 1. We denote such a policy by m,. Note that y

p € {0,1}, mp € Ilsp. Let (P,, rq) denote the
probability transition matrix and reward func-
tion when a € A is chosen and let (P, r,) = (1 — p)(FPo,70) + p(P1,r1). Then, the performance
of policy m, is given by J™ = [(1 — vP,)~'r,]o. The performance for all p € [0, 1] for y = 0.9 is
shown in Fig. 7, which shows that the best performance is achieved by the stochastic policy m, with
p ~ 0.39.

Thus, stochastic policies can outperform deterministic policies.

Figure 7: Performance of stationary stochastic policies
mp for p € [0, 1] for Ex. 3.

A.4 Ex. 4: conceptual difference between state-augmentation and periodic policies

Gy

DD BDEEEnE

- > Gy
I 2n cells

Figure 4: A T-shaped grid world for Ex. 4. In state S, the agent learns about the goal state. In states
{1,2,...,2n}, the agent simply knows that it is in the gray corridor, but does not know which cell it is in.
In state T, it knows that it has reached the end of corridor and must decide whether to go up or down. The agent
gets a reward of 41 for reaching the correct goal state and a reward of —1 for reaching the wrong goal state.

Example 4 Consider a T-shaped grid world showed in Fig. 4 with state space P x G, where P =
{s,1,2,...,2n, T} is the position of the agent and G = {G1, Gz} is the location of the goal. The
observation space is Y = {0, 1,2, 3}. The observation is a deterministic function of the state and is
given as follows:

o At state (S,G;), ¢ € {1,2}, the observation is 7 and reveals the location of the goal state to the
agent.

o At states {1,...,2n} x G, the observation is 0, so the agent cannot distinguish between these
states.

 Atstates {T} X G, the observation is 3, so the agent knows when it reaches the T state.

The action space depends on the current state: actions { LEFT, RIGHT, STAY } are available when the
agentis at {S,1,...,2n} and actions {UP, DOWN} are available at position T.

The agent receives a reward of +1 if it reaching the goal state and —1 if it reaches the wrong goal
state state (i.e., reaches Go when the goal state is G1). The discount factor v = 1.

We consider two classes of policies:
(i) Hgp(m): Stationary policies with agent state equal to a sliding window of the last m observations
and actions.

(i) IIp: Periodic policies with agent state equal to the last observation and periodic L.

It is easy to see that as long as the window length m < 2n, any policy in Il (m) yields an average
return of 0; for window lengths m > 2n, the agent can remember the first observation, and therefore
it is possible to construct a policy that yields a return of +1.

We now consider a deterministic periodic policy with period L = 3 given as follows:® 7 =
(n%, 7', 72) where 7¢: Y — A. We denote each ¢ as a column vector, where the y-th compo-

nent indicates the action 7 (y), where — means that the choice of the action for that observation is

SFor the ease of notation, we start the system at time ¢ = 0.

18



irrelevant for performance. The policy is given by

RIGHT RIGHT STAY

o _ |RIGHT 1 - 2 -

™= stay | ™ T |rwcur|® T T | -
STAY UpP DOWN

It is easy to verify if the system starts in state (0, G1), then by following policy (7°, 7%, 72), the
agent reaches state G at time 3n + 3. Moreover, when the system starts in state (0, Gz2), then by
following the policy (7°, 7!, 72), the agent reaches Gy at time 3n + 4. Thus, in both cases, the
policy (70, 7!, 72) yields the maximum reward of +1.

B Periodic Markov chains

In most of the standard reference material on Markov chains, it is assumed that the Markov chain is
aperiodic and irreducible. In our analysis, we need to work with periodic Markov chains. In this ap-
pendix, we review some of the basic properties of Markov chains and then derive some fundamental
results for periodic Markov chains.

Let S be a finite set. A stochastic process {S;}+>0, Si € S, is called a Markov chain if it satisfies
the Markov property: for any t € Z>o and s1..+1 € S'™!, we have

P(Si41 = Se41 | St = s1:¢) = P(Seq1 = se41 | S¢ = 5¢). €]

If is often convenient to assume that S = {1,...,n}. We can define an n X n transition probability
matrix P, given by [P;];; = P(S;41 = j | S; = 4). Then, all the probabilistic properties of the
Markov chain is described by the transition matrices (P, Py, .. .).

In particular, suppose the Markov chain starts at the initial PMF (probability mass function) &, and
let & denote the PMF at time ¢t. We will view &; as a n-dimensional row vector. Then, Eq. (4)
implies &;4+1 = &, P, and, therefore,

§ip1 = EoPo P By

B.1 Time-homogeneous Markov chains and their properties

A Markov chain is said to be time-homogeneous if the transition matrix P; is the same for all time .
In this section, we state some standard results for time-homogeneous Markov chains [Nor98].

B.1.1 Classification of states

The states of a time-homogeneous Markov chain can be classified as follows.

1. We say that a state j is accessible from i (abbreviated as ¢ ~» j) if there is exists an m € Zx
(which may depend on ¢ and j) such that [P™];; > 0. The fact that [P™];; > 0 implies that
there exists an ordered sequence of states (ig, ..., %) such that ig = ¢ and 4,, = j such that
P;, 4,4, > 0; thus, there is a path of positive probability from state ¢ to state j.

Accessibility is an transitive relationship, i.e., if i ~ j and j ~~ k implies that ¢ ~ k.

2. Two distinct states ¢ and j are said to communicate (abbreviated to ¢ «~ j) if 7 is accessible from
7 (i.e., j ~ 1) and j is accessible from ¢ (¢ ~ j). Alternatively, we say that ¢ and 7 communicate
if there exist m, m’ € Zxq such that [P™];; > 0 and [P™];; > 0.

Communication is an equivalence relationship, i.e., it is reflexive (i e ), symmetric (¢ « j if
and only if j «~ 1), and transitive (i «~ j and j e~ k implies ¢ e~ k).

3. The states in a finite-state Markov chain can be partitioned into two sets: recurrent states and
transient states. A state is recurrent if it is accessible from all states that are from it (i.e., 7 is
recurrent if ¢ ~» 7 implies that j ~» ¢). States that are not recurrent are transient.

It can be shown that a state ¢ is recurrent if and only if

o0

Z[Pt]” = Q.

t=1
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4. States ¢ and j are said to belong to the same communicating class if ¢ and j communicate.
Communicating classes form a partition the state space. Within a communicating class, all states
are of the same type, i.e., either all states are recurrent (in which case the class is called a recurrent
class) or all states are transient (in which case the class is called a transient class).

A Markov chain with a single communicating class (thus, all states communicate with each other
and are, therefore, recurrent) is called irreducible.

5. The period of a state ¢, denoted by d(3), is defined as
d(i) = ged{t € Z>1 : [P"];; > 0}.

If the period is 1, the state is aperiodic, and if the period is 2 or more, the state is periodic. It
can be shown that all states in the same class have the same period.
A Markov chain is aperiodic, if all states are aperiodic. A simple sufficient (but not necessary)
condition for an irreducible Markov chain to be aperiodic is that there exists a state ¢ such that
P;; > 0. In general, for a finite and aperiodic Markov chain, there exists a positive integer 7" such
that

[Py >0, Vt>T,i€S.

B.1.2 Limit behavior of Markov chains
We now state some special distributions for a time-homogeneous Markov chain.

1. A PMF ( on S is called a stationary distribution if ( = (P. Thus, if a (time-homogeneous)
Markov chain starts in a stationary distribution, it stays in a stationary distribution.
A finite irreducible Markov chain has a unique stationary distribution. Moreover, when the
Markov chain is also aperiodic, the stationary distribution is given by {(j) = 1/m;, where
m,; is the expected return time to state j.

2. APMF ( on S is called a limiting distribution if
lim [P"];; = ((j), Vi,j€S.

t— oo
A finite irreducible Markov chain has a limiting distribution if and only if it is aperiodic. There-
fore, for an aperiodic Markov chain, the limiting distribution is the same as the stationary distri-
bution.

Theorem 3 (Strong law of large numbers for Markov chains, Theorem 5.6.1 of [Dur19])
Suppose { St }1>1 is an irreducible Markov chain that starts in state i € S. Then,

T—1
Jim 7 3 1Se=g)=
Therefore, for any function h: S — R,
T—1 .
1 _ N M)
Jim i 2 h(S) =37 ®
t=0 JjES

If, in addition, the Markov chain {S;}>1 is aperiodic, and has a limiting distribution ¢, then we
have that

tim = " h(S) = 3 CHIRG). ©

B.2 Time-varying with periodic transition matrix

In this section, we consider time-varying Markov chains where the transition matrices (P, Py, .. .)
are periodic with period L. Let [¢{] = (f mod L) and L = {0,...,L — 1}. Then, the transition
matrix P; is the same as Ppy). Thus, the system dynamics are completely described by the transition
matrices { P }¢eL. With a slight abuse of notation, we will call such a Markov chain as L-periodic
Markov chain. We will show later that the notion of time-periodicity that we are considering is
equivalent to the notion of state-periodicity for time-homogeneous Markov chains defined earlier.
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B.3 Constructing an equivalent time-homogeneous Markov chain

Since the Markov chain is not time-homogeneous, the classification and results of the previous
section are not directly applicable. There are two ways to construct a time-homogeneous Markov
chain: using state augmentation or viewing the process after every L steps.

B.3.1 Method 1: State augmentation

The original time-varying Markov chain {S;};> is equivalent to the time-homogeneous Markov
chain {(S, [¢]) }+>0 defined on S x L with transition matrix P given by

P((s, ') | (s,0)) = Puo(s" | )1{¢' = [+ 1]}

Example 5 Consider a 2-periodic Markov chain with state space S = {1, 2} and transition matrices

1 3 3 1
4 4 4 4

Po— 11 and P]_— 13-
2 2 4 4

The time-periodic Markov chain of Ex. 5 may be viewed as a time-homogeneous Markov chain with
state space {1,2} x {0,1} and transition matrix

(1,0) (2,0) (1,1) (2,1)

o[ 0 0o I 3
5_ O 0 3 3 0 1][R 0
- ay| 3 1 0 0 :[I O} {O Pl]
enl 1 2 0 0

where 0 denotes the all zero matrix and I denotes the identity matrix (both of size 2 x 2). Note that
the time-homogeneous Markov chain is periodic.

Define the following:
+ L block diagonal matrices Ao, ..., A;_; € R**"L as follows:
Ao :blkdiag(Po,Pl,...,PL_l), Ay :blkdiag(PL_l,PO,...,PL_Q), etc.

* A permutation matrix IT € {0, 1}"£*"L as follows

0 I - 0
o= |: :
0 0 1
I 0 0

where each block is 7 X n.
The permutation matrix I satisfies the following properties (which can be verified by direct algebra):

(P1) IIII" = I and therefore II-! =1I1".
®2) L = 1.
(P3) A/l = HA[[@+1]], le L.

In general, the transition matrix of the Markov chain {(S¢, [¢])}:>0 is

0 Py - 0
5 : : — AL
0 0 - P,
Py O 0
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B.3.2 Method 2: Viewing the process every L steps

The original Markov chain viewed every L-steps, i.e., the process {Skr+¢}r>0, £ € L, is a time-
homogeneous Markov chain with transition probability matrix P, given by

Pe = Py Presay - Pre+n-1]
that is,
Po=PRPr--PLaoPL1, Pr=PPFP---P, 1P, et

B.3.3 Relationship between the two constructions

The two constructions are related as follows.
Proposition 1 We have that P* = blkdiag(Py, ..., PL).
PROOF From (P3), we get that P = ITA;. Therefore,

P2? = AgIIAGI = AgAIT2

Similarly ~ ~
P? = AgIIP? = AgIAGATIZ = AgATIALTT? = AgA  ASIT?

Continuing this way, we get
PL = A()Al . AL,1HL = A()A1 . AL,1.
where the last equality follows from (P2). The result then follows from the definitions of A, and Py,

fel. O

B.4 Limiting behavior of periodic Markov chain

In the subsequent discussion, we consider the following assumptions.

Assumption 3 Every {P,}, ¢ € L, is irreducible and aperiodic

Suppose Assm. 3 holds. Define ¢* to be the unique stationary distribution for Markov chain Py,
¢ € L,ie., ¢’ is the unique PMF that satisfies (¢ = (P,.

Proposition 2 The PMFs {¢‘}cL satisfy

¢pp=cl reL

PROOF We prove the result for £ = 0. The analysis is the same for general ¢. By assumption, we
have that
CO — COPO — C(]P()Pl . PL—l-

Let ¢! := ¢°P,. Then, we have
Ct=("Py=("PyPy- - PL_1Py=("P - PPy = (P

Thus ¢! is a stationary distribution. Since P is irreducible, the stationary distribution is unique,
hence ¢! must equal ¢*. O

We can verify this result for Ex. 5. For this model, we have

3 3 S5 1
8 8 16 16
P():P()Pl: 1 1 and P1:P1P(): 7 9
2 2 16 16

Thus,
0_[4 5 1 711
=[5 § ad ¢=[F %]
And we can verify that (° Py = ¢! and (' P, = ¢°.

Proposition 3 Under Assm. 3, the limiting distribution of the Markov chain {S;}>0 is cyclic. In
particular, for any initial distribution &,

lim &rye = ¢* @)
k— oo
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Furthermore,

K-1

1
lim sup — 1{S =i} =[¢",;, VieS,tes.
K%OPKI;) {Skrve =1} =[]

Consequently, for any function h: S — R,

1 K—-1
limsup — h(Sere) = Y_A(s)C s LES. ®)

K—oo k=0 €S

PROOF The results follow from standard results for the time-homogeneous Markov chain
{Skr+e}r>o0- 0

PROOF (ALTERNATIVE) We present an alternative proof that uses the state augmented Markov
chain P. We first prove that under Assm. 3, the chain P is irreducible periodic with period L.

The proof of irreducibility relies on two observations.

1. Fix an ¢ € L and consider 7, j € S. Since Py is irreducible, we have that there exists a positive
integer m (depending on 4, j, and ¢) such that [P;*];; > 0. Note that Prop. 1 implies that
[P i 0),5.0) = [Pelij > 0. Therefore, in the Markov chain P, states (i,¢) ~ (j, ). Since i
and j were arbitrary, all states S x {¢} belong to the same communicating class.

2. Now consider two ¢, ¢’ € L. Suppose we start at some state (i, ) € S x {£}, then in [¢' — /] steps,
we will reach some state (j,¢') € S x {¢'}. Thus, (j,¢') is accessible from (i, ¢). But, we have
already argued that all states in S x {¢} belong to the same communicating class, therefore all
states in S x {¢'} are accessible from all states in S x {¢}. By interchanging the roles of £ and ¢',
we have that all states in S x {¢} are accessible from all starts in S x {¢'}. Therefore, the states
S x {¢} and S x {¢'} belong to the same communicating class. Since ¢ and ¢ were arbitrary, we
have that all states of P belong to the same communicating class. Hence, P is irreducible.

We now show that P is periodic. First observe that the Markov chain starting in the set S x {/} does
not return to the same set for the first L — 1 steps. Thus, [Pt](i’g)’(i’g) =0forte{1,2,...,L—1}.

Therefore, the only possible values of ¢ for which [Pt](i’g),(i’g) > () are those that are multiples of
L. Hence, for any (i,¢) € S x L,

d(i,0) = ged{t € Z>1 : [P i0y.i.0) > 0} = Lged{k € Z>1 : [Pf]si > 0} )

Moreover, since Py is aperiodic, gcd{k € Z>1 : [PF];; > 0} = 1. Substituting in (9), we get that
d(i,€) = L for all (7, £). Thus, all states have a period of L.

Now, from Prop. 1, we know that P = blkdiag(Py, . .., Pr_1). Therefore
lim [pkL](i7g)7(j7g) = [ge]j, (Z,é) €S x L.

k—o0
Consequently, if we start with an initial distribution &y such that £,(S x {0}) = 1, then,
lim &z = vec((p,0,...,0)
k—o0
where the 0 vectors are of size n. Consequently, Prop. 2 implies that

klim Exrre = vec(0,...,0,¢,0,...,0), Vel
—00

where (¢ is the /-th place. This completes the proof of (7).

Now consider the function h: S x L — R defined as h(s,¢’) = h(s)1{¢' = £}. Then, by taking
T = KL, we have

1= L& h(s)
lim — > h(Siee) = tm 2 RS =LY
t=0 t=0

K—o0 K seS m(s,é)

where the last equation uses (5) from Thm. 3. Now, (8) follows from observing that mean return
time to state (s, ¢) in Markov chain P is L times the mean-return time to state s in Markov chain
Py, which equals 1/[¢*], since P is irreducible and aperiodic. O
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C Periodic Markov decision processes

Periodic MDPs are a special class time non-stationary MDPs where the dynamics and rewards are
periodic. In particular, let M be a time-varying MDP with state space S, action space A, and
dynamics and reward at time ¢ given by P;: S x A — A(S)and r;: S x A — R.

As before, we use [t] to denote ¢t mod L and L to denote {0, ..., L — 1}. The MDP M is periodic
with period L if there exist (P, %), £ € L such that for all ¢:

Pt(St+1 ‘ St,At) = Pllt]] (St+1 | St7At) and ’I"t(St,At) = T[[t]] (St7At).

Periodic MDPs were first considered in [Rii65]. Periodic MDPs may be viewed as stationary MDPs
by considering the augmented state (Sy, [t]). By this equivalence, it can be shown that there is
no loss of optimality in restricting attention to periodic policies. In particular, let (V°,..., VE~1)
denote the fixed point of the following system of equations

Vis) = ma/i({ré(s, a) +y Z P(s'|s, OL)V[[HIH(S’)}7 V(4 s,a) €L xS xA. (10)
ac
s’eS
Define 7¢(s) to be the arg-max or the right hand side of (10). Then the time-varying policy m =
(w1, m3,...) givenby m; = s optimal.
See [Sch16] for a discussion of how to modify standard MDP algorithms to solve periodic dynamic
program (10).

D Stochastic Approximation with Markov noise

We now state a generalization of Thm. 3 to stochastic approximation style iterations.

Theorem 4 Let {S;}:>1, S, be an irreducible and aperiodic finite Markov chain with unique limit-
ing distribution (. Let F; denote the natural filtration w.r.t. {S;}1>1 and {cy }1>1 be a non-negative
real-valued process adapted to { F;} that satisfies

Zat:oo and Zat2<oo. (11)

t>1 t>1

Let {My11}i>1 be a square-integrable margingale difference sequence w.r.t. {F;}1>1 such that

E[M?., | Fi] < K(1+ || X||?) for some constant K. Consider the iterative process {X,;}i>1,
where X is arbitrary and for t > 1, we have

Xt+1 = (1 - at)Xt + oy [h(St) + Mt+1] . (12)
Then, the sequence {X,}i>1 converges almost surely to limit. In particular,
Jim X7 = z; h(s)((s), a.s. (13)
se

Eq. (12) is similar to standard stochastic approximation iteration [RM51; KY97; Bor08], which the
“noise sequence” h(S;) is assumed to be a martingale difference sequence. The setting considered
above is sometimes referred to as stochastic approximation with Markov noise. In fact, more general
version of this result where the noise sequence is allowed to depend on the state X are typically
established in the literature [BMP12; Bor08; KY97; PB24]. For the sake of completeness, we will
show that Thm. 4 is a special case of these more-general results.

Before presenting the proof, we point out that Thm. 4 is a generalization of Thm. 3, Eq. (6). In
particular, suppose the learning rates are a; = 1/(1 + t). Then, simple algebra shows that

1 T
Xr=7 ;h(st).

Then, (6) of Thm. 3 implies that the limit is given by the right had side of (13). Therefore, Thm. 4
is a generalization of Thm. 3 to general learning rates which satisfy (11).
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PROOF To establish the result, we will show that the iteration {X,};> satisfies the assumptions
for the convergence of stochastic approximation with (state dependent) Markov noise and stochastic
recursive inclusions given in [PB24, Theorem 2.7]. The proof is due to [BP24]. In particular, we
can rewrite (12) as

X1 = X¢ + e g(Xs, St) -
where g(x,s) = —x + h(s). Moreover, for ease of notation, define h =  __s h(s)((s). Then, we
have

* g(z, s) is Lipschtiz continuous in the first argument, so A2.14 of [PB24] holds.

* From (6), the ergodic occupation measure of {h(S;)}¢>1 is {h}, which is compact and convex.
So, A2.15 of [PB24] is satisfied.

* The conditions on the martingale noise sequence {1, };>1 imply that A2.16 of [PB24] holds.
* Eq. (11) is equivalent to A2.17 of [PB24].
* To check A2.18 of [PB24], for any measure v on S, define

h(z,v) = /g(a:,s)l/(ds) = —x+h.
Also define

h(cx,cv) h
3 c
Let hoo(z,v) = limey00 he(z,v) = 2. Thus, the differential inclusion in A2.18(ii) is actually
an ODE

?LC(;L’, v)= = —x+ p

T=—x
which has origin as the unique global asymptotically stable equilibrium point. Thus, A2.18
of [PB24] is satisfied.

Therefore, all assumptions of Theorem 2.7 of [PB24] are satisfied. Therefore, by that result, the
iterates { X; };>1 converge to solution of the ODE (note that the differential inclusion in Theorem 2.7
of [PB24] is an ODE in our setting)

) &= —x+h. (14)
Note that z = h is the unique asymptotically stable attractor of the ODE (14). Therefore, Theo-
rem 2.7 of [PB24] implies (13). O

Thm. 4 also implies the following generalization of Prop. 3.
Proposition 4 Suppose {S;}i>1 is a time-periodic Markov chain with period L that satisfies
Assm. 3 with the unique limiting distribution {(*}ec. Let {F;}1>1 denote the natural filtration
w.rt. {Si }i>1 and {al }4>1, £ € L, be non-negative real-valued processes adapted to {F;}¢>1 such
that of = 0 when { # [t] and

Zaf =00 and Z(ozf)2 < 0.

t>1 t>1

Let {My11}1>1 be a square-integrable margingale difference sequence w.r.t. {F;}1>1 such that
E[M?,, | 7] < K(1+ || X,||?) for some constant K. Fix any { € L, Consider the iterative process
{Xﬁ}kzb where X is arbitrary and for k > 1, we have

Xf+1 =(1-of)X{ +aj [1(Se) + Myya]. (15)
Then, the sequence { X} }i>1 converges almost surely to the following limit

tlirgo X! = Zh(s)g‘e(s), a.s.
s€S
PROOF Note that the learning rates used here can be viewed as the learning rates of L separated
stochastic iterations on a common timescale ¢. Each separate stochastic iteration ¢ € L is actually
only updated once every L steps on the timescale ¢. Because of the condition ozf = 0 when ¢ # [t],
each update is followed by L — 1 “pseudo”-updates where the learning rate is 0. Therefore, each X*
is updated only once every L steps on timescale ¢.

The result then follows immediately from Thm. 4 by considering the process {S; };>1 every L steps
for each ¢ € L. O

25



E Thm. 1: Convergence of periodic Q-learning

The high-level idea of the proof is similar to [KY22] for ASQL when the agent state is a finite
window of past observations and action. The key observation of[KY22] is the following: Consider
an iterative process X1 = (1 — ay) X + o U; with the learning rates oz = 1/(1 + t). Then,
Xip1 = (Xo + 320, Up)/(1 4 t). Then, if the process {U; }¢>1 has an ergodic limit (e.g., when
{U¢}4>1 is a function of a Markov chain, see Thm. 3), the process { X };>1 converges to the ergodic
limit of {U; };>1. We follow a similar idea but with the following changes:

* Instead of assuming “averaging” learning rates (i.e., reciprocal of the number of visits), we allow
for general learning rates of Assm. 1.

* We account for the fact that that the “noise” is periodic.

The rest of the analysis then follows along the standard argument of convergence of Q-
learning [JSJ94; KY22; DY24].

Define the error function A% 11 = ¢ 11— f“ for all £ € L. To prove Thm. 1, it suffices to prove
that || Af|| — 0 for all £ € L, where ||| is the supremum-norm. The proof proceeds in three steps.
E.1 Step 1: State splitting of the error function

Define V/(z) := max,ea Qf(z,a) and V!(z) = maxaea Q,(2,a), forall £ € L, z € Z. We can
combine (PASQL), (1), and (2) as follows

Al i(z,0) = (1= af(2,0))Af(2,0) + af(2,0) [U;°(2,0) + U (2,0) + U (2,0)] - (16)
where
Utevo(za CL) = [T(Sta At) - Tﬁ(za a)} ]l{Zt:z,At:a}v

Uteﬁl(z’ a) = {'YV;E[K—H]] (Ziy1) = Z P/f(z/lzv a)V,u[[ZJrlﬂ (Z,)]]I{Zt:Z,At:a}7
z'eZ

Utg’z(zv a) = W’V;MHH(ZtH) - WVerlﬂ(ZtH)

Note that we have added extra indicator functions in the U’ (z, a) terms, i € {0, 1}. This does not

change the value of ! (z, @)U} (z, a) because the learning rates have the property that a’(z,a) = 0
if (¢,z,a) # ([t], 2, a+) (see Assm. 1).

For each £ € L, Eq. (16) may be viewed as a linear system with state A% 1 and three inputs Uf ’O,Uf 1

and Uf 2. We exploit the linearity of the system and split the state into three components: A% 11 =
£,0

X ’

1+ X ffl + X ffl, where the three components evolve as follows:

X1 (z0) = (1= af(z,0)X{  (2,0) + ab(z,a)U;  (2,a), i€ {0,1,2} (17)
Linearity implies that (16) is equivalent to (17). We will now separately show that || X °|| — 0,
XM — 0and || X[?| — 0.

E.2 Step 2: Convergence of component Xf 0
Fix (¢, z5,a,) € L x Z x A and define
he(St, Zt, A 4, 26, a0) = [T(St,At) — Tﬁ(zo,ao)]]l{zt:ZmAt:%}.
Then the process {X*° (2., a,)}+>1 is given by the stochastic iteration
Xffl(zo,ao) =(1- af(zo, ao))Xf’O(zo,ao) + af(zo, a0y (St, Zy, Ay Ly 20, G0),
which is of the form (15). The process {(S¢, Z¢, A¢) }+>1 is a periodic Markov chain and the learning

rates {af (2o, a.)}4>1 satisfy the conditions of Prop. 4 due to Assm. 1. Therefore, Prop. 4 implies
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that that { X% (2., ao) }+>1 converges a.s. to the following limit

: £,0 _ 4 .
t1i>120 X (20,a0) = Z Cu(s,2,a)he(s, 2,054, 20, ao)

8,2,aESXZXA

Z Cﬁ(s, zya) s a—ao} [r(s, a) — rﬁ(zo, ao)}

8,2,aESXZXA

= Z Cﬁ(s,zmao)r(s,ao)} — ¢} (20,a0)7}, (20, 05)
-s€S

— ZC S, Zoy G0 )T (8 ao} [Z(e 2oy @0)C,,(8]20)T (s,ao)}
-s€S s€eS

- Zcé 8, 20 ) 4 ao) 20 )7 (8, a0 ] [Z C/L 20) (o] 20)C (s|zo)r(5,ao)]
-s€S s€ES

—0

Hence, for all (£, o, a,), the process {X;°(zo, o) }+>1 converges to zero almost surely.

E.3 Step 3: Convergence of component Xf -

Let W, denote the tuple (S, Z;, A¢, Si41, Zi+1, Arg1). Note that {W;},>1 is also a periodic
Markov chain and converges to a cyclic limiting distribution ¢, where

=0 Y
Culs,z,a,8',2',a") = (s, 2, a) Z P(s' ' |s,0) Loz apyie(a’|2]).
y'ey
~ 0 T .
We use ¢, (s,2,a,S,Z,A) to denote the marginalization over the “future states” and a similar
. C =0
notation for other marginalizations. Note that ¢, (s, 2,a,S, Z, A) = Cﬁ(s, z,a).

Fix (¢, zo,a0) € L X Z x A and define

hp(Wisl, 2o, a0) = | YW (Za) = 7Y Ph(E|20, a0) VI (2) |1 2,220 4100
zeZ
Then the process { X %! (z,a)};>1 is given by the stochastic iteration
Xte+1(207 0’0) = (1 - af(zm ao))Xte,l(Zov ao) + O‘f(zov ao)hP(Wt; 67 Zo, ao)'

which is of the form (15). As argued earlier, the process {Wt}t21 is a periodic Markov chain. Due
to Assm. 1, the learning rate ot (z,, a, ) is measurable with respect to the sigma-algebra generated by
(Z1.t, A1.+) and is therefore also measurable with respect to the sigma-algebra generated by W7.;.
Combining this with Prop. 4 implies that the learning rates {} (2, ao)};>1 satisfy the conditions of
Prop. 4. Therefore, Prop. 4 implies that { X% (2., ac) }+>1 converges a.s. to the following limit
i X" (o)

= Z gﬁ(s,Z,a,s',z',a')hp(s,z,a, S/7Z/aa/;€7 2’07(10)

$,2,a€ESXZXA
’ / ’

s',z",a"eSXZxA

> Glsnas a) WEE) =9 Y PGl e VIR L, amy

8,2,aESXZXA zeZ
s',2',a’ €SXZxA

=7 {Z ¢!(S, 2o, 00,5, 2/, AV (z')] - [ygﬁ(s, 20,00,S, 2, A) Y Pl(2]20,a0) VI (2)

2'eZ zZ€Z

=0
where the last step follows from the fact that Eﬁ(57zo,ao,S,Z,A) = Cﬁ(zo,ao) and
Eﬁ(svzovaoasvz/aA) = Cﬁ('zo?ao)Pﬁ(z/‘ZO?aO)'
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E.4 Step 4: Convergence of component Xf 2

The remaining analysis is similar to corresponding step in the standard convergence proof of Q-
learning and its variations [JSJ94; KY22; DY24]. In this section, we use ||-|| to denote the supremum
norm, i.e., ||*||co-

In the previous step, we have shown that || X/"| — 0 a.s., for i € {0,1}. Thus, we have that
| X% + X[ — 0 as. Arbitrarily fix an € > 0. Therefore, there exists a set 2! of measure one
and a constant T'(w, €) such that forw € Q', all t > T'(w,¢€), and (¢, z,a) € L x Z x A, we have

X(z,a) + X (z,0) < e (18)

Now pick a constant C' such that
1
= 1+ —= 1 19
K= ( + C’> < (19)
Suppose for some ¢ > T'(w, €), maxge || X2 > Ce. Then, for (z,a) € Z x A,
U2z a) = W (Zign) = Vi (Z)

= ymax QI (Zig1,a) - max QY (Zi 11, d')
< ymax {QEMH (Zigr,a) — QYT Z 14, a)}
(a) 041 +1

< AIQFHT — QI = 4 Al

(®) 041],2
< e 4 || xFHT

<Al ) gy x 2 | (20a)
(© 1 0,2 (@) 0,2, (@ 0,2

< — ? = ’ ’ .

<7 (1 + c) max||X; | = s max|| Xy < max|| X, (20b)

where (a) follows from the fact that an upper bound is obtained by maximizing over all realizations
of Zy41, (b) follows from (18), (c) follows from the fact that maxsei || X || > Ce, (d) follows
from (19). Thus, for any ¢ > T'(w, €) and maxseL || X;?|| > Ce, we have

0,2 4 4,2 4 £,2 0,2
Xiii(z0) = (1= ag(2,0)) X, (2, 0) + af(z,a)Up * (2,0) < max|| X,

0,2 0,2
—> max|| X[ | < max] X

Hence, when maxe || X[ %|| > Ce, it decreases monotonically with time. Hence, there are two

possibilities: either (i) maxge || X} 2| always remains above C'e; or (ii) it goes below Cle at some
stage. We consider these two possibilities separately.

E.4.1 Possibility (i): max,c || X}

| always remains above C'e

We will show that maxc| || X} ?|| cannot remain above C'e forever. We first start with a basic result
for random iterations. This is a self-contained result, so we reuse some of the variables used in the
rest of the paper.

Lemma 2 Let {X;}>1, {Yi}i>1, and {ai}i>1 be non-negative sequences adapted to a filtration
{Fi}e>1 that satisfy the following:

Xep1 < (1— )Xy, (21a)
Yig1 < (1 — )Y + oy, (21b)
where c is a constant. Suppose
S o= o (22)
t=1

Then, the sequence {X,};>1 converges to zero almost surely and the sequence {Y;}y>1 converges
to c almost surely.
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PROOF The iteration (21a) implies that
X1 < [(1 —ar)(1- at)]Xl
Condition (22) implies that the term in the square brackets converges to zero. Therefore, X; — 0.
Observe that the iteration (21b) can be rewritten as
Vs —e<(I—ag)(Yy —¢)
which is of the form (21a). Therefore, Y; — ¢ — 0. O

We will now prove that maxzeLHXf 2|| cannot remain above Ce forever. The proof is by con-
tradiction. Suppose maxe || X} ?|| remains above Cle forever. As argued earlier, this implies
that maxger || X/ 2|, t > T(w,e€), is a strictly decreasing sequence, so it must be bounded from
above. Let B(Y) be such that maxge | X1 %] < B© for all t > T(w,e). Eq. (20b) implies that
|UL2|| < kB(©). Then, we have that

£,2 4 £,2 4 2,2
max X}y (2, a) < (1~ (2, o)) max|| Xy || + a4 (2, o) max||U,

£,2 0,2
< (1 - 0f(=z,a)) max|| X{*| + af (=, a)x max]| X

which implies that maxc || X} %] < ||Mf7(0) ||, where {Mf7(0)}t2T(w,e) is a sequence given by
Mf_’ir(?)(z,a) <(1- af(z,a))Mf’(o)(z,a) +al(z,a)kB®, V(z,a) € Z x A.

Lem. 2 implies that Mf’(o) (2,a) — xB© and hence HMf’(O)H — kB, Now pick an arbitrary
€ € (0,(1 — K)Ce). Thus, there exists a time T = T (w, ¢, €) such that for all ¢t > T,
M5 < BO = kBO + & Since maxge || X2 is bounded by ||(?)||, this implies that
for all t > T, maxge, | X2 < B and, by (20b), ||U{?| < «B™). By repeating the above

argument, there exists a time 7'(>) such that for all t > T(2),

n?aL>c||Xf’2|| < B® :=kBM 4 = k?BO) 4 ket
€

and so on. By (19), x < 1 and € is chosen to be less than C'e. So eventually, B("™) = x™B(©) 4+

K™~ 1€ + ... 4+ € must get below Ce for some m, contradicting the assumption that max,c| ||Xf -2 I
remains above C'e forever.

E.4.2 Possibility (ii): maneLHXf || goes below C' at some stage
Suppose that there is some ¢ > T'(w, €) such that maxge| || X;?|| < Ce. Then (20a) implies that

A £+1],0 +1],1 £41],2
1021 < A XE0 4 X 1 XEE2) < e 4y Ce < O
where the last inequality uses (19). Therefore,
0,2 ¢ 0,2 ¢ €2
3 < _ s 5
mae X/74(2,0) < (1= af (2,a)) maxl| X[ + af(z, 0) max|[Uf | < Ce

where the last inequality uses the fact that both ||U}"%|| and maszLHXfle are both below Ce.

Thus, we have that

0,2
max X1 (z,a) < Ce.

Hence, once maneLHXffl || goes below Cle, it stays there.

E.4.3 Implication

We have show that for sufficiently large ¢t > T'(w, €), maxye| Xf’2(z, a) < Ce. Since ¢ is arbitrary,
this means that for all realizations w € O, maxge | X1 %|| — 0. Thus,

=0, a.s. (23)

lim max||Xf’2
t—oo fLel
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E.5 Putting everything together

Recall that we defined Af = QY —@Q,, and in Step 1, we split AY = Xf’o +Xf’1 +Xf"2. Steps 2 and

3 together show that || X" + X! — 0, a.s. and Step 3 (23) shows us that maxc || X || — 0,
a.s. Thus, by the triangle inequality,

lim A7) < Tim || X7 + X7 + lim || X% =0,
t—o0 t—o0 t—o0

which establishes that Q¢ — Qp, as.

F Thm. 2: Sub-optimality gap

The high-level idea of proving Thm. 2 is as follows. Thm. 1 shows that PASQL converges to a
cyclic limit, which is the solution to a periodic MDP. Thus, the question of characterizing the sub-
optimality gap is equivalent to the following. Given a PODMP P, let M be a periodic agent-state
based model that approximates the reward and the dynamics of P (in the sense of an approximate
information state, as defined in [Sub+22]). Let 7* be the optimal policy of model M. What is the
sub-optimality gap when 7* is used in the original POMDP P?

To answer such questions, a general framework of approximate information states was developed
in [Sub+22] for both finite and infinite horizon models. However, we cannot directly used the results
of [Sub+22] because the infinite horizon results there were restricted to stationary policies, while we
are interested in the sub-optimality gap of periodic policies.

Nonetheless, Thm. 2 can be proved by building on the existing results of [Sub+22]. In particu-
lar, we start by looking at finite horizon model rather than infinite horizon model. Then, as per
[Sub+22, Definition 7], the agent state process may be viewed as an approximate information state
with approximation errors {(¢¢, 6¢) }+>1, where

€ = :up E[R: | he,ae] — ZT(&CL)C}?H(S | z,a)|,
0t s€S
o = Sup dg(P(Zigr = - | huyar), PPN Zia = Jou(he), ar)).

Let V/i(hy) = E*[Y21_, 4" "' R, | hy] denote the value function of policy 7 for the finite horizon
model starting at history h, at time ¢. Let V*;.(hy) = supz V7 (hy) denote the optimal value

function, where the optimization is over all history dependent policies. Moreover, let ‘A/t’T (z¢) denote
the optimal value function for the periodic MDP model constructed in Thm. 1. Let 7, denote the
history-based policy defined in Sec. 2.4.

Then, from [Sub+22, Theorem 9] we have

T
sup (Vip(he) = V()] <23 97 er + 70,05 (Vegr1)] 24

T=t
where we set Vo4 1 7 () = 0 for convenience.
The following hold when we let 7' — oo.
* Since ; is uniformly bounded, V"7 (k) — V" (he) as T — oo,
* By the same argument, ijﬁ(ht) — Vtﬁ“(ht) asT — oo.
* By standard results for periodic MDPs (see App. C), V,;T — V/LM as T — oo.
¢ By definition, e; < EE”] and §; < 67[?]].
Therefore, by taking 7' — oo in (24), we get

sup Vi (he) = V™ (he)] <2 77 bl 4 4ol oy (v Im+11y),

he T=t

The result then follows from observing that for 7 € T(¢, ), ef and 5f are non-decreasing sequences.
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G Policy evaluation of an agent-state based policy

The performance of any agent-state based policy can be evaluated via a slight generalization of
“cross-product MDP” method originally presented in [Pla77]. This method has been rediscovered
in slightly different forms multiple times [Lit96; Cas98; Hau97; Han98].

The key intuition is Lem. 1. Thus, for any agent-state based policy, {(S:, Z;) }+>1 is a Markov chain.
The only difference in our setting is that the Markov chain is time-periodic. Thus, for any periodic

agent-state based policy (7°,...,7%~1), we can identify the periodic rewards (7°...,7“~!) and

periodic dynamics (P°, ..., PL~1) (which depend on 7 but we are not carrying that dependence in
our notation) as follows:

P(s.2) = 3w (al)r(s.a),

a€A

Pe(slazl|57z) = Z Trz(a|Z)P(5/ay/‘saa)ﬂ{z’:(b(z,y’,a)}'
(y,a)€Y XA

We can then evaluate the performance of this time-periodic Markov chain via performance evalua-
tion formulas for periodic MDPs (App. C). In particular, define

7 =7 4 yPOF .. p4ETIPOPL.. pL2phol
p=pOpl...pLto,
to be the L-step cumulative rewards and dynamics for the time-periodic Markov chain. Then define
V= (1- ’yLP)_lf
Thus, V (s, z) gives the performance of periodic policy = when starting at initial state (s, z). If the

initial state is stochastic, we can average over the initial distribution.

H Reproducibility information

The hyperparameters for the numerical experiments presented in Sec. 3 are shown in Table 3. The
experiments were run in a computer cluster by running jobs that requested 2-CPU nodes with < 8GB
memory. Each seed typically took less than 10 minutes to execute.

Table 3: Hyperparameters used in Ex. 1

Parameter Value
Training steps 106

Start learn rate 1073

End learn rate 105

Learn rate schedule Exponential
Exponential decay rate 1.0

Number of random seeds 25
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