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ABSTRACT

The social behavior change in a heterogeneous population is an essential study of
multi-agent learning. The interactions between unique agents not only involves
the optimization for single agent learning, agents’ behavioral changes also depend
on the mutual similarity and dissimilarity between the agents. Our study provides
a theoretical derivation of the policies interactions under the formulation of joint
policy optimization. We discover that joint policy optimization in a heterogeneous
population can affect the population behaviors through mutual information (MI)
maximization. In our study, we introduce a minimax formulation of MI (M&M)
that optimizes the population behavior under MI minimization against the joint
policy optimization. The main findings of our paper show that MI minimiza-
tion can minimize the behavioral similarity between agents and enable agents to
develop individualized policy specialization. Empirically M&M demonstrates a
substantial gain in average population performance, diversity, and narrows the
performance gap among the agents.

1 INTRODUCTION

From the success of multi-agent game plays [(OpenAl et al., 2019), (Vinyals et al.,[2019)], the field
of heterogeneous multi-agent learning is being actively studied in areas such as Al game design
(Contributors, 2022)), embedded IoTs (Toyama et al.| 2021)), and the research for future Human-
Al interaction. With the unique physique and specialized character attributes in a heterogeneous
population, the ability to optimize policies for specific purposes is essential. The difficulty as well
as the goal of the heterogeneous population learning research is to search and define a general
learning algorithm that optimizes an agent population such that the uniqueness of each agent can
be fully utilized within the population. To approach the problem, our research aims to understand
the symmetric and asymmetric social behavior changes that occur during the population learning
through mutual information formulation.

To study the learning and behavioral change, multi-agent learning has formed two branches of stud-
ies. In the simplest form of multi-agent RL, individualized learning is performed to learn separate
behavioral policies for each agent. These prior works include Independent Q-Learning (IQL) (Tan}
1993)), Policy Space Response Oracle (PSRO) (Lanctot et al.,|2017), and AlphaStar (Vinyals et al.,
2019). However, the empirical success of these prior approaches have excluded knowledge sharing.
Since the training is done independently, one agent’s learned experiences do not transfer to another.
The individualized behaviors result in high redundancy of re-exploration and low socialized behav-
iors among the agents. On the contrary, joint policy optimization is proposed as a solution to the
listed problems. Joint policy optimization utilizes a single conditioned policy to learn the diverse
skillset, and the character attributes of the population via distributed RL optimization. Through
population experiences sharing and joint policy optimization, a single conditioned policy network
can learn a set of generalized policy skills that are transferable across the different agents. Notable
examples include OpenAlFive (OpenAl et al., 2019), HAPPO (Kuba et al., 2021) and NeuPL (Liu
et al} [2022) that optimize the multi-agent behaviors under the expected population accumulated
rewards.

Through knowledge sharing and joint policy optimization, population learning in interactive games
has benefited from the increased learning efficiency, and learning generalization of agents’ social
behaviors. Our research focuses on the latter, where we analyze the cause of social behavior change.
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By analyzing a heterogeneous population with pairwise interactions, we discover that the joint policy
optimization of a two-player competitive game converges to MI maximization among the agents.
Unfortunately, MI maximization optimizes the commonality in a population. We found that in a
heterogeneous population where agents are individually unique, MI maximization benefits agents
that have characteristics close to the population norm, but severely degrades the performance of
unique agents with character attributes dissimilar to the average population. To address the drawback
of MI maximization, our research’s main contribution is a novel minimax MI (M&M) formulation
of population learning that enables individual agents to learn specialization from the dual formation
of MI maximization and minimization.

2 BACKGROUND AND RELATED WORK

Multi-agent learning is a broad field of study that not only covers the necessary intelligence to
achieve individual agent reward maximization, but also the social behavior change when agents
interact with other agents. Prior researches in population learning have studied the performance of
the agent population in competitive and cooperative environments.

2.1 COMPETITIVE BEHAVIORS LEARNING

In a competitive environment, the goal of the multi-agent research is to utilize competition to op-
timize the performance of an agent population. One approach to perform the learning iteration
is individualized learning. Each agent improves its policy through learning a best-response (BR)
against the prior iterations of agents. The iterated elimination of dominated strategies optimizes a
population of policies under Game Theory. Prior studies such as (Jaderberg et al.| [2018), PSRO,
PS-TRPO (Gupta et al.l 2017), (Vinitsky et al., 2020) and Alphastar utilizes different variants of
self-play (Heinrich et al., 2015)) to learn competitive Nash Equilibrium behaviors for a population.
The different variants addresses the stability (TRPO constraint), robustness (adversarial population)
and diversity (leagues of policies pretrained on human data) of individualized learning.

In contrast, a joint policy optimization framework proposes by (Foerster et al., [2016) and (Lowe
et al., 2017) optimizes the population with Centralized Learning Decentralized Execution (CLDE).
The joint optimization enables common skill transfer across policies. The commonality among
the agents can be learned once and the learned behavior can be utilized by different agents of a
population. This form of joint policy optimization optimizes the population as an one-body problem
with Mean Field Theory (Yang et al., 2018). Under Mean Field Theory, the variations of individual
agents can be averaged. The modeling of the population behaviors are reduced from a many-body
problem to an one-body problem. Prior works include MADDPG, HAPPO (Kuba et al., 2021),
OpenAlFive (OpenAl et all 2019) and NeuPL (Liu et al., 2022), where OpenAlFive and NeuPL
have both further developed efficient graph solvers based on (Shoham & Leyton-Brownl [2008) to
optimize the social graphs of the population. The graph solver F’ optimizes the match pairing of the
agents (x,y) with weighted edges X(*¥). The objective of F' commonly optimize the policy learning
to be robust against adversarial exploitation or agents with the most similar performance strengths.

2.2 COOPERATIVE BEHAVIORS LEARNING

To develop social behaviors of cooperation, prior studies have proposed auxiliary rewards and reg-
ularization of mutual information as part of the objective function. This includes OpenAlFive’s
team spirit reward, (Chenghao et all 2021)’s Q-value, (Cuervo & Alzate| [2020)’s PPO, and (Ma-
hajan et al., 2019)’s latent variable regularization of MI maximization. While the above studies
suggest that learning of cooperative social behaviors require auxiliary modifications with mutual
information, (Dobbe et al.l 2017) shows an interesting analysis on the distortion rate of the joint
policy optimization versus the individualized learning with MI. The study shows that even without
auxiliary modification, there is a significant stability difference in distortion rate between the joint
optimization and individualized learning. This issue has shown to negatively impact cooperative
learning.
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2.3 A NEW PERSPECTIVE ON EXISTING WORK: FROM POLICY GRADIENT TO MUTUAL
INFORMATION

In this section we first show that policy gradient (Sutton et al.,|1999)) in multi-agent joint optimization
can be reduced to MI maximization of an agent population. We derive the learning objective of
multi-agent learning as the following.

To model the learning dynamic of a two-players competitive zero-sum game with Player x and
Player y, we let IIy(a|s) be a population joint policy. Given a game state s, players act according
to the policy IIy(als), and let a® and a¥ denote the actions taken by Player x and y. We define
Q(s,a",a¥), V(s), Adv(s,a”,a¥) as the centralized learning of Q, value, and advantage functions
respectively, where Adv(s,a”,a¥) = Q(s, a®,a¥) — V(s). The objective of the policy optimization
is to perform maximization of the expected return J(6) from episodes of self-play. The joint policy
gradient of a single step optimization is then defined by:

Mazimize J(0) = E E E[Adv(s,a”, a) * (11§ (a”|s) - IIj (a”|s))] (1)
s a” a¥
To analyze the behavioral change of the players, we derive Eq(3)’s gradient to inspect the direction
of policy change. We take the derivative with the product rule and apply the log trick (Williams)
1992)) to derive the expanded form of the joint gradient:
Vg¢J(0) =EE E[ Adv(s,a”,a")

+ [T (a”|s) 15 (a”|s) Velog(1lg(a”]s)) + TIg(a®[s) Ig(a’|s) Volog(llg(a|s)) ] (2)

Here we expand the Advantage function to Q(s,a”,a¥) — V(s). With II}(a”|s) and IIj(a¥|s)
specific to each side of x and y, we assume they are independent. By applying the probability of
independence and the logarithmic product rule (A.G), the joint gradient can be defined by:

VoJ(0) = EE E[Q(s,a®,a?)[[ TIS™Y) (a%,a¥|s) | * [Volog(TIS™Y) (a*,a¥s)) ] ]

s a® a¥

—[V(s)[ T (a*,a%|s) | * [ Volog(IL§(aX|s)) + Volog(IL(a¥|s))]] 3)

The derivation of Eq(3) shows components of mutual information formulation. By taking T steps
of joint policy optimization, the integral of Eq(3) removes Vg from the equation. The convergence
result of the joint policy optimization is a weighted variant of mutual information maximization
shown below in Eq(4). This derivation suggests that the long-term behavioral change between two
competitive players will converge to mutual behaviors maximization.

wiz, y) + [(X;Y) =EE[[w(z,y) * [Pacy) (xy) ] * [log(Pocy) (,y)) ]

—[Px,y)(x,y)] = [log(Px(x)) + log(Py(y)) |l S

In a heterogeneous population of agents { i, ii,... N}, we extend the two-player game (X,Y) to all
pairings of unique agents, the expected joint gradient is then denoted as:

1 on 1 &

N XE_: I ;%[M(X ) [H(X) + H(Y)] - [H(X, V)] 5)
The key finding from Eq(3) to Eq(5) is that through the accumulated gradient update, the maxi-
mization of J(0) results in MI maximization in the behavior of a heterogeneous population. We
find that the MI maximization formulation can impose a constraint on a heterogeneous population.
Particularly agents with character attributes dissimilar to the average population cannot realize their
own competitive advantage when their behavioral policies are subject to MI maximization constraint
with the average population. An iterative BR variant of joint policy optimization is more difficult to
derive the population-level behavior change during the joint policy optimization. For the BR variant,
Eq(5) approximates only the population-level behavioral change as both sides of the policy response
in a symmetric two-players game are near convergence. i.e. the joint policies utilized by the two
players are approximately the same.



Under review as a conference paper at ICLR 2023

3 M&M: MINIMAX MUTUAL INFORMATION SPECIALIZATION

We introduce M&M as a MI minimax population learning that aims to address the drawback of joint
policy optimization. In particular, we propose a minimization of MI to optimize a disjoint set of
policies against the MI maximized joint policy optimization. This process enables individual agents
to specialize behavioral policies relative to the average population. We denote the Generalists as the
joint policy that maximizes MI, and can be utilized on the general population. We define Specialists
as a disjoint set of policies that minimize MI against the Generalists. Specialists’ behavioral policies
deviate from the population norm through learning behavioral policies that align with agent’s innate
attributes.

3.1 PROBLEM FORMULATION

We consider a non-Markov two-player zero-sum Game (X,Y) with a heterogeneous population of
size N {i, ii... N }. The game is defined by (O, S, A, R) where O is the observation space, S :
O x O is the joint observation of the two players as a fully observable game. The discounted
return for each player is defined as R, = Y -, 777, where v is the discount factor y € [0,1).
We denote the Generalists as {115, } g—i» as an e—Nash Equilibrium (NE) policy solution reached
by the joint policy optimization after 7" iterations of population self-play optimization. Here every
player receives an expected payoff within € of NE as a numerical relaxation of NE. We define and
initialize the Specialists as a set of disjoint policies from replication of the Generalists {Tl'wg }fc\':i —

{mg N g—i» Where {W%C}Q]:i denotes a set of IV disjoint policies parameterized by 1) on the O-th
training iteration.

3.2 CONDITIONAL MUTUAL INFORMATION MINIMIZATION

For each set of games, we formulate M&M as a one-vs-all BR policy optimization of a Specialist
against the population of the Generalists in a zero-sum two-players game. Given a game state s,
players act according to their own policy. Let a* and a¢ denote the actions taken by a Specialist
k and a Generalist g in a game. We define Q(s,a”,a%) and V(s) as the Q and value functions
individually for each Specialist. The objective of the policy optimization is to maximize the expected
return .J(¢*) while minimizing MI with the gradient. In each optimization step we fix the parameter
of the Generalists and treat the joint policy as a part of the fixed e—NE solution. We then define
the effects of a9 as a part of the environment and allow the disjoint policies to condition on the
MI maximization joint policy, and perform MI minimization. Formally, we define the conditioned
policy gradient for a Specialist k as:

Mazimize J(p*) = NZ (s,a",a%) x wy(a”]s) ]

(s,a9) ak
- (S|He*)*%k(ak|8) Il (6)

By treating IT9. (a9]s) as the average population’s fixed e—NE response, a Specialist k’s policy gra-
dient optimization can be simplified to learn a BR against a stationary environment. The derivative
of the gradient w.r.t. 9 can be defined as:

N
Vo I = 2 DB B [QUs,a",09) # mys (at]s) Vguloglmyi at]s))

P (s,a9)
—V(s|II. ) * myn (a¥[5)V yrlog(myr (a¥|s))] (7)
—w(X,Y)* I(X;Y) = —w(X,Y) * [H(X) — H(X[Y)] ©)

By taking T steps of .J (1)) maximization, the integral of Eq(7) maximizes the negative of a weighted
conditional MI w.r.t. the Generalists denote in Eq(8). Alternatively, the optimization is equivalent to
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optimize 7+ to minimizes its mutual policy response with respect to IIJ, by weighting the individ-
ual agent’s Q-value gain against the value-function estimation conditioned on the MI maximizing
Generalists population.

Ion 1 & I on 1 &
NZN —w(Xp; Yy) * I(Xi; Yy) = Nzﬁ —w(Xp; Yg) [H(Xy) + H(Xk[Yy)] (9
k=1 g=1 k=1 g=1t

The overall expected social behavior change over time when averaging the disjoint policies’ gradi-
ents is shown in Eq(9). w(Xy;Y,) denotes the weighting of Q(s, a*,a?) — V(s|I13. ), and the full
formulation shows a minimization effect of MI between every Specialist to the Generalists’ joint
policy optimization. Utilizing the dual properties of mutual information, M&M optimizes the Spe-
cialists population as individual agents that each specializes according to an agent’s innate attributes.
The benefit of specialization over joint policy optimization is that rather than relying on common
skill transfers for policy improvement, a Specialist learns a unique policy that best aligns with its
own characteristics. This makes the population social interactions more diverse and enhances the
performance of agents with out-of-distribution character attributes. We show an algorithmic imple-

mentation of M&M policies optimization in (A.7)

3.3 SocCIAL GRAPH OPTIMIZATION

In our population learning of two-players competitive game, we have implemented a graph solver
to both optimize and analyze the social interactions between vertices of agents’ policies. Let F' be
defined as a graph solver, and each agent’s policy denotes a graph vertex. The directional weighted
edge between two vertices defines the interaction between two vertices as a two-players game. The
direction of the edge denotes the relationship between the pairs of vertices as dominance or domi-
nated, and the weight of each edge denotes the probability of the competitive outcome for vertex k
as U*. The initialization of all the edges are set to 0.5 as a 50% chance of winning or losing for each
pair of vertices. After each batch of finished games, the weights and directions of the edges involved
are updated according to the game outcomes. Based on the weights between the vertices, I’ updates
the match distribution of vertex k by defining X5 as the probability distribution of vertex k forms
an interactive game to other vertices. We define the optimization objective of F' to prioritize the
sampling of matchmaking based on the exploitability of vertex k relative to other policies. Due to
the probabilistic sampling of concurrent game interactions, the sampled adversary opponents form
a set of mixed strategies we denote as o.

4 EXPERIMENTS

Empirically we evaluate the specialization of agents on the Mobile Fighting Game: Naruto Mobile.
We compare and contrast the Generalists and Specialists population on advantage analysis, social
graph connectedness, behavioral diversity, and agent performance. We discuss the advantage and
social graph for each agent to demonstrate how the social behavior change can be largely influenced
by the methods of policies optimization. Additionally, our analysis on behavioral diversity and agent
performance show that M&M optimizes agents’ policies for specialization. By reducing MI, agent
population can benefit from behavioral diversity and performance gain.

4.1 INTRO TO NARUTO MOBILE GAME MECHANICS

Game mechanics: Naruto Mobile is a real-time 2D mobile Fighting Game of 1 vs 1 gameplay. The
game includes a pool of over 300 unique characters. Each character is designed with a unique set of
character attributes such as attack speed, range and movement variations. Additionally, each char-
acter has skills of different cooldown, status effects and duration. The large population of characters
and real time competitive interactions provides a testbed for research on a heterogeneous population.
Before the start of a match, both sides of players start by selecting their characters, auxiliary skill
scroll and a pet summon. The key to winning a match is to reduce the opponent’s health point (HP)
to zero, or having a higher HP at the end of a 60 second match timer.
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4.2 AGENT SPECIALIZATION

We record the advantage of the Generalists’ and the Specialists’ population against their prior it-
eration of population policies. The recorded advantage vectors of agent k comprise the expected
advantage of agent k against its opponents over the duration of evaluation. The recorded advantage
vectors of an agent are projected on the unit circles to visualize the vectors’ magnitude and the vec-
tors’ direction components. The radial plots are measures in the population’s mean-deviation with
the center of the circle representing zero advantage over the average population, and the radial edges
represent the maximal deviation gain against a specific radial opponent.

Generalists Specialists

Agent K. Generalist:

Figure 1: Agent’s Advantage And Specializations: From MI maximization optimization, both
Generalists Agent I. and Agent K. show low deviations of advantage relative to the general popu-
lation. This shows MI maximization optimizes the marginalized advantage of the population. In
contrast, the Specialists Agent I. and Agent K. have demonstrated strong deviation from the pop-
ulation norm. With MI minimization being the optimization objective, Specialists learn to gain an
additional competitive edge by specializing agents’ unique agent-attributes.

From before to after agents’ specialization, Figure 1 shows Agent I. has an increased magnitude
of agents’ advantage vectors. This implies that under M&M specialization, the MI between Agent
I. and the general population is minimized. Similarly, Agent K. is also able to minimize its MI to
achieve its own specialization. While both agents are able to achieve specialization, the direction
components are different for the two agents. Agent I. is specialized against prior iteration of itself
and Agent K., and Agent K. is specialized against prior iteration of Agent I. and Agent O.. The
unique directions of each agent’s specialization shows that M&M specialization not only minimizes
MI of the population, each agent is also optimized for its own agent-attributes.

Moreover, the Generalists and Specialists populations show different aggregated bounds. With the
aggregate of Generalists as the dotted line region and the Specialists population as the solid line
region, the radial plot shows that the Generalists dotted bound is restricted close to the center. With
the center representing the average population, the closer the region to the center, the more generic
the agent population behaves. In the extreme case of conformity behavior convergence, MI max-
imization can reduce the region and eliminate the diversity in the population. On the other hand,
Specialists show individual differences relative to the population norm. The individual specialization
creates a collective diversity for the population.

4.3 SOCIAL GRAPHS AND INTERACTION STABILITY

With NeuPL (Liu et al.| 2022)) and (Shoham & Leyton-Brownl [2008)) graph solver, the different
social graphs of the Generalists and Specialists are plotted on their corresponding radial charts. In a
social graph, the labeled agent is the center node of the graph and is connected with edges X(z, y)
outward to other agent nodes. X(z,y) are normalized with population mean-deviation. The MI
Maximized Social Graph is shown on the left in blue, and M&M’s Social Graph on the right in red.
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The social graphs display the relative frequency agents interact with each other and the deviation
from the mean. The larger an edge value is, the more frequent the agent-nodes interact.

MI Maximized Social Graph M&M Social Graph
—— Agent K. Edge U(i,j) Agent K. Edge U(ij)
Agent 1. Edge U(i.j) Agent | Agent|. Edge Ufi.j)

Agent 1.
—— Agent T. Edge U(i,j) Agent T. Edge U(i,j)

Agent O, Agent K. Agent O, Agent K.

Agent S Agent D. Agent S, @ent D.

Figure 2: Social Graphs of Generalists and Specialists: In MI Maximization Social Graph, the
uniformity of edge-connection strengths shows each agent approximately interacts with other agents
a similar number of times. This result shows each agent receives approximately the same distribu-
tion of experiences. In contrast, the social graphs of the Specialists gradually shift away from the
symmetry. This allows each agent to interact with more relevant agents, and acquire more individ-
ualized information distribution. The differences in social graphs directly influence the stability of
population learning and agents’ experiences distribution. The more disjoint the experience distribu-
tions are, the sparser some interactions become.

MI Maximized Social Graph shown in Figure 2 illustrates that agents are connected with approx-
imately equal connection strength in each edge. This indicates a densely connected social graph.
This approximately translate to uniform distribution of {Px y (z, y)}i\’ y—i With high stability in
—H(X,Y). In contrast, M&M’s Social Graph shows few strongly connected edges, such as Agent
T. to Agent O., and sparse connections with other agents. With sparsity in the social graphs, each
agent is to receive a different distribution of experiences.

4.4 FROM MONOTONE BEHAVIOR TO DIVERSE INTERACTIONS:

To analyze the agents’ behavior, we introduced several metrics to track the timing of agents’ skills.
ForcingMoves are metrics that measure agent’s attack initiation prior to the opponent’s attacks.
CounterMoves measure skills used to interrupt the opponent during their skill casting. CloneSubsti-
tute measures the frequency that an agent avoids or escapes from the opponent’s attack. The metrics
are displayed via mean-deviation frequency to account for the different skill cooldown among the
agents. We collect a batch of 100 games for each agent-type to look at how similar or different the
learned strategies are.

Generalist Action Space Diversity :
Agent K Agent B Specialists Action Sj Diversity
pecialists Action Space Diversity :
Agent I Agent O,
cloneSubstitute o < AgentK. — AgentH.
1 — Agentl. — AgentO.

cloneSubstitute

counterMove3,

forcingMove3
forcingMove3

counterMove2 forcingMove2

counterMove2 forcingMove2

Figure 3: Timing and Strategy: Comparing the behavioral difference between the Generalists
and the Specialists, there is a clear difference in how Generalists and Specialists respond. For the
Generalists, the mean-deviation shows similar change despite playing four uniquely different agents.
Except for the cooldown constraint, the actions of the four Generalists are largely the same response.
This shows the drawback of MI maximization optimization. On the contrary, the Specialists are
incentivized to formulate creative plays based on their individual agent-attributes. M&M creates a
wide variety of strategy timings and competitive behaviors.
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In Figure 3, the stacked Generalists and Specialists action timing reveals the similarity and differ-
ences in different population’s strategy timing. Specialists learn to time their skills differently when
embodied in different agents. Each agent adapts its behavior such that its current strategy is optimal
relative to the general population. In contrast, the Generalists population shows low variations in
strategies. With the similar action timing, the Generalists have developed social behaviors that con-
form with other agents. While under MI maximization, the optimized generic behavior works across
the different agents, but the diverse Specialists behaviors better demonstrate the essence of general
intelligence for adaptive learning and creativeness.

4.5 PERFORMANCE COMPARISON:

The € - Nash of the Generalists agents is iteratively optimized with 13 rounds of joint policy opti-
mization via NeuPL’s graph solver (Heatmap shown in Appendix [A.4). Here we display the top 8
performing Generalists relative to the M&M optimized Specialists. The displayed competitive per-
formance are the weighted win rates of the 8 agents versus the € - Nash of the Generalists population.

M&M Specialization

= Ours - M&M
Liu et al. 2022 - NeuPL

55 60 65 70 75 80 8 90 % 100
Winrate (%)

Figure 4: Performance Re-Balance with M&M Specialization: In experiment 4.5 we look at how
agents’ performances can be better balanced with M&M specialization. We first observe that with
joint policy optimization, the top performing NeuPL agents converge to win rates of 58.2 92.5%
in deep blue with high performance inconsistency among the agents. The variation of performance
shows that the joint policy may converge towards a set of behavioral strategies that benefits some
agents more than the others. Particularly, MI maximized joint policy benefits the average population
by adapting mutually similar joint policy, but for agents such as Agent A. and Agent K. their char-
acter attributes may fall outside of the population norm. We see that with M&M, Agent A. and K.
demonstrate a substantial performance gain and re-balanced the population performance gap (77.6
97.3%). Our empirical result shows that minimizing MI can enable agents to search for uncommon
strategies that outperform the MI maximized counterpart.

Aside from the performance gain from agent specialization, Figure 4 also shows an interesting ob-
servation that optimizing for population’s commonality (MI maximization) does not translate to a
more balanced population. With joint policy optimization, the population converges with high per-
formance differences among the agents. The standard deviation of MI maximized optimization is
9.95, while it is reduced to 5.99 after M&M’s specialization. With approximately 30 % reduction
in population performance deviation, it shows that equity of a population (performance gap) can be
improved when individual agents specialize.

4.6 SAMPLE EFFICIENCY:

In our last experiment we look at the sample efficiency of the different optimizations. The joint
policy optimization of the Generalists are performed on a set of 16 agents under MI maximization
for 9 rounds. We then compare the relative performance gain to sample required with joint policy
optimization and M&M for 2 additional rounds of optimization. The experiment measures the sam-
ple complexity needed for the two methods to reach a similar level of relative performance prior to
specialization.
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Total Training | 9thRound ;| 1lthRound | AgentK Agent M.
R Ee Steps - Generalist | Generalist : Specialist Specialist
9th Round
o 720,000 - 339% 211% 64%
11th Round
i 890,000 661% - 446% 191%
AgentK.
Specilist 850,000 789% 555% - 362%
|
Agent M.
Specialist 850,000 } 93.6% 809% 63.7%
|

Figure 5: Training Efficiency and Competitiveness: With 170k additional learning steps, the 11th
round of Generalist can efficiently increase the average performance of the 16 agents by 16.1%
(50% 66.1%). With M&M specialization, Agent K. and Agent M. can reach the same relative win
rate against the general population as the 9th round of population with an additional 130k learning
steps. The experiment indicates that when optimize for MI maximization, experience sharing allows
joint policy optimization to efficiently optimize the expected behaviors of the whole population on
commonality. Since MM optimization no longer optimize with MI maximization as an objective,
each experience sample is unique to each agent and would create separate learning distribution for
each agent. To collect each separated learning experiences, additional computation is required.

In Figure 5, joint policy optimization demonstrates that it can use less learning steps per agent
to optimize a population of agents. In contrast, due to the diversified exploration M&M requires
additional samples to explore the set of MI minimized agents interactions. The main takeaway from
this experiment is that it would be more learning efficient to first learn the common skills under joint
policy optimization. Sequentially, after Generalists’ convergence, M&M specialization can further
benefit each agent with additional samples of training that diversify the learning experiences and
enables specialization.

5 CONCLUSION

In our paper, we have derived two formulations of MI from multi-agent policy gradient. One brings
a new perspective on the existing work of joint policy optimization, the other explores the poten-
tial of conditional MI minimization. The two learning representations under the dual formulations
of MI measure the long-term effects of a population’s social behavior change. With the joint pol-
icy optimization, the MI maximization of gradients significantly increased the sample efficiency of
population learning by learning a set of transferable skills across the agent policies. Through maxi-
mizing MI as policy’s gradient, the joint policy optimization optimizes the heterogeneous population
toward a set of mutually similar behaviors among the agents.

In contrast, our proposed M&M population learning aims to minimize the MI between the disjoint
policies and the MI maximized joint policy agent population. Our conditional MI minimization
population learning enables each agent to define an unique policy that best aligns with the agent’s
own character attributes. Without the MI maximization constraint, the learned policy does not need
to be transferable to other agents. In a heterogeneous population the specialization of behavioral
policies are especially beneficial to agents that have dissimilar character attributes relative to the
average population. As a result, M&M can optimize a diverse population of Specialists that better
balance the performance inconsistency within a population. We believe that through studying the
gradient formulation of population policy gradient can help to bring better understanding on the
social behavior change that occurs within a population.

Future Work: The current limitation of our method is on the additional compute resource for
learning agent’s individualized specialization. Due to the process of specialization being specific to
each agent’s character attributes relative to the joint policy, sample efficiency improvement on joint
and disjoint policies optimization can both benefit the training needed for social behavior study. We
thank the reviewers for suggestions and their valuable constructive feedback on our study.
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A APPENDIX

A.1 MOBILE DEEP LEARNING ARCHITECTURE
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Figure 6: DRL architecture for mobile devices: We build our neural network deployable to mobile
devices. We first pass inputs to an embedding layer to reduce the dimension and also use ConvlD
as opposed to the Dense layer to reduce compute load. Our input to output is separated into four
modules.

Basic Module - for game env stat & characters specific information.
Buff Module - buff and debuff info during gameplay.

Element Module - characters equipment of weapon IDs, armor, etc.

b

Action Masking Module - gives the model the information on whether
each action is currently available.

The separation of modules in Figure 6 allows us to have sparse connectivity in the model. The
compute load is reduced compared to fully connected layers. This allowed us to inference our
models locally on mobile devices.

MDP: The model receives from the Basic Module to identify the characters and equipped Summons
and Scrolls. Additionally, characters position, movement and skills’ buff & element information are
received from Buff and Element Module. The above are the input states s; to our model. Our model
predicts an action output a; to control the 2D movement of the agent, and the available attack and
skills. The reward can be customized, but in our standard mechanics it is based on the (weighting)
of an agent’s own HP(10), opponent’s HP(10), the result of the battle(10), combo(5), and mana(5).
With the transition of the action, new state s, are given to the model for the next iteration of MDP.

A.1.1 HYPERPARAMETERS AND HARDWARE USED

Hyperparameters Hardware Used

e PPO: 0.1 e CPUS: 5,300
GPUS: 0
¢ max Batch size: 5120

* n-step: 100 frames
e Reward discount factor: 0.995 « Average Compute Time:

* Learning rate: le-4 — = 180 Hrs (Generalist Training)
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A.2 HETEROGENEOUS ACTION SPACE REPRESENTATION LEARNING:

With a large collection of distinct agents, the learning problem we face is their unique action sets
and their relative similarity. Inspired by word embedding (Mikolov et al., 2013)), we approach the
problem with a structure of information bottleneck to learn the representation of the action sets
as a dense representation of a vector. We define our information bottleneck via the structure of a
neural net II(a|S), where S is the learn-able state space that holds the contextual information of
the involved agents (z,y), action sets (a”,a?) and the joint observations. The goal of the model
structure is to compress the large contextual information S to learn a joint policy IT that captures the
actions’ similarity in a specific interaction context.

A.3 INDEPENDENT CAUSALITY BETWEEN AGENTS’ INTERACTIONS:

VM3-AC (Kim et al.,|2020) has pointed out the possible causality dependency of multi-agent inter-
actions. When player ¢ decides its action af it may depend on player j’s action a?. The obvious
problem of reasoning is the circular causality of the two players, af depends on a} and a} depends
on af. To resolve this issue, (Kim et al., 2020) has introduced a random variable to disassociate the
loop dependency via variational lower bound.

We define our agents’ causality graph without the Markov Assumption on agent’s action. By remov-
ing the Markov Assumption, we can use opponent’s past actions a.;_, to predict opponent’s current
move a; " . This breaks the loop and assume the casual graph of players’ actions are independent at
time ¢. This gives the agents temporal consistency of Forward Induction (Battigalli & Siniscalchi}
2002) of Game Theory for self-play. The reached Nash Equilibrium under Forward Induction is
self-consistent that the rational opponents in the past will continue to choose rationally in the future.

A.4 GENERALISTS SELF-PLAY ALGORITHM CONSTRUCTION:

Our neural population learning for joint policy optimization is performed under the multi-agent so-
cial graph of NeuPL(L1u et al.,|2022). The nodes are the different generations of agents, and are
connected by the weighted edges of {E(r’y)}N =N NeuPL provides a population self-play frame-
work that not only competes the current population Hé\i with combinations of distinct agents, but
the weighted edge prioritization also extend to different generations of e-Nash population Hé\g o
Each population is represented as a conditional joint policy that learns a set of BR strategies against
all previous generations of multi-agents mixed-strategies.

[Training Round| Behavior Tree]  Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10 Round 11 Round 12 Round 13

Behavior Tree - 0.94% 0.21% 0.14% 0.22% 0.29% 0.23% 0.12% 0.12% 0.08% 0.07% 0.09% 0.06% 0.09%
Round 1 777;1;7 - 2.56% 1.93% 2.12% 2.06% 257% 2.68% 201% 2.23% 241% 2.46% 2.01% 1.94%
Round 2 99.79% 97.44% - 4.48% 4.66% 5.75% 7.08% 6.24% 5.44% 5.64% 6.13% 6.71%. 511% 4.91%
Round 3 99.86% 98.07% 95.52% - 591% 6.90% 8.86% 9.72% 9.18% 10.58% 9.95% 10.78% 8.29% 8.89%
Round 4 99.78% 97.88% 95.34% 94.09% - 14.29% 16.56% 2159% 2024% 20.82% 17.84% 18.25% 15.69% 15.69%
Round 5 99.71% 97.94% 94.25% 93.10% 85.71% - 18.70% 21.92% 20.82% 21.43% 21.56% 21.77% 19.78% 19.33%
Round 6 99.77% 97.43% 92.92% 91.14% 83.44% 81.30% - 17.50% 17.33% 18.12% 20.03% 20.05% 20.05% 19.88%
Round 7 99.88% 97.32% 93.76% 90.28% 78.41% 78.08% 82.50% - 25.02% 25.69% 2621% 26.16% 25.68% 24.82%
Round 8 99.88% 97.99% 94.56% 90.82% 79.76% 79.18% 82.67% 74.98% - 33.16% 32.85% 31.30% 31.24% 31.81%
Round 9 99.92% 97.77% 94.36% 89.42% 79.18% 78.57% 81.88% 74.31% 66.84% - 33.87% 33.96% 31.71% 33.28%
Round 10 99.91% 97.54% 93.29% 89.22% 81.75% 78.23% 79.95% 73.84% 68.70% 66.04% - 41% 32.12% 33.89%
Round 11 99.93% 97.59% 93.87% 90.05% 82.16% 78.44% 79.97% 73.79% 67.15% 66.13% 59% - 36.10% 36.71%
Round 12 99.94% 97.99% 94.89% 91.71% 84.31% 80.22% 79.95% 74.32% 68.76% 68.29% 67.88% 63.90% - 42.39%
Round 13 99.91% 98.06% 95.09% 91.11% 84.31% 80.67% 80.12% 75.18% 68.19% 66.72% 66.11% 63.29% 57.61%

Figure 7: The heatmap shows the evaluation matches across the different Generalist iterations Hé\f .
The ablation evaluation shows joint policy optimization roughly diminished as the training ap-
proaches the 11th 13th iteration. In particular, the 13th iteration only has a 57.6 % winrate against
the 12th iteration of Generalist, which is close to the Nash equilibrium of 50 %.
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In Figure 7, we evaluate all rounds of the Generalist policies against each other. The heatmap
shows monotonic convergences of the Generalist population. At the 13th iteration, the Generalists
population has converged as e — Nash Equilibrium where £ & 7.6%. Further training may minimally
increase the performance, but worsen the strategy diversity.

A.5 CORRELATION OF DIVERSITY AND PERFORMANCE

Since Agent T. is the only agent without performance gain after M&M specialization, we compare
its Advantage vector change, performance chart with Agent H.’s.

Generalists Specialists

Agent T. Generalist : Agent T. Specialist:
== MI Maximization Bound Advantage == MI Maximization Bound Advantage

—— MI MiniMax Bound —— MI MiniMax Bound
Agent . Agent .

Agent H. Generalist : Agent H. Specialist :
~ = MI Maximization Bound Advantage -— M ion Bound  ——

— MI MiniMax Boun —— MI MiniMax Bound
Agent | iniMax Bound Agent 1.

-@- winrate @- winrate

Specialist 0.8721

0.8883
Specialist / Generalist
0.84 0.8
0.81
0.7
0.78
0.6
0.75

. Training Time
Generalist (7266 9

Training Time

054
9hr 18 hr 7 hr 14 hr

Figure 8: The performance metric of Agent H. and T. Specialization: Agent H. shows an initial
performance of 72.7 % performance relative to the other 15 Generalists population. With M&M'’s
specialization, Agent H. shows a substantial increase in competitive performance of 87.2 %. On
the other hand, Agent T. shows an initial performance of 87 % performance relative to the other 15
Generalists population. With M&M’s specialization, Agent T.’s performance does not deviate from
the initialization.

From Figure 8, shows the positive correlation of strategy diversity and character performance still
holds. With Agent H., the radial plot shows a large deviation when the strategy is being converted
from Generalist to Specialist. This correlates with the notable increase in agent performance on
the left chart of Figure 8. On the other hand, Agent T. shows a more muted deviation within the
Generalist bound. The lower strategy deviation is also reflected in Agent T.’s flat performance on
the right chart of Figure 8. The lack of specialization for Agent T. may be due to the Generalists’
converged strategy is already close to the optimal strategy for Agent T. This may imply that Agent
T. has the most centered agent attributes in relation to the population. As the Generalist policy
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converges towards the population mean, the converged strategy can become the optimal strategy for
Agent T.

A.6 INTEGRATION:

Let IT% (a”|s) = x, II}j(a¥|s) = y, and X, y > O then the change of variable approach (mickep |
https://math.stackexchange.com/users/97236/mickep) (user65203):

Let log(x):/ ot (10)

t=1 3

ey = [P [ [T
=1 t 1t =1 t =1t =1t t=a ¢

t ot 0
Let u = —, such that— = au
T t U

x Yy
:/ @Jr/ ou (11)
t=1 ¢ u=1 U

This gives us log(Pil" (a®|s)PilY (a¥|s)) = log(T1S" (a®|s)IIY (a¥|s)). With the probability of in-

dependence assumption, Q(a”, a¥, s) function has the joint probability of Velog(H((f’y) (a®,a¥|s))
in Eq(3).

A.7 ALGORITHM PSEUDOCODE

In this section we breakdown M&M population learning into pseudocode, where the main compo-
nents of the Specialists optimization are the neural population learning (NPL), e—NE of Generalists
policy (ITj.), Specialists policies ({ﬂ'wg }kN:Z-) and graph solver F'. Let NPL be the concurrent opti-
mization of two-players game between two agents’ policies. For every episode NPL simulates the
match of (7, o, II), where 7 is matched against an agent member of II and the population of II col-
lectively plays a mixed strategy o. We collect the policies interaction trajectories, T, into a replay
buffer for policy gradient optimization.

Algorithm 1 Neural Population Learning By RL - NPL(7, o, 1)

replayBuf fer + { } // Tnitialize trajectory replay buffer
for Episode € 1,....t do
Start game engine with policies (r, II).
Store trajectories T from policies interactions (, o, IT) into replay Bu f fer.
replayBuf fer < replayBuf fer |J T
end for
return replayBuf fer

For a given heterogeneous population {4, i, ...N'} and an e—NE Generalists population I}, M&M
optimizes {T,, g }Y_, to minimize MI of the individual agent policy against the Generalists population

I1J\.. Each one-vs-all matchmaking is sampled based on the priority given by the graph solver F.
After a batch of episodes of NPL, we optimize . with PPO optimization. Additionally, we define
Eval() to compute the aggregate outcomes of NPL.
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Algorithm 2 M&M Multi-Agent Specialization Pseudocode

Input:
Population = {i,ii,...N} // Heterogeneous population of N distinct agents
{mr Hiss /I N disjoint policies
Iy, /I e~NE Generalists
{38 = (mye, {15102 100 /I Agent k’s social graph
F RN 5 RIXN, // Graph solver - NeuPL (Chen et al. 2022)

Parameter: TT)', {rm};_;.
Output: {7 }3_;, IV, {ZF}V
Algorithm Starts:
1: for n € Population do
20 myp g // initialize N disjoint policies
3: end for
4: while (true do) do
5. for k € Population do
6.
7
8

=" {I19(a%]s) ;V:i // Specialist k’s social graph with the Generalists
NPL(myk, o, sz) /I One-vs-all population learning with 7,
: myr = PPOcip(gradient Step(myy ) )// Optimize policy with PPO optimization
9: U* + Eval (g, {119 }é\/:i) // Eval() computes the aggregate values of
10: // vertex k’s game outcomes.
11: Yk« F(UF) // Define k’s social graph
12:  end for
13: IV =TIV U {my_ o, // Adding Specialists to opponent pool
14: // Tteratively specialize Specialists {7y W

15: end while
16: return {my. }n_,, IV, {SFHY

With Section 3.3’s defined social graph, we use U* to denote the probabilistic outcome distribution
of all pairwise game matches with Specialist k. We use F'(U*) to update k’s social graph weighted
edges to prioritize sampling of adversarial opponents. After all Specialists have converged, we
add the population into the opponent pool set. M&M iteratively optimizes the set of Specialized
population until population performance convergence.

A.8 SOFTWARE AND LICENSING

The models are implemented via Tensorflow, TensorflowLite (Abadi et al) [2015), IM-
PALA(Espeholt et al. [2018)), and Horovod(Sergeev & Balso, 2018). These softwares are all
licensed under Apache License 2.0.
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