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Abstract

In this paper, we present TAPTRv2, a Transformer-based approach built upon
TAPTR for solving the Tracking Any Point (TAP) task. TAPTR borrows designs
from DEtection TRansformer (DETR) and formulates each tracking point as a
point query, making it possible to leverage well-studied operations in DETR-like
algorithms. TAPTRv2 improves TAPTR by addressing a critical issue regarding
its reliance on cost-volume, which contaminates the point query’s content feature
and negatively impacts both visibility prediction and cost-volume computation. In
TAPTRv2, we propose a novel attention-based position update (APU) operation and
use key-aware deformable attention to realize. For each query, this operation uses
key-aware attention weights to combine their corresponding deformable sampling
positions to predict a new query position. This design is based on the observation
that local attention is essentially the same as cost-volume, both of which are
computed by dot-production between a query and its surrounding features. By
introducing this new operation, TAPTRv2 not only removes the extra burden of
cost-volume computation, but also leads to a substantial performance improvement.
TAPTRv2 surpasses TAPTR and achieves state-of-the-art performance on many
challenging datasets, demonstrating the superiority.

1 Introduction

Tracking any point (TAP) in videos is a more fine-grained task compared to tracking objects using
bounding boxes [29, 38, 49, 52] or their instance masks [3, 34, 48, 50, 41, 33]. As point corre-
spondence and its visibility prediction in long video sequence is fundamental to many downstream
applications, such as augmented reality, 3D reconstruction, and visual imitation [40], TAP has
received increasing attention in the past few years [14, 9, 20, 26].

Some works solve TAP from the 3D perspective [28, 11, 51, 13, 22, 45, 43], where they learn an
underlying 3D representation of the scene and enable it to transform over time. Although such an
approach has obtained impressive results, the learning of the 3D representation is nontrivial and
challenging. Thus most methods are not general and have to be fine-tuned for each video.

To develop a more general solution while keeping a good performance, some methods [9, 7, 14, 56,
32, 31] solve the TAP task in 2D space directly. Building upon existing optical flow methods [39, 47,
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Figure 1: Comparison of the frameworks among previous works, TAPTR, and TAPTRv2. Inspired
by DETR-based detection algorithms, TAPTR formulates the point tracking problem as a detection
problem and simplifies the overall pipeline to a well-studied DETR-like framework. After introducing
the attention-based position update operation into Transformer decoder layers, the overall pipeline is
further simplified to be as straightforward as detection methods. The operations within dashed boxes
are executed only once.

37, 42, 19, 16, 35, 55], especially RAFT [39], such methods jointly estimate optical flow and point
visibility across multiple frames. Supplemented with temporal processing methods such as sliding
windows, they achieve remarkable results. However, these methods are largely affected by previous
optical flow estimation methods and model each tracking point as a concatenation of multiple features,
including point flow vector, point flow embedding, point visibility, point content feature, and local
correlation as cost volume [26]. These features normally have clear physical meanings in optical flow,
but are simply concatenated and sent as a blackbox vector to MLPs or Transformers and expect MLPs
or Transformers to decipher and utilize the features [9, 7, 14, 56, 20]. Such a black box modeling not
only makes the model cluttered, but also hinders its optimization and learning efficiency.

To more effectively utilize the features, TAPTR takes inspiration from DEtection TRansformer
(DETR) [4, 30, 27] and models each tracking point as a point query as in DETR with a content part
and a positional part (point coordinates). Each query is refined layer by layer, with its visibility
predicted by its updated content feature. Point queries exchange information through spatial or
temporal attention in the same frame or along the temporal dimension. Such a point query formulation
not only makes the TAP pipeline conceptually simple, but also lead to a remarkable performance.

However, despite its demonstrated performance improvement, TAPTR still relies on the cost-volume
feature and has a questionable design, which concatenates the cost-volume feature of a point query
and its content part, followed with an MLP transformation (See Eq. 4 in [26]). As after each
Transformer decoder layer, the updated point query needs to predict a relative position to update
the query’s coordinates, aggregating cost-volume, which is a local correlation information, to the
query’s content part helps the point query predict a more accurate position. However, aggregating
cost-volume also contaminates the query’s content part, which has two negative impacts. First,
the cross-attention operation in each Transformer decoder layer needs to compute attention maps,
which are the similarities between point queries and image feature keys2. Yet queries and keys
have different formulations. While both queries and keys have their content part and positional
part, queries are contaminated by cost-volume whereas keys are not. Such a difference makes the
attention computation implausible. Second, a contaminated point query also yields to inaccurate
cost-volume as the computation of cost-volume also needs to compare the point query with its local
image features. The experiments in TAPTR show that, with such contaminated cost-volumes, the
performance will suffer a big drop. Moreover, the incorporation of cost-volume in TAPTR not only
results in redundant computations, but also leaves the simplicity one step behind query-based object
detection methods [54, 27, 30, 25]. This raises several intriguing questions: Why is cost-volume
necessary? Is there any alternative that can be developed without redundant effort? How can the
cost-volume or its alternative be better utilized without contaminating a point query?

With this motivation, we propose TAPTRv2. Compared to TAPTR, TAPTRv2 does not aggregate
cost-volume to queries to avoid contaminating their content features. Meanwhile, with a deeper

2Note that in TAPTR, deformable attention is used, which can be considered as a sparse and approximate
attention as its attention weights are directly predicted based the feature of a query without comparing the query
with image features. Here we use dense attention for discussion for its simple and clear definition.

2



analysis recognizing the importance of the information captured by cost-volume, we propose a novel
Attention-based Position Update (APU) operation, which, for each query, uses its local attention
weights to combine its local relative positions to predict a new query position. Such an operation is
equivalent to a cross-attention operation from a point query (Q) to image features (K) using local
attention, but the values are local relative positions (V) instead of image features. This design is
based on the observation that local attention is essentially the same as cost-volume, both of which are
computed by dot-production between a query and its surrounding features. By introducing this new
operation, the TAP framework is further simplified in TAPTRv2, which not only removes the extra
burden of cost-volume computation, but also yields a substantial performance improvement.

In our implementation, we follow TAPTR and adopt deformable attention for its proven efficiency and
effectiveness in DETR-based detection algorithms. However, as deformable attention directly predicts
attention weights for a query without comparing the query with image features, we use its variant,
key-aware deformable attention [24] which computes attention weights by explicitly comparing a
query with image features. Our ablation studies show that key-aware deformable attention is indeed
more effective as it precisely matches the design of attention-based position update.

As shown in Fig. 1, with the help of our analysis and our simple yet effective designs, TAPTRv2
is much simpler and clearer than previous methods. To further verify the superiority of TAPTRv2
brought by our clear point query design, we conduct experiments on several TAP datasets, TAPTRv2
achieves the best performance on all of the datasets.

2 Related Work

Optical Flow Estimation. Optical flow is a long-standing problem in computer vision, which has
attracted a great amount of research [15, 1, 2] over the past few decades. Particularly, in the last
decade, deep learning-based methods [10, 17, 47, 37, 42, 19, 46, 53, 16, 35, 55] have demonstrated a
strong advantage in this field. DCFlow [47] was the first to verify the feasibility of using cost-volume
to address the optical flow problem. The robustness of cost-volume has enabled many subsequent
works [37, 42, 39] and dominated this field. However, optical flow estimation methods can only
handle flow estimation between two frames, which prevents them from utilizing long-term temporal
information to improve accuracy. More importantly, in the presence of occlusions, optical flow
methods often suffer from the problem of tracking target change. These issues make it challenging
for optical flow estimation methods to process videos directly.

Tracking Any Point. The TAP task is defined to estimate the flow of any point between any two
consecutive frames and predict the visibility of the tracked point in every frame in the entire video.
Some works [44, 45, 36] aim to address the TAP task by constructing a time-varying 3D field. Due to
the difficulty of learning a 4D field, such methods have to retrain their network to fit each video, which
is normally too slow and impractical for many applications. Given the similarities between TAP
and optical flow, most current methods [14, 56, 7, 9, 20] follow the optical flow methods, especially
RAFT [39], but extend to multi-frame scenarios. By contrast, TAPTR [26] takes inspiration from
Transformer-based object detection algorithms and models point tracking as a point detection problem,
which makes TAP conceptually simple and leads to a remarkable performance improvement.

3 TAPTRv2

3.1 Overview

As shown in Fig. 2, TAPTRv2 shares a similar architecture to DETR-based object detection. More
specifically, its point query bears a strong resemblance to queries designed for visual prompt-based
object detection [23, 18]. Thus TAPTRv2 mainly consists of three parts, image feature preparation,
point query preparation, and target point detection. To process videos of dynamic lengths, we follow
previous works [14, 20, 9, 7, 26] and utilize the sliding window strategy, which divides a video into
windows of lengths W and processes W frames in parallel once at a time. Since TAPTRv2 is built
upon TAPTR, to make this section self-contained, we will first provide a brief overview of the TAPTR
framework and then describe how TAPTRv2 improves TAPTR.

Image Feature Preparation. Our method is orthogonal to any vision backbones. In this work,
we use ResNet-50 as our backbone as it is the most widely used backbone for fair comparison in
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Figure 2: The overview of TAPTRv2. The image feature preparation part and the point query
preparation part prepare the image features of each frame of an input video and the point queries
for each tracking point in every frame. The target point detection part takes the prepared image
features and point queries as input. For every frame, each point query aims to predict the position and
visibility of its target point.

DETR-related research works [54, 25, 27, 30]. After obtaining multi-scale image feature maps from
the image backbone, we send them into a Transformer-encoder to further enhance the features as
well as the receptive fields of image features. After that, each frame Xt is ended up with a set of
high-quality multi-scale image feature maps Ft,.

Point Query Preparation. Considering general TAP application scenarios, each tracking point has
its unique start frame and initial position. We define their initial locations as le = {liei}

N
i=1, where

N is the number of points to be tracked, ei indicates the start frame ID when the i-th tracking point
first emerges or starts to be tracked. Similar to the visual prompt-based detection methods [23, 18],
TAPTRv2 needs to prepare a visual feature to describe each target tracking point. Following previous
methods [26, 20, 14, 9], without loss of generality, for the i-th target tracking point, its initial feature
f i
e can be obtained by conducting bilinear interpolation on the multi-scale feature maps of its start

frame Fei at its initial position liei . Then the sampled results are transformed using an MLP to
fuse multi-scale information. Since the tracking of a target point across a video can be treated as
detecting the target point in every frame of the video. Following the formulation of object queries in
DETR-based object detection methods, for every video frame, each point query consists of a content
part and a positional part, i.e. Qi

t =
(
f i
t , l

i
t

)
, which are initialized with the prepared initial feature

and location of its corresponding target tracking point

∀1 ≤ i ≤ N, ∀1 ≤ t ≤ T,Qi
t = (f i

t , l
i
t) ⇐ (f i

e, l
i
e). (1)

Target Point Detection in Every Frame. After preparing the image features of every frame and
every point query in each frame, the TAP task can be clearly formulated as point detection. Taking
the t-th frame for example, we treat its image features Ft as keys and values, the point queries
(ft, lt) as queries, and send them to a sequence of Transformer decoder layers. In every Transformer
decoder layer, both the content part and positional part of the point queries will be refined. After
the multi-layer refinement, the final positional part l

′

t of each point query is treated as the predicted
position of its corresponding target tracking point in the t-th frame. Meanwhile, the content part is
used to predict the visibility of the tracking point using an MLP-based visibility classifier

vt = Vis(f
′

t ). (2)

Window Post-Processing. After obtaining the detection result of all point queries in a window, each
tracking point’s trajectory and visibility states in this window can be updated. To proceed with the
next window, we use the predicted tracking point positions and their corresponding content features
in the last frame of the current window to initialize point queries in the next window. This simple
strategy effectively propagates the latest prediction result to the next window.
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Self Temporal Cost DAVIS (Out of Domain) Kubric (In Domain)
Row Attention Attention Volume AJ < δxavg OA AJ < δxavg OA

1 ✗ ✗ ✗ 47.4 62.2 82.5 79.7 87.8 94.3

2 ✓ ✗ ✗ 50.6 (↑3.2) 64.5 85.7 83.7 (↑4.0) 90.8 95.7
3 ✗ ✓ ✗ 54.3 (↑6.9) 68.3 87.0 83.4 (↑2.7) 90.6 96.5
4 ✗ ✗ ✓ 52.0 (↑4.6) 66.3 84.7 79.5 (↓0.2) 87.9 94.6

Table 1: We start with a baseline (Row 1) without using self-attention, temporal-attention, and
cost-volume, and add each component from TAPTR in turn to show their impact on in-domain and
out-of-domain datasets. The addition of self-attention and temporal attention leads to a significant
improvement on both the in-domain and out-of-domain datasets. However, the addition of cost-
volume only leads to a significant improvement on the out-of-domain dataset but a negative impact
on the in-domain dataset, showing that the importance of cost-volume mainly comes from its ability
to mitigate the domain gap. Note that the in-domain evaluation set is created by rendering additional
150 videos using the same setting as the training set.

3.2 Analysis of Cost Volume Aggregation in TAPTR Decoder

TAPTR regards cost-volume as indispensable and adds extra cost-volume aggregation blocks before
sending point queries to Transformer decoder layers. The extra block for cost-volume not only
contaminates the point queries’ content feature but also makes the pipeline complex as in Fig 3 (a).

Cost Volume Aggregation. Taking the i-th point query Qi
t in the t-th frame as an example, TAPTR

conducts dot-production between Qi
t and the image feature maps Ft of the t-th frame to obtain the

point query’s cost-volume Ci
t . With the help of grid sampling, TAPTR obtains the sampled cost

vector cit from Ci
t around the location of the point query lit.

Contaminating Content Feature. After obtaining cit, it is fused into the point query’s content feature
f i
t through an MLP

f̃ i
t ⇐ MLP

(
Cat

(
f i
t , c

i
t

))
, (3)

where Cat denotes concatenation along the channel dimension, f̃ i
t indicates the contaminated content

feature. Although such a fusion makes use of the cost volume, the point query’s content feature, which
is expected to describe its target tracking point’s visual feature, is contaminated. The contamination
will further affect the calculation of cost volume in the next layer, preventing TAPTR from using
more accurate cost-volume. The ablation study in TAPTR verifies that, if TAPTR updates the cost
volume in every decoder layer, the performance will drop significantly.

Cost-volume Necessity Analysis. Although the use of cost-volume leads to a questionable feature
contamination problem, cost-volume still contributes to the performance greatly in TAPTR. To
understand the reason why cost-volume is necessary, we conduct an ablation study on TAPTR. As
shown in Table 1, we remove the self-attention, temporal-attention, and cost-volume components from
TAPTR’s decoder, and add them one by one and observe their impact on the performance of in-domain
and out-of-domain datasets. The results show that both self-attention and temporal-attention bring
significant improvement on both in-domain and out-of-domain datasets. However, while cost-volume
also brings a significant improvement on the out-of-domain dataset, it leads to a slightly negative
effect (0.2 AJ drop) on the in-domain dataset. This contradictory result indicates that cost-volume is
only essential for mitigating the domain gap and enhancing the generalization capability of the model.
This is quite reasonable because cost-volume is essentially the information of similarities between
features, which is why it is called correlation map in some works [20, 39, 14, 56]. Due to the domain
gap, the features learned by a TAP model can hardly be generalized to out-of-domain datasets. In
comparison, the correlation information is more robust to domain changes as it captures the similarity
information between local features. This motivates us to design a more effective approach to utilizing
cost-volume, which we find is equivalent to attention weight in essence.

3.3 Cross Attention with Attention-based Position Update

According to our analysis in Sec. 3.2, the effectiveness of cost-volume comes from its robust deep
feature similarity, which is also in essence equivalent to how attention weights are computed. To
leverage this insight, we still choose the deformable operation for its computational efficiency in using
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Figure 3: Comparison of the decoder layer in TAPTR (a) and TAPTRv2 (b). In TAPTR (a), cost-
volume aggregation will contaminate the content feature, affecting cross-attention and leading to the
contaminated cost-volume in the next layer. In TAPTRv2 (b), with the introduction of Attention-based
Position Update (APU) in cross attention, not only the attention weights are properly used to update
the position of each point query and mitigate the domain gap, but also the content feature of each
point query is kept uncontaminated, which is crucial for visibility prediction. We use an RGB image
to represent the multi-scale feature maps for better visualization.

multi-scale image features, but replace its attention prediction with key-aware attention prediction,
which is called key-aware deformable attention [24].

Key-Aware Deformable Attention Revisiting. Deformable attention directly predicts the attention
weights for a query without comparing the query with image features. While this design is proven
effective in object detection, it is inappropriate for TAP, as we want to leverage the attention weights
as a replacement of cost-volume. Using key-aware deformable attention meets this need. Taking Qi

t
as an example, key-aware deformable attention can be formulated as

Si
t = WS · f i

t ,K
i
t = V i

t = Bili(Ft, l
i
t + Si

t),

Qi
t = f i

t , A
i
t = f i

t ·Ki
t ,∆f i

t = SoftMax(Ai
t/
√
d) · V i

t

f i
t ⇐ f i

t +∆f i
t ,

(4)

where Si
t denotes the sampling offsets, Qi

t, K
i
t , V i

t and Ai
t indicate the query, key, value, and attention

weights inside the attention mechanism, respectively, WS is a learnable parameter, d is the number
of key channels, Bili indicates the bilinear interpolation, ∆f i

t is the update of content feature. Note
that, for notation simplicity, we assume there is only one attention head and Ft has only one scale.

Attention-based Position Update. Since the attention weights Ai
t in Eq. 4 reflect the similarity

between the point query Qi
t and the sampled image features (K), the attention weights and their

corresponding sampling offsets imply where the target tracking point is in the current frame. Thus
we combine the sampling offsets using the computed attention weights to obtain a position update,
and the update will be used to update the location of the point query. This is exactly a (sparse)
cross-attention operation, in which the sampling offsets are values (V). Note that to update the content
part of the point query, there is another cross-attention operation, in which the sampled image features
are values (V). These two cross-attention operations can use the same attention weights. However, we
empirically find that the sharing of attention weights for content and position update is detrimental to
model optimization. We guess the update of content and position may need different distribution of
the attention weights (e.g. more spiked or more smooth). Thus, we introduce an MLP to work as a
Disentangler to disentangle the weights required for content and position update. The process can
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DAVIS DAVIS-S Kinetics
Method AJ < δxavg OA AJ < δxavg OA AJ < δxavg OA

PIPs [14] – – – 42.0 59.4 82.1 31.7 53.7 72.9
TAP-Net [7] 36.0 52.9 80.1 38.4 53.1 82.3 38.5 54.4 80.6
MFT [32] 47.3 66.8 77.8 56.1 70.8 86.9 39.6 60.4 72.7
TAPIR [9] 56.2 70.0 86.5 61.3 73.6 88.8 49.6 64.2 85.0
OmniMotion[43] 52.7 67.5 85.3 – – – – – –
CoTracker-Single[20] 60.6 75.4 89.3 64.8 79.1 88.7 48.7 64.3 86.5
CoTracker2-All[20] 60.7 75.7 88.1 – – – – – –
CoTracker2-Single[20] 62.2 75.7 89.3 65.9 79.4 89.9 – – –
TAPTR [26] 63.0 76.1 91.1 66.3 79.2 91.0 49.0 64.4 85.2
LocoTrack [6] 63.0 75.3 87.2 67.8 79.6 89.9 52.9 66.8 85.3

BootsTAP†[8] 61.4 74.0 88.4 66.4 78.5 90.7 54.7 68.5 86.3

Ours (TAPTRv2) 63.5 75.9 91.4 66.4 78.8 91.3 49.7 64.2 85.7

Table 2: Comparison of TAPTRv2 with prior methods. Note that, LocoTrack and BootsTAP† are
concurrent works, and BootsTAP introduces extra 15M video clips for training.

be formulated as
∆lit = SoftMax

(
Disentangler

(
Ai

t/
√
d
))

· Si
t ,

lit ⇐ lit +∆lit,
(5)

where ∆lit indicates the position update. Thanks to the separation of cost-volume from the content
feature, the content feature can be kept clean, which leads to more accurate point visibility prediction
as evidenced in Table 2. Meanwhile, our proposed attention-based position update operation delib-
erately utilizes attention weights as an equivalent form of cost-volume to perform position update,
which effectively helps mitigate the domain gap problem.

4 Experiments
We conduct extensive experiments on multiple challenging evaluation datasets collected from real
world to verify the superiority of TAPTRv2. Detailed ablation studies for our main contribution are
also provided to show the effectiveness of each design in modeling.

4.1 Datasets and Evaluation Settings
Datasets. Following previous works [26, 20, 14, 9] we train TAPTRv2 on the Kubric dataset, which
consists of 11,000 synthetic videos generated by Kubric Engine [12]. In each video of Kurbic, Kubric
Engine simulates a set of rigid objects falling down the floor from the air and bouncing. In each
video, 2,048 points on the surface of background and moving objects are randomly sampled to
generate point trajectories for training. During training, for training efficiency, the resolution of the
videos is resized to 512×512, and we randomly select 700-800 trajectories for training from each
video. We evaluate our method on the challenging TAP-Vid-DAVIS [34] and TAP-Vid-Kinetics [5]
datasets. Both datasets are from TAP-Vid [7] and are collected from real world and annotated by
well-trained annotators. TAP-Vid-DAVIS has 30 challenging videos with complex motions and
large-scale changes of the objections. TAP-Vid-Kinetics has over 1,000 YouTube videos, and the
camera shaking and complex environment make it also a challenging dataset.

Evaluation Metrics and Settings. For evaluation, we follow the metrics proposed in TAP-Vid [7],
including Occlusion Accuracy (OA) which describes the accuracy of classifying whether the target
tracking points are visible or occluded, < δxavg which reflects the average precision of the predicted
tracking points’ location at thresholds of 1,2,4,8,16 pixels, and Average Jaccard (AJ) which is a
comprehensive metric to measure the overall performance of a point tracker from the perspective of
both location and visibility classification. Meanwhile, there are two evaluation modes to accommodate
online and offline trackers. The “Strided” mode is for offline trackers. The “First” mode is for online
trackers and is much harder. In this paper, without specification, we evaluate our method on the “First”
mode, and to facilitate comparisons with offline methods, we follow previous methods [20, 26] to
further report our performance on TAP-Vid-DAVIS dataset in the “Stride” mode. Note that, since
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Row Key-Aware Pos. Update. Disentangle A. W. Supervision AJ < δxavg OA

1 ✗ ✗ ✗ ✗ 60.0 73.1 88.6
2 ✓ ✗ ✗ ✗ 60.7 73.9 89.9
3 ✓ ✓ ✗ ✗ 61.7 74.8 90.4
4 ✓ ✓ ✓ ✗ 62.6 75.5 91.0
5 ✓ ✓ ✓ ✓ 63.5 75.9 91.4

Table 3: Ablation on each key design of the attention-based position updating. “Pos.” is short for
“Position”, and “A. W.” for “Attention Weights.

the resolution of the input image has a great influence on the performance, for fair comparison, we
follow previous works to limit the resolution of our input image to 256×256.

4.2 Implementation Detail

We follow the previous work [26] and use ResNet-50 as the image backbone for both experimen-
tal efficiency and fair comparison. We employ two Transformer encoder layers with deformable
attention [57] to enhance feature quality, and five Transformer decoder layers by default to achieve
the results that are fully optimized. We use AdamW [58] and EMA [21] for training. We use 8
NVIDIA A100 GPUs, accumulating gradients 4 times to approximate a total batch size of 32, and
train TAPTRv2 for approximately 44,000 iterations.

4.3 Comparison with the State of The Arts

We compare TAPTRv2 with previous methods on TAP-Vid-DAVIS and TAP-Vid-Kinetics to show
its superiority in online tracking. To broaden our comparison, we also present the performance of
TAPTRv2 in the “Strided” mode on DAVIS dataset (DAVIS-S). The results in Table 3 show that
TAPTRv2 obtains the best performance in all of the datasets’ comprehensive metric AJ. Meanwhile,
the consistent improvement of OA on all datasets further verifies the importance of our designs in
keeping content feature uncontaminated for more accurate visibility classification. Note that, although
the concurrent BootsTAP [8] obtains remarkable performance on Kinetics, it introduces extra 15M
real world video clips for training. Moreover, we still outperform BootsTAP by about 2.1 AJ on the
DAVIS dataset.

4.4 Ablation Studies and Analysis

We conduct ablation studies for each key design in our main contribution to gain a deeper understand-
ing of what specifically contributes to performance improvement. We also perform ablation on the
number of decoder layers.

Ablation On The Introduction of Key-Aware Attention. We take the type of attention mechanism
in cross-attention as the only variable. The results in Table 3 show that (Row 2 vs. Row 1), the
introduction of the key-aware deformable attention brings 0.7 AJ improvement, which is significant.
The improvement indicates that the robust attention weights obtained through dot-production helps
cross-attention obtain better query results from image feature maps, thereby improving the quality of
point queries’ content features.

Ablation On The Position Update. To verify the effectiveness of enabling the key-aware attention
weights to function in the positional part of point queries, we conduct ablation studies as shown in
Table 3. The results (Row 3 vs. Row 2) show that using the attention weights for updating both
the content and positional parts leads to a significant improvement (1.0 AJ). This improvement
verifies that the local correlation information helps position estimation greatly, and our proposed
attention-based position update is an effective operation to utilize correlation information.

Ablation On The Weight Disentangling. As shown in Table 3, decoupling the attention weights used
for updating the content feature and position of a point query through an MLP enhances performance
(0.9 AJ) (Row 4 vs. Row 3). This results verify that the attention weights required for the content and
position parts may have different distributions, and simply mixing them confuses the network and
may lead to sub-optimal results.
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Ablation On The Additional Supervision. To guarantee that the attention-based position update
in cross attention is always beneficial, it is important to supervise the updated positions in each
decoder layer additionally. The results in Table 3 show that this extra supervision leads to a significant
improvement (0.9 AJ) (Row 5 vs. Row 4), verifying its importance.

#Decoder Layers AJ < δxavg OA

2 56.9 70.7 88.2
3 60.3 74.0 89.8
4 62.3 75.2 90.3
5 63.5 75.9 91.4
6 62.7 75.7 90.7

Table 4: Ablation on the number of decoder layers.

Ablation On The Number of Decoder Layers.
Since our improvements over TAPTR mainly
focus on the decoder, we conduct ablation stud-
ies on the number of decoder layers to verify
whether TAPTRv2 still satisfies the conclusion
drawn from TAPTR. The results shown in Ta-
ble 4 indicate that, the performance of TAPTRv2
also improves with increased number of decoder
layers, but reaches optimal performance with
five decoder layers. This may be because that,
with the help of the additional position update, fewer decoder layers are needed for an optimal
position update result.

5 Visualization
Stable Tracking Results In The Wild. As shown in Fig. 4, TAPTRv2 shows its stability in point
tracking and potential application in 3D reconstruction as well as video editing. More visualizations
and corresponding videos please refer to our supplementary materials.

A user write “house” on 
image, and track “house” 

throughout the video.

Figure 4: Visualization of the tracking results of TAPTRv2 in the wild. A user writes “house” on one
frame and requires TAPTRv2 to track the points in the writing area. Best view in electronic version.

6 Conclusion and Limitation

In this paper, we have presented TAPTRv2, a new approach for solving the TAP task. TAPTRv2
improves TAPTR by developing a novel attention-based position update operation to address the query
content feature contamination problem caused by the inappropriate integration of cost-volume in
TAPTR. This operation is based on the observation that local attention is essentially the same as cost-
volume, both of which are computed by dot-production between a query and its surrounding features.
With this new operation, TAPTRv2 not only removes extra burden of cost-volume computation, but
also leads to a substantial performance improvement. Compared with TAPTR, TAPTRv2 further
simplifies the Transformer-based TAP framework, which we hope will help the TAP community scale
up the training process and accelerate the development of more practical TAP algorithms.
Limitation and Future work. For self-attention in our decoder, we currently use vanilla attention,
which suffers from a computational cost quadratic to the number of queries. However, there have
been many studies to reduce this cost to near linear. We will devote future research to solving it
for a larger impact on dense point tracking. Additionally, TAPTRv2 aligns the frameworks of point
tracking and object detection, which will facilitate the integration of multiple tasks. This will also be
a topic we aim to address in the future.
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A More discussions.

A.1 Different attention weight distribution requirements.

We measured the distributions of the attention weights for content and position update in our cross
attention, as visualized in Fig. 5, the distributions of these two groups of attention weights show a
significant difference, indicating that the attention weights required by content and position update
are different. This can also verify the importance of our weight disentangle design in APU.

Figure 5: Attention weight distributions for feature and position updating in our cross attention.

A.2 Removing of cost-volume makes framework lightweight.

As shown in Table. 5, TAPTRv2 exhibits a faster speed and lower resource requirements compared to
TAPTR. More importantly, it’s a common case that in the downstream tasks, we need to track all
pixels in a region (e.g. tracking a text written on the back of a horse) rather than just a few scattered
points. In this case, the number of points to be tracked will reach tens of thousands. However,
since the computation of the cost-volume and also the cost-volume aggregation operation in TAPTR
increases sharply with the number of tracking points, with the number of tracking points increased, the
advantage of TAPTRv2 will become more and more pronounced. As shown in the right table, when
the number of tracking points reaches 5000 (which is only 1.9% of the pixels in a 512x512 image),
the advantage of TAPTRv2 in speed and resource consumption becomes much more significant
(about 24% faster and 20% fewer computational resource requirements).

800 Points FPS GFLOPS #Param

TAPTR 65.9 147.2 39.2M
TAPTRv2 69.1 143.4 38.2M

5000 Points FPS GFLOPS #Param

TAPTR 11.8 426.8 39.2M
TAPTRv2 14.6 354.2 38.2M

Table 5: Comparison of resource requirements between TAPTR and TAPTRv2. We evaluate TAPTR
and TAPTRv2 on A100 GPU (80G), and the computational cost (GFLOPS) is calculated following
detectron2.

B More Visualizations

B.1 Application of TAPTRv2 in Video Editing
Here we show the results of the video editing using TAPTRv2. After the users plot on one frame to
specify the region to be edited, we sample points in the editing area and track these points across the
whole video. For more details please refer to the videos in our supplementary material.

Fig. 6 (a) not only shows the ability of video editing but also the potential of TAPTRv2 in applying in
3D reconstruction.

Fig. 6 (b) shows that TAPTRv2 can handle the color change during the tracking. More importantly,
although the editing area is cluttered in the middle of the video TAPTRv2 can robustly continue
tracking the editing area when it reappears again.

Fig. 6 (c) shows that TAPTRv2 has the ability to handle the changing of scale.

B.2 Application of TAPTRv2 in Trajectory Estimation
In Fig. 7 we show the results of the trajectory estimation using TAPTRv2. After the users click on
one frame to specify the points to be tracked, TAPTRv2 will keep tracking these points across the
whole video to construct their trajectory.
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A user plot circle regions on 
cars, and track the regions 

throughout the video.

A user write “tiger” on 
image, and track “tiger” 

throughout the video.
(a)

A user write “o” on 
chameleon, and track “o” 

throughout the video.
(b)

(c)

Figure 6: Apply TAPTRv2 in Video Editing. The color of the editing area changes over time.
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(c)

A user click points on  the 
“car”, and track points 
throughout the video.

A user click points on 
“fighers”, and track points 

throughout the video.
(a)

A user click points on the 
“horse”, and track points 

throughout the video.

(b)

Figure 7: Apply TAPTRv2 in Trajectory Estimation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We show our main contributions in both abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have the limitation part in Section 6

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: We do not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide our experiment details in Sec 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

18



Answer: [Yes]
Justification: All the data are open to be derived from the paper we cite in Sec. 4. And our
code will be available after the double-blind review process.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide all the detailed information in Sec 4
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We do multiple time experiment and calculate the average of our results. We
report this in Sec 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

19

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the details in Sec 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All the data are open to be derived from the paper we cite in Sec. 4. And our
code will be available after the double-blind review process.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Tracking any point is a popular topic.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all the assets utilized in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: All the data are open to be derived from the paper we cite in Sec. 4. And our
code will be available after the double-blind review process.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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