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Abstract
Density estimation is an important technique for
characterizing distributions given observations.
Much existing research on density estimation has
focused on cases wherein the data lies in a Eu-
clidean space. However, some kinds of data are
not well-modeled by supposing that their under-
lying geometry is Euclidean. Instead, it can be
useful to model such data as lying on a manifold
with some known structure. For instance, some
kinds of data may be known to lie on the surface
of a sphere. We study the problem of estimating
densities on manifolds. We propose a method, in-
spired by the literature on “dequantization,” which
we interpret through the lens of a coordinate trans-
formation of an ambient Euclidean space and a
smooth manifold of interest. Using methods from
normalizing flows, we apply this method to the
dequantization of smooth manifold structures in
order to model densities on the sphere, tori, and
the orthogonal group.

1. Introduction
This material appears in greater detail in our long-form
version on arXiv; please see Brofos et al. (2021) for full
details.

Certain kinds of data are not well-modeled under the as-
sumption of an underlying Euclidean geometry. Examples
include data with a fundamental directional structure, data
that represents transformations of Euclidean space (such
as rotations and reflections), data that has periodicity con-
straints or data that represents hierarchical structures. In
such cases, it is important to explicitly model the data as
lying on a manifold with a suitable structure; for instance
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Figure 1. We model densities on a manifold as a projection, or
“quantization,” onto the manifold from an ambient Euclidean space.
To enable density computations we use a “dequantization density”
which can depend position on the manifold. In this figure the
manifold in question is S2, embedded in R3 and the dequantization
density, illustrated here for a set of locations along the equator of
S2, is over r ∈ R+, the distance from the origin in the direction
y ∈ S2. Density on the manifold can be estimated via importance
sampling by marginalizing over R+ for a given y ∈ S2 using the
dequantization distribution as an importance distribution.

a sphere would be appropriate for directional data, the or-
thogonal group for rotations and reflections, and the torus
captures structural properties of periodicity.

The contribution of this work is to express density estimation
on manifolds as a form of dequantization. Given a probabil-
ity density in an ambient Euclidean space, one can obtain the
density on the manifold by performing a manifold change-of-
variables in which the manifold structure appears and then
projecting out any auxiliary structures. This marginalization
can be viewed as analogous to “quantization” where, for
instance, continuous values are discarded and only rounded
integer values remain. In this view the auxiliary structure
defines how the manifold could be “dequantized” into the
ambient Euclidean space. By marginalizing along these
auxiliary dimensions, one obtains the marginal distribution
on the manifold. In practice, however, one has only the
manifold-constrained observations from an unknown dis-
tribution on the manifold. A second contribution of this
work is to formulate the density estimation as a learning
problem on the ambient Euclidean space. We show how to
invoke the manifold change-of-variables, and then perform
the marginalization along the auxiliary dimensions to ob-
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Figure 2. The dequantization roadmap. In the first row, we begin with Rm (or a space identical to Rm up to a set of measure zero). This
Euclidean space can be transformed into the product of manifolds Y ×Z via a change-of-variables G : Rm → Y×Z . Quantization takes
the product manifold Y × Z to its Y-component alone. In the second row, we may begin with a probability density πRm defined on Rm.
Under the change-of-variables G we obtain a new probability density πY×Z which is related to πRm by the manifold change-of-variables
eq. (1). Quantizing Y × Z marginalizes out the Z-component of πY×Z . We may equivalently introduce a dequantization density π̃Z and
compute the marginal density on Y via importance sampling.

Table 1. Table of the matrix manifold dequantizations considered in this work. We show the corresponding auxiliary structure, the
dequantization transformation, the resulting Euclidean space, and the Jacobian determinant of the transformation.

Manifold
Auxiliary
Structure

Euclidean
Space

Dequantization
Jacobian
Determinant

Sm−1 R+ Rm Spherical coordinates
(y, r) 7→ ry

rm−1

Tm R+ × · · · × R+ R2m Iterated polar coordinates
(yi, ri) 7→ riyi

∏m
i=1 ri

Stiefel(m,n) Tri+(n) Rm×n QR decomposition
(Y,R) 7→ YR

Rm−1
11 · · ·Rm−n

nn

Stiefel(m,n) PD(n) Rm×n Matrix polar decomposition
(Y,R) 7→ YR

Automatic differentiation

tain effective estimates of the density on the manifold. An
advantage of our dequantization approach is that it allows
one to utilize any expressive density directly on the ambient
Euclidean space (e.g., RealNVP (Dinh et al., 2017), neural
ODEs (Chen et al., 2018; Grathwohl et al., 2018) or any
other normalizing flow (Kobyzev et al., 2020)); the dequan-
tization approach does not require a practitioner to construct
densities intrinsically on the manifold.

2. Theory
Theorem 1. Let Y and Z be smooth manifolds embedded
in Rn and Rp, respectively. Let G : Rm → Y × Z be a
smooth, invertible transformation. Let πRm be a density on
Rm. Under the change-of-variables G, the corresponding
density on Y × Z is given by,

πY×Z(y, z) =
πRm(x)√

det(∇G(x)>∇G(x))
(1)

where x = G−1(y, z).

Even when G is not an invertible mapping, it may be possi-
ble to compute the change-of-variables when G is invertible

on partitions of Rm.

Corollary 1. Let O1, . . . ,Ol be a partition of Rm. Let
G : Rm → Y×Z be a function and suppose that there exist
smooth and invertible functions Gi : Oi → Y×Z such that
Gi = G|Oi for i = 1, . . . , l. Then, if x ∼ πRm , the density
of (y, z) = G(x) is given by

πY×Z(y, z) =

l∑
i=1

πRm(xi)√
det(∇Gi(xi)>∇Gi(xi))

. (2)

where xi = G−1i (y, z).

How does theorem 1 relate to the dequantization of smooth
manifolds?

2.1. Dequantization

Manifolds of interest (such the sphere, the torus, or the
orthogonal group) can be introduced as elements of a new
coordinate system for an ambient Euclidean space. In each
case, the manifold appears with an auxiliary manifold which
may not be of immediate interest. Namely, (i) The sphere
appears with set of positive real numbers when defining
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a coordinate system for Rm \ {0} ∼= Sm−1 × R+; (ii)
The torus appears the product manifold of m copies of the
positive real numbers when defining a coordinate system
for R2m \ {0} ∼= Tm × R+ × . . . × R+; (iii) the Stiefel
manifold appears with the set of lower-triangular matrices
with positive diagonal entries when defining a coordinate
system of full-rank matrices: FR(n, p) ∼= Stiefel(n, p) ×
Tri+(p). We would like to marginalize out these “nuisance
manifolds” so as to obtain distributions on the manifold
of primary interest. A convenient means to achieve this is
to introduce an importance sampling distribution over the
nuisance manifold. Formally, we have the following result,
which is an immediate consequence of theorem 1.
Corollary 2. Let Y , Z , G, and πY×Z be as defined in
theorem 1. Let π̃Z be a non-vanishing density on Z . To
obtain the marginal density on Y , it suffices to compute,

πY(y) = E
z∼π̃Z

πX (x)

π̃Z(z) ·
√

det(∇G(x)>∇G(x))
, (3)

where x = G−1(y, z).

3. Discussion
We investigate the problem of density estimation given ob-
servations on a manifold using the dequantization procedure
described in section 2.

Problem. Let Y be a manifold embedded in Rn and let πY
be a density on Y . Given observations of πY , construct an
estimate π̂Y of the density πY . We apply eq. (3) in order to
obtain the density estimate on Y . Generating samples from
πY may be achieved by first sampling x ∼ πX , applying
the transformation G(x) = (y, z), and taking y as a sample
from the approximated distribution π̂Y .

3.1. Densities on Rm

As Rm is a Euclidean space, we have available a wealth
of possible mechanisms to produce flexible densities in the
ambient space. One popular choice is RealNVP (Dinh et al.,
2017). An alternative is neural ODEs which parameterizes a
vector field in the Euclidean space; the change in probability
density under the vector field flow is obtained by integrating
the instantaneous change-of-variables formula (Chen et al.,
2018; Grathwohl et al., 2018).

3.2. Objective Functions

We consider two possible objective functions for density
estimation. The first is the evidence lower bound of the
observations {y1, . . . , ynobs

}:

log π̂Y(yi) ≥ E
z∼π̃Z

log
πRm(G−1(yi, z))

π̃Z(z) ·
√
det(∇G(x)>∇G(x))

.

(4)

This follows as a consequence of Jensen’s inequality applied
to eq. (3). Experimental results using this objective function
are denoted with the suffix (ELBO). The second is the log-
likelihood computed via importance sampling:

log π̂Y(yi) = log E
z∼π̃Z

πRm(G−1(yi, z))

π̃Z(z) ·
√

det(∇G(x)>∇G(x))
.

(5)

Because the calculation of eq. (5) requires an importance
sampling estimate, experimental results using this objective
function are denoted with the suffix (I.S.).

4. Experimental Results
To demonstrate the effectiveness of the approach, we now
show experimental results for density estimation on three
different manifolds: the sphere, the torus and the orthogonal
group. In our comparison against competing algorithms, we
ensure that each method has a comparable number of learn-
able parameters. Our evaluation metrics are designed to test
the fidelity of the density estimate to the target distribution.
In all of our examples we use rejection sampling in order to
draw samples from the target distribution.

4.1. Sphere and Hypersphere

Our first experimental results concern the sphere S2 where
we consider a multimodal distribution with four modes. We
consider performing density estimation using the ELBO
(eq. (4)) and log-likelihood objective functions (eq. (5));
we construct densities in the ambient space using RealNVP
and neural ODEs. As baselines we consider the Möbius
transform approach described in (Rezende et al., 2020),
which is a specialized normalizing flow method for tori
and spheres, and the neural manifold ODE applied to the
sphere as described in (Lou et al., 2020). We give a com-
parison of performance metrics between these methods in
table 2. In these experiments, we find that parameterizing
a neural ODE model in the ambient space gave the better
KL-divergence and effective sample size (ESS) metrics than
RealNVP when our dequantization approach is used. We
find that our dequantization algorithm minimizing either
eq. (4) or eq. (5) achieves similar performance in the first
and second moment metrics. However, when using eq. (5),
slightly lower KL-divergence metrics are achievable as well
as slightly larger effective sample sizes. In either case, de-
quantization tends to outperform the Möbius transform on
this multimodal density on S2. The manifold ODE method
is outperformed by the ODE dequantization algorithms with
both eq. (4) and eq. (5).

We next consider a multimodal density S3 ∼= SU(3) (the spe-
cial unitary group). As before, we compare dequantization
to Möbius flow transformations and manifold neural ODEs
and present results in table 3. Similar to the case of the
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Table 2. Comparison of dequantization to normalizing flows on the multimodal density on S2. Averages were computed using ten random
trials for the dequantization procedures and eight random trials for the normalizing flow (because two random trials exhibited divergent
behavior and were excluded). The dequantization procedure is illustrated for both the ELBO loss and the KL divergence loss.

Method Mean MSE Covariance MSE KL(q‖p) KL(p‖q) Relative ESS
Deq. ODE (ELBO) 0.0012 ± 0.0002 0.0006 ± 0.0001 0.0046 ± 0.0002 0.0046 ± 0.0002 99.0990 ± 0.0401
Deq. ODE (I.S.) 0.0014 ± 0.0002 0.0010 ± 0.0001 0.0029 ± 0.0001 0.0029 ± 0.0001 99.4170 ± 0.0225
Deq RealNVP (ELBO) 0.0004 ± 0.0001 0.0003 ± 0.0001 0.0231 ± 0.0010 0.0212 ± 0.0009 95.9540 ± 0.1688
Deq. RealNVP (I.S.) 0.0005 ± 0.0002 0.0002 ± 0.0000 0.0124 ± 0.0006 0.0115 ± 0.0006 97.8240 ± 0.1183
Man. ODE 0.0010 ± 0.0004 0.0009 ± 0.0002 0.0085 ± 0.0007 0.0083 ± 0.0007 98.3860 ± 0.1328
Möbius 0.0021 ± 0.0005 0.0019 ± 0.0005 0.0595 ± 0.0025 — 89.2575 ± 0.4888

Table 3. Comparison of dequantization to normalizing flows on the multimodal density on S3. Averages were computed using ten random
trials for the dequantization procedures and nine random trials for the normalizing flow (one random trial exhibited divergent behavior and
was excluded).

Method Mean MSE Covariance MSE KL(q‖p) KL(p‖q) Relative ESS
Deq. ODE (ELBO) 0.0009 ± 0.0001 0.0007 ± 0.0001 0.0072 ± 0.0002 0.0070 ± 0.0002 98.6490 ± 0.0388
Deq. ODE (I.S.) 0.0017 ± 0.0001 0.0022 ± 0.0002 0.0189 ± 0.0004 0.0180 ± 0.0004 96.6150 ± 0.0648
Deq. RealNVP (ELBO) 0.0003 ± 0.0001 0.0004 ± 0.0001 0.0384 ± 0.0010 0.0283 ± 0.0005 95.1880 ± 0.0771
Deq. RealNVP (I.S.) 0.0003 ± 0.0001 0.0003 ± 0.0000 0.0208 ± 0.0004 0.0180 ± 0.0004 96.6340 ± 0.0920
Man. ODE 0.0012 ± 0.0003 0.0008 ± 0.0002 0.0098 ± 0.0009 0.0094 ± 0.0007 98.1780 ± 0.1302
Möbius 0.0027 ± 0.0004 0.0014 ± 0.0003 0.0542 ± 0.0047 — 88.7290 ± 0.9332

Table 4. Metrics of the dequantization algorithm in application to the orthogonal Procrustes problem and dequantization of a multimodal
density on SO(3). When using the polar decomposition, results are averaged over ten independent trials for the multimodal distribution on
SO(3) and nine independent trials for the orthogonal Procrustes problem; for the QR decomposition, results are averaged over nine trials.

Experiment Mean MSE Covariance MSE KL(q‖p) KL(p‖q) Relative ESS
Procrustes (ELBO - Polar) 0.0021 ± 0.0008 0.0012 ± 0.0005 0.0193 ± 0.0069 0.0173 ± 0.0053 96.9489 ± 0.7649
Procrustes (I.S. - Polar) 0.0038 ± 0.0020 0.0015 ± 0.0008 0.0301 ± 0.0126 0.0202 ± 0.0075 95.6944 ± 1.4654
Procrustes (ELBO - QR) 0.0011 ± 0.0003 0.0008 ± 0.0003 0.0124 ± 0.0032 0.0095 ± 0.0015 97.9678 ± 0.3325
Procrustes (I.S. - QR) 0.0015 ± 0.0005 0.0011 ± 0.0004 0.0174 ± 0.0072 0.0122 ± 0.0029 96.6267 ± 0.6326

SO(3) (ELBO - Polar) 0.0007 ± 0.0002 0.0029 ± 0.0003 0.0443 ± 0.0011 0.0415 ± 0.0059 96.2930 ± 0.0649
SO(3) (I.S. - Polar) 0.0004 ± 0.0001 0.0014 ± 0.0001 0.0207 ± 0.0028 0.0235 ± 0.0029 97.7280 ± 0.1136
SO(3) (ELBO - QR) 0.0017 ± 0.0004 0.0054 ± 0.0006 0.0563 ± 0.0060 0.0363 ± 0.0041 93.5633 ± 2.1331
SO(3) (I.S. - QR) 0.0012 ± 0.0004 0.0020 ± 0.0004 0.0260 ± 0.0017 0.0219 ± 0.0021 94.3256 ± 2.8099

multimodal density on S2, we find that dequantization with
an ambient neural ODE model is most effective, with ELBO
maximization giving the smallest KL-divergence metrics.
All dequantization algorithms out-performed the Möbius
transformation on the sphere but only dequantization with
an ambient ODE and ELBO minimization outperformed the
manifold neural ODE method.

4.2. Orthogonal Group

The previous two examples focused on manifolds composed
of spheres and circles. We now examine density estimation
on the orthogonal group, where we consider inference in a
probabilistic variant of the orthogonal Procrustes problem;
we seek to sample orthogonal transformations that trans-
port one point cloud towards another in terms of squared
distance. We consider parameterizing a distribution in the

ambient Euclidean space using RealNVP in these experi-
ments. Results are presented in table 4. We observe that
optimizing the ELBO objective function (eq. (4)) tended
to produce better density estimates than the log-likelihood
(eq. (5)). Nevertheless, we find that either dequantization
algorithm is highly effective at matching the target density.

We may also leverage corollary 1 so as to apply our method
to the “dequantization” of SO(n). As an example, we con-
sider a multimodal density on SO(3). Results of apply-
ing our method to sampling from this distribution are also
shown in table 4. In this example we find that minimiz-
ing the negative log-likelihood using importance sampling
tended to produce the best approximation of the first- and
second-moments of the distribution, in addition to smaller
KL-divergence metrics.
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