
Learning Utilities from Demonstrations in Markov Decision Processes

Filippo Lazzati 1 Alberto Maria Metelli 1

Abstract
Although it is well-known that humans com-
monly engage in risk-sensitive behaviors in the
presence of stochasticity, most Inverse Rein-
forcement Learning (IRL) models assume a risk-
neutral agent. As such, beyond piq introducing
model misspecification, piiq they do not permit
direct inference of the risk attitude of the ob-
served agent, which can be useful in many ap-
plications. In this paper, we propose a novel
model of behavior to cope with these issues. By
allowing for risk sensitivity, our model allevi-
ates piq, and by explicitly representing risk at-
titudes through (learnable) utility functions, it
solves piiq. Then, we characterize the partial
identifiability of an agent’s utility under the new
model and note that demonstrations from multi-
ple environments mitigate the problem. We de-
vise two provably-efficient algorithms for learn-
ing utilities in a finite-data regime, and we con-
clude with some proof-of-concept experiments to
validate both our model and our algorithms.

1. Introduction
The ultimate goal of Artificial Intelligence (AI) is to con-
struct artificial rational autonomous agents (Russell &
Norvig, 2010). Such agents will interact with each other
and with human beings to achieve the tasks that we assign
to them. In this vision, a crucial feature is being able to cor-
rectly model the observed behavior of other agents. This
allows a variety of applications: descriptive, to understand
the intent of the observed agent (Russell, 1998), predictive,
to anticipate the behavior of the observed agent (potentially
in new scenarios) (Arora & Doshi, 2021), and normative,
to imitate the observed agent because they are behaving in
the “right way” (Osa et al., 2018).

Nowadays, Inverse Reinforcement Learning (IRL) pro-

1Politecnico di Milano, Milan, Italy. Correspondence to: Fil-
ippo Lazzati <filippo.lazzati@polimi.it>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

vides the most popular and powerful models of the behav-
ior of the observed agent, named “expert”. IRL models
assume the existence of a reward function that rationalizes
the expert’s behavior and differ from each other based on
the specific assumption of how the expert behaves based
on the given reward. For instance, Ng & Russell (2000)
considers the expert as playing an optimal policy, Poiani
et al. (2024) considers an ϵ-optimal policy, Malik et al.
(2021) considers an optimal policy satisfying some con-
straints, Ziebart (2010); Fu et al. (2017) assume that the ex-
pert plays actions proportionally to their (soft) Q-functions,
and Ramachandran & Amir (2007) assumes this probabil-
ity to depend on the optimal advantage function.

These IRL models represent the expert as a risk-neutral
agent, i.e., an agent interested in maximizing the expected
return. However, there are many scenarios in which ratio-
nal agents and humans adopt risk-sensitive strategies in the
presence of stochasticity, like finance (Föllmer & Schied,
2016), revenue management (Barz, 2007), driving (Bern-
hard et al., 2019), and many other choice problems (Kah-
neman & Tversky, 1979; Kreps, 1988). In these settings,
agents are not only interested in the expected return, but
in its full distribution (Bellemare et al., 2023). Thus, IRL
models incur in misspecification, that can crucially affect
the descriptive, predictive, and normative power of the in-
ferred reward function (Skalse & Abate, 2024).

In this context, in addition to misspecification, another is-
sue of IRL models is that they do not explicitly represent
the risk attitude of the expert, which is only indirectly cap-
tured by the reward function. We desire two different rep-
resentations for the task of the expert (through a reward)
and for its risk attitude (e.g., through a utility function),
analogously to what is done in Inverse Constrained Rein-
forcement Learning (ICRL) (Malik et al., 2021). Here, the
behavior of the expert is described by two parameters, a re-
ward for modelling the task, and a cost for modelling the
constraints. In this way, the reward is more easily inter-
pretable since it does not have to capture both the task and
the constraints, and, also, we can use the learned cost for
performing new tasks safely (Kim et al., 2023). For these
reasons, if we were able to directly learn the risk attitude
of the expert separately from its reward function, then we
could more easily understand its intent and anticipate its
choices in new, unseen, scenarios (Kreps, 1988).

1

Learning Utilities from Demonstrations in MDPs

Contributions. In this paper, we introduce a new risk-
sensitive model of behavior that encodes the risk attitude
of an agent with a utility function. Thanks to this model,
we will show that it is possible to overcome the limitations
mentioned above. Our main contributions are:

• We present a new simple yet powerful model of behavior
in Markov Decision Processes (MDPs) that rationalizes
non-Markovian demonstrations (Section 3).

• We formulate Utility Learning (UL) as the problem of in-
ferring the risk attitude of an agent under the new model
of behavior, we characterise the partial identifiability of
its utility, and we show that demonstrations in multiple
environments alleviate the issue (Section 4).

• We introduce CATY-UL and TRACTOR-UL, two novel
algorithms for solving the UL problem with finite data in
a provably-efficient manner (Section 5).

• We conclude with proof-of-concept experiments that
serve as an empirical validation of both the proposed
model and the presented algorithms. (Section 6).

The proofs of all results are reported in Appendix C-E.

2. Preliminaries
The main paper’s notation is below. Additional notation for
the supplemental is in Appendix B.

Notation. For any N P N, we write JNK :“ t1, . . . , Nu.
Given set X , we denote by ∆X the probability simplex on
X . Given compact X Ď Rd, y P Rd, we define ΠX pyq :“
argminxPX }y ´ x}2. A real-valued function f : R Ñ R
is L-Lipschitz if, for all x, y P R, we have |fpxq ´ fpyq| ď

L|x ´ y|. f is increasing if, for all x ă y P R, it holds
fpxq ď fpyq, and it is strictly-increasing if fpxq ă fpyq.
The probability distribution that puts all its mass on z P R
is denoted by δz and is called the Dirac delta. We represent
distributions on finite support as mixtures of Dirac deltas.

Markov Decision Processes (MDPs). A tabular episodic
Markov Decision Process (MDP) (Puterman, 1994) is a tu-
ple M “ pS,A, H, s0, p, rq, where S and A are the finite
state (S :“ |S|) and action (A :“ |A|) spaces,H is the time
horizon, s0 P S is the initial state, p : S ˆAˆ JHK Ñ ∆S

is the transition model, and r : SˆAˆJHK Ñ r0, 1s is the
deterministic reward function. The interaction of an agent
with M generates trajectories. Let Ωh :“ pS ˆAqh´1 ˆS
be the set of state-action trajectories of length h for all
h P JH ` 1K, and Ω :“ ΩH`1. A deterministic non-
Markovian policy π “ tπhuhPJHK is a sequence of func-
tions πh : Ωh Ñ A that, given the history up to stage
h, i.e., ω “ ps1, a1, . . . , sh´1, ah´1, shq P Ωh, prescribes
an action. A Markovian policy π “ tπhuhPJHK is a se-
quence of functions πh : S Ñ A that depend on the cur-
rent state only. We use g :

Ť

hPt2,...,H`1u Ωh Ñ r0, Hs

to denote the return of a (partial) trajectory ω P Ωh, i.e.,

gpωq :“
ř

h1PJh´1K rh1 psh1 , ah1 q. With abuse of notation,
we denote by Pp,r,π the probability distribution over trajec-
tories of any length induced by π in M (we omit s0 for
simplicity), and by Ep,r,π the expectation w.r.t. Pp,r,π . We
define the return distribution ηp,r,π P ∆r0,Hs of policy π
as ηp,r,πpyq :“

ř

ωPΩ: gpωq“y Pp,r,πpωq for all y P r0, Hs.
The set of possible returns at h P JH ` 1K is Gp,rh :“ ty P

r0, h ´ 1s | Dω P Ωh, Dπ : gpωq “ y ^ Pp,r,πpωq ą 0u,
and Gp,r :“ Gp,rH`1. We remark that Gp,rh has finite car-
dinality for all h. The performance of policy π is given
by Jπpp, rq :“ Ep,r,πr

řH
h“1 rhpsh, ahqs, and note that

Jπpp, rq “ EG„ηp,r,π rGs. We define the optimal perfor-
mance as J˚pp, rq :“ maxπ J

πpp, rq, and the optimal pol-
icy as π˚ P argmaxπ J

πpp, rq.

Risk-Sensitive Markov Decision Processes (RS-
MDPs). A Risk-Sensitive Markov Decision Process (RS-
MDP) (Wu & Xu, 2023) is a pair MU :“ pM, Uq, where
M “ pS,A, H, s0, p, rq is an MDP, and U P U is a utility
function in set U :“ tU 1 : r0, Hs Ñ r0, Hs |U 1p0q “

0, U 1pHq “ H ^U 1 is strictly-increasing and continuousu.
Differently from Wu & Xu (2023), w.l.o.g., our utilities
satisfy UpHq “ H to settle the scale. The interaction
with MU is the same as with M, and the notation
described earlier still applies, except for the perfor-
mance of policies. The performance of policy π is
JπpU ; p, rq :“ Ep,r,πrUp

řH
h“1 rhpsh, ahqqs, and note that

JπpU ; p, rq “ EG„ηp,r,π rUpGqs. We define the optimal
performance as J˚pU ; p, rq :“ maxπ J

πpU ; p, rq, the
optimal policy as π˚ P argmaxπ J

πpU ; p, rq, and the set
of optimal policies for MU as Π˚

p,rpUq.

Enlarged state space approach. In MDPs, there al-
ways exists a Markovian optimal policy (Puterman, 1994),
but in RS-MDPs this does not hold. The enlarged
state space approach (Wu & Xu, 2023) is a method,
proposed by Bäuerle & Rieder (2014), to compute an
optimal policy in a RS-MDP. Given RS-MDP MU“

pS,A,H,s0,p,r,Uq, we construct the enlarged state space
MDP ErMU s “ pS 1,A, H, ps0, 0q, p, rq, with a different
state space S 1 “ S ˆ Gp,rh at every h.1 For every h P

JHK and ps, y, aqPSˆGp,rh ˆA, the reward function r is
rhps, y, aq“Upy`rhps, aqq1th“Hu, while the dynamics
p assigns to the next state ps1, y1qPSˆGp,rh`1 the probabil-
ity: phps1, y1|s, y, aq :“phps1|s, aq1ty1 “y`rhps, aqu. In
words, the state space is enlarged with a component that
keeps track of the cumulative reward in the original RS-
MDP, and the reward r, bounded in r0, Hs, provides the
utility of the accumulated reward at the end of the episode.
A Markovian policy ψ “ tψhuhPJHK for ErMU s is a se-
quence of mappings ψh : S ˆ Gp,rh Ñ A. Being an MDP,

1Actually, Bäuerle & Rieder (2014) use state space S ˆ Rě0,
while Wu & Xu (2023) use S ˆ rh´ 1s for all h P JHK. Instead,
we consider sets SˆtGp,r

h uh to capture the minimal size required.

2

Learning Utilities from Demonstrations in MDPs

s0start s

s1

s2

s3

a1, r “ 0C

a2, r “ 1000C

arisky, r “ 0C

asafe, r “ 0C

p “ 0.5

p “ 0.5

r “ 150C

r “ 0C

r “ 50C

Figure 1. The MDP considered in Example 3.1.

we adopt for ErMU s the same notation presented earlier
for MDPs, by replacing p, r, π with p, r, ψ. Let ψ˚ be
the optimal Markovian policy for ErMU s. Then, Theo-
rem 3.1 of Bäuerle & Rieder (2014) shows that the (non-
Markovian) policy π˚, defined for all h P t2, . . . ,Hu and
ωPΩh as π˚

hpωq :“ ψ˚
hpsh,

ř

h1PJh´1K rh1 psh1 , ah1 qq, and
π˚
1 ps0q“ψ˚

1 ps0,0q, is optimal for MU .

Inverse Reinforcement Learning (IRL). In IRL we are
given demonstrations of behavior from the expert’s policy
πE , and the goal is to recover the reward of the expert rE

(Russell, 1998). As explained in Section 1, a model of be-
havior describes how the expert’s policy πE is generated
from rE . A model suffers from partial identifiability if the
knowledge of πE does not permit to recover rE (almost)
uniquely (Cao et al., 2021; Metelli et al., 2021).

Miscellaneous. For L ą 0, we write UL :“ tU P

U |U is L-Lipschitzu. For any finite set X Ď r0, Hs we
define U

X
:“tU Pr0,Hs|X | |DU PU,@xPX :Upxq“Upxqu,

and U
X
L :“ tU P U

X
| DU P UL, @x P X : Upxq “ Upxqu.

We will denote by MU some RS-MDPs with U P U
X

.

3. A New Model of Behavior
We aim to devise a realistic model of behavior for humans
and rational agents in MDPs that complies with their sensi-
tivity to risk. In fact, due to the stochasticity of the environ-
ment, they are likely to behave in a risk-sensitive manner.
Our insight is that risk-sensitivity in MDPs gives rise to
non-Markovian policies for both rational agents (see Belle-
mare et al. (2023)) and humans:
Example 3.1. In the MDP of Fig. 1, we expect most people
to decide what action to play in state s depending on the
amount of reward earned so far, since, intuitively, it makes
more sense to take the risky action arisky, that sometimes
gives a large return (150C) but sometimes gives nothing
(0C), when we are guaranteed to have at least 1000C in
our wallet (i.e., we have reached s from a2), while it may
be better to take the safe action asafe, that gives 50C for
sure, if we reached s with no reward (i.e., from a1). This
kind of behavior is known as “decreasing” risk-aversion.
(Pratt, 1964; Kreps, 1988; Wakker, 2010).

In short, demonstrations of behavior from risk-sensitive
agents in MDPs are likely to be collected by non-
Markovian policies, whose dependency on the past history
is restricted to the amount of reward collected so far. How-
ever, none of the existing IRL models of behavior (see Sec-
tions 1 and 7) contemplate non-Markovian policies, and,
thus, they result in misspecification.2

For these reasons, we introduce a new model of behavior
that contemplates non-Markovian policies. Given demon-
strations from the expert’s policy πE in an environment
pS,A, H, s0, pq, we assume the existence of a reward func-
tion rE and a utility function UE P U such that:

πE Pargmax
π

Ep,rE ,π
”

UE
´

H
ÿ

h“1

rEh psh,ahq

¯ı

, (1)

i.e., we model the expert as an optimal agent in a RS-MDP.
The reward rE aims to capture the task of the expert, while
the utility UE represents its risk attitude. Intuitively, if p is
deterministic, then the trajectories with the largest returns
under rE are preferred. However, in presence of stochas-
ticity, the utility UE associates weights to the returns of
the trajectories to represent their true “values” for the ex-
pert. If UE is linear, then argmaxπ J

πpUE ; p, rEq “

argmaxπ J
πpp, rEq and the expert values each trajectory

by its return under rE , i.e., it is risk-neutral. However, if
UE is convex (resp. concave), then the expert amplifies
(resp. attenuates) the desirability of high-return trajecto-
ries, so that it will accept even more (resp. less) variance to
play them. In this case, UE represents a risk-seeking (resp.
risk-averse) expert (Kreps, 1988; Bäuerle & Rieder, 2014).

There are many arguments that support this model:

1. it generalizes the IRL model of Ng & Russell (2000),
that we get if the expert is risk-neutral (UE is linear);

2. it is justified by the famous expected utility theory (von
Neumann & Morgenstern, 1947), as we can interpret
each policy π as a choice that induces a lottery ηp,r

E ,π

over the set of prizes (i.e., returns) Gp,rE ;

2Re-modelling the MDP including the sum of the past rewards
into the state would make the demonstrated policy Markovian,
but, as explained in Appendix C.1, it would create various issues
like a state space with a size exponential in the horizon.

3

Learning Utilities from Demonstrations in MDPs

3. it contemplates the existence of non-Markovian policies
that depend only on the cumulative reward so far (see
Bäuerle & Rieder (2014));

4. the corresponding planning problem enjoys practical
tractability (Wu & Xu, 2023);

5. UE can be learned efficiently, as we show in Section 5.

Some considerations. If UE is linear, Eq. (1) ad-
mits a Markovian optimal policy (Puterman, 1994). Oth-
erwise, the more UE deviates from linearity, the more non-
Markovian policies may outperform Markovian policies:

Proposition 3.1. There exists a RS-MDP in which the dif-
ference between the optimal performance and the perfor-
mance of the best Markovian policy is 0.5.

Next, note that, in absence of stochasticity, UE plays no
role, and Eq. (1) traces back to risk-neutral behavior, as
desired:

Proposition 3.2. If p is deterministic, then
argmaxπ J

πpUE ; p, rEq “ argmaxπ J
πpp, rEq.

We remark that, by complying with non-Markovian poli-
cies, our model of behavior suffers from less misspecifica-
tion than common IRL models. Moreover, by using UE , it
permits to learn a succinct and transferrable representation
of the risk attitude of the expert, as we shall see later.

4. Utility Learning
In this and in the following sections, we focus on the prob-
lem of learning the utility UE of the expert under the as-
sumption that it behaves as in Eq. (1). Here, we assume that
the expert’s policy πE and the dynamics s0, p are known,
while in Section 5 we will estimate them from finite data.

Problem definition and partial identifiability. Given
demonstrations collected by a policy πE satisfying Eq. (1),
three different learning problems arise:

1. given rE , learn UE ;
2. given UE , learn rE ;
3. learn both rE and UE .

Problem 3 is the most interesting and challenging, because
it makes the least assumptions, while Problem 2, i.e., IRL,
has been extensively studied in literature when UE is lin-
ear (Ng & Russell, 2000). In this paper, in analogy to ICRL
(Malik et al., 2021) where the goal is to learn the constraints
when rE is known, we focus on Problem 1 because it has
relevant applications per se (see later in this section) and
because it represents a significant step toward solving Prob-
lem 3. Thus, we will consider rE to be given and denote it
with r for simplicity. Let us formalize Problem 1:

Definition 4.1 (Utility Learning (UL)). Let M “

pS,A, H, s0, p, rq be an MDP and πE a (potentially non-
Markovian) policy. Under the assumption that πE satisfies

Eq. (1) in M for some unknown UE , the goal of Utility
Learning (UL) is to find UE .

Does the knowledge of πE and M suffice to uniquely iden-
tify UE? Analogously to IRL (Cao et al., 2021) and ICRL
(Kim et al., 2023), the answer is negative, as shown in the
following example (details in Appendix D).
Example 4.1. Consider the MDP M in Fig. 2 (left), where
H“2,r1ps0,a1q“1,r1ps0,a2q“0.5. Let the expert’s pol-
icy πE prescribe a1 in s0. Then, all the utility functions
U PU that take on values in the blue region of Fig. 2 (mid-
dle) for returns G“1,G“1.5, make πE optimal in MU .

Simply put, in UL, the only information available on the
unknown utility UE is that it belongs to U and it makes
πE an optimal policy in the corresponding RS-MDP. Since
Example 4.1 shows that, in general, there is a set of utili-
ties U P U satisfying this condition, we realize that UE is
partially identifiable. Analogously to Metelli et al. (2021;
2023), we call such set the feasible set of utilities “compat-
ible” with πE in M:3

Up,r,πE :“ tU P U | Jπ
E

pU ; p, rq “ J˚pU ; p, rqu. (2)

Applications. If we knew the risk attitude of the expert,
i.e., its utility UE in our model, then we could use it for
applications like piq predicting the behavior of the expert
in a new environment, piiq imitating the expert, or piiiq as-
sessing how valuable a certain behavior is from the view-
point of the expert. UL represents an appealing problem
setting for learning UE from demonstrations of behavior.
However, due to partial identifiability, no learning algo-
rithm can recover UE , but, at best, it can find an arbi-
trary utility in the feasible set Up,r,πE . Is this ambiguity
tolerated by the applications piq, piiq, and piiiq above? In
other words, we are interested in understanding whether
all the utilities contained into Up,r,πE can be used in place
of the true UE without incurring in large errors.4 Unfor-
tunately, the following propositions answer negatively for
all piq, piiq, and piiiq. Nevertheless, Proposition 4.5 shows
that the availability of expert demonstrations from multiple
environments is a possible mitigation for the issue.

Let us begin with piq. We say that a utilityU permits to pre-
dict the behavior of an agent with utility UE in a new MDP
M1 if U and UE induce in M1 the same optimal policies.
The next two propositions show that if the transition model
or the reward function of M1 differ from those of the orig-
inal MDP M, then there are utilities in the feasible set that
get wrong in predicting the behavior of the agent with UE :

Proposition 4.1. There exist two MDPs M “

pS,A, H, s0, p, rq, M1 “ pS,A, H, s0, p1, rq, with p ‰ p1,

3In Appendix D we provide a more explicit expression.
4Skalse et al. (2023) conduct an analogous study for IRL.

4

Learning Utilities from Demonstrations in MDPs

s0

s1

s2

s3

a1

a2

0.4

0.5

0.1

0.2

0.8

r“0

r“0.5

r“1
Up1q

Up1.5q

0 1 2

1

2

U 1

G

U 1

0 0.5 1 1.5 2

1

2

Figure 2. (Left) MDP of Example 4.1. (Middle) its feasible set with a sample utility U 1. (Right) plot of U 1 with linear interpolation.

for which there exist a policy πE and a pair of utilities
U1, U2 P Up,r,πE such that Π˚

p1,rpU1q X Π˚
p1,rpU2q “ tu.

Proposition 4.2. There exist two MDPs M “

pS,A, H, s0, p, rq, M1 “ pS,A, H, s0, p, r1q, with r ‰ r1,
for which there exist a policy πE and a pair of utilities
U1, U2 P Up,r,πE such that Π˚

p,r1 pU1q X Π˚
p,r1 pU2q “ tu.

Consider now piiq. We say that a utility U permits to im-
itate the behavior of an agent with utility UE if optimiz-
ing U provides policies with a large expected utility w.r.t.
UE . The reason behind this definition is that, differently
from IRL, we wish to imitate also the risk attitude of the
observed agent. However, UL does not always allow to
perform meaningful imitations:
Proposition 4.3. There exists an MDP M “

pS,A, H, s0, p, rq and a policy πE for which there
are utilities U1, U2 P Up,r,πE such that, for any ϵ ě 0
smaller than some universal constant, there exists a
policy πϵ such that J˚pU1; p, rq ´ JπϵpU1; p, rq “ ϵ and
J˚pU2; p, rq ´ JπϵpU2; p, rq ě 1.

Concerning piiiq, we say that U and UE assess behavior
in a similar way if, given any policy, they provide close
values of performance. The intuition is that the expert
values policies based on their alignment with its risk at-
titude UE w.r.t. its task r. Formally, we want U such that
dall
p,rpU

E ,Uq :“maxπ
ˇ

ˇJπpUE ;p,rq´JπpU ;p,rq
ˇ

ˇ is small
(Zhao et al., 2024). Nonetheless, not all the utilities in the
feasible set are close to each other w.r.t. dall

p,r:
Proposition 4.4. There exists an MDP M “

pS,A, H, s0, p, rq and a policy πE for which there
exists a pair of utilities U1, U2 P Up,r,πE such that
dall
p,rpU1, U2q “ 1.

Propositions 4.1-4.4 tell us that demonstrations of behav-
ior in a single MDP do not provide enough information
on UE for applications piq, piiq, and piiiq.5 Thus, we
might hope that expert demonstrations in multiple environ-
ments can help in mitigating this issue, similarly to what

5Actually, for piiq only, we can try to learn πE directly without
passing through UE , as in behavioral cloning (Osa et al., 2018).

is done in IRL (Amin & Singh, 2016; Cao et al., 2021)
and ICRL (Kim et al., 2023). Formally, we extend the
UL problem of Definition 4.1 to a set of MDPs tMiui,
with Mi “ pSi,Ai, H, si0, p

i, riq,6 and policies tπE,iui
by assuming that there exists a single utility UE for which
Eq. (1) is satisfied for all i, i.e., such that πE,i is opti-
mal for Mi

UE for all i. In this extended problem setting,
the feasible set will be the intersection of all the feasible
sets Upi,ri,πE,i . The following result proves that demon-
strations in multiple environments is a possible solution to
the partial identifiability problem.

Proposition 4.5. Let S,A,H be any state space, action
space, and horizon, satisfying Sě3,Aě2,Hě2, and let
UE PU be any utility. If, for any possible dynamics s0,p
and reward r, we are given the set of all the deter-
ministic optimal policies of the corresponding RS-MDP
pS,A,H,s0,p,r,UEq, then we can uniquely identify UE .

5. Online UL with Generative Model
In this section, we present two provably-efficient algo-
rithms for solving the UL problem in a finite-data regime.

5.1. Problem Setting

We consider a finite-data version of the UL prob-
lem with demonstrations in multiple environments pre-
sented in Section 4. We let tMiuiPJNK, with Mi “

pSi,Ai, H, si0, p
i, riq, be the N MDPs with shared hori-

zon H in which an expert with utility UE P U provides
demonstrations of behavior. Specifically, for each MDP
Mi, the expert provides us with a batch dataset DE,i “

tpsj1, a
j
1, s

j
2, . . . , s

j
H , a

j
H , s

j
H`1qujPJτE,iK of τE,i trajecto-

ries collected by executing a policy πE,i, which is opti-
mal for the RS-MDP Mi

UE . Moreover, for every Mi, we
let Si,Ai, H, si0, r

i be known, and we consider access to
a generative sampling model (Azar et al., 2013) for the
transition model pi, which allows us to collect a sample
s1 „ pihp¨|s, aq from any triple s, a, h at our choice. In

6For simplicity, we let H be shared.

5

Learning Utilities from Demonstrations in MDPs

short, we assume access to offline data for the expert and to
online data for the environments, as is common in the IRL
literature (Ho & Ermon, 2016).

Due to partial identifiability, the feasible set
Ş

i Upi,ri,πE,i
might contain multiple utilities. Thus, we will develop two
different algorithms, one that aims to classify utilities as
inside or outside the feasible set

Ş

i Upi,ri,πE,i (CATY-UL,
Section 5.3), and the other that aims to compute a single
utility contained into it (TRACTOR-UL, Section 5.4). In-
tuitively, CATY-UL and TRACTOR-UL together permit to
fully characterize the feasible set, by, respectively, learning
a classification boundary and a representative item. Never-
theless, note that, because of finite data, we will be able to
provide guarantees only for a relaxation of the feasible set
U∆ Ě

Ş

i Upi,ri,πE,i for some ∆ ě 0:

U∆ :“
!

U P U |
ÿ

iPJNK

Cpi,ri,πE,ipUq ď ∆
)

, (3)

where Cpi,ri,πE,ipUq quantifies the (non)compatibility of
utility U with demonstrations from πE,i in Mi (Lazzati
et al., 2024a; 2025):

Cpi,ri,πE,ipUq :“ J˚pU ; pi, riq ´ Jπ
E

pU ; pi, riq. (4)

Intuitively, U∆ enlarges the feasible set by accepting utili-
ties that make the policies πE,i at most ∆-suboptimal. Note
that, for ∆ “ 0, we have U∆ “

Ş

i Upi,ri,πE,i .

5.2. Challenges and Solution

To develop practical algorithms, some dimensionality
challenges must be addressed. In this section, we explain
how we will face them. In short, our solution permits to
work with tractable approximations whose complexity is
controlled by a discretization parameter ϵ0 ą 0. First, we
need some notation. We use symbol Yh to denote an ϵ0-
discretization of the real-valued interval r0, h´ 1s, i.e., we
set Yh :“ t0, ϵ0, 2ϵ0, . . . , tph ´ 1q{ϵ0uϵ0u @h P JH ` 1K.
Moreover, we introduce ad-hoc symbols R,Y for the dis-
cretization of intervals r0, 1s and r0, Hs, namely, we let
R :“ Y2, Y :“ YH`1. We also set d :“ |Y| “ tH{ϵ0u.

Working with continuous utilities. Utilities in U are de-
fined over the real-valued interval r0, Hs, making them in-
compatible with the finite precision of computers. For this
reason, we will consider discretized utilities. Formally, we
will approximate any U P U with a d-dimensional vector
U P U :“U

Y , such that Upyq “ Upyq @y P Y .

Return distributions. In MDPs with dynamics p and re-
ward r, return distributions η are supported on the set
of possible returns Gp,rĂr0,Hs. However, in general,
the size of this set grows exponentially in the horizon
|Gp,r|9pSAqH , causing any exact representation of η to

Algorithm 1 CATY-UL
Input: data tDE

i ui, threshold ∆, utility U , discretization ϵ0, dy-
namics tppiui

// Discretize U:
1 Upyq Ð Upyq for all y P Y
2 for i “ 1, 2, . . . , N do

// Estimate JπE,i
pU ; pi, riq:

3 pηE,i
Ð ERD(DE

i , r
i)

4 pJE,i
pUq Ð

ř

yPY pηE,i
pyqUpyq

// Estimate J˚
pU ; pi, riq:

5 pJ˚,i
pUq, Ð PLANNING(U, i, ppi)

// Estimate Cpi,ri,πE,ipUq:

6 pCi
pUq Ð pJ˚,i

pUq ´ pJE,i
pUq

7 end
8 class Ð True if

ř

iPJNK
pCi

pUq ď ∆ else False
9 Return class

explode even for small H . Thus, we adopt a categori-
cal representation for return distributions (Bellemare et al.,
2023), that, roughly speaking, aims to approximate a dis-
tribution on r0,Hs with a distribution on YĂr0,Hs. For-
mally, given any ηP∆r0,Hs with finite support, its cate-
gorical representation ProjCpηq is the distribution in Q:“
tqP∆JdK |

ř

jPJdKqjδyju (yj are the items of Y) obtained
through the categorical projection operator ProjC (Rowland
et al., 2018), reported in Eq. (8)-(9) in Appendix B.

Optimal policies in RS-MDPs. To compute an optimal
policy in RS-MDP MU with dynamics p and reward r,
the enlarged state space approach of Bäuerle & Rieder
(2014) presented in Section 2 requires the computation of
an optimal policy in the MDP ErMU s, whose state space is
S ˆGp,rh @h. Unfortunately, we suffer again from an expo-
nential dependence on the horizon |Gp,rh |9pSAqh´1, that
causes any exact representation of the state space and of
the optimal policy of MDP ErMU s to explode. To avoid
this issue, we adopt the discretization approach of Wu &
Xu (2023), which, in short, amounts to approximate sets
Gp,rh with Yh by simply replacing reward r with the dis-
cretized version r, defined as: rhps, aq :“ ΠRrrhps, aqs

for all s, a, h. Crucially, since rhps, aq P R, then the sum
of h rewards r belongs to Yh`1. In this manner, the sets
of partial returns satisfy Gp,rh Ď Yh Ď Y for all h, thus,
the state space of the enlarged MDP has now a cardinality
at most Sd ď OpSH{ϵ0q, which is no longer exponential
in the horizon. In the following, we will denote by ri the
discretized version of reward ri for all i P JNK.

5.3. CATY-UL (CompATibilitY for Utility Learning)

The goal of CATY-UL (Algorithm 1) is to classify input
utilities U P U based on whether they belong to set U∆ or
not for some ∆ ě 0. We implement it using two differ-
ent subroutines (Lazzati et al., 2024a; 2025). First, Algo-

6

Learning Utilities from Demonstrations in MDPs

rithm 3 (reported in Appendix E for its simplicity) actively
explores the N environments Mi uniformly, by collecting
τ i samples from each transition model pi, and uses these
samples to construct estimates ppi. Next, Algorithm 1 uses
these estimates along with the expert’s data DE,i to classify
any input utility U P U w.r.t. U∆. To perform the classi-
fication, based on Eq. (3), CATY-UL computes estimates
pCipUq « Cpi,ri,πE,ipUq for all i P JNK, and, then, it out-
puts whether

ř

iPJNK
pCipUq ď ∆ (see Line 8). To compute

pCipUq, driven by Eq. (4), CATY-UL computes two sepa-
rate estimates pJE,ipUq « Jπ

E,i

pU ; pi, riq (Lines 3-4) and
pJ˚,ipUq « J˚pU ; pi, riq (Line 5), and then combines them
(Line 6). Specifically, the ERD (Estimate Return Distribu-
tion) subroutine (Algorithm 5) permits to construct an es-
timate pηE,i of the categorical projection ProjCpηp

i,ri,πE,iq

of the expert’s return distribution ηp
i,ri,πE,i from dataset

DE,i, which is used at Line 4 to compute pJE,ipUq. Instead,
quantity pJ˚,ipUq is calculated at Line 5 as the optimal per-
formance in the RS-MDP pSi,Ai, H, si0, ppi, ri, Uq, which
is computed through value iteration (Puterman, 1994) in
the corresponding enlarged state space MDP using the
PLANNING subroutine (Algorithm 4). CATY-UL enjoys
the following guarantee for L-Lipschitz input utilities:
Theorem 5.1. Let L ą 0, ϵ, δ P p0, 1q, and let U Ď UL
be the set of utilities to classify. For all i P JNK, in case
|U | “ 1, let the number of samples satisfy:

τE,i ě rO
´N2H2

ϵ2
log

N

δ

¯

, τ i ě rO
´N2SAH4

ϵ2
log

SAHNL

δϵ

¯

.

Otherwise, if |U | ą 1, let the number of samples satisfy:

τE,i ě rO
´N4H4L2

ϵ4
log

HNL

δϵ

¯

,

τ i ě rO
´N2SAH5

ϵ2

´

S ` log
SAHN

δ

¯¯

.

(5)

Then, setting ϵ0 “ ϵ2{p72HL2N2q, w.p. at least 1 ´ δ, for
any ∆ ě 0, CATY-UL correctly classifies all the U P U
lying inside U∆´ϵ or outside U∆`ϵ.

Roughly speaking, this theorem says that, for a number of
samples independent of ∆, CATY-UL correctly recognizes
all the utilities in U∆´ϵ Ď U∆ and outside U∆`ϵ Ě U∆

as, respectively, inside and outside set U∆. Intuitively, the
Lipschitzianity assumption is necessary for approximating
functions U P U with vectors in U. We remark that, if
|U | “ 1, then 9S queries to the generative model suffice.
Otherwise, we require 9S2 samples.

5.4. TRACTOR-UL (exTRACTOR for Utility Learning)

For simplicity of presentation, we introduce some notation.
For any L ą 0, let UL :“U

Y
L , and let U,UL,U,UL,U∆ be

the analogous of, respectively, U,UL,U,UL,U∆, but con-
taining increasing functions instead of strictly-increasing

Algorithm 2 TRACTOR-UL
Input: data tDE

i ui, parameters T,K, α, U0, discretization ϵ0,
dynamics tppiui

10 pηE,i
Ð ERD(DE

i , r
i) for i P JNK

11 for t “ 0, 1, . . . , T ´ 1 do
// Compute distributions tpηitui:

12 for i = 1, 2, . . . , N do
13 , pψ˚,i

t Ð PLANNING(U t, i, ppi)
14 D Ð ROLLOUT(pψ˚,i

t , ppi, ri, i,K)
15 pηitpyq Ð 1

K

ř

GPD 1tG “ yu,@y P Y
16 end

// Update U t`1:
17 gt Ð

ř

iPJNK

`

pηit ´ pηE,i
˘

18 U t`1 Ð ΠUL
pU t ´ αgtq

19 end
20 pU Ð 1

T

řT´1
t“0 U t

21 Return pU

functions. TRACTOR-UL (Algorithm 2) is a more “prac-
tical” UL algorithm, in that it aims to compute a util-
ity function contained into the feasible set

Ş

i Upi,ri,πE,i .
As CATY-UL, it comprises an initial exploration phase
(Algorithm 3), that collects τ i samples to compute esti-
mates ppi of the transition models pi, and an extraction
phase (Algorithm 2), where these estimates and the ex-
pert’s data DE,i are used to compute a utility (almost) in
the feasible set. Specifically, since the utilities U in the
feasible set satisfy

ř

i Cpi,ri,πE,ipUq “ 0, TRACTOR-UL
aims to find a minimum of function

ř

i Cpi,ri,πE,ip¨q over
the set UL. So, starting from an initial d-dimensional
utility U0 P UL, TRACTOR-UL computes a sequence
U1, . . . , UT by performing online projected gradient de-
scent7 (Orabona, 2023) in the space of discretized L-
Lipschitz utilities UL, where the gradient gt is computed
at Line 17, and the update is carried out at Line 18.
With infinite data, the gradient gt at iteration t would be
ř

ipη
pi,ri,π˚,i

t ´ηp
i,ri,πE,iq, where π˚,i

t is any optimal pol-
icy in RS-MDP Mi

Ut
, in which Ut P UL is any util-

ity satisfying Utpyq “ U tpyq for all y P Y . In our
case, TRACTOR-UL uses pηE,i, computed at Line 10 in
the same way as in CATY-UL, to approximate ηp

i,ri,πE,i ,
and it uses pηit, computed at Lines 13-15, to approximate
ηp

i,ri,π˚,i
t by estimating ηppi,ri,pπ˚,i

t , where pπ˚,i
t is the op-

timal policy for the RS-MDP pSi,Ai,H,si0,pp
i,ri,U tq. In

short, Line 13 computes policy pπ˚,i
t through the enlarged

state space approach, which is subsequently played in MDP
pSi,Ai,H,si0,pp

i,riq (ROLLOUT subroutine, Algorithm 6,
Line 14) to construct a dataset D of K trajectories that is
used at Line 15 to compute pηit. TRACTOR-UL enjoys the
following guarantee:

7This approach is based on (Syed & Schapire, 2007; Schlag-
inhaufen & Kamgarpour, 2024).

7

Learning Utilities from Demonstrations in MDPs

Theorem 5.2. Let L ą 0, ϵ, δ P p0, 1q, and UE P UL.
Assume that the projection operator ΠUL

is implemented
exactly. Let the number of samples satisfy Eq. (5). There
exist values of ϵ0,K, α, U0 (see Appendix E.5) such that, if
we run TRACTOR-UL for a number of gradient iterations:

T ě O
`

N4H4L2{ϵ4
˘

,

then, w.p. at least 1 ´ δ, any utility U P UL such that
Upyq “ pUpyq @y P Y belongs to Uϵ.

In other words, with high probability, TRACTOR-UL
is guaranteed to find a utility U with small
ř

i Cpi,ri,πE,ipUq ď ϵ, i.e., U is close to the feasible
set. Note that we consider increasing utilities UL instead
of strictly-increasing UL to guarantee the closedness of the
set onto which we project. Observe also that assuming that
ΠUL

can be implemented exactly simplifies the theoretical
analysis, but, in practice, we are satisfied with approxima-
tions that can be computed efficiently since set UL is made
of OpH2{ϵ20q linear constraints (Appendix E.1).

6. Numerical Simulations
In this section, we present proof-of-concept experiments
using data collected from lab members to provide empir-
ical evidence to support both our model and algorithms.

The data. We asked to 15 participants to describe the ac-
tions they would play in an MDP with horizon H “ 5 (see
Appendix F), at varying of the state, the stage, and the cu-
mulative reward collected. The reward has a monetary in-
terpretation. To answer the questions, the participants have
been provided with complete information about the MDP.8

Experiment 1 - Validation of the model. Our model of
behavior, presented in Eq. (1), is the first IRL model that
contemplates non-Markovian policies. To understand if
this new model is more suitable than existing IRL mod-
els to describe human behavior in MDPs, we count how
many participants to the study exhibited non-Markovian
behavior. Intuitively, the more non-Markovianity, the bet-
ter our model. What we found is that 10 participants out
of 15 demonstrated a non-Markovian policy even in this
very small environment, providing consistent evidence on
the importance of our new model. See Appendix F.3 for
additional analysis of our model on this data.

Experiment 2 - Validation of TRACTOR-UL. To under-
stand how TRACTOR-UL performs in practice, we have
run it on both the real-world data described earlier and on
simulated data. Crucially, the executions on the partici-
pants’ data reveal that, irrespective of the initial utility U0

adopted, the algorithm converges much faster using large
values of step size α. For instance, as shown in Fig. 3, the

8The data collected is not personal.

0 10 20 30 40 50 60 70

0.1

0.2

0.3

0.4

Iteration t

(N
o
n
)c
o
m
p
a
ti
b
il
it
y
C(
Û
t
)

α=0.01
α=0.5
α=5
α=100
α=1000
α=10000

Figure 3. Simulations of TRACTOR-ULwith various step sizes α.
The shaded regions are the standard deviation over 5 seeds.

best step size for using TRACTOR-UL to compute a utility
representative of the behavior of participant 10 is α “ 100.
Intuitively, this is explained by the presence of a large num-
ber of utilities in the feasible set (since we are considering
demonstrations in a single environment N “ 1), and by
the projection step onto UL, that results in small changes
of utility even with large steps (see Appendix F.2.2). Next,
we have run TRACTOR-UL on simulated data to analyze
its performance on larger MDPs (increment of S,A) and
with multiple environments (increment of N). We found
that the number of gradient iterations necessary to achieve
a certain level of (non)compatibility is affected by the in-
crement of N , but not of S,A, as predicted by Theorem
5.2. However, note that larger S,A require more execution
time, because of the value iteration subroutine. Moreover,
we observed that, when N ą 1, the best step size α can
be much smaller than α “ 100. Intuitively, the feasible
set contains less utilities now, thus, we need more accurate
(smaller) gradient steps to find them. More details on this
experiment in Appendix F.2.3.

7. Related Work
In risk-sensitive IRL (Majumdar et al., 2017), the learner is
either provided with the reward of the expert and it must
infer some parameters representing its risk attitude, or the
learner must infer both the reward and the risk attitude from
demonstrations of behavior (Singh et al., 2018; Chen et al.,
2019; Ratliff & Mazumdar, 2020; Cheng et al., 2023; Cao
et al., 2024). However, these works consider problem set-
tings and models of behavior fairly different from ours.
Specifically, Majumdar et al. (2017); Singh et al. (2018);
Chen et al. (2019) focus on the so-called “prepare-react
model”, which is a model of environment less expressive
than an MDP. Instead, Ratliff & Mazumdar (2020); Cheng
et al. (2023); Cao et al. (2024) consider models of behav-
ior in which the expert’s policy is Markovian. More on the

8

Learning Utilities from Demonstrations in MDPs

related works in Appendix A.

8. Conclusion
In this paper, we proposed a novel risk-aware model of be-
havior that rationalizes non-Markovian policies in MDPs,
and we presented two provably-efficient algorithms for
learning the risk attitude of an agent from demonstrations.
Interesting directions for future works include extending
our algorithms to high-dimensional settings, studying the
problem of learning both r andU from demonstrations, and
exploring new methods to alleviate the partial identifiabil-
ity.

Acknowledgements
AI4REALNET has received funding from European
Union’s Horizon Europe Research and Innovation pro-
gramme under the Grant Agreement No 101119527. Views
and opinions expressed are however those of the author(s)
only and do not necessarily reflect those of the European
Union. Neither the European Union nor the granting au-
thority can be held responsible for them.

Funded by the European Union - Next Generation EU
within the project NRPP M4C2, Investment 1.,3 DD. 341 -
15 march 2022 - FAIR - Future Artificial Intelligence Re-
search - Spoke 4 - PE00000013 - D53C22002380006.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Re-

inforcement Learning: Theory and Algorithms. 2021.
URL https://rltheorybook.github.io/.

Amin, K. and Singh, S. Towards resolving unidentifiability
in inverse reinforcement learning, 2016.

Arora, S. and Doshi, P. A survey of inverse reinforcement
learning: Challenges, methods and progress. Artificial
Intelligence, 297:103500, 2021.

Artzner, P., Delbaen, F., Eber, J., and Heath, D. Coherent
measures of risk. Mathematical Finance, 9(3):203–228,
1999.

Azar, M. G., Munos, R., and Kappen, H. Minimax
PAC bounds on the sample complexity of reinforcement

learning with a generative model. Machine Learning, 91
(3):325–349, 2013.

Barz, C. Risk-Averse Capacity Control in Revenue Man-
agement. Springer, 2007.

Bellemare, M. G., Dabney, W., and Rowland, M. Distribu-
tional Reinforcement Learning. MIT Press, 2023.

Bernhard, J., Pollok, S., and Knoll, A. Addressing in-
herent uncertainty: Risk-sensitive behavior generation
for automated driving using distributional reinforcement
learning. IEEE Intelligent Vehicles Symposium (IV), pp.
2148–2155, 2019.

Bäuerle, N. and Rieder, U. More risk-sensitive markov de-
cision processes. Mathematics of Operations Research,
39(1):105–120, 2014.

Cao, H., Cohen, S., and Szpruch, L. Identifiability in in-
verse reinforcement learning. In Advances in Neural In-
formation Processing Systems 34 (NeurIPS), pp. 12362–
12373, 2021.

Cao, H., Wu, Z., and Xu, R. Inference of utilities and time
preference in sequential decision-making, 2024.

Chajewska, U., Koller, D., and Ormoneit, D. Learning an
agent’s utility function by observing behavior. In Inter-
national Conference on Machine Learning 18 (ICML),
pp. 35–42, 2001.

Chen, R., Wang, W., Zhao, Z., and Zhao, D. Active
learning for risk-sensitive inverse reinforcement learn-
ing, 2019.

Cheng, Z., Coache, A., and Jaimungal, S. Eliciting risk
aversion with inverse reinforcement learning via interac-
tive questioning, 2023.

Fu, J., Luo, K., and Levine, S. Learning robust rewards
with adversarial inverse reinforcement learning. In In-
ternational Conference on Learning Representations 5
(ICLR), 2017.

Föllmer, H. and Schied, A. Stochastic Finance: An Intro-
duction in Discrete Time. De Gruyter, 2016.

Ho, J. and Ermon, S. Generative adversarial imitation
learning. In Advances in Neural Information Processing
Systems 29 (NeurIPS), 2016.

Jonsson, A., Kaufmann, E., Menard, P., Dar-
wiche Domingues, O., Leurent, E., and Valko, M.
Planning in markov decision processes with gap-
dependent sample complexity. In Advances in Neural
Information Processing Systems 33 (NeurIPS), pp.
1253–1263, 2020.

9

https://rltheorybook.github.io/

Learning Utilities from Demonstrations in MDPs

Kahneman, D. and Tversky, A. Prospect theory: An anal-
ysis of decision under risk. Econometrica, 47(2):263–
291, 1979.

Kim, K., Swamy, G., Liu, Z., Zhao, D., Choudhury, S., and
Wu, S. Z. Learning shared safety constraints from multi-
task demonstrations. In Advances in Neural Information
Processing Systems 36 (NeurIPS), pp. 5808–5826, 2023.

Kreps, D. M. Notes On The Theory Of Choice. Westview
Press, 1988.

Lazzati, F., Mutti, M., and Metelli, A. M. How does in-
verse rl scale to large state spaces? a provably efficient
approach. In Advances in Neural Information Process-
ing Systems 37 (NeurIPS), pp. 54820–54871, 2024a.

Lazzati, F., Mutti, M., and Metelli, A. M. Offline inverse
rl: New solution concepts and provably efficient algo-
rithms. In International Conference on Machine Learn-
ing 41 (ICML), 2024b.

Lazzati, F., Mutti, M., and Metelli, A. Reward compatibil-
ity: A framework for inverse rl, 2025.

Lei, B. Learning influence diagram utility function by ob-
serving behavior. In Advanced Multimedia and Ubiqui-
tous Engineering 14 (MUE), pp. 164–168, 2020.

Majumdar, A., Singh, S., Mandlekar, A., and Pavone, M.
Risk-sensitive inverse reinforcement learning via coher-
ent risk models. In Robotics: Science and Systems 13
(RSS), 2017.

Malik, S., Anwar, U., Aghasi, A., and Ahmed, A. In-
verse constrained reinforcement learning. In Interna-
tional Conference on Machine Learning 38 (ICML), vol-
ume 139, pp. 7390–7399, 2021.

Metelli, A. M., Ramponi, G., Concetti, A., and Restelli,
M. Provably efficient learning of transferable rewards.
In International Conference on Machine Learning 38
(ICML), volume 139, pp. 7665–7676, 2021.

Metelli, A. M., Lazzati, F., and Restelli, M. Towards theo-
retical understanding of inverse reinforcement learning.
In International Conference on Machine Learning 40
(ICML), pp. 24555–24591, 2023.

Ng, A. Y. and Russell, S. J. Algorithms for inverse rein-
forcement learning. In International Conference on Ma-
chine Learning 17 (ICML 2000), pp. 663–670, 2000.

Orabona, F. A modern introduction to online learning,
2023.

Osa, T., Pajarinen, J., Neumann, G., Bagnell, J. A., Abbeel,
P., and Peters, J. An algorithmic perspective on imitation
learning. Foundations and Trends® in Robotics, 7(1-2):
1–179, 2018.

Poiani, R., Curti, G., Metelli, A. M., and Restelli, M. In-
verse reinforcement learning with sub-optimal experts,
2024.

Pratt, J. W. Risk aversion in the small and in the large.
Econometrica, 32:122–136, 1964.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
Inc., 1994.

Ramachandran, D. and Amir, E. Bayesian inverse rein-
forcement learning. In International Joint Conference on
Artifical Intelligence 20 (IJCAI), pp. 2586–2591, 2007.

Ratliff, L. J. and Mazumdar, E. Inverse risk-sensitive re-
inforcement learning. IEEE Transactions on Automatic
Control, 65(3):1256–1263, 2020.

Rockafellar, R. T. and Uryasev, S. Optimization of condi-
tional value-at risk. Journal of Risk, 3:21–41, 2000.

Rowland, M., Bellemare, M., Dabney, W., Munos, R., and
Teh, Y. W. An analysis of categorical distributional re-
inforcement learning. In International Conference on
Artificial Intelligence and Statistics 21 (AISTATS), vol-
ume 84, pp. 29–37, 2018.

Rowland, M., Wenliang, L. K., Munos, R., Lyle, C., Tang,
Y., and Dabney, W. Near-minimax-optimal distributional
reinforcement learning with a generative model, 2024.

Russell, S. Learning agents for uncertain environments
(extended abstract). In Proceedings of the Eleventh An-
nual Conference on Computational Learning Theory 11
(COLT), pp. 101–103, 1998.

Russell, S. and Norvig, P. Artificial Intelligence: A Modern
Approach. Prentice Hall, 3 edition, 2010.

Schlaginhaufen, A. and Kamgarpour, M. Towards the
transferability of rewards recovered via regularized in-
verse reinforcement learning, 2024.

Shah, R., Gundotra, N., Abbeel, P., and Dragan, A. On
the feasibility of learning, rather than assuming, human
biases for reward inference. In International Conference
on Machine Learning 36 (ICML), volume 97, pp. 5670–
5679, 2019.

Shukla, N., He, Y., Chen, F., and Zhu, S.-C. Learning
human utility from video demonstrations for deductive
planning in robotics. In Conference on Robot Learning
1 (CoRL), volume 78, pp. 448–457, 2017.

Singh, S., Lacotte, J., Majumdar, A., and Pavone, M. Risk-
sensitive inverse reinforcement learning via semi- and
non-parametric methods. The International Journal of
Robotics Research, 37(13-14):1713–1740, 2018.

10

Learning Utilities from Demonstrations in MDPs

Skalse, J. and Abate, A. Quantifying the sensitivity of in-
verse reinforcement learning to misspecification. In In-
ternational Conference on Learning Representations 12
(ICLR), 2024.

Skalse, J. M. V., Farrugia-Roberts, M., Russell, S., Abate,
A., and Gleave, A. Invariance in policy optimisation
and partial identifiability in reward learning. In Inter-
national Conference on Machine Learning 40 (ICML),
volume 202, pp. 32033–32058, 2023.

Syed, U. and Schapire, R. E. A game-theoretic approach
to apprenticeship learning. In Advances in Neural Infor-
mation Processing System 20 (NeurIPS), 2007.

Villani, C. Optimal Transport: Old and New. Springer
Berlin, Heidelberg, 2008.

von Neumann, J. and Morgenstern, O. Theory of Games
and Economic Behavior. Princeton University Press,
1947.

Wakker, P. P. Prospect Theory: For Risk and Ambiguity.
Cambridge University Press, 2010.

Wu, Z. and Xu, R. Risk-sensitive markov decision process
and learning under general utility functions, 2023.

Xiong, C., Shukla, N., Xiong, W., and Zhu, S.-C. Robot
learning with a spatial, temporal, and causal and-or
graph. In IEEE International Conference on Robotics
and Automation 33 (ICRA), pp. 2144–2151, 2016.

Zhao, L., Wang, M., and Bai, Y. Is inverse reinforce-
ment learning harder than standard reinforcement learn-
ing? In International Conference on Machine Learning
41 (ICML), 2024.

Ziebart, B. D. Modeling purposeful adaptive behavior with
the principle of maximum causal entropy, 2010.

11

Learning Utilities from Demonstrations in MDPs

A. More on Related Work
We describe here more in detail the most relevant related works. First, we describe IRL papers with risk, i.e., those works
that consider MDPs, and try to learn either the reward function or the utility or both. Next, we analyze the works that
aim to learn the risk attitude (i.e., a utility function) from demonstrations of behavior (potentially in problems other than
MDPs). Finally, we present other connected works.

Inverse Reinforcement Learning with risk. Majumdar et al. (2017) introduces the risk-sensitive IRL problem in deci-
sion problems different from MDPs. The authors analyze two settings, one in which the expert takes a single decision, and
one in which there are multiple decisions in sequence. They model the expert as a risk-aware decision-making agent acting
according to a coherent risk metric (Artzner et al., 1999), and they consider both the case in which the reward function
is known, and they try to learn the risk attitude (coherent risk metric) of the expert, and the case in which the reward is
unknown, and they aim to estimate both the risk attitude and the reward function. Nevertheless, the authors analyze a model
of environment, called prepare-react model, rather different from an MDP, since, simply put, it can be seen as an MDP in
which the stochasticity is shared by all the state-action pairs at each stage h P JHK. Moreover, they consider Markovian
policies. Singh et al. (2018) generalizes the work of Majumdar et al. (2017). Specifically, the biggest improvement is to
consider nested optimization stages. However, the model of the environment is still rather different from an MDP. We
mention also the work of Chen et al. (2019) who extend Majumdar et al. (2017) by devising an active learning framework
to improve the efficiency of their learning algorithms.

Another important work is that of Ratliff & Mazumdar (2020), who study the risk-sensitive IRL problem in MDPs, by
proposing a parametric model of behavior for the expert based on prospect theory (Kahneman & Tversky, 1979), and they
devise a gradient-based IRL algorithm that minimizes a loss function defined on the observed behavior. This work differs
from ours in that it assumes that the expert plays actions based on a softmax distribution, i.e., using a Markovian policy.

Cheng et al. (2023) proposes a model of behavior in MDPs using the conditional value-at-risk (Rockafellar & Uryasev,
2000) instead of a utility function (von Neumann & Morgenstern, 1947). Moreover, differently from ours, their model
does not contemplate non-Markovian policies. Similarly to us, they analyze the partial identifiability of the parameters
representing the risk attitude from demonstrations in a single environment, and propose a strategy for designing the envi-
ronments in which collecting additional demonstrations in order to reduce the partial identifiability.

We shall mention also the recent pre-print of Cao et al. (2024) that proposes a novel stochastic control framework in
continuous time that includes two utility functions and a generic discounting scheme under a time-varying rate. Assuming
to know both the utilities and the discounting scheme, the authors show that, through state augmentation, the control
problem is well-posed. In addition, the authors provide sufficient conditions for the identification of both the utilities and
the discounting scheme given demonstrations of behavior. We note that there are crucial differences between this work
and ours. First, the author model the expert as solving an optimization problem in which the utility function is applied
to the per stage reward, instead we apply the utility to the entire return (see Eq. (1)). Next, they model the expert using
Markovian policies.

Learning utilities from demonstrations. Chajewska et al. (2001) considers an approach similar to IRL Ng & Russell
(2000). Their goal is not to perform active preference elicitation, but, similarly to us, to use demonstrations to infer
preferences. Specifically, they aim to learn utilities in sequential decision-making problems from demonstrations. However,
they model the problems through decision trees, which are different from MDPs, and this represents the main difference
between their work and ours. Indeed, decision trees are simpler since there is no notion of reward function at intermediate
states. In this manner, they are able to devise (backward induction) algorithms to learn utilities in decision trees through
linear constraints similar to those devised by Ng & Russell (2000) in IRL. It is interesting to notice that they adopt a
Bayesian approach to extract a single utility from the feasible set constructed, and not an heuristic like that of Ng &
Russell (2000). They assume a prior ppuq over the true utility function u, and approximate the posterior w.r.t. the feasible
set of utilities U using Markov Chain Monte Carlo (MCMC).

Shukla et al. (2017) faces the problem of learning human utilities from (video) demonstrations, with the aim of generating
meaningful tasks based on the learned utilities. However, differently from us, they consider the stochastic context-free
And-Or graph (STC-AOG) framework (Xiong et al., 2016), instead of MDPs.

Lei (2020) considers the problem of learning utilities from demonstrations similarly to Chajewska et al. (2001), but with
the difference of considering influence diagrams instead of decision trees. Since any influence diagram can be expanded

12

Learning Utilities from Demonstrations in MDPs

into a decision tree, authors adopt a strategy similar to Chajewska et al. (2001).

Others. Shah et al. (2019) aims to learn the behavioral model of the expert from demonstrations. However, they do
not consider a specific model like us (i.e., Eq. (1)), but use a differentiable planner (neural network) to learn the planner.
In principle, they can fit any behavioral model (also risk-sentitive models) given the huge expressive power of neural
networks. However, their approach requires a lot of demonstrations, even across multiple MDPs. Moreover, this approach
does not permit to learn a utility function as a simple, interpretable, and transferrable representation of the risk attitude of
the expert.

B. Additional Notation
In this appendix, we introduce additional notation that will be used in other appendices.

Miscellaneous. For any probability distribution ν P ∆R, we denote its cumulative density function by Fν . Let ν P ∆R

be a probability distribution on R; then, for any y P r0, 1s, we define the generalized inverse F´1
ν pyq as:

F´1
ν pyq :“ inf

xPR
tFνpxq ě yu.

We define the 1-Wasserstein distance w1 : ∆R ˆ ∆R Ñ r0,8s between two probability distributions ν, µ as:

w1pν, µq :“

ż 1

0

ˇ

ˇF´1
ν pyq ´ F´1

µ pyq
ˇ

ˇdy. (6)

In addition, we define the Cramér distance ℓ2 : ∆R ˆ ∆R Ñ r0,8s between two probability distributions ν, µ as:

ℓ2pν, µq :“
´

ż

R
pFνpyq ´ Fµpyqq2dy

¯1{2

. (7)

We will use notation:

VX„QrXs :“ EX„QrpX ´ EX„QrXsq2s,

to denote the variance of a random variable X „ Q distributed as Q. Given two random variables X „ Q1, Y „ Q2, we
denote their covariance as:

CovX„Q1,Y„Q2rX,Y s :“ EX„Q1,Y„Q2rpX ´ EX„Q1rXsqpY ´ EY„Q2rY sqs.

We define the categorical projection operator ProjC (mentioned in Section 5), that projects onto set Y “ ty1, y2, . . . , ydu

(the items of Y are ordered: y1 ď y2 ď . . . ď yd, with y1 “ 0, y2 “ ϵ0, y3 “ 2ϵ0, . . . , yd “ tH{ϵ0uϵ0), based on Rowland
et al. (2018). For single Dirac measures on an arbitrary y P R, we write:

ProjCpδyq :“

$

’

&

’

%

δy1 if y ď y1
yi`1´y
yi`1´yi

δyi `
y´yi

yi`1´yi
δyi`1 if yi ă y ď yi`1

δyd if y ą yd

, (8)

and we extend it affinely to finite mixtures of M Dirac distributions, so that:

ProjC
´

ÿ

jPJMK

qjδzj

¯

“
ÿ

jPJMK

qjProjCpδzj q, (9)

for some set of real values tzjujPJMK and weights tqjujPJMK.

Value functions. Given an MDP M “ pS,A, H, s0, p, rq and a policy π, we define the V - and Q-functions of policy
π in MDP M at every ps, a, hq P S ˆ A ˆ JHK respectively as V πh ps; p, rq :“ Ep,r,πr

řH
t“h rtpst, atq|sh “ ss and

Qπhps, a; p, rq :“ Ep,r,πr
řH
t“h rtpst, atq|sh “ s, ah “ as. We define the optimal V - and Q-functions as V ˚

h ps; p, rq :“
supπ V

π
h ps; p, rq and Q˚

hps, a; p, rq :“ supπ Q
π
hps, a; p, rq.

13

Learning Utilities from Demonstrations in MDPs

For MDPs with an enlarged state space, e.g., ptS ˆYhuh,A, H, ps0, 0q, p, rq, and a policy ψ “ tψhuh, for all h P JHK and
ps, y, aq P S ˆYhˆA we denote the V - and Q-functions respectively as V ψh ps, y; p, rq :“ Ep,r,ψr

řH
t“h rtpst, yt, atq|sh “

s, yh “ ys and Qψh ps, y, a; p, rq :“ Ep,r,ψr
řH
t“h rtpst, yt, atq|sh “ s, yh “ y, ah “ as. We denote the optimal V - and

Q-functions as V ˚
h ps, y; p, rq :“ supψ V

ψ
h ps, y; p, rq and Q˚

hps, y, a; p, rq :“ supψ Q
ψ
h ps, y, a; p, rq.

Observe that the notation just introduced will be extended in a straightforward manner to MDPs (MDPs with enlarged state
space) that have an estimated transition model pp (pp), and/or a discretized reward function r (r).

C. Additional Results and Proofs for Section 3
In Appendix C.1, we explain why including the past rewards into the state is not satisfactory, in Appendix C.2 we provide
an observation on Eq. (1), while in Appendix C.3 we provide the missing proofs for Section 3.

C.1. Drawbacks of Re-modelling the MDP

Re-modelling the MDP including the sum of the past rewards into the state would make the demonstrated policy Markovian,
and so, in principle, it would allow to apply the existing IRL models meaningfully. However, since in IRL the reward
function is unknown, to adopt this trick one should include into the state representation the entire sequence of past state-
action pairs, causing the size of the new state space to explode, and also causing the reward function to become non-
Markovian w.r.t. the original state space. If instead the reward function was known, and one just wanted to apply one of the
risk-sensitive IRL models of behavior presented in Section 7 to learn the (parameters of the) risk attitude, then re-modelling
the MDP would still cause the size of the new state space to explode in tabular MDPs, since, in general, there is a number
of cumulative reward values that is exponential in the horizon. Moreover, it is not clear why the considered model of
behavior, that was designed for the original state space (not including the past rewards), should be realistic in the new state
space.

C.2. An Observation on the Model

If we restrict the optimization problem in Eq. (1) to Markovian policies, we note that non-stationarity (i.e., the dependence
of the policy on the stage h) and stochasticity (i.e., if the policy prescribes a lottery over actions instead of a single
action) can improve the performance w.r.t. Markovian stationary deterministic policies even in stationary environments.
Intuitively, the reason is that they permit to consider larger ranges of return distributions w.r.t. Markovian stationary
deterministic policies.

Proposition C.1. There exists a RS-MDP with stationary transition model and reward in which the best Markovian policy
is non-stationary, and the best stationary Markovian policy is stochastic.

C.3. Proofs for Section 3

Proposition 3.1. There exists a RS-MDP in which the difference between the optimal performance and the performance
of the best Markovian policy is 0.5.

Proof. For reasons that will be clear later, let us define symbol x « 2.6 as the solution of x´ x2

3.99 ´ 0.1 “ 1.

Consider the RS-MDP MU “ pS,A, H, s0, p, r, Uq in Fig. 4, where S “ tsinit, s1, s2, s3, s4, s5, s6u, A “ ta1, a2u,
H “ 4, s0 “ sinit, transition model p such that:

p1ps1|sinit, aq “ p1ps2|sinit, aq “ 1{2 @a P A,
p2ps3|s1, aq “ p2ps3|s2, aq “ 1 @a P A,
p3ps4|s3, a1q “ x{3.99, p3ps5|s3, a1q “ 1 ´ x{3.99, p3ps6|s3, a2q “ 1,

reward function r defined as:

r1psinit, aq “ 0 @a P A,
r2ps1, aq “ 1 @a P A,
r2ps2, aq “ 0 @a P A,

14

Learning Utilities from Demonstrations in MDPs

sinitstart

s1

s2

s3

s4

s5

s6

a1, a2

1{2

1{2

r “ 1

r “ 0

a1

a2

x{3
.9
9

1
´
x{3.99

r “ 1

r “ 0

r “ 0.5

Figure 4. MDP for the proof of Proposition 3.1.

r3ps3, aq “ 0 @a P A,
r4ps4, aq “ 1 @a P A,
r4ps5, aq “ 0 @a P A,
r4ps6, aq “ 0.5 @a P A,

and utility function U P U that satisfies:

Upyq “

$

’

’

’

&

’

’

’

%

x´ 0.1 if y “ 0.5

x if y “ 1

x` 0.1 if y “ 1.5

3.99 if y “ 2

.

Note that this entails that:
x

3.99
Up2q ` Up1q “ Up0.5q ` Up1.5q. (10)

Note also that the support of the return function of this (RS-)MDP is Gp,r “ t0, 0.5, 1, 1.5, 2u.

For α P r0, 1s, let πα be the generic Markovian policy that plays action a1 in s3 w.p. α (the actions played in other states
are not relevant). Then, its expected utility is:

Jπ
α

pU ; p, rq “
1

2

”

α
´ x

3.99
Up2q ` p1 ´

x

3.99
qUp1q

¯

` p1 ´ αqUp1.5q

ı

`
1

2

”

α
´ x

3.99
Up1q ` p1 ´

x

3.99
qUp0q

¯

` p1 ´ αqUp0.5q

ı

(1)
“

1

2

”

α
´ x

3.99
Up2q ` Up1q

¯

` p1 ´ αqpUp1.5q ` Up0.5qq

ı

(2)
“
Up1.5q ` Up0.5q

2
,

where at (1) we have used that Up0q “ 0, and at (2) we have used Eq. (10).

Thus, all Markovian policies πα have the same performance. Let us consider the non-Markovian policy π that, in state
s3, plays action a1 w.p. 1 if s3 is reached with cumulative reward 1, and it plays action a2 w.p. 1 if s3 is reached with
cumulative reward 0. Then, its performance is:

JπpU ; p, rq “
1

2

´ x

3.99
Up2q ` p1 ´

x

3.99
qUp1q

¯

`
1

2
Up0.5q.

The difference in performance between the optimal performance and that of πα is:

J˚pU ; p, rq ´ Jπ
α

pU ; p, rq ě JπpU ; p, rq ´ Jπ
α

pU ; p, rq

15

Learning Utilities from Demonstrations in MDPs

sinitstart

s1

s2

s3

sinit

s1

s2

s3

a2

a1 1{3

2{3

r
“

0.5

r “ 1

r “
0

a2

a1 1{3

2{3

r “ 0.5

r “ 1

r “ 0

Figure 5. MDP for the proof of Proposition C.1.

“
1

2

´ x

3.99
Up2q ` p1 ´

x

3.99
qUp1q

¯

`
1

2
Up0.5q ´

Up1.5q ` Up0.5q

2

“
1

2

´ x

3.99
Up2q ` p1 ´

x

3.99
qUp1q ´ Up1.5q

¯

(3)
“

1

2

´

x` x´
x2

3.99
´ x´ 0.1

¯

“
1

2

´

x´
x2

3.99
´ 0.1

¯

(4)
“ 0.5,

where at (3) we have replaced the values of utility, and at (4) we have used the definition of x.

Proposition 3.2. If p is deterministic, then argmaxπ J
πpUE ; p, rEq “ argmaxπ J

πpp, rEq.

Proof. If p is deterministic, then the optimal policy in Eq. (1) is the policy that deterministically plays the trajectory ω
with largest value of UEpgpωqq (gpωq denotes the return of ω under reward rE). Since, by hypothesis, UE P U, then it is
strictly increasing, thus such trajectory coincides with the trajectory with largest return.

Proposition C.1. There exists a RS-MDP with stationary transition model and reward in which the best Markovian policy
is non-stationary, and the best stationary Markovian policy is stochastic.

Proof. Consider the stationary RS-MDP MU “ pS,A, H, s0, p, r, Uq depicted in Fig. 5, where S “ tsinit, s1, s2, s3u,
A “ ta1, a2u, H “ 4, s0 “ sinit, stationary transition model p (we omit subscript because of stationarity) such that:

pps2|sinit, a1q “ 1 ´ pps3|sinit, a1q “ 1{3,

pps1|sinit, a2q “ 1,

ppsinit|s, aq “ 1 @s P ts1, s2, s3u,@a P A,

reward function r defined as:

rpsinit, aq “ 0 @a P A,
rps1, aq “ 0.5 @a P A,
rps2, aq “ 1 @a P A,
rps3, aq “ 0 @a P A,

16

Learning Utilities from Demonstrations in MDPs

and utility function U P U that satisfies:

Upyq “

$

’

’

’

&

’

’

’

%

0.15 if y “ 0.5

0.2 if y “ 1

1.8 if y “ 1.5

2 if y “ 2

.

Let πα,β denote the general non-stationary policy that plays action a1 at stage 1 w.p. α P r0, 1s, and plays action a1 at
stage 2 w.p. β P r0, 1s. The performance of policy πα,β can be written as:

Jπ
α,β

pU ; p, rq “ α
!1

3

”

β
´1

3
Up2q `

2

3
Up1q

¯

` p1 ´ βqUp1.5q

ı

`
2

3

”

β
1

3
Up1q ` p1 ´ βqUp0.5q

ı)

` p1 ´ αq

”

β
´1

3
Up1.5q `

2

3
Up0.5q

¯

` p1 ´ βqUp1q

ı

“ αβ
”1

9
Up2q `

13

9
Up1q ´

2

3
Up1.5q ´

4

3
Up0.5q

ı

` pα ` βq

”1

3
Up1.5q `

2

3
Up0.5q ´ Up1q

ı

` Up1q

“ αβ
”2

9
`

13

45
´

18

15
´

1

5

ı

` pα ` βq

”1

5
`

1

10
´

1

5

ı

`
1

5

“ ´
8

9
αβ `

1

10
pα ` βq `

1

5
.

To show that the best Markovian policy is non-stationary in this example, we show that the performance of non-stationary
policy π0,1 is better than the performance of all possible Markovian policies. The performance of π0,1 is:

Jπ
0,1

pU ; p, rq “
1

10
`

1

5
“ 0.3.

Instead, the generic stationary policy is πα,α, and has performance:

Jπ
α,α

pU ; p, rq “ ´
8

9
α2 `

1

5
α `

1

5
.

The value of α P r0, 1s that maximizes this objective is:

d

dα
Jπ

α,α

pU ; p, rq “ ´
16

9
α `

1

5
“ 0 ðñ α “

9

80
,

from which we get:

Jπ
9{80,9{80

pU ; p, rq “
169

800
ď 0.22,

which is smaller than 0.3 “ Jπ
0,1

pU ; p, rq. This concludes the proof of the first part of the proposition.

For the second part, simply observe that, in the problem instance considered, we just obtained that the best Markovian
stationary policy plays action a1 w.p. 9{80, i.e., it is stochastic.

D. Additional Results and Proofs for Section 4
In this appendix, we provide a more explicit formulation for the feasible utility set (Appendix D.1), we present a property
of the distance dall (Appendix D.2), and then we provide the proofs of all the results presented in Section 4 (Appendix D.3).

D.1. A more Explicit Formulation for the Feasible Set

For any policy π, we denote by Sp,r,π the set of all ps, h, yq state-stage-cumulative reward triples which are covered with
non-zero probability by policy π in the considered (RS-)MDP.

Thanks to this definition, we can rewrite the feasible set as follows:

17

Learning Utilities from Demonstrations in MDPs

Proposition D.1. Let M “ pS,A, H, s0, p, rq be an MDP, and let πE be the expert policy. Then, the feasible utility
set Up,r,πE contains all and only the utility functions that make the actions played by the expert policy optimal at all the
ps, h, yq P Sp,r,πE . Formally:

Up,r,πE “

!

U P U
ˇ

ˇ

ˇ
@ps, h, yq P Sp,r,πE ,@a P A :

Q˚
hps, y, πEh ps, yq; p, rq ě Q˚ps, y, a; p, rq,

where we used the notation introduced in Appendix B.

Proof Sketch. Based on Theorem 3.1 of Bäuerle & Rieder (2014) (or Theorem 1 of Wu & Xu (2023)), we have that a utility
U P U belongs to the feasible set if it makes the expert policy optimal even in the enlarged state space MDP (note that it
is possible to define a policy ψ for the enlarged MDP because we are considering policies π whose non-Markovianity lies
only in the cumulative reward up to now). Therefore, the result follows thanks to a proof analogous to that of Lemma E.1
in Lazzati et al. (2024b), since we are simply considering a common MDP with two variables per state.

D.2. A Property of dall

We note that closeness under the max norm (restricted to a certain domain) implies closeness under dall:

Proposition D.2. Consider an arbitrary MDP with transition model p and reward function r. Then, for any pair of utilities
U1, U2 P U, it holds that dall

p,rpU1, U2q ď maxGPGp,r |U1pGq ´ U2pGq|.

Proof. For the sake of simplicity, we denote the infinity norm and the 1-norm w.r.t. set Gp,r as: }f}8 :“ maxGPGp,r |fpGq|

and }f}1 :“
ř

GPGp,r |fpGq|. In addition, we overload notation and use symbolsU1, U2 to denote the vectors in r0, Hs|Gp,r|

containing, respectively, the values assigned by utility functions U1, U2 to points in set Gp,r. Then, we can write:

dall
p,rpU1, U2q :“ sup

πPΠ
|JπpU1; p, rq ´ JπpU2; p, rq|

“ sup
πPΠ

|EG„ηp,r,π rU1pGqs ´ EG„ηp,r,π rU2pGqs|

“ sup
πPΠ

|EG„ηp,r,π rU1pGq ´ U2pGqs|

(1)
ď sup
ηP∆Gp,r

|EG„ηrU1pGq ´ U2pGqs|

(2)
ď sup
ηP∆Gp,r

EG„η|U1pGq ´ U2pGq|

(3)
“ }U1 ´ U2}8,

where at (1) we upper bound by considering the set of all possible distributions over set Gp,r instead of just those induced
by some policies in the considered MDP, at (2) we apply triangle inequality, and at (3) we have used the fact that } ¨ }1 and
} ¨ }8 are dual norms.

D.3. Proofs for Section 4

Example 4.1. Consider the MDP M in Fig. 2 (left), where H“2,r1ps0,a1q“1,r1ps0,a2q“0.5. Let the expert’s policy
πE prescribe a1 in s0. Then, all the utility functions U PU that take on values in the blue region of Fig. 2 (middle) for
returns G“1,G“1.5, make πE optimal in MU .

Proof. A utility U P U makes πE optimal for MU if playing a1 is better than playing a2: Jπ
E

pU ; p, rq “ 0.1Up2q `

0.5Up1.5q ` 0.4Up1q ě 0.8Up1.5q ` 0.2Up1q. Thus, all the utilities U P U, that assign to G “ 1, G “ 1.5 any of the
values coloured in blue in Fig. 2 (middle), satisfy this condition.

Proposition 4.1. There exist two MDPs M “ pS,A, H, s0, p, rq, M1 “ pS,A, H, s0, p1, rq, with p ‰ p1, for which there
exist a policy πE and a pair of utilities U1, U2 P Up,r,πE such that Π˚

p1,rpU1q X Π˚
p1,rpU2q “ tu.

18

Learning Utilities from Demonstrations in MDPs

sinitstart

s0

s0.25

s0.75

s1

a1

a2

a1, a2

a1, a2

a1, a2

a1, a2

1{4

1{4

1{4

1{4

1{2

1{2

Figure 6. MDP for the proof of Proposition 4.1.

Proof. We will prove the guarantee stated in the proposition using two different pairs of MDPs: One that that satisfies
Gp1,r “ Gp,r, i.e., for which the support of the return function coincides, and the other that does not. Let us begin with the
former.

Consider a simple MDP M “ pS,A, H, sinit, p, rq with five states S “ tsinit, s0, s0.25, s0.75, s1u, two actions A “

ta1, a2u, horizon H “ 2, initial state sinit, transition model p such that:

p1ps1|sinit, a1q “

$

’

’

’

&

’

’

’

%

1{4 if s1 “ s0

1{4 if s1 “ s0.25

1{4 if s1 “ s0.75

1{4 if s1 “ s1

,

p1ps1|sinit, a2q “

#

1{2 if s1 “ s0.25

1{2 if s1 “ s0.75
,

and reward function r that assigns r1psinit, a1q “ r1psinit, a2q “ 0, and:

r2ps, aq “

$

’

’

’

&

’

’

’

%

0 if s “ s0 ^ pa “ a1 _ a “ a2q

0.25 if s “ s0.25 ^ pa “ a1 _ a “ a2q

0.75 if s “ s0.75 ^ pa “ a1 _ a “ a2q

1 if s “ s1 ^ pa “ a1 _ a “ a2q

.

Note that the support of the return function is Gp,r “ t0, 0.25, 0.75, 1u. We are given an expert’s policy πE that prescribes
action a1 at stage 1 in state sinit, and arbitrary actions in other states (the specific action is not relevant). The MDP M is
represented in Figure 6.

Now, we show that utilities U1, U2 P U, defined in points of the support Gp,r as (and connected in arbitrary continuous
strictly-increasing manner between these points):

U1pGq “

$

’

’

’

&

’

’

’

%

0 if G “ 0

0.01 if G “ 0.25

0.02 if G “ 0.75

1.99 if G “ 1

, U2pGq “

$

’

’

’

&

’

’

’

%

0 if G “ 0

0.01 if G “ 0.25

0.99 if G “ 0.75

1.99 if G “ 1

,

belong to the feasible set Up,r,πE , and, when transferred to the new MDP M1 “ pS,A, H, sinit, p
1, rq, with transition model

p1 ‰ p defined as:

p1
1p¨|sinit, a1q “ p1p¨|sinit, a1q,

19

Learning Utilities from Demonstrations in MDPs

p1
1ps1|sinit, a2q “

#

0.7 if s1 “ s0

0.3 if s1 “ s1
,

impose different optimal policies, i.e., utility U2 keeps making action a1 optimal from state sinit even in M1, while U1

makes action a2 optimal. This proves the thesis of the proposition.

Let us begin by showing that U1, U2 P Up,r,πE belong to the feasible set of M with policy πE . Let π be the policy that
plays action a2 in state sinit. Then, the distribution of returns induced by policies πE and π are (we represent values only
at points in Gp,r “ t0, 0.25, 0.75, 1u):

ηp,r,π
E

“ r1{4, 1{4, 1{4, 1{4s⊺

ηp,r,π “ r0, 1{2, 1{2, 0s⊺.

Thus, policy πE is optimal under some utilityU if and only if the values assigned byU to points in Gp,r “ t0, 0.25, 0.75, 1u

(denoted, respectively, by U1, U2, U3, U4) satisfy:

U⊺pηp,r,π
E

´ ηp,r,πq “ r1{4,´1{4,´1{4, 1{4sU “ U1 ´ U2 ´ U3 ` U4 ě 0,

where we have overloaded the notation and denoted with U :“ rU1, U2, U3, U4s⊺ both the utility and the vector of values
assigned to points in Gp,r. By imposing normalization constraints (Up0q “ 0, Up2q “ 2), we get U1 “ 0, and by imposing
also the monotonicity constraints, we get that utility U is in the feasible set Up,r,πE if and only if:

#

U4 ě U2 ` U3

0 ă U2 ă U3 ă U4 ă 2
.

Clearly, both utilitiesU1, U2 satisfy these constraints, thus they belong to the feasible set Up,r,πE . Now, concerning problem
M1, the performances of πE , π w.r.t. utilities U1, U2 are:

Jπ
E

pU1; p
1, rq “

1

4
U1p0q `

1

4
U1p0.25q `

1

4
U1p0.75q `

1

4
U1p1q “ 2.02{4 “ 0.505,

JπpU1; p
1, rq “ 0.7U1p0q ` 0.3U1p1q “ 0.3 ˆ 1.99 “ 0.597,

Jπ
E

pU2; p
1, rq “

1

4
U1p0q `

1

4
U1p0.25q `

1

4
U1p0.75q `

1

4
U1p1q “ 2.99{4 “ 0.7475,

JπpU2; p
1, rq “ 0.7U1p0q ` 0.3U1p1q “ 0.3 ˆ 1.99 “ 0.597.

Clearly, Jπ
E

pU1; p
1, rq ă JπpU1; p

1, rq, but Jπ
E

pU2; p
1, rq ą JπpU2; p

1, rq, thus we conclude that the set of policies
induced by utilities U1, U2 in M1 do not intersect, since they start from sinit with different actions Π˚

p1,rpU1qXΠ˚
p1,rpU2q “

tu. This concludes the proof with an example that satisfies Gp1,r “ Gp,r.
If we want an example that does not satisfy Gp1,r “ Gp,r, then we can consider exactly the same example with M and
M1, but using r1psinit, a2q “ 0.001. In this manner, we see that Gp,r “ t0, 0.25, 0.251, 0.75, 0.751, 1u, and Gp1,r “

t0, 0.001, 0.25, 0.75, 1, 1.001u, which are different. By choosing U 1
1, U

1
2 as:

U 1
1pGq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 if G “ 0

0.001 if G “ 0.001

0.01 if G “ 0.25

0.011 if G “ 0.251

0.02 if G “ 0.75

0.021 if G “ 0.751

1.99 if G “ 1

1.991 if G “ 1.001

, U 1
2pGq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

0 if G “ 0

0.001 if G “ 0.001

0.01 if G “ 0.25

0.011 if G “ 0.251

0.99 if G “ 0.75

0.991 if G “ 0.751

1.99 if G “ 1

1.991 if G “ 1.001

,

it can be shown that U 1
1, U

1
2 belong to the (new) feasible set of M, and that induce different policies in M1. This concludes

the proof.

20

Learning Utilities from Demonstrations in MDPs

sinitstart

s1

s2

a1

a2

a1, a2

a1, a2

1{2

1{2

0.9

0.1

Figure 7. MDP for the proof of Proposition 4.2.

Proposition 4.2. There exist two MDPs M “ pS,A, H, s0, p, rq, M1 “ pS,A, H, s0, p, r1q, with r ‰ r1, for which there
exist a policy πE and a pair of utilities U1, U2 P Up,r,πE such that Π˚

p,r1 pU1q X Π˚
p,r1 pU2q “ tu.

Proof. Similarly to the proof of Proposition 4.1, we provide two examples, one with Gp,r1

“ Gp,r, and the other with
Gp,r1

‰ Gp,r. Let us begin with the former.

Consider a simple MDP M “ pS,A, H, sinit, p, rq with three states S “ tsinit, s1, s2u, two actions A “ ta1, a2u, horizon
H “ 2, initial state sinit, transition model p such that:

p1ps1|sinit, a1q “

#

1{2 if s1 “ s1

1{2 if s1 “ s2
,

p1ps1|sinit, a2q “

#

0.9 if s1 “ s1

0.1 if s1 “ s2
,

and reward function r that assigns r1psinit, a1q “ 0, r1psinit, a2q “ 0.5, and:

r2ps, aq “

#

0 if s “ s1 ^ pa “ a1 _ a “ a2q

1 if s “ s2 ^ pa “ a1 _ a “ a2q
.

Note that the support of the return function is Gp,r “ t0, 0.5, 1, 1.5u. We are given an expert’s policy πE that prescribes
action a1 at stage 1 in state sinit, and arbitrary actions in other states (the specific action is not relevant). The MDP M is
represented in Figure 7.

Now, we show that the utilities U1, U2 P U, defined in points of the support Gp,r as (and connected in arbitrary continuous
strictly-increasing manner between these points):

U1pGq “

$

’

’

’

&

’

’

’

%

0 if G “ 0

0.1 if G “ 0.5

0.9 if G “ 1

1.5 if G “ 1.5

, U2pGq “

$

’

’

’

&

’

’

’

%

0 if G “ 0

0.1 if G “ 0.5

0.8 if G “ 1

1.5 if G “ 1.5

,

belong to the feasible set Up,r,πE , and, when transferred to the new MDP M1 “ pS,A, H, sinit, p, r
1q, with reward function

r1 ‰ r defined as:

r1
1psinit, a1q “ 0.5, r1psinit, a2q “ 0,

r1
2ps, aq “

#

1 if s “ s1 ^ pa “ a1 _ a “ a2q

0 if s “ s2 ^ pa “ a1 _ a “ a2q
,

impose different optimal policies, i.e., utility U2 keeps making action a1 optimal from state sinit even in M1, while U1

makes action a2 optimal. This will demonstrate the thesis of the proposition.

Let us begin by showing that U1, U2 P Up,r,πE belong to the feasible set of M with policy πE . Let π be the policy that
plays action a2 in state sinit. Then, the distribution of returns induced by policies πE and π are (we represent values only

21

Learning Utilities from Demonstrations in MDPs

at points in Gp,r “ t0, 0.5, 1, 1.5u):

ηp,r,π
E

“ r0.5, 0, 0.5, 0s⊺

ηp,r,π “ r0, 0.9, 0, 0.1s⊺.

Thus, policy πE is optimal under some utility U if and only if the values assigned by U to points in Gp,r “ t0, 0.5, 1, 1.5u

(denoted, respectively, by U1, U2, U3, U4) satisfy:

U⊺pηp,r,π
E

´ ηp,r,πq “ r0.5,´0.9, 0.5,´0.1sU “ 0.5U1 ´ 0.9U2 ` 0.5U3 ´ 0.1U4 ě 0,

where we have overloaded the notation and denoted with U :“ rU1, U2, U3, U4s⊺ both the utility and the vector of values
assigned to points in Gp,r. By imposing normalization constraints (Up0q “ 0, Up2q “ 2), we get U1 “ 0, and by imposing
also the monotonicity constraints, we get that utility U is in the feasible set Up,r,πE if and only if:

#

U4 ě 5U3 ´ 9U2

0 ă U2 ă U3 ă U4 ă 2
.

Clearly, both utilitiesU1, U2 satisfy these constraints, thus they belong to the feasible set Up,r,πE . Now, concerning problem
M1, the performances of πE , π w.r.t. utilities U1, U2 are:

Jπ
E

pU1; p, r
1q “ 0U1p0q ` 0.5U1p0.5q ` 0U1p1q ` 0.5U1p1.5q “ 1.6{2 “ 0.8,

JπpU1; p, r
1q “ 0.1U1p0q ` 0U1p0.5q ` 0.9U1p1q ` 0U1p1.5q “ 0.9 ˆ 0.9 “ 0.81,

Jπ
E

pU2; p, r
1q “ 0U2p0q ` 0.5U2p0.5q ` 0U2p1q ` 0.5U2p1.5q “ 1.6{2 “ 0.8,

JπpU2; p, r
1q “ 0.1U2p0q ` 0U2p0.5q ` 0.9U2p1q ` 0U2p1.5q “ 0.9 ˆ 0.8 “ 0.72.

Clearly, Jπ
E

pU1; p, r
1q ă JπpU1; p, r

1q, but Jπ
E

pU2; p, r
1q ą JπpU2; p, r

1q, thus we conclude that the set of policies
induced by utilities U1, U2 in M1 do not intersect, since they start from sinit with different actions Π˚

p,r1 pU1qXΠ˚
p,r1 pU2q “

tu. This concludes the proof with an example that satisfies Gp,r1

“ Gp,r.
If we want an example that does not satisfy Gp,r1

“ Gp,r, then we can consider exactly the same example with M and M1,
but using r1

1psinit, a2q “ 0.001. In this manner, we see that Gp,r “ t0, 0.5, 1, 1.5u, and Gp1,r “ t0.001, 0.5, 1.001, 1.5u,
which are different. Nevertheless, by choosing U 1

1, U
1
2 as:

U 1
1pGq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if G “ 0

0.001 if G “ 0.001

0.1 if G “ 0.5

0.9 if G “ 1

0.901 if G “ 1.001

1.5 if G “ 1.5

, U 1
2pGq “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0 if G “ 0

0.001 if G “ 0.001

0.1 if G “ 0.5

0.8 if G “ 1

0.801 if G “ 1.001

1.5 if G “ 1.5

,

it can be shown that U 1
1, U

1
2 still belong to the feasible set of M (the constraints are the same), and that induce different

policies in M1. This concludes the proof.

Proposition 4.3. There exists an MDP M “ pS,A, H, s0, p, rq and a policy πE for which there are utilities U1, U2 P

Up,r,πE such that, for any ϵ ě 0 smaller than some universal constant, there exists a policy πϵ such that J˚pU1; p, rq ´

JπϵpU1; p, rq “ ϵ and J˚pU2; p, rq ´ JπϵpU2; p, rq ě 1.

Proof. Consider a simple MDP M “ pS,A, H, sinit, p, rq with four states S “ tsinit, s1, s2, s3u, three actions A “

ta1, a2, a3u, horizon H “ 2, initial state sinit, transition model p such that:

p1ps2|sinit, a1q “ 1, p1ps1|sinit, a3q “ 1,

p1ps1|sinit, a2q “

#

0.91 if s1 “ s1

0.09 if s1 “ s3
,

22

Learning Utilities from Demonstrations in MDPs

sinitstart

s1

s2

s3

a1

a3

a2

a1, a2, a3

a1, a2, a3

a1, a2, a3

0.91

0.09

Figure 8. MDP for the proof of Proposition 4.3.

and reward function r that assigns r1psinit, a1q “ r1psinit, a2q “ r1psinit, a3q “ 0, and:

r2ps, aq “

$

’

&

’

%

0 if s “ s1 ^ pa “ a1 _ a “ a2 _ a “ a3q

0.5 if s “ s2 ^ pa “ a1 _ a “ a2 _ a “ a3q

1 if s “ s3 ^ pa “ a1 _ a “ a2 _ a “ a3q

.

Note that the support of the return function is Gp,r “ t0, 0.5, 1u. We are given an expert’s policy πE that prescribes
action a1 at stage 1 in state sinit, and arbitrary actions in other states (the specific action is not relevant). The MDP M is
represented in Figure 8.

Now, we show that the utilities U1, U2 P U, defined in points of the support Gp,r as (and connected in arbitrary continuous
strictly-increasing manner between these points):

U1pGq “

$

’

&

’

%

0 if G “ 0

0.1 if G “ 0.5

0.1{0.09 if G “ 1

, U2pGq “

$

’

&

’

%

0 if G “ 0

1.099 if G “ 0.5

1.1 if G “ 1

,

belong to the feasible set Up,r,πE , and that, for any ϵ P r0, 0.1s, there exists a policy π for which it holds both that
J˚pU1; p, rq ´ JπpU1; p, rq “ ϵ and J˚pU2; p, rq ´ JπpU2; p, rq ě 1.

First, let us show that both U1, U2 belong to the feasible utility set. Let π1, π2, π3 be the policies that play, respectively,
action a1, a2, a3 in state sinit (note that π1 “ πE). Then, their performances for arbitrary utility U are:

Jπ
1

pU ; p, rq “ Up0.5q,

Jπ
2

pU ; p, rq “ 0.09Up1q ` 0.91Up0q “ 0.09Up1q,

Jπ
3

pU ; p, rq “ Up0q “ 0,

where we have used the normalization condition. Replacing U with U1, we get J˚pU1; p, rq “ Jπ
1

pU1; p, rq “

0.1“Jπ
2

pU1; p, rq “ 0.1 ą Jπ
3

pU1; p, rq “ 0. Instead, replacing with U2, we get J˚pU2; p, rq “ Jπ
1

pU2; p, rq “

1.099 ą Jπ
2

pU2; p, rq “ 0.09 ˆ 1.1 ą Jπ
3

pU2; p, rq “ 0. Therefore, both U1, U2 P Up,r,πE .

Now, for any α P r0, 1s let us denote by πα the policy that, at state sinit, plays action a3 w.p. α, and action a2 w.p. 1 ´ α.
We show that, for any ϵ P r0, 0.1s, policy πϵ{0.1 is ϵ-optimal for utility U1, and its suboptimality is at least 1 under utility
U2. For any α P r0, 1s, the expected utilities of policy πα under U1 and U2 are:

JπαpU1; p, rq “ p1 ´ αq ˆ 0.09 ˆ U1p1q “ p1 ´ αq ˆ 0.1,

JπαpU2; p, rq “ p1 ´ αq ˆ 0.09 ˆ U2p1q “ p1 ´ αq ˆ 0.099,

from which we derive that the suboptimalities of such policy under U1 and U2 are:

J˚pU1; p, rq ´ JπαpU1; p, rq “ 0.1 ´ p1 ´ αq ˆ 0.1 “ 0.1α,

J˚pU2; p, rq ´ JπαpU2; p, rq “ 1.099 ´ p1 ´ αq ˆ 0.099 “ 1 ` 0.099α.

23

Learning Utilities from Demonstrations in MDPs

sinitstart

s1

s2

a1, a2, a3

a1, a2, a3

a1

a2, a3

Figure 9. MDP for the proof of Proposition 4.4.

Thus, for any ϵ P r0, 0.1s, policy πϵ{0.1 is ϵ-optimal for utility U1, but it is at least 1-suboptimal for utility U2.

The intuition is that utilities U1 and U2 assess in completely different manners the policies that play action a2, although
they both describe policy πE as optimal. This concludes the proof.

Proposition 4.4. There exists an MDP M “ pS,A, H, s0, p, rq and a policy πE for which there exists a pair of utilities
U1, U2 P Up,r,πE such that dall

p,rpU1, U2q “ 1.

Proof. Consider a simple MDP M “ pS,A, H, sinit, p, rq with three states S “ tsinit, s1, s2u, three actions A “

ta1, a2, a3u, horizon H “ 2, initial state sinit, transition model p such that:

p1ps1|sinit, a1q “ 1, p1ps2|sinit, a2q “ p1ps2|sinit, a2q “ 1,

and reward function r that assigns r1psinit, a1q “ r1psinit, a2q “ 0, r1psinit, a2q “ 1, and:

r2ps, aq “

#

0 if s “ s1 ^ pa “ a1 _ a “ a2 _ a3q

1 if s “ s2 ^ pa “ a1 _ a “ a2 _ a3q
.

Note that the support of the return function is Gp,r “ t0, 1, 2u. We are given an expert’s policy πE that prescribes action
a3 at stage 1 in state sinit, and arbitrary actions in the other states (the specific action is not relevant). The MDP M is
represented in Figure 9.

Consider two utilities U1, U2, that take on the following values in Gp,r:

U1pGq “

$

’

&

’

%

0 if G “ 0

0.1 if G “ 1

2 if G “ 2

,

U2pGq “

$

’

&

’

%

0 if G “ 0

1.1 if G “ 1

2 if G “ 2

.

It is immediate that both utilities belong to the feasible set Up,r,πE . Nevertheless, if we denote by π the policy that plays
action a2 in state sinit, we see that JπpU1; p, rq “ 0.1, while JπpU2; p, rq “ 1.1, so that the difference is 1.

Proposition 4.5. Let S,A,H be any state space, action space, and horizon, satisfying Sě3,Aě2,Hě2, and let UE PU
be any utility. If, for any possible dynamics s0,p and reward r, we are given the set of all the deterministic optimal policies
of the corresponding RS-MDP pS,A,H,s0,p,r,UEq, then we can uniquely identify UE .

Proof. We provide a constructive proof that shows which values of s0, p, r it is sufficient to choose for recovering UE

exactly. The construction is articulated into two parts. First, we aim to recover the value of UEp1q, i.e., for G “ 1; next,
we recover the utility for all other possible values of return. The intuition is that we construct a Standard Gamble (SG)
between two policies over the entire horizon (Wakker, 2010).

To infer UEp1q, we use the s0, p, r values that provide the MDP described in Figure 10.

We consider a single initial state sinit. From here, action a1 (and all actions other than a1 and a2) brings deterministically
to state s21, while action a2 brings to state s23 w.p. q (to choose, for some q P r0, 1s), and to state s22 w.p. 1 ´ q. From

24

Learning Utilities from Demonstrations in MDPs

sinitstart

s21

s22

s23

s31

s32

s33

sH1

sH2

sH3

. . .

. . .

. . .

h “ 1 h “ 2 h “ 3 . . . h “ H

a1

a2
1 ´ q

q

Figure 10. MDP for the proof of Proposition 4.5.

state s2i , for any i P J3K, all actions bring deterministically to state s3i , and so on, up to state sHi . We will call the trajectory
tsinit, s

2
i , s

3
i , . . . , s

H
i u the ith trajectory for all i P J3K, and we will write Gpiq to denote the sum of rewards along such

trajectory. To infer the value UEp1q, we select a reward r1 : S ˆ A ˆ JHK Ñ r0, 1s that provides return Gp1q “ 1.5 to
the first trajectory, return Gp2q “ 1 to the second trajectory, and return Gp3q “ H to the third trajectory (this is possible
because H ě 2). By selecting, successively, all the values of q P r0, 1s, we are asking to the expert to play either action a1
or action a2 from the initial state sinit (we denote policies π1, π2, respectively, the policies that play actions a1, a2 in sinit).
Since we are assuming that the expert will demonstrate all the possible deterministic optimal policies, there exists a value
q1 P r0, 1s for which the expert demonstrates both policies π1 and π2. Indeed, the expected utilities of policies π1, π2 for
arbitrary value of q are (we write ppqq as the generic transition model):

Jπ
1

pUE ; ppqq, r1q “ UEp1.5q,

Jπ
2

pUE ; ppqq, r1q “ qUEpHq ` p1 ´ qqUEp1q “ qH ` p1 ´ qqUEp1q,

and since UE is strictly-increasing, we have UEp1q ă UEp1.5q ă UEpHq “ H , thus there must exist q1 that permits to
write UEp1.5q as a convex combination of the other two. This allows us to write:

UEp1.5q “ q1H ` p1 ´ q1qUEp1q. (11)

Next, we select reward r2 that provides returns Gp1q “ 1, Gp2q “ 0.5, Gp3q “ 1.5. Thus, there must exist a q2 P r0, 1s

for which the expert demonstrates both policies π1 and π2, allowing us to write:

UEp1q “ q2UEp1.5q ` p1 ´ q2qUEp0.5q. (12)

Finally, we can repeat the same step with a third reward r3 that provides returns Gp1q “ 0.5, Gp2q “ 0, Gp3q “ 1, and for
some q3 P r0, 1s we obtain:

UEp0.5q “ q3UEp1q. (13)

By putting together Eq. (11), Eq. (12), and Eq. (13), we can retrieve UEp1q:
$

’

&

’

%

UEp1.5q “ q1H ` p1 ´ q1qUEp1q

UEp1q “ q2UEp1.5q ` p1 ´ q2qUEp0.5q

UEp0.5q “ q3UEp1q

.

Now that we know UEp1q, we can infer the utility for all the returns G P p1, Hq by choosing a reward that provides returns
Gp1q “ G,Gp2q “ 1, Gp3q “ H , because for some q P r0, 1s the expert will play both policies π1 and π2, which allows
us to write:

UEpGq “ qH ` p1 ´ qqUEp1q,

25

Learning Utilities from Demonstrations in MDPs

and to retrieve UEpGq.

Similarly, for all G P p0, 1q, we select a reward that provides returns Gp1q “ G,Gp2q “ 0, Gp3q “ 1, and for some
q P r0, 1s we can write:

UEpGq “ qUEp1q,

and retrieve UEpGq.

This concludes the proof. As a final remark, we stress that the initial step for inferring UEp1q cannot be dropped because
there is no reward r : S ˆ A ˆ JHK Ñ r0, 1s that provides returns Gp2q “ 0 and Gp3q “ H , because both the first and
second trajectories pass through action a2 in state sinit.

E. Additional Results and Proofs for Section 5
This appendix is divided in 5 parts. First, we show the complexity of implementing operator ΠUL

(Appendix E.1). In
Appendix E.2, we provide the pseudocode, along with a description, of algorithms EXPLORE, PLANNING, ERD, and
ROLLOUT. In Appendix E.3 we analyze the time and space complexities of CATY-UL and TRACTOR-UL. In Appendix
E.4, we provide the proof of Theorem 5.1. In Appendix E.5, we provide the proof of Theorem 5.2.

E.1. Projecting onto the Set of Discretized Utilities

Let us use the square brackets rs to denote the components of vectors. Then, note that set UL can be represented more
explicitly as:

UL “ tU P r0, Hsd |U r1s “ 0 ^ U rds “ H ^ U ris ď U ri` 1s @i P Jd´ 1K

^ @i, j P JdK s.t. i ă j : |U ris ´ U rjs| ď Lpj ´ iqϵ0u. (14)

Notice that set UL is closed and convex, since it is defined by linear constraints only. The amount of constraints scales as
9d2.

We remark that in Theorem 5.2 we assume availability of an oracle for computing the projection exactly. In practice, we
can use any quadratic programming solver to approximate the projection.

E.2. Missing Algorithms and Sub-routines

EXPLORE In Algorithm 3, we report the pseudo-code implementing subroutine EXPLORE. Simply put, we adopt a
uniform-sampling strategy, i.e., we collect n “ tτ{pSAHqu samples from each ps, a, hq P S ˆAˆ JHK triple, that we use
to compute the empirical estimate of the transition model. We return such estimate.

PLANNING The PLANNING sub-routine (Algorithm 4) takes in input a utility U , an environment index i, and a transition
model p, that uses to construct the RS-MDP MU :“ pSi,Ai, H, si0, p, r

i, Uq. Notice that MU ‰ Mi
UE , for 3 aspects.

First, it uses the input transition model p ‰ pi; next, it consider the discretized reward ri ‰ ri; finally, it has input utility
U ‰ UE .

PLANNING outputs two items. The optimal performance J˚pU ; p, riq for RS-MDP MU , and the optimal policy ψ˚ “

tψ˚
huh for the enlarged state space MDP ErMU s. However, it should be remarked that, instead of computing optimal

policy ψ˚ for ErMU s only at pairs ps, yq P S ˆ Gp,r
i

h for all h P JHK, PLANNING computes the optimal policy ψ˚ at all

pairs ps, yq P S ˆ Yh for all h P JHK (note that Gp,r
i

h Ď Yh).

The algorithm implemented in PLANNING for computing both J˚pU ; p, riq and ψ˚ is value iteration. The difference from
common implementations of value iterations lies in the presence of an additional variable in the state. A similar pseudocode
is provided in Algorithm 1 of Wu & Xu (2023).

ERD (Estimate the Return Distribution) The ERD sub-routine (Algorithm 5) takes in input a dataset DE “ tωjuj of
state-action trajectories ωj P Ω and a reward function r, and it computes an estimate of the return distribution w.r.t. r.

26

Learning Utilities from Demonstrations in MDPs

Algorithm 3 EXPLORE
Input: samples budget τ

22 n Ð tτ{pSAHqu

23 for i P t1, 2, . . . , Nu do
// Initialize the transition model estimate:

24 ppihps1|s, aq “ 0 for all ps, a, h, s1q P S ˆ A ˆ JHK ˆ S
// Collect samples:

25 for ps, a, hq P S ˆ A ˆ JHK do
26 for P t1, 2, . . . , nu do
27 s1 Ð sample from pihp¨|s, aq

28 ppihps1|s, aq Ð ppihps1|s, aq ` 1

29 end
30 end
31 ppihp¨|s, aq Ð ppihp¨|s, aq{n

32 end
33 Return tppiui

Algorithm 4 PLANNING
Input: utility U , environment index i, transition model p
// Initialize the Q and value function at the last stage:

34 for ps, yq P Si ˆ YH do
35 for a P Ai do
36 QHps, y, aq Ð Upy ` riHps, aqq

37 end
38 VHps, yq Ð max

aPAi
QHps, y, aq

39 ψHps, yq Ð argmax
aPAi

QHps, y, aq /* Keep just one action */

40 end
// Backward induction:

41 for h “ H ´ 1, . . . , 2, 1 do
42 for ps, yq P Si ˆ Yh do
43 for a P Ai do
44 Qhps, y, aq Ð Es1„php¨|s,aq

”

Vh`1ps1, y ` rihps, aqq

ı

45 end
46 Vhps, yq Ð max

aPAi
Qhps, y, aq

47 ψhps, yq Ð argmax
aPAi

Qhps, y, aq /* Keep just one action */

48 end
49 end
// Return optimal performance and policy:

50 Return V1psi0, 0q, ψ

For every trajectory ωj P DE , ERD computes the return Gj of ωj based on the input reward r (Line 55). In the next lines,
ERD simply computes the categorical projection of the mixture of Dirac deltas:

pη “ ProjC
´

ÿ

j

1

|DE |
δGj

¯

,

where the categorical projection operator ProjC is defined in Eq. (8).

ROLLOUT ROLLOUT (Algorithm 6) takes in input a Markovian policy ψ, a transition model p, a reward r, an environment
index i, and a number of trajectories K, to construct the MDP M :“ pSi,Ai, H, si0, p, rq obtained from MDP Mi by

27

Learning Utilities from Demonstrations in MDPs

Algorithm 5 ERD - Estimate the Return Distribution
Input: dataset DE , reward r
// Initialize pη:

51 for y P Y do
52 pηpyq Ð 0
53 end

// Loop over all trajectories in DE:
54 for ω P DE do

// Compute return of ω “ ts1, a1, . . . , sH , aH , sH`1u:
55 G Ð

řH
h“1 rhpsh, ahq

// Update estimate pη:
56 if G ď 0 then
57 pηp0q Ð pηp0q ` 1
58 end
59 else if G ą t H

ϵ0
uϵ0 then

60 pηpt H
ϵ0

uϵ0q Ð pηpt H
ϵ0

uϵ0q ` 1

61 end
62 else
63 L Ð maxyPY^yăG y
64 U Ð minyPY^yěG y

65 pηpLq Ð pηpLq ` U´G
U´L

66 pηpUq Ð pηpUq ` G´L
U´L

67 end
68 end

// Normalize:
69 pη Ð pη{|DE

|

70 Return pη

replacing the dynamics and reward pi, ri with the input p, r.

ROLLOUT collects K trajectories by playing policy ψ in M for K times, computes the return G of each trajectory, and
then returns a dataset D containing these K returns. In other words, with abuse of notation, we say that the outputted
dataset D “ tGkukPJKK is obtained by collecting K samples Gk from distribution ηp,r,ψ .

E.3. Time and Space Complexities

The time and space complexities of the subroutines are:

• EXPLORE: time = O
´

Nτ
¯

for collecting τ samples from the N environments; space = O
´

SAHN
¯

for storing the
estimates of the transition model of the N environments.

• ERD: time = O
´

HτE `H{ϵ0

¯

for computing the return of each trajectory demontrated by the expert and initializing

an estimate of the return distribution; space = O
´

H{ϵ0

¯

to store an estimate of the return distribution.

• PLANNING: time = O
´

S2AH2{ϵ0

¯

for doing backward induction in the enlarged discretized MDP; space =

O
´

SAH2{ϵ0

¯

to store a Q-function in the enlarged discretized MDP.

• ROLLOUT: time = O
´

KH
¯

for simulating K trajectories long H; space = O
´

K
¯

for storing the returns of the K
trajectories.

Using these complexities, we derive the complexities of CATY-UL and TRACTOR-UL as:

• CATY-UL: time = O
´

Nτ ` MN
´

HτE ` S2AH2{ϵ0

¯¯

for calling EXPLORE once and then both ERD and
PLANNING MN times, where M denotes the number of input utilities to which CATY-UL is applied; space =

28

Learning Utilities from Demonstrations in MDPs

Algorithm 6 ROLLOUT
Input: policy ψ, transition model p, reward r, environment index i, number of trajectories K

71 D Ð tu // Loop over the number of trajectories:
for P t1, 2, . . . ,Ku do

72 s Ð si0 y Ð 0 /* y keeps track of the accumulated reward */
73 for h “ 1 to H do
74 a Ð ψhps, yq

75 y Ð y ` rhps, aq

76 s Ð s1 where s1
„ php¨|s, aq

77 end
78 D Ð D Y tyu

79 end
80 Return D

O
´

SAHN `SAH2{ϵ0

¯

where the dominant terms are for storing a transition model in EXPLORE and a Q-function
in PLANNING.

• TRACTOR-UL: time = O
´

Nτ ` NHτE ` T
´

NS2AH2{ϵ0 ` NKH ` Qtime

¯¯

for calling EXPLORE once, ERD

N times, both PLANNING and ROLLOUT TN times, and executing T times the Euclidean projection onto UL using
some optimization solver (Qtime represents this term); space = O

´

NH{ϵ0 ` SAH2{ϵ0 ` K ` Qspace

¯

for storing
the N estimates of return distributions, for calling PLANNING and ROLLOUT, and for executing some optimization
solver for Euclidean projection (Qspace represents this term).

Observe that the time and space complexities of the proposed algorithms are polynomial in the amount of data (τ, τE), in the
number of environments (N), and in the size of the environments (S,A,H). Moreover, both CATY-UL and TRACTOR-UL
have time complexities that grow linearly in the number of runs (resp. M and T), and note that the complexity of
TRACTOR-UL grows linearly also in the number of simulated trajectories (K) and in the complexity of the optimiza-
tion solver used for the Euclidean projection (Qtime). Observe that the complexities depend on 1{ϵ0, where ϵ0 ą 0 is the
discretization parameter.

From a theoretical perspective, if we want that, with probability at least 1´ δ, the outputs of CATY-UL and TRACTOR-UL
are ϵ-accurate, then, under the assumption that the output of the optimization solver adopted for the Euclidean pro-
jection is exact, Theorems 5.1 and 5.2 show that it suffices to take ϵ0 “ Θpϵ2{pHN2qq, τE ď rO

´

N4H4

ϵ4 log 1
δ

¯

,

τ ď rO
´

N2SAH5

ϵ2

´

S ` log 1
δ

¯¯

, T ď O
´

N4H4

ϵ4

¯

, K ď rO
´

N2H2

ϵ2 log 1
δ

¯

, for obtaining a time and space complexity

for the algorithms that grow polynomially in S,A,H , N, 1
ϵ , log 1

δ , Qtime, Qspace.

E.4. Analysis of CATY-UL

Theorem 5.1. Let L ą 0, ϵ, δ P p0, 1q, and let U Ď UL be the set of utilities to classify. For all i P JNK, in case |U | “ 1,
let the number of samples satisfy:

τE,i ě rO
´N2H2

ϵ2
log

N

δ

¯

, τ i ě rO
´N2SAH4

ϵ2
log

SAHNL

δϵ

¯

.

Otherwise, if |U | ą 1, let the number of samples satisfy:

τE,i ě rO
´N4H4L2

ϵ4
log

HNL

δϵ

¯

,

τ i ě rO
´N2SAH5

ϵ2

´

S ` log
SAHN

δ

¯¯

.

(5)

Then, setting ϵ0 “ ϵ2{p72HL2N2q, w.p. at least 1 ´ δ, for any ∆ ě 0, CATY-UL correctly classifies all the U P U lying
inside U∆´ϵ or outside U∆`ϵ.

Proof. Observe that the classification carried out by CATY-UL complies with the statement in the theorem as long as we

29

Learning Utilities from Demonstrations in MDPs

can demonstrate that:

P
tMiui,tπE,iui

´

sup
UPU

ˇ

ˇ

ˇ

ÿ

iPJNK

Cpi,ri,πE,ipUq ´
ÿ

iPJNK

pCipUq

ˇ

ˇ

ˇ
ď ϵ

¯

ě 1 ´ δ,

where PtMiui,tπE,iui represents the joint probability distribution induced by the exploration phase of CATY-UL and the
execution of each πE,i in the corresponding Mi.

We can rewrite this expression as:

sup
UPU

ˇ

ˇ

ˇ

ÿ

iPJNK

Cpi,ri,πE,ipUq ´
ÿ

iPJNK

pCipUq

ˇ

ˇ

ˇ
ď sup
UPU

ÿ

iPJNK

ˇ

ˇ

ˇ
Cpi,ri,πE,ipUq ´ pCipUq

ˇ

ˇ

ˇ

(1)
ď

ÿ

iPJNK

sup
UPU

ˇ

ˇ

ˇ
Cpi,ri,πE,ipUq ´ pCipUq

ˇ

ˇ

ˇ
,

where at (1) we have upper bounded the maximum of a sum with the sum of the maxima. This shows that we can obtain
the result as long as we can demonstrate that, for all i P JNK, it holds that:

P
pi,ri,πE,i

´

sup
UPU

ˇ

ˇ

ˇ
Cpi,ri,πE,ipUq ´ pCipUq

ˇ

ˇ

ˇ
ď

ϵ

N

¯

ě 1 ´
δ

N
; (15)

the statement of the theorem would then follow from a union bound. Therefore, let us omit the i index for simplicity, and
let us try to obtain the bound in Eq. (15). We can write:

sup
UPU

ˇ

ˇCp,r,πE pUq ´ pCpUq
ˇ

ˇ :“ sup
UPU

ˇ

ˇ

`

J˚pU ; p, rq ´ Jπ
E

pU ; p, rq
˘

´
`

pJ˚pUq ´ pJEpUq
˘
ˇ

ˇ

(2)
ď sup
UPU

ˇ

ˇJπ
E

pU ; p, rq ´ pJEpUq
ˇ

ˇ ` sup
UPU

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ

(3)
“ sup
UPU

ˇ

ˇ E
G„ηp,r,πE

rUpGqs ´ E
G„pηE

rUpGqs

˘ E
G„ProjCpηp,r,πE q

rUpGqs
ˇ

ˇ ` sup
UPU

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ

(4)
ď sup
UPU

ˇ

ˇ E
G„ηp,r,πE

rUpGqs ´ E
G„ProjCpηp,r,πE q

rUpGqs
ˇ

ˇ

` sup
UPU

ˇ

ˇ E
G„ProjCpηp,r,πE q

rUpGqs ´ E
G„pηE

rUpGqs
ˇ

ˇ

` sup
UPU

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ

(5)
ď sup
f : f is L-Lipschitz

ˇ

ˇ E
G„ηp,r,πE

rfpGqs ´ E
G„ProjCpηp,r,πE q

rfpGqs
ˇ

ˇ

` sup
UPU

ˇ

ˇ E
G„ProjCpηp,r,πE q

rUpGqs ´ E
G„pηE

rUpGqs
ˇ

ˇ

` sup
UPU

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ

(6)
“ L ¨ w1pηp,r,π

E

,ProjCpηp,r,π
E

qq

` sup
UPU

ˇ

ˇ E
G„ProjCpηp,r,πE q

rUpGqs ´ E
G„pηE

rUpGqs
ˇ

ˇ

sup
UPU

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ,

where at (2) we have applied triangle inequality, at (3) we use the definition of Jπ
E

pU ; p, rq, and that of pJEpUq (Line
4 of CATY-UL), and we have added and subtracted a term, where operator ProjC is defined in Eq. (8). We remark that
distribution ηp,r,π

E

may have a support that grows exponentially in H , while both pηE and ProjCpηp,r,π
E

q are supported on

30

Learning Utilities from Demonstrations in MDPs

Y . Note that pηE and ProjCpηp,r,π
E

q are different distributions, since the former is the projection on Y of an estimate of
ηp,r,π

E

. At (4), we apply triangle inequality, at (5) we use the hypothesis that all utilities are L-Lipschitz U Ď UL, and
notice that UL is a subset of all L-Lipschitz functions f : r0, Hs Ñ r0, Hs, and at (6) we apply the duality formula for the
1-Wasserstein distance w1 (see Eq. (6.3) in Chapter 6 of Villani (2008)).

Concerning the case |U | “ 1, we apply, for all i P JNK, Lemma E.3 with probability δ{p2Nq and accuracy ϵ{p3Nq, and
Lemma E.5 with probability δ{p2Nq and accuracy ϵ{p3Nq, while we bound the 1-Wasserstein distance through Lemma
E.1, to obtain, through an application of the union bound, that:

P
tMiui,tπE,iui

´

sup
UPU

ˇ

ˇ

ˇ

ÿ

iPJNK

Cpi,ri,πE,ipUq ´
ÿ

iPJNK

pCipUq

ˇ

ˇ

ˇ
ď

NL
a

2Hϵ0 ` ϵ{3 `NHLϵ0 ` ϵ{3
¯

ě 1 ´ δ,

as long as, for all i P JNK:

τE,i ě rO
ˆ

N2H2 log N
δ

ϵ2

˙

,

τ i ě rO
ˆ

N2SAH4

ϵ2
log

SAHN

δϵ0

˙

.

By setting ϵ0 “ ϵ2

72HL2N2 , we obtain that:

NL
a

2Hϵ0 `NHLϵ0 “
ϵ

6
`

ϵ2

72LN
ď ϵ{3.

By putting this bound into the bound on τ i, we get the result.

When U is an arbitrary subset of UL, we apply, for all i P JNK, Lemma E.4 with probability δ{p2Nq and accuracy ϵ{p3Nq,
and Lemma E.13 with probability δ{p2Nq and accuracy ϵ{p3Nq, while we bound the 1-Wasserstein distance through
Lemma E.1, to obtain, through an application of the union bound, that:

P
tMiui,tπE,iui

´

sup
UPU

ˇ

ˇ

ˇ

ÿ

iPJNK

Cpi,ri,πE,ipUq ´
ÿ

iPJNK

pCipUq

ˇ

ˇ

ˇ
ď

NL
a

2Hϵ0 ` ϵ{3 `NHLϵ0 ` ϵ{3
¯

ě 1 ´ δ,

as long as, for all i P JNK:

τE,i ě rO
´N2H3

ϵ2ϵ0
log

HN

δϵ0

¯

,

τ i ě rO
´N2SAH5

ϵ2

´

S ` log
SAHN

δ

¯¯

.

Again, by setting ϵ0 “ ϵ2

72HL2N2 , we obtain that:

NL
a

2Hϵ0 `NHLϵ0 “
ϵ

6
`

ϵ2

72LN
ď ϵ{3.

By putting this bound into the bounds on τE,i and τ i, we get the result.

E.4.1. LEMMAS ON THE EXPERT’S RETURN DISTRIBUTION

Lemma E.1. Let the projection operator ProjC be defined as in Eq. (8), over set Y with discretization ϵ0. Then, for all
i P JNK, it holds that:

w1pηp
i,ri,πE,i ,ProjCpηp

i,ri,πE,iqq ď
a

2Hϵ0.

31

Learning Utilities from Demonstrations in MDPs

Proof. For the sake of simplicity, we omit index i P JNK, but the following derivation can be applied to all the N demon-
strations.

By applying Lemma 5.2 of Rowland et al. (2024), replacing term 1{p1 ´ γq with horizon H , we get:

w1pηp,r,π
E

,ProjCpηp,r,π
E

qq ď
?
Hℓ2pηp,r,π

E

,ProjCpηp,r,π
E

qq.

Similarly to the proof of Proposition 3 of Rowland et al. (2018), we can write:

ℓ22pηp,r,π
E

,ProjCpηp,r,π
E

qq
(1)
:“

ż

R
pFηp,r,πE pyq ´ FProjCpηp,r,πE q

pyqq2dy

(2)
“

ż H

0

pFηp,r,πE pyq ´ FProjCpηp,r,πE q
pyqq2dy

(3)
“

ÿ

jPJd´1K

ż yj`1

yj

pFηp,r,πE pyq ´ FProjCpηp,r,πE q
pyqq2dy

`

ż H

yd

pFηp,r,πE pyq ´ FProjCpηp,r,πE q
pyqq2dy

(4)
ď

ÿ

jPJd´1K

ż yj`1

yj

pFηp,r,πE pyq ´ FProjCpηp,r,πE q
pyqq2dy ` ϵ0

(5)
ď

ÿ

jPJd´1K

ż yj`1

yj

pFηp,r,πE pyj`1q ´ Fηp,r,πE pyjqq2dy ` ϵ0

“
ÿ

jPJd´1K

pyj`1 ´ yjqpFηp,r,πE pyj`1q ´ Fηp,r,πE pyjqq2 ` ϵ0

(6)
“ ϵ0

ÿ

jPJd´1K

pFηp,r,πE pyj`1q ´ Fηp,r,πE pyjqq2 ` ϵ0

(7)
ď ϵ0

´

ÿ

jPJd´1K

pFηp,r,πE pyj`1q ´ Fηp,r,πE pyjq
¯2

` ϵ0

(8)
“ ϵ0

`

Fηp,r,πE pydq ´ Fηp,r,πE py1q
˘2

` ϵ0

ď 2ϵ0,

where at (1) we have applied the definition of ℓ2 distance (Eq. (7)), at (2) we recognize that the two distribu-
tions ηp,r,π

E

,ProjCpηp,r,π
E

q are defined on r0, Hs, at (3) we use the additivity property of the integral, using notation
Y :“ t0, ϵ0, 2ϵ0, . . . , tH{ϵ0uϵ0u, d :“ |Y| “ tH{ϵ0u ` 1, y1 :“ 0, y2 :“ ϵ0, y3 :“ 2ϵ0, . . . , yd :“ tH{ϵ0uϵ0, (nota-
tion introduced in Section 5). At (4) we upper bound

şH

yd
pFηp,r,πE pyq ´ FProjCpηp,r,πE q

pyqq2dy ď
şH

yd
dy “ H ´ yd “

H ´ tH{ϵ0uϵ0 “ ϵ0pH{ϵ0 ´ tH{ϵ0uq ď ϵ0 since the difference of cumulative distribution functions is bounded by 1.
At (5), thanks to the definition of the projection operator ProjC (Eq. (8)), we notice that, for y P ryj , yj`1s, it holds
that FProjCpηp,r,πE q

pyq P rFηp,r,πE pyjq, Fηp,r,πE pyj`1qs, thus we can upper bound the integrand through the maximum,
constant, difference of cumulative distribution functions. At (6) we use the definition of set Y , i.e., an ϵ0-covering of the
r0, Hs interval, at (7) we use the Cauchy-Schwarz’s inequality

ř

jpxjq
2 ď p

ř

j xjq
2 for xj ě 0, and noticed that the

summands are always non-negative, at (8) we apply a telescoping argument.

The result follows by taking the square root of both sides.

Lemma E.2. Let i P JNK, and let f P r0, Hsd be an arbitrary d-dimensional vector. Denote by G1, G2, . . . , GτE,i
i.i.d.
„

ηp
i,ri,πE,i the random variables representing the returns of the τE,i trajectories inside dataset DE,i. Let pηE,i be the

random output of Algorithm 5 that depends on the random variables G1, G2, . . . , GτE,i . Then, it holds that:

EG1,G2,...,GτE,i„ηpi,ri,π
E,i

„

Ey„pηE,i

”

fpyq

ı

ȷ

“ Ey„ProjCpηpi,ri,π
E,i

q

”

fpyq

ı

.

32

Learning Utilities from Demonstrations in MDPs

Proof. We omit index i for simplicity, but the proof can be carried out for all i P JNK independently. To prove the
statement, we use the notation described in Appendix E.2 for the Dirac delta, to provide an explicit representation of both
the distribution ProjCpηp,r,π

E

q and the “random” distribution pηE .

We consider distribution ηp,r,π
E

supported on Z :“ tz1, z2, . . . , zMu Ď r0, Hs, while distributions ProjCpηp,r,π
E

q, pηE are
supported on set Y “ ty1, y2, . . . , ydu Ď r0, Hs.

W.r.t. distribution ProjCpηp,r,π
E

q, we can write:

ProjCpηp,r,π
E

q “ ProjC
´

ÿ

kPJMK

ηp,r,π
E

pzkqδzk

¯

(1)
“

ÿ

kPJMK

ηp,r,π
E

pzkqProjCpδzkq

(2)
“

ÿ

kPJMK

ηp,r,π
E

pzkq

´

δy11tzk ď y1u ` δyd1tzk ą ydu

`
ÿ

jPJd´1K

´yj`1 ´ zk
yj`1 ´ yj

δyj `
zk ´ yj
yj`1 ´ yj

δyj`1

¯

1tzk P pyj , yj`1su

¯

“ δy1
ÿ

kPJMK

ηp,r,π
E

pzkq

´

1tzk ď y1u `
y2 ´ zk
y2 ´ y1

1tzk P py1, y2su

¯

`
ÿ

jPt2,...,d´1u

δyj

´

ÿ

kPJMK

ηp,r,π
E

pzkq

´yj`1 ´ zk
yj`1 ´ yj

1tzk P pyi, yj`1su

`
zk ´ yj´1

yi ´ yj´1
1tzk P pyj´1, yisu

¯¯

` δyd
ÿ

kPJMK

ηp,r,π
E

pzkq

´

1tzk ą ydu `
zk ´ yd´1

yd ´ yd´1
1tzk P pyd´1, ydsu

¯

,

where at (1) we have applied the extension in Eq. (9) of the projection operator ProjC to finite mixtures of Dirac distribu-
tions, and at (2) we have applied its definition (Eq. (8)).

Concerning distribution pηE , based on Algorithm 5, we can write:

pηE “
δy1
τE

´

ÿ

tPJτEK

´

1tGt ď y1u `
y2 ´Gt
y2 ´ y1

1tGt P py1, y2su

¯¯

`
ÿ

jPt2,...,d´1u

δyj
τE

´

ÿ

tPJτEK

´yj`1 ´Gt
yj`1 ´ yj

1tGt P pyi, yj`1su

`
Gt ´ yj´1

yi ´ yj´1
1tGt P pyj´1, yisu

¯¯

`
δyd
τE

´

ÿ

tPJτEK

´

1tGt ą ydu `
Gt ´ yd´1

yd ´ yd´1
1tGt P pyd´1, ydsu

¯¯

.

Now, if we take the expectation of the random vector pηE w.r.t. ηp,r,π
E

, we get:

EG1,G2,...,GτE„ηp,r,πE

”

pηE
ı

“ EG1,G2,...,GτE„ηp,r,πE

„

δy1
τE

´

ÿ

tPJτEK

´

1tGt ď y1u `
y2 ´Gt
y2 ´ y1

1tGt P py1, y2su

¯¯

`
ÿ

jPt2,...,d´1u

δyj
τE

´

ÿ

tPJτEK

´yj`1 ´Gt
yj`1 ´ yj

1tGt P pyi, yj`1su

`
Gt ´ yj´1

yi ´ yj´1
1tGt P pyj´1, yisu

¯¯

33

Learning Utilities from Demonstrations in MDPs

`
δyd
τE

´

ÿ

tPJτEK

´

1tGt ą ydu `
Gt ´ yd´1

yd ´ yd´1
1tGt P pyd´1, ydsu

¯¯

ȷ

(3)
“ EG„ηp,r,πE

„

δy1

´

1tG ď y1u `
y2 ´G

y2 ´ y1
1tG P py1, y2su

¯

`
ÿ

jPt2,...,d´1u

δyj

´ yj`1 ´G

yj`1 ´ yj
1tG P pyi, yj`1su

`
G´ yj´1

yi ´ yj´1
1tG P pyj´1, yisu

¯

` δyd

´

1tG ą ydu `
G´ yd´1

yd ´ yd´1
1tG P pyd´1, ydsu

¯

ȷ

(4)
“ δy1

ÿ

kPJMK

ηp,r,π
E

pzkq

´

1tzk ď y1u `
y2 ´ zk
y2 ´ y1

1tzk P py1, y2su

¯

`
ÿ

jPt2,...,d´1u

δyj

´

ÿ

kPJMK

ηp,r,π
E

pzkq

´yj`1 ´ zk
yj`1 ´ yj

1tzk P pyi, yj`1su

`
zk ´ yj´1

yi ´ yj´1
1tzk P pyj´1, yisu

¯¯

` δyd
ÿ

kPJMK

ηp,r,π
E

pzkq

´

1tzk ą ydu `
zk ´ yd´1

yd ´ yd´1
1tzk P pyd´1, ydsu

¯

(5)
“ ProjCpηp,r,π

E

q,

where at (3) we use the fact that G1, G2, . . . , GτE are independent and identically distributed, at (4) we apply the linearity
of the expectation, we notice that δyj does not depend on G for all j P JdK, and we notice that, for any y P Y , it holds that
EG„ηp,r,πE

“

1tG ď yu
‰

“ ηp,r,π
E

pG ď yq “
ř

kPJMK η
p,r,πE pzkq1tzk ď yu, where we have abused notation by writing

ηp,r,π
E

pG ď yq to mean the probability, under distribution ηp,r,π
E

, that event tG ď yu happens. Moreover, similarly, we
notice that, for any y, y1 P Y , it holds that EG„ηp,r,πE

“

G ¨1tG P ry, y1su
‰

“
ř

kPJMK zkη
p,r,πE pzkq1tzk P ry, y1su. At (5)

we simply recognize ProjCpηp,r,π
E

q using the previous expression.

This concludes the proof because the equality of the Dirac delta representations means that the expectations of any function
w.r.t. these two distributions coincide.

Lemma E.3. Let i P JNK and let ϵ, δ P p0, 1q. If |U | “ 1, then, with probability at least 1 ´ δ, we have:

sup
UPU

ˇ

ˇ

ˇ E
G„ProjCpηpi,ri,π

E,i
q

rUpGqs ´ E
G„pηE,i

rUpGqs

ˇ

ˇ

ˇ
ď ϵ,

as long as:

τE ě c
H2 log 2

δ

ϵ2
,

where c is some positive constant.

Proof. Let U be the only function inside U . Let us omit index i for simplicity. Then, we can write:
ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
G„ProjCpηp,r,πE q

rUpGqs

ˇ

ˇ

ˇ

(1)
“

ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
ηp,r,πE

”

E
G„pηE

rUpGqs

ı
ˇ

ˇ

ˇ

(2)
ď cH

d

log 2
δ

τE
,

where at (1) we have applied Lemma E.2, and at (2) we have applied the Hoeffding’s inequality noticing that function U is
bounded in r0, Hs, and denoting with c some positive constant.

34

Learning Utilities from Demonstrations in MDPs

By imposing:

cH

d

log 2
δ

τE
ď ϵ,

and solving w.r.t. τE , we get the result.

Lemma E.4. Let i P JNK and let ϵ, δ P p0, 1q. Then, with probability at least 1 ´ δ, we have:

sup
UPU

ˇ

ˇ

ˇ E
G„ProjCpηpi,ri,π

E,i
q

rUpGqs ´ E
G„pηE,i

rUpGqs

ˇ

ˇ

ˇ
ď ϵ,

as long as:

τE ě rO
´ H3

ϵ2ϵ0
log

H

δϵ0

¯

.

Proof. Again, let us omit index i for simplicity. First, for all possible functions U P U , we denote by U P UL the function
in UL that takes on the values that the function U assigns to the points of set Y . This permits us to write:

sup
UPU

ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
G„ProjCpηp,r,πE q

rUpGqs

ˇ

ˇ

ˇ

“ sup
UPUL

ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
G„ProjCpηp,r,πE q

rUpGqs

ˇ

ˇ

ˇ

(1)
ď sup
UPr0,Hsd

ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
G„ProjCpηp,r,πE q

rUpGqs

ˇ

ˇ

ˇ

(2)
“ sup
UPr0,Hsd

ˇ

ˇ

ˇ E
G„pηE

rUpGqs ´ E
ηp,r,πE

”

E
G„pηE

rUpGqs

ı
ˇ

ˇ

ˇ
,

where at (1) we upper bound by considering all the possible vectors U P r0, Hsd, and at (2) we apply Lemma E.2.

Now, similarly to the proof of Lemma 7.2 in Agarwal et al. (2021), we construct an ϵ1-covering of set r0, Hsd, call it Nϵ1 ,
with |Nϵ1 | ď p1` 2H

?
d{ϵ1qd such that, for all f P r0, Hsd, there exists f 1 P Nϵ1 for which }f ´ f 1}2 ď ϵ1. By applying a

union bound over all f 1 P Nϵ1 and Lemma E.3, we have that, with probability at least 1 ´ δ, for all f 1 P Nϵ1 , it holds that:

ˇ

ˇ

ˇ E
G„pηE

rf 1pGqs ´ E
ηp,r,πE

”

E
G„pηE

rf 1pGqs

ıˇ

ˇ

ˇ
ď cH

d

d log 2p1`2H
?
d{ϵ1q

δ

τE
. (16)

Next, for any f P r0, Hsd, denote its closest points (in 2-norm) from Nϵ1 as f 1. Then, we have:
ˇ

ˇ

ˇ E
G„pηE

rfpGqs ´ E
ηp,r,πE

”

E
G„pηE

rfpGqs

ı
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ E
G„pηE

rfpGqs ´ E
ηp,r,πE

”

E
G„pηE

rfpGqs

ı

˘

´

E
G„pηE

rf 1pGqs ´ E
ηp,r,πE

”

E
G„pηE

rf 1pGqs

ı¯
ˇ

ˇ

ˇ

(3)
ď

ˇ

ˇ

ˇ E
G„pηE

rf 1pGqs ´ E
ηp,r,πE

”

E
G„pηE

rf 1pGqs

ı
ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ E
G„pηE

rfpGq ´ f 1pGqs

ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ E
ηp,r,πE

”

E
G„pηE

rfpGq ´ f 1pGqs

ı
ˇ

ˇ

ˇ

(4)
ď cH

d

d log 2p1`2H
?
d{ϵ1q

δ

τE
` 2ϵ1

(5)
ď c1H

d

d log HdτE

δ

τE

35

Learning Utilities from Demonstrations in MDPs

where at (3) we apply triangle inequality, at (4) we apply the result in Eq. (16), and the fact that, by definition of ϵ1-covering,
}f ´ f 1}2 ď ϵ1 entails that |fpyq ´ fpy1q| ď ϵ1 for all y P Y; at (5) we set ϵ1 “ 1{τE , and we simplify.

The result follows by upper bounding d ď H{ϵ0 ` 1, and then by setting:

c2H

d

H log HτE

δϵ0

ϵ0τE
ď ϵ, (17)

and solving w.r.t. τE , and noticing that for all τE greater than some constant, we can get rid of the logarithmic terms in
τE .

E.4.2. LEMMAS ON THE OPTIMAL PERFORMANCE FOR SINGLE UTILITY

In this section, we will omit index i P JNK since the following derivations can be carried out for each i.

We denote the arbitrary MDP in tMiui as M “ pS,A, H, s0, p, rq, and its analogous with discretized reward r, defined
at all ps, a, hq P S ˆ A ˆ JHK as rhps, aq :“ ΠRrrhps, aqs, as M :“ pS,A, H, s0, p, rq. We denote the analogous MDPs

with empirical transition model pp as xM “ pS,A, H, s0, pp, rq and xM :“ pS,A, H, s0, pp, rq.

Given any utility U P UL, we denote the corresponding RS-MDPs, respectively, as MU ,MU , xMU ,
xMU . Concerning the

discretized RS-MDPs MU and xMU , we denote the corresponding enlarged state space MDPs, respectively, as ErMU s “

ptS ˆYhuh,A, H, ps0, 0q, p, rq and Er
xMU s “ ptS ˆYhuh,A, H, ps0, 0q,pp, rq, where we decided to define such enlarged

state space MDPs using the state space tS ˆ Yhuh considered by Algorithm 4 (PLANNING) instead of, respectively,
tS ˆ Gp,rh uh and tS ˆ G pp,r

h uh. Thus, the transition models p and pp, from any h P JHK and ps, y, aq P S ˆ Yh ˆ A,
assign to the next state ps1, y1q P S ˆ Yh`1 the probability: phps1, y1|s, y, aq :“ phps1|s, aq1ty1 “ y ` rhps, aqu and
pphps1, y1|s, y, aq :“ pphps1|s, aq1ty1 “ y ` rhps, aqu. Moreover, the reward function r, in any h P JHK and ps, y, aq P

S ˆ Yh ˆ A, is rhps, y, aq “ 0 if h ă H , and rhps, y, aq “ Upy ` rhps, aqq if h “ H .

We will make extensive use of notation for V - and Q- functions introduced in Appendix B.

We are now ready to proceed with the analysis. In general, the analysis shares similarities to that of Theorem 3 of Wu &
Xu (2023), but we use results also from Azar et al. (2013) to obtain tighter bounds.

Lemma E.5. Let ϵ, δ P p0, 1q. For any fixed L-Lipschitz utility function U P UL, it suffices to execute CATY-UL with:

τ ď rO
´SAH4

ϵ2
log

SAH

δϵ0

¯

,

to obtain
ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ ď HLϵ0 ` ϵ w.p. 1 ´ δ.

Proof. For an arbitrary utility U P UL, we can write:

|J˚pU ; p, rq ´ pJ˚pUq|
(1)
“ |J˚pU ; p, rq ´ pJ˚pUq˘J˚pp, rq|

(2)
ď |J˚pU ; p, rq ´ J˚pp, rq| ` |J˚pp, rq ´ pJ˚pUq|

(3)
“ |J˚pU ; p, rq ´ J˚pp, rq| ` |J˚pp, rq ´ J˚ppp, rq|

(4)
ď HLϵ0 ` |J˚pp, rq ´ J˚ppp, rq|

“ HLϵ0 ` |V ˚
1 ps0, 0; p, rq ´ V ˚

1 ps0, 0;pp, rq|

ď HLϵ0 ` max
hPJHK,ps,y,aqPSˆYhˆA

|Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq|

(5)
ď HLϵ0 ` ϵ1,

where at (1) we add and subtract the optimal expected utility in the enlarged MDP ErMU s considered by Algorithm 4,
but with the true transition model p. At (2) we apply triangle inequality, at (3) we recognize that the estimate pJ˚pUq used

36

Learning Utilities from Demonstrations in MDPs

in CATY-UL and outputted by PLANNING (Algorithm 4) is the optimal expected utility for the discretized problem with
estimated dynamics pp, at (4) we use Proposition 3 of Wu & Xu (2023), since U is L-Lipschitz, and at (5) we apply Lemma
E.6 to bound the distance between Q-functions.

By setting:

c

d

H3 log 4SAHd
δ

n
loooooooooomoooooooooon

ďϵ{3

` cH2

ˆ

log 16SAHd
δ

n

˙3{4

looooooooooooomooooooooooooon

ďϵ{3

` cH3 log
16SAHd

δ

n
loooooooomoooooooon

ďϵ{3

ď ϵ,

and solving w.r.t. ϵ:
$

’

’

&

’

’

%

n ě c1H
3 log 4SAHd

δ

ϵ2

n ě c2H
8{3 log 16SAHd

δ

ϵ4{3

n ě c3H3 log 16SAHd
δ

ϵ

.

Taking the largest bound, we get:

n ě c
H3 log 16SAHd

δ

ϵ2
,

for some positive constant c. Since d ď H{ϵ0 ` 1, we can write:

τ ě c1
SAH4 log c2SAH

δϵ0

ϵ2
,

for some positive constants c1, c2, where we used that τ “ SAHn.

The proof of the following lemma is organized in many lemmas, and is based on the proof of Theorem 1 of Azar et al.
(2013).

Lemma E.6. For any δ P p0, 1q, we have:

max
hPJHK,ps,y,aqPSˆYhˆA

|Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq| ď ϵ1,

w.p. at least 1 ´ δ, where ϵ1 is defined as:

ϵ1 :“ c

d

H3 log 4SAHd
δ

n
` cH2

ˆ

log 16SAHd
δ

n

˙3{4

` cH3 log
16SAHd

δ

n
,

for some positive constant c.

Proof. We upper bound one side, and then the other. For all the h P JHK, ps, y, aq P S ˆ Yh ˆ A, it holds that:

Q˚
hps, a, y; p, rq ´Q˚

hps, y, a;pp, rq

(1)
ď E

pp,r,ψ˚

„ H
ÿ

h1“h

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

(2)
ď E

pp,r,ψ˚

„ H
ÿ

h1“h

c

d

c1Vs1„pph1 p¨|sh1 ,ah1 qrV ψ
˚

h1`1ps1, yh1`1;pp, rqs

n
` b2

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

37

Learning Utilities from Demonstrations in MDPs

“ c

c

c1
n

E
pp,r,ψ˚

„ H
ÿ

h1“h

b

Vs1„pph1 p¨|sh1 ,ah1 qrV ψ
˚

h1`1ps1, yh1`1;pp, rqs

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

`Hb2

(3)
ď c

c

c1
n

?
H3 `Hb2

“ c

d

H3 log 4SAHY
δ

n
` c1H2

ˆ

log 16SAHY
δ

n

˙3{4

` c2H3 log
16SAHY

δ

n

“: ϵ1,

where at (1) we have applied Lemma E.7, at (2) we have applied Lemma E.10 with δ{2 of probability, at (3) we have
applied Lemma E.12.

The proof for the other side of inequality is completely analogous, and it holds w.p. 1 ´ δ{2. The result follows through
the application of a union bound.

Lemma E.7. For any tuple h P JHK, ps, y, aq P S ˆ Yh ˆ A, it holds that:

Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq ď E
pp,r,ψ˚

„ H
ÿ

h1“h

ÿ

s1PS
´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq
ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

,

Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq ě E
pp,r, pψ˚

„ H
ÿ

h1“h

ÿ

s1PS
´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq
ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

,

where ψ˚, pψ˚ are the optimal policies respectively in problems p, r and pp, r.

Proof. For any h P JHK, ps, y, aq P S ˆ Yh ˆ A, we can write:

Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq

“ Qψ
˚

h ps, y, a; p, rq ´Q
pψ˚

h ps, y, a;pp, rq

(1)
ď Qψ

˚

h ps, y, a; p, rq ´Qψ
˚

h ps, y, a;pp, rq

(2)
“ rhps, y, aq `

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´

´

rhps, y, aq `
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV ψ
˚

h`1ps1, y1;pp, rq
¯

(3)
“

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV ψ
˚

h`1ps1, y1;pp, rq

˘
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

“
ÿ

ps1,y1qPSˆYh`1

´

phps1, y1|s, y, aq ´ pphps1, y1|s, y, aq

¯

V ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1, y1;pp, rq
¯

38

Learning Utilities from Demonstrations in MDPs

(4)
“

ÿ

ps1,y1qPSˆYh`1

´

phps1|s, aq1ty ` rhps, aq “ y1u

´ pphps1|s, aq1ty ` rhps, aq “ y1u

¯

V ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1, y1;pp, rq
¯

(5)
“

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

ÿ

y1PYh`1

1ty ` rhps, aq “ y1uV ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1;pp, rq
¯

(6)
“

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1, y1;pp, rq
¯

“
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

¨

´

Qψ
˚

h`1ps1, y1, ψ˚
h`1ps1, y1q; p, rq ´Qψ

˚

h`1ps1, y1, ψ˚
h`1ps1, y1q;pp, rq

¯

,

where at (1) we have used that pψ˚ is the optimal policy in pp, r, and thus Qψ
˚

h ps, a;pp, rq ď Q
pψ˚

h ps, a;pp, rq. At (2) we apply
the Bellman equation, at (3) we add and subtract the expected under pp optimal value function under p, at (4) we use the
definition of transition model p,pp, at (5) we split the summations, at (6) we recognize that the indicator function takes on
value 1 only when y ` rhps, aq “ y1. Finally, we unfold the recursion to obtain the result.

Concerning the second equation, for any h P JHK, ps, y, aq P S ˆ Yh ˆ A, we can write:

Q˚
hps, y, a; p, rq ´Q˚

hps, y, a;pp, rq

“ Qψ
˚

h ps, y, a; p, rq ´Q
pψ˚

h ps, y, a;pp, rq

(7)
“ rhps, y, aq `

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´

´

rhps, y, aq `
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV
pψ˚

h`1ps1, y1;pp, rq
¯

(8)
“

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV
pψ˚

h`1ps1, y1;pp, rq

˘
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

“
ÿ

ps1,y1qPSˆYh`1

´

phps1, y1|s, y, aq ´ pphps1, y1|s, y, aq

¯

V ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

“
ÿ

ps1,y1qPSˆYh`1

´

phps1|s, aq1ty ` rhps, aq “ y1u

´ pphps1|s, aq1ty ` rhps, aq “ y1u

¯

V ψ
˚

h`1ps1, y1; p, rq

39

Learning Utilities from Demonstrations in MDPs

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

“
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

ÿ

y1PYh`1

1ty ` rhps, aq “ y1uV ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

“
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

(9)
ě

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

¨

´

Qψ
˚

h`1ps1, y1, pψ˚
h`1ps1, y1q; p, rq ´Q

pψ˚

h`1ps1, y1, pψ˚
h`1ps1, y1q;pp, rq

¯

,

where at (7) we have applied the Bellman equation, at (8) we have added and subtracted a term, and at (9) we have used
that V ψ

˚

h`1ps1, y1; p, rq “ Qψ
˚

h`1ps1, y1, ψ˚
h`1ps1, y1q; p, rq ě Qψ

˚

h`1ps1, y1, pψ˚
h`1ps1, y1q; p, rq, since ψ˚

h`1ps1, y1q is the optimal
action under p, r, and so, it cannot be worse than action pψ˚

h`1ps1, y1q. By unfolding the recursion, we obtain the result.

Lemma E.8. For any δ P p0, 1q, w.p. at least 1 ´ δ, it holds that:

max
hPJHK,ps,yqPSˆYh

|V ˚
h ps, y; p, rq ´ V ψ

˚

h ps, y;pp, rq| ď cH2

d

log 2SAHd
δ

n
,

max
hPJHK,ps,yqPSˆYh

|V ˚
h ps, y; p, rq ´ V ˚

h ps, y;pp, rq| ď cH2

d

log 2SAHd
δ

n
.

where c is some positive constant.

Proof. First, we observe that, for any h P JHK, ps, yq P S ˆ Yh, by following passages similar to those in the proof of
Lemma E.7:

|V ˚
h ps, y; p, rq ´ V ψ

˚

h ps, y;pp, rq|

“ |Qψ
˚

h ps, y, ψ˚
hps, yq; p, rq ´Qψ

˚

h ps, y, ψ˚
hps, yq;pp, rq|

“

ˇ

ˇ

ˇ
rhps, y, ψ˚

hps, yqq `
ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, ψ˚
hps, yqqV ψ

˚

h`1ps1, y1; p, rq

´

´

rhps, y, ψ˚
hps, yqq `

ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, ψ˚
hps, yqqV ψ

˚

h`1ps1, y1;pp, rq
¯ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, ψ˚
hps, yqqV ψ

˚

h`1ps1, y1; p, rq

´
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, ψ˚
hps, yqqV ψ

˚

h`1ps1, y1;pp, rq

˘
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, ψ˚
hps, yqqV ψ

˚

h`1ps1, y1; p, rq
ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

´

phps1, y1|s, y, ψ˚
hps, yqq ´ pphps1, y1|s, y, ψ˚

hps, yqq

¯

V ψ
˚

h`1ps1, y1; p, rq

40

Learning Utilities from Demonstrations in MDPs

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, ψ˚
hps, yqq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1, y1;pp, rq
¯

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

s1PS

´

phps1|s, ψ˚
hps, yqq ´ pphps1|s, ψ˚

hps, yqq

¯

V ψ
˚

h`1ps1, y ` rhps, ψ˚
hps, yqq; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, ψ˚
hps, yqq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V ψ
˚

h`1ps1, y1;pp, rq
¯

ˇ

ˇ

ˇ

“ . . .

“

ˇ

ˇ

ˇ

ˇ

E
pp,r,ψ˚

„ H
ÿ

h1“h

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ
sh “ s, yh “ y

ȷ
ˇ

ˇ

ˇ

ˇ

(1)
ď E

pp,r,ψ˚

„ H
ÿ

h1“h

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

,

where at (1) we have brought the absolute value inside the expectation.

Similarly, for the other term, for any h P JHK, ps, yq P S ˆ Yh, we can write:

|V ˚
h ps, y; p, rq ´ V ˚

h ps, y;pp, rq|

“ |V ψ
˚

h ps, y; p, rq ´ V
pψ˚

h ps, y;pp, rq|

(2)
“ |max

aPA
Qψ

˚

h ps, y, a; p, rq ´ max
aPA

Q
pψ˚

h ps, y, a;pp, rq|

(3)
ď max

aPA
|Qψ

˚

h ps, y, a; p, rq ´Q
pψ˚

h ps, y, a;pp, rq|

“ max
aPA

ˇ

ˇ

ˇ
rhps, y, aq `

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´

´

rhps, y, aq `
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV
pψ˚

h`1ps1, y1;pp, rq
¯

ˇ

ˇ

ˇ

“ max
aPA

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

phps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq

´
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV
pψ˚

h`1ps1, y1;pp, rq

˘
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aqV ψ
˚

h`1ps1, y1; p, rq
ˇ

ˇ

ˇ

“ max
aPA

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

´

phps1, y1|s, y, aq ´ pphps1, y1|s, y, aq

¯

V ψ
˚

h`1ps1, y1; p, rq

`
ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯ˇ

ˇ

ˇ

(4)
ď

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

´

phps1, y1|s, y, aq ´ pphps1, y1|s, y, aq

¯

V ψ
˚

h`1ps1, y1; p, rq
ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` ΠRrrhps, aqs; p, rq
ˇ

ˇ

ˇ

41

Learning Utilities from Demonstrations in MDPs

`

ˇ

ˇ

ˇ

ÿ

ps1,y1qPSˆYh`1

pphps1, y1|s, y, aq

´

V ψ
˚

h`1ps1, y1; p, rq ´ V
pψ˚

h`1ps1, y1;pp, rq
¯

ˇ

ˇ

ˇ

ď . . .

(5)
ď E

pp,r,ψ

„ H
ÿ

h1“h

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

,

where at (2) we have applied the Bellman optimality equation, at (3) we have upper bounded the difference of maxima
with the maximum of the difference, at (4) we denote the maximal action by a, and we apply triangle inequality; at (5) we
have unfolded the recursion and called ψ the resulting policy.

Now, for some ϵ P p0, 1q, let us denote by E the event defined as:

E :“

"

@h P JHK, ps, y, aq P S ˆ Yh ˆ A :

ˇ

ˇ

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq
ˇ

ˇ ď ϵ

*

We can write:

PpEAq “ P
ˆ

Dh P JHK, ps, y, aq P S ˆ Yh ˆ A :

ˇ

ˇ

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq
ˇ

ˇ ą ϵ

˙

(6)
ď

ÿ

hPJHK,ps,y,aqPSˆYhˆA

P
ˆ

ˇ

ˇ

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ψ
˚

h`1ps1, y ` rhps, aq; p, rq
ˇ

ˇ ą ϵ

˙

(7)
ď

ÿ

hPJHK,ps,y,aqPSˆYhˆA

2e
´2nϵ2

H2

“ 2SAHde
´2nϵ2

H2 ,

where at (6) we have applied a union bound over all tuples h P JHK, ps, y, aq P S ˆ Yh ˆ A, and at (7) we have applied
Hoeffding’s inequality, by recalling that we collect n samples (see Algorithm 3) for any ps, a, hq P S ˆ A ˆ JHK triple,
and that vector V ψ

˚

h`1p¨, y ` rhps, aq; p, rq bounded by r0, Hs is independent of the randomness in pphp¨|s, aq. It should be
remarked that our collection of samples depends only on SˆAˆJHK, and not on Yh; such term enters the expression only
through the union bound, because we have to apply Hoeffding’s inequality for all the value functions considered, which
are as many as |Yh| . Note that we use d “ |YH`1| since it is the largest |Yh| among h P JH ` 1K.

This probability is at most δ if:

2SAHde
´2nϵ2

H2 ď δ ðñ ϵ ě H

d

log 2SAHd
δ

2n
.

By plugging into the previous expressions, we obtain that, w.p. 1 ´ δ:

|V ˚
h ps, y; p, rq ´ V ψ

˚

h ps, y;pp, rq|

ď E
pp,r,ψ˚

„ H
ÿ

h1“h

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ

ˇ

42

Learning Utilities from Demonstrations in MDPs
ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

ď E
pp,r,ψ˚

„ H
ÿ

h1“h

H

d

log 2SAHd
δ

2n

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

“ H2

d

log 2SAHd
δ

2n
,

and also:

|V ˚
h ps, y; p, rq ´ V ˚

h ps, y;pp, rq|

ď E
pp,r,ψ

„ H
ÿ

h1“h

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

ď E
pp,r,ψ

„ H
ÿ

h1“h

H

d

log 2SAHd
δ

2n

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y

ȷ

“ H2

d

log 2SAHd
δ

2n
.

This concludes the proof.

Lemma E.9. For any δ P p0, 1q, w.p. at least 1 ´ δ, it holds that, for all h P JHK, ps, y, aq P S ˆ Yh ˆ A:
b

Vs1„php¨|s,aqrV ˚
h`1ps1, y ` rhps, aq; p, rqs ď

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y ` rhps, aq;pp, rqs ` b1,
b

Vs1„php¨|s,aqrV ˚
h`1ps1, y ` rhps, aq; p, rqs ď

b

Vs1„pphp¨|s,aqrV ˚
h`1ps1, y ` rhps, aq;pp, rqs ` b1,

where b1 is defined as:

b1 :“ cH

ˆ

log 4SAHY
δ

n

˙1{4

` c1H2

d

log 4SAHY
δ

n
,

for some positive constants c, c1.

Proof. In the following, we will use y as a label for y` rhps, aq. We begin with the first expression. We can write, for any
h P JHK, ps, y, aq P S ˆ Yh ˆ A:

Vs1„php¨|s,aqrV ˚
h`1ps1, y; p, rqs

“ Vs1„php¨|s,aqrV ˚
h`1ps1, y; p, rqs˘Vs1„pphp¨|s,aqrV ˚

h`1ps1, y; p, rqs

“

´

Vs1„php¨|s,aqrV ˚
h`1ps1, y; p, rqs ´ Vs1„pphp¨|s,aqrV ˚

h`1ps1, y; p, rqs

¯

` Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rqs

(1)
“

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

43

Learning Utilities from Demonstrations in MDPs

´

”´

ÿ

s1PS
phps1|s, aqV ˚

h`1ps1, y; p, rq
¯2

´

´

ÿ

s1PS
pphps1|s, aqV ˚

h`1ps1, y; p, rq
¯2ı

` Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq˘V ψ

˚

h`1ps1, y;pp, rqs

(2)
“

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

´

”´

ÿ

s1PS
phps1|s, aqV ˚

h`1ps1, y; p, rq
¯2

´

´

ÿ

s1PS
pphps1|s, aqV ˚

h`1ps1, y; p, rq
¯2ı

` Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs

`Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

`2Covs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rq,

V ψ
˚

h`1ps1, y;pp, rqs

(3)
ď

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

´

”´

ÿ

s1PS
phps1|s, aqV ˚

h`1ps1, y; p, rq
¯2

´

´

ÿ

s1PS
pphps1|s, aqV ˚

h`1ps1, y; p, rq
¯2ı

` Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs

` Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

` 2
´

Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs

¨Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

¯1{2

“
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

´

”´

ÿ

s1PS
phps1|s, aqV ˚

h`1ps1, y; p, rq
¯2

´

´

ÿ

s1PS
pphps1|s, aqV ˚

h`1ps1, y; p, rq
¯2ı

`

”

b

Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs

`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

,

where at (1) we have used the common formula for the variance VrXs “ ErX2s ´ ErXs2, at (2) we have decomposed the
variance of a sum as VrX ` Y s “ VrXs ` VrY s ` 2CovrX,Y s, at (3) we have applied Cauchy-Schwarz’s inequality to
bound the covariance with the product of the variances |CovrX,Y s| ď

a

VrXsVrY s.

Next, observe that:

Vs1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs

(4)
“ Es1„pphp¨|s,aqrpV ˚

h`1ps1, y; p, rq ´ V ψ
˚

h`1ps1, y;pp, rqq2s

44

Learning Utilities from Demonstrations in MDPs

´ Es1„pphp¨|s,aqrV ˚
h`1ps1, y; p, rq ´ V ψ

˚

h`1ps1, y;pp, rqs2

(5)
ď Es1„pphp¨|s,aqrpV ˚

h`1ps1, y; p, rq ´ V ψ
˚

h`1ps1, y;pp, rqq2s

(6)
ď }pV ˚

h`1p¨, y; p, rq ´ V ψ
˚

h`1p¨, y;pp, rqq2}8

“ }V ˚
h`1p¨, y; p, rq ´ V ψ

˚

h`1p¨, y;pp, rq}28,

where at (4) we have used VrXs “ ErX2s ´ ErXs2, at (5) we recognize that the second term is a square, thus always
positive, and we remove it, and at (6) we have upper bounded the expected value, an average, through the infinity norm.

Thanks to this expression, we can continue to upper bound the previous term as:

Vs1„php¨|s,aqrV ˚
h`1ps1, y; p, rqs

ď
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

´

”´

ÿ

s1PS
phps1|s, aqV ˚

h`1ps1, y; p, rq
¯2

´

´

ÿ

s1PS
pphps1|s, aqV ˚

h`1ps1, y; p, rq
¯2ı

`

”

}V ˚
h`1p¨, y; p, rq ´ V ψ

˚

h`1p¨, y;pp, rq}8

`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

(7)
“

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

´

”´

ÿ

s1PS
pphps1|s, aq ´ pphps1|s, aqqV ˚

h`1ps1, y; p, rq
¯

¨

´

ÿ

s1PS
pphps1|s, aq ` pphps1|s, aqqV ˚

h`1ps1, y; p, rq
¯ı

`

”

}V ˚
h`1p¨, y; p, rq ´ V ψ

˚

h`1p¨, y;pp, rq}8

`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

(8)
ď

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

´

”´

ÿ

s1PS
pphps1|s, aq ´ pphps1|s, aqqV ˚

h`1ps1, y; p, rq
¯

¨

´

ÿ

s1PS
pphps1|s, aq ` pphps1|s, aqqV ˚

h`1ps1, y; p, rq
¯ı

`

”

cH2

d

log 4SAHd
δ

n
`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

(9)
ď

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

` 2H
ˇ

ˇ

ˇ

ÿ

s1PS
pphps1|s, aq ´ pphps1|s, aqqV ˚

h`1ps1, y; p, rq
ˇ

ˇ

ˇ

`

”

cH2

d

log 4SAHd
δ

n
`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

(10)
ď

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
2

h`1ps1, y; p, rq

45

Learning Utilities from Demonstrations in MDPs

` 2cH2

d

log 4SAHd
δ

n

`

”

cH2

d

log 4SAHd
δ

n
`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

(11)
ď cH2

d

log 4SAHd
δ

n
` 2cH2

d

log 4SAHd
δ

n

`

”

cH2

d

log 4SAHd
δ

n
`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

“ 3cH2

d

log 4SAHd
δ

n

`

”

cH2

d

log 4SAHd
δ

n
`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2

,

where at (7) we have applied the common formula x2 ´ y2 “ px ´ yqpx ` yq, at (8) we have applied Lemma E.8 using
probability δ1 “ δ{2, and noticing that, for how the discretized MDP is constructed, we have that y P Y , at (9) we have
upper bounded the second term with the absolute value and recognized that the value function does not exceed H and the
sum of probabilities is no greater than 2; at (10) we recognize that, in the proof of Lemma E.8, we had already bounded
that term, thus, under the event E which holds w.p. 1 ´ δ{2, we have that bound; at (11) we have applied Hoeffding’s
inequality to all tuples h P JHK, ps, y, aq P S ˆ Yh ˆ A with probability δ{p2SAHdq, and noticed that the square of the
value function does not exceed H2.

Observe that the previous formula holds for all h P JHK, ps, y, aq P S ˆ Yh ˆ A w.p. 1 ´ δ (by summing the two δ{2
through a union bound). By taking the square root of both sides, we obtain:

b

Vs1„php¨|s,aqrV ˚
h`1ps1, y; p, rqs

ď

´

3cH2

d

log 4SAHd
δ

n
`

”

cH2

d

log 4SAHd
δ

n

`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

ı2¯1{2

(12)
ď c1H

4

d

log 4SAHY
δ

n
` cH2

d

log 4SAHY
δ

n
loooooooooooooooooooooooomoooooooooooooooooooooooon

“:b1

`

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

“

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs ` b1,

where at (12) we have used the fact that
?
a` b ď

?
a`

?
b.

To prove the second formula, the passages are basically the same, the only difference is that, at passage (1), we sum and
subtract V

pψ˚

h`1ps1, y;pp, rq instead of V ψ
˚

h`1ps1, y;pp, rq, and that at passage (8) we apply the other expression in Lemma E.8.
This concludes the proof.

Lemma E.10. For any δ P p0, 1q, define:

c1 :“ log
2SAHd

δ
,

b2 :“ cH

ˆ

log 8SAHd
δ

n

˙3{4

` c1H2 log
8SAHd

δ

n
,

46

Learning Utilities from Demonstrations in MDPs

for some positive constants c, c1. Then, w.p. at least 1 ´ δ, we have, for all h P JHK, ps, y, aq P S ˆ Yh ˆ A:
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
h`1ps1, y ` rhps, aq; p, rq

ď c2

d

c1Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y ` rhps, aq;pp, rqs

n
` b2,

ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
h`1ps1, y ` rhps, aq; p, rq

ě ´c3

d

c1Vs1„pphp¨|s,aqrV ˚
h`1ps1, y ` rhps, aq;pp, rqs

n
` b2,

for some positive constants c2, c3.

Proof. Again, we will write y instead of y` rhps, aq for simplicity. For all h P JHK, ps, y, aq P S ˆYh ˆA, we can write:
ÿ

s1PS

´

phps1|s, aq ´ pphps1|s, aq

¯

V ˚
h`1ps1, y; p, rq

(1)
ď

d

2Vs1„php¨|s,aqrV ˚
h`1ps1, y; p, rqs log 2SAHd

δ

n
`

2H log 2SAHd
δ

3n

(2)
ď

d

2 log 2SAHd
δ

n

´

b

Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, Rqs ` b1

¯

`
2H log 2SAHd

δ

3n

(3)
“ c

d

c1Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

n
` c1

c

c1
n
H

ˆ

log 8SAHd
δ

n

˙1{4

` c2

c

c1
n
H2

d

log 8SAHd
δ

n
` c3H

c1
n

ď c

d

c1Vs1„pphp¨|s,aqrV ψ
˚

h`1ps1, y;pp, rqs

n
` c1H

ˆ

log 8SAHd
δ

n

˙3{4

` c4H2 log
8SAHd

δ

n
,

where at (1) we have applied the Bernstein’s inequality using δ{p2SAHdq as probability for all h P JHK, ps, y, aq P

S ˆ Yh ˆ A, and at (2) we have applied Lemma E.9 with δ{2 of probability, and a union bound to guarantee the event to
hold w.p. 1 ´ δ, at (3) we use the definition of c1 :“ log 2SAHd

δ , and denoted by c, c1, c2, c3 some positive constants.

For the other expression, an analogous derivation can be carried out. In particular, we use the other side of the Bernstein’s
inequality, and the other expression in Lemma E.9.

Lemma E.11. For any h P JHK, ps, y, aq P S ˆ Yh ˆ A and deterministic policy ψ, let Σψh ps, y, aq be defined as:

Σψh ps, y, aq :“ E
p,r,ψ

”
ˇ

ˇ

ˇ

H
ÿ

h1“h

rh1 psh1 , yh1 , ah1 q ´Qψh ps, y, a; p, rq
ˇ

ˇ

ˇ

2

| sh “ s, yh “ y, ah “ a
ı

.

Then, function Σ satisfies the Bellman equation, i.e., for any h P JHK, ps, y, aq P S ˆ Yh ˆ A and deterministic policy ψ:

Σψh ps, y, aq “Vs1„php¨|s,aqrV ψh`1ps1, y ` rhps, aq; p, rqs

` E
s1„php¨|s,aq

rΣψh`1ps1, y ` rhps, aq, ψh`1ps1, y ` rhps, aqqqs.

Proof. For all h P JHK, ps, y, aq P S ˆ Yh ˆ A and deterministic policy ψ, we can write (we denote a1 :“ ψh`1ps1, y `

rhps, aqq and y :“ y ` rhps, aq for notational simplicity, and we remark that y is not a random variable):

Σψh ps, y, aq :“ E
p,r,ψ

”
ˇ

ˇ

ˇ

H
ÿ

h1“h

rh1 psh1 , yh1 , ah1 q ´Qψh ps, y, a; p, rq
ˇ

ˇ

ˇ

2

| sh “ s, yh “ y, ah “ a
ı

47

Learning Utilities from Demonstrations in MDPs

(1)
“ E
s1„php¨|s,aq

„

E
p,r,ψ

”ˇ

ˇ

ˇ

H
ÿ

h1“h

rh1 psh1 , yh1 , ah1 q´Qψh`1ps1, y, a1; p, rq

´
`

Qψh ps, y, a; p, rq´Qψh`1ps1, y, a1; p, rq
˘

ˇ

ˇ

ˇ

2

| sh “ s, ah “ a, yh “ y, sh`1 “ s1
ı

ȷ

(2)
“ E
s1„php¨|s,aq

„

E
p,r,ψ

”
ˇ

ˇ

ˇ

H
ÿ

h1“h`1

rh1 psh1 , yh1 , ah1 q ´Qψh`1ps1, y, a1; p, rq

´
`

Qψh ps, y, a; p, rq ´ rhps, y, aq ´Qψh`1ps1, y, a1; p, rq
˘

ˇ

ˇ

ˇ

2

| sh`1 “ s1, yh`1 “ y
ı

ȷ

(3)
“ E
s1„php¨|s,aq

„

E
p,r,ψ

”
ˇ

ˇ

ˇ

H
ÿ

h1“h`1

rh1 psh1 , yh1 , ah1 q ´Qψh`1ps1, y, a1; p, rq
ˇ

ˇ

ˇ

2

| sh`1 “ s1, yh`1 “ y
ı

ȷ

´ 2 E
s1„php¨|s,aq

„

`

Qψh ps, y, a; p, rq ´ rhps, y, aq ´Qψh`1ps1, y, a1; p, rq
˘

¨ E
p,r,ψ

”

H
ÿ

h1“h`1

rh1 psh1 , yh1 , ah1 q ´Qψh`1ps1, y, a1; p, rq
ˇ

ˇ sh`1 “ s1, yh`1 “ y
ı

loomoon

“0

ȷ

` E
s1„php¨|s,aq

”

ˇ

ˇQψh ps, y, a; p, rq ´ rhps, y, aq ´Qψh`1ps1, y, a1; p, rq
ˇ

ˇ

2
ı

(4)
“ E
s1„php¨|s,aq

„

E
p,r,ψ

”
ˇ

ˇ

ˇ

H
ÿ

h1“h`1

rh1 psh1 , yh1 , ah1 q ´Qψh`1ps1, y, a1; p, rq
ˇ

ˇ

ˇ

2

| sh`1 “ s1, yh`1 “ y
ı

loomoon

“Σψh`1ps1,y,a1q

ȷ

` E
s1„php¨|s,aq

”

ˇ

ˇQψh ps, y, a; p, rq ´ rhps, y, aq ´Qψh`1ps1, y, a1; p, rq
ˇ

ˇ

2
ı

loomoon

“:Vs1„php¨|s,aqrQψh`1ps1,y,a1;p,rqs“Vs1„php¨|s,aqrV ψh`1ps1,y;p,rqs

“ E
s1„php¨|s,aq

rΣψh`1ps1, y, a1qs ` Vs1„php¨|s,aqrV ψh`1ps1, y; p, rqs,

at (1) we add and subtract a term, at (2) we bring out the non-random reward received at h, at (3) we compute the square and
use the linearity of expectation, at (4) we use the fact that Ep,r,ψ

“
řH
h1“h`1 rh1 psh1 , yh1 , ah1 q´Qψh`1ps1, y, a1; p, rq

ˇ

ˇ sh`1 “

s1
‰

“ Qψh`1ps1, y, a1; p, rq ´Qψh`1ps1, y, a1; p, rq “ 0 because of linearity of expectation.

Lemma E.12. Let ψ be any policy, and let p be any transition model associated to an arbitrary inner dynamics p. Then,
for all h P JHK, ps, y, aq P S ˆ Yh ˆ A, it holds that:

ˇ

ˇ

ˇ

ˇ

E
p,r,ψ

„ H
ÿ

h1“h

b

Vs1„ph1 p¨|sh1 ,ah1 qrV ψh1`1ps1, yh1`1; p, rqs

ˇ

ˇ

ˇ

ˇ

sh “ s, yh “ y, ah “ a

ȷ
ˇ

ˇ

ˇ

ˇ

ď
?
H3.

Proof. For all h P JHK, ps, y, aq P S ˆ Yh ˆ A, we can write (note that this derivation is independent of p, p, so we might

48

Learning Utilities from Demonstrations in MDPs

use even pp, pp in the proof):

ˇ

ˇ

ˇ E
p,r,ψ

”

H
ÿ

h1“h

b

Vs1„ph1 p¨|sh1 ,ah1 qrV ψh1`1ps1, yh1`1; p, rqs | sh “ s, yh “ y, ah “ a
ıˇ

ˇ

ˇ

(1)
ď

ˇ

ˇ

ˇ E
p,r,ψ

”

g

f

f

eH
H
ÿ

h1“h

Vs1„ph1 p¨|sh1 ,ah1 qrV ψh1`1ps1, yh1`1; p, rqs | sh “ s, yh “ y, ah “ a
ı
ˇ

ˇ

ˇ

(2)
ď

?
H

g

f

f

e E
p,r,ψ

”

H
ÿ

h1“h

Vs1„ph1 p¨|sh1 ,ah1 qrV ψh1`1ps1, yh1`1; p, rqs | sh “ s, yh “ y, ah “ a
ı

(3)
“

?
H

ˆ

E
p,r,ψ

”

H
ÿ

h1“h

Σψh1 psh1 , yh1 , ah1 q ´ Es1„ph1 p¨|sh1 ,ah1 q

“

Σψh1`1ps1, yh1`1, ψh1`1ps1, yh1`1qq
‰

| sh “ s, yh “ y, ah “ a
ı

˙1{2

“
?
H

g

f

f

e E
p,r,ψ

”

H
ÿ

h1“h

Σψh1 psh1 , yh1 , ah1 q ´ Σψh1`1psh1`1, yh1`1, ah1`1q | sh “ s, yh “ y, ah “ a
ı

(4)
“

?
H

g

f

f

e

E
p,r,ψ

”

Σψh psh, yh, ahq ´ ΣψH`1psH`1, yH`1, aH`1q
looooooooooooooomooooooooooooooon

“0

| sh “ s, yh “ y, ah “ a
ı

“
?
H

b

Σψh ps, y, aq

(5)
ď

?
H

?
H2

“
?
H3,

where at (1) we have applied the Cauchy-Schwarz’s inequality, at (2) we have applied Jensen’s inequality, at (3) we
have applied Lemma E.11, at (4) we have used telescoping, and at (5) we have bounded Σψh ps, y, aq ď H2 for all h P

JHK, ps, y, aq P S ˆ Yh ˆ A.

E.4.3. LEMMAS ON THE OPTIMAL PERFORMANCE FOR MULTIPLE UTILITIES

To prove the following results, we will make use of the notation introduced in the previous section.

Lemma E.13. Let ϵ, δ P p0, 1q. It suffices to execute CATY-UL with:

τ ď rO
´SAH5

ϵ2

´

S ` log
SAH

δ

¯¯

,

to obtain supUPUL

ˇ

ˇJ˚pU ; p, rq ´ pJ˚pUq
ˇ

ˇ ď HLϵ0 ` ϵ w.p. 1 ´ δ.

Proof. Similarly to the proof of Lemma E.13, we can write:

sup
UPUL

|J˚pU ; p, rq ´ pJ˚pUq|

“ sup
UPUL

|J˚pU ; p, rq ´ pJ˚pUq˘J˚pp, rq|

ď sup
UPUL

|J˚pU ; p, rq ´ J˚pp, rq| ` sup
UPUL

|J˚pp, rq ´ pJ˚pUq|

“ sup
UPUL

|J˚pU ; p, rq ´ J˚pp, rq| ` sup
UPUL

|J˚pp, rq ´ J˚ppp, rq|

ď HLϵ0 ` sup
UPUL

|J˚pp, rq ´ J˚ppp, rq|

49

Learning Utilities from Demonstrations in MDPs

(1)
ď HLϵ0 `H2

c

2

n

´

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

ď HLϵ0 ` ϵ,

where at (1) we have applied the formula in Lemma E.14.

By enforcing such quantity to be smaller than ϵ, we get:

H2

c

2

n

´

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

ď

H2
b

log
`

ep1 ` n{pS ´ 1qq
˘

?
n

c

2
´

log
SAH

δ
` pS ´ 1q

¯

ď ϵ

ðñ n ě 2
H4

ϵ2

´

log
SAH

δ
` pS ´ 1q

¯

log
`

ep1 ` n{pS ´ 1qq
˘

.

By summing over all ps, a, hq P S ˆ A ˆ JHK, and by applying Lemma J.3 of Lazzati et al. (2024b), we obtain that:

τ “ SAHn ě rO
ˆ

SAH5

ϵ2

´

log
SAH

δ
` S

¯

˙

.

Lemma E.14. For any δ P p0, 1q, for all utility functions U P UL at the same time, we have:

|J˚
h pp, rq ´ J˚

h ppp, rq| ď H2

c

2

n

´

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

,

w.p. at least 1 ´ δ.

Proof. Let us denote by E the event defined as:

E :“

"

@n P N, @h P JHK, ps, y, aq P S ˆ Yh ˆ A :

nKL
`

pphp¨|s, aq}php¨|s, aq
˘

ď log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

*

.

We can write:

PpEAq “ P
ˆ

Dn P N, Dh P JHK, ps, y, aq P S ˆ Yh ˆ A :

nKL
`

pphp¨|s, aq}php¨|s, aq
˘

ą log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

˙

(1)
“ P

ˆ

Dn P N, Dps, a, hq P S ˆ A ˆ JHK :

nKL
`

pphp¨|s, aq}php¨|s, aq
˘

ą log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

˙

(2)
ď

ÿ

ps,a,hqPSˆAˆJHK

P
ˆ

Dn P N, nKL
`

pphp¨|s, aq}php¨|s, aq
˘

ą

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

˙

(3)
ď

ÿ

ps,a,hqPSˆAˆJHK

δ

SAH

ď δ,

50

Learning Utilities from Demonstrations in MDPs

where at (1) we realize that there is no dependence on variable y, thus we can drop it,9 at (2) we have applied a union
bound over all triples ps, a, hq P S ˆ A ˆ JHK, and at (3) we have applied Proposition 1 of Jonsson et al. (2020).

Next, for all utilities U P UL at the same time, for all the tuples h P JHK, ps, yq P S ˆ Yh, we can write:

|V ˚
h ps, y; p, rq ´ V ˚

h ps, y;pp, rq|

(4)
ď E

pp,r,ψ

„ H
ÿ

h1“h

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

ph1 ps1|sh1 , ah1 q ´ pph1 ps1|sh1 , ah1 q

¯

V ψ
˚

h1`1ps1, yh1`1; p, rq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

(5)
ď H E

pp,r,ψ

„ H
ÿ

h1“h

}ph1 p¨|sh1 , ah1 q ´ pph1 p¨|sh1 , ah1 q}1

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

(6)
ď H E

pp,r,ψ

„ H
ÿ

h1“h

a

2KLppph1 p¨|sh1 , ah1 q}ph1 p¨|sh1 , ah1 qq

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

(7)
ď H E

pp,r,ψ

„ H
ÿ

h1“h

c

2

n

´

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

ˇ

ˇ

ˇ
sh “ s, yh “ y, ah “ a

ȷ

“ H2

c

2

n

´

log
SAH

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

,

where at (4) we apply the formula derived in the proof of Lemma E.8 and triangle inequality, at (5) we have upper
bounded with the 1-norm, defined as }f}1 :“

ř

x |fpxq|, at (6) we have applied Pinsker’s inequality, at (7) we assume that
concentration event E holds.

We remark that the guarantee provided by this theorem holds not only for L-Lipschitz utilities, but for all functions with
the same dimensionality (since it is a bound in 1-norm).

E.5. Analysis of TRACTOR-UL

Theorem 5.2. Let L ą 0, ϵ, δ P p0, 1q, and UE P UL. Assume that the projection operator ΠUL
is implemented exactly.

Let the number of samples satisfy Eq. (5). There exist values of ϵ0,K, α, U0 (see Appendix E.5) such that, if we run
TRACTOR-UL for a number of gradient iterations:

T ě O
`

N4H4L2{ϵ4
˘

,

then, w.p. at least 1 ´ δ, any utility U P UL such that Upyq “ pUpyq @y P Y belongs to Uϵ.

Proof. The proof draws inspiration from those of Syed & Schapire (2007) and Schlaginhaufen & Kamgarpour (2024).

Given any distribution η supported on Y , and given any two utilities U P UL, U P UL (where U is a function on r0, Hs and
U is a vector on Y), we will abuse notation and write both U⊺η and U

⊺
η, with obvious meaning.

Moreover, for L ą 0, we define operator CL : UL Ñ 2UL (where 2X denotes the power set of set X) that, given vector
U P UL, returns the set CLpUq :“ tU P UL | @y P Y : Upyq “ Upyqu.

First of all, we observe that the guarantee provided by the theorem follows directly by the following expression:

P
M1,M2,...,MN

´

sup
UPCLp pUq

ÿ

iPJNK

Cpi,ri,πE,ipUq ď ϵ
¯

ě 1 ´ δ,

9Therefore, differently from the event for a single utility, now there is no dependence on d in the bound. Intuitively, d appeared in the
case of a single utility because we had to apply Hoeffding’s inequality d times, because we had, potentially, d different value functions
(as many as the states). Since now we provide the bound for all the possible value functions (1-norm bound), then the dependence on d
disappears.

51

Learning Utilities from Demonstrations in MDPs

where PM1,M2,...,MN denotes the joint probability distribution obtained by the N MDPs tMiui.

Let us denote by pU :“ p
řT´1
t“0 U tq{T the output of TRACTOR-UL. Note that pU P UL. We can write:

sup
UPCLp pUq

ÿ

iPJNK

Cpi,ri,πE,ipUq

(1)
“ sup
UPCLp pUq

ÿ

iPJNK

ˆ

J˚pU ; pi, riq ´ Jπ
E,i

pU ; pi, riq˘ pU⊺
pηE,i

˙

(2)
ď sup
UPCLp pUq

ÿ

iPJNK

ˆ

J˚pU ; pi, riq ´ pU⊺
pηE,i

˙

` ϵ1

(3)
“ sup
UPCLp pUq

ÿ

iPJNK

ˆ

max
ηPDi

U⊺η ´ pU⊺
pηE,i

˙

` ϵ1

(4)
“ sup

U0PCLpU0q,
...,

UT´1PCLpUT´1q

1

T

ÿ

iPJNK

max
ηPDi

T´1
ÿ

t“0

ˆ

Ut
⊺η ´ U t

⊺
pηE,i

˙

` ϵ1

(5)
ď

1

T

T´1
ÿ

t“0

sup
UtPCLpUtq

ÿ

iPJNK

ˆ

max
ηPDi

U⊺
t η˘U

⊺
t pηit ´ U

⊺
t pηE,i

˙

` ϵ1

(6)
ď

1

T

T´1
ÿ

t“0

ÿ

iPJNK

U
⊺
t

´

pηit ´ pηE,i
¯

˘
1

T
min
UPUL

T´1
ÿ

t“0

ÿ

iPJNK

U
⊺

´

pηit ´ pηE,i
¯

` ϵ1 ` ϵ2

(7)
ď

1

T
min
UPUL

T´1
ÿ

t“0

ÿ

iPJNK

U
⊺

´

pηit ´ pηE,i
¯

` ϵ1 ` ϵ2 `
2HN

a

H{ϵ0
?
T

looooooomooooooon

“:ϵ3

(8)
ď

1

T

T´1
ÿ

t“0

ÿ

iPJNK

U
E,⊺

´

pηit ´ pηE,i
¯

˘UE,⊺ηp
i,ri,πE,i ` ϵ1 ` ϵ2 ` ϵ3

(9)
ď

1

T

T´1
ÿ

t“0

ÿ

iPJNK

U
E,⊺

pηit˘U
E,⊺ηp

i,ri,πit ´ UE,⊺ηp
i,ri,πE,i ` 2ϵ1 ` ϵ2 ` ϵ3

(10)
ď

1

T

T´1
ÿ

t“0

ÿ

iPJNK

UE,⊺
´

ηp
i,ri,πit ´ ηp

i,ri,πE,i
¯

looooooooooooooooomooooooooooooooooon

ď0

`2ϵ1 ` ϵ2 ` ϵ3 ` ϵ4

(11)
ď 2ϵ1 ` ϵ2 ` ϵ3 ` ϵ4,

where at (1) we apply the definition of (non)compatibility, at (2) we first upper bound the supremum of a sum with the sum

of the supremum, and then we apply Lemma E.15 w.p. δ{3, and denote ϵ1 :“ NL
?
2Hϵ0 `

ř

iPJNK
cH

c

H log NHτ
E,i

δϵ0

ϵ0τE,i
, at (3)

we denote by Di the set of possible return distributions in environment i, at (4) we use the definition of pU , and realize that
all functions U P CLp pUq can be constructed based on T functions U0 P CLpU0q, . . . , UT´1 P CLpUT´1q. At (5) we upper
bound the maximum of the sum with the sum of maxima, and exchange the two summations, and we add and subtract the
dot product between the (discretized) utility Ut and the estimate of the return distribution computed at Line 15; moreover,
we bring the sup inside the summation. At (6) we upper bound the supremum of the sum with the sum of the supremum, and

we apply Lemma E.16 w.p. δ{3, defining ϵ2 :“ cNH2

c

1
n

´

log SAHN
δ ` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

`NHLϵ0 `

c1HN

b

log NTδ
K , and we add and subtract a term, at (7) we apply Theorem H.2 from Schlaginhaufen & Kamgarpour (2024)

since set UL is closed and convex, where D :“ maxU,U 1
PUL

}U ´ U
1
}2 “

?
d´ 2H “

a

tH{ϵ0u ´ 1H ď H
a

H{ϵ0

52

Learning Utilities from Demonstrations in MDPs

(recall that we consider increasing and not strictly-increasing utilities),10 and maxUPUL
}∇ř

iPJNK U
⊺

ppηit ´ pηE,iq}2 “

}
ř

iPJNK pηit ´ pηE,i}2 ď
ř

iPJNK }pηit}1 ` }pηE,i}1 “ 2N “: G (because pηit and pηE,i are probability distributions), with
learning rate α “ D{pG

?
T q “ H

?
d´ 2{p2N

?
T q “

a

tH{ϵ0u ´ 1H{p2N
?
T q, at (8) we upper bound the minimum

over utilities with a specific choice of utility, U
E

, and we add and subtract a term; note that U
E

P UL corresponds to the
expert’s utility UE P UL (by hypothesis), i.e., for all y P Y : U

E
pyq “ UEpyq. Note that, by hypothesis, UE makes all

the expert policies optimal, i.e., @i P JNK : UE,⊺ηp
i,ri,πE,i “ supπ U

E,⊺ηp
i,ri,π . At (9) we note that, under the good

event of Lemma E.15, we can provide an upper bound using the term in Lemma E.15 (since UE P UL); in addition, we
sum and subtract a term that depends on some policy πit, whose existence is guaranteed by Lemma E.17, which we apply
at the next step. At (10) we apply Lemma E.17 w.p. δ{3, and we define as ϵ4 the upper bound times N . Finally, at (11) we
use the hypothesis that utility UE makes the expert policy optimal in all environments.

We want that 2ϵ1 ` ϵ2 ` ϵ3 ` ϵ4 ď ϵ. We can rewrite the sum as:

2ϵ1 ` ϵ2 ` ϵ3 ` ϵ4

“

´

2NL
a

2Hϵ0 `
3

2
LNHϵ0

¯

` c
HN

?
H

?
ϵ0T

` c1
ÿ

iPJNK

H

d

H log NHτE,i

δϵ0

ϵ0τE,i
` c2NH

d

log NT
δ

K

` c3NH2

c

1

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

.

By imposing each term smaller than ϵ{5, we find that it suffices that

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

ϵ0 “ ϵ2

80N2L2H

T ě O
´

N2H3

ϵ0ϵ2

¯

ě O
´

N4H4L2

ϵ4

¯

τE,i ě rO
´

H3N2 log NHδϵ0
ϵ0ϵ2

¯

ě rO
´

H4N4L2 log NHLδϵ
ϵ4

¯

@i P JNK

K ě rO
´

N2H2 log NTδ
ϵ2

¯

ě rO
´

N2H2 log NHLδϵ
ϵ2

¯

τ i ě rO
´

N2SAH5

ϵ2

´

S ` log SAHN
δ

¯

@i P JNK

,

where we have used that τ i “ SAHn for all i P JNK, and also used Lemma J.3 of Lazzati et al. (2024b).

The statement of the theorem follows through the application of a union bound.

Lemma E.15. Let δ P p0, 1q. Then, it holds that, w.p. at least 1 ´ δ:

sup
UPUL

ÿ

iPJNK

ˇ

ˇ

ˇ

ˇ

U⊺
pηE,i ´ Jπ

E,i

pU ; pi, riq

ˇ

ˇ

ˇ

ˇ

ď NL
a

2Hϵ0 `
ÿ

iPJNK

cH

d

H log NHτE,i

δϵ0

ϵ0τE,i
,

where c is some positive constant.

Proof. We can make the same derivation as in the proof of Theorem 5.1 to upper bound the objective with the sum of two
terms, which can then be bounded using Lemma E.1 and the expression (Eq. (17)) obtained in the proof of Lemma E.4
w.p. δ{N :

sup
UPUL

ÿ

iPJNK

ˇ

ˇ

ˇ

ˇ

U⊺
pηE,i ´ Jπ

E,i

pU ; pi, riq

ˇ

ˇ

ˇ

ˇ

ď L
ÿ

iPJNK

w1pηp
i,ri,πE,i ,ProjCpηp

i,ri,πE,iqq

10The maximum is attained by discretized utilitiesU,U
1
that assign, respectively, Upyq “ 0 andU

1
pyq “ H to all the y P Yzty1, ydu.

53

Learning Utilities from Demonstrations in MDPs

`
ÿ

iPJNK

sup
U

1
Pr0,Hsd

ˇ

ˇ E
G„ProjCpηpi,ri,π

E,i
q

rU
1
pGqs ´ E

G„pηE,i
rU

1
pGqs

ˇ

ˇ

ď LN
a

2Hϵ0 `
ÿ

iPJNK

cH

d

H log NHτE,i

δϵ0

ϵ0τE,i
.

The result follows through the application of the union bound.

Lemma E.16. Let δ P p0, 1q. With probability at least 1 ´ δ, for all t P t0, 1, . . . , T ´ 1u, for all i P JNK, it holds that:

sup
UtPCLpUtq

max
ηPDi

U⊺
t η ´ U

⊺
t pηit ď cH2

c

1

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

`HLϵ0 ` c1H

d

log NT
δ

K
,

where c, c1 are some positive constants.

Proof. We use the notation in Section 5. In particular, let policy pπ˚,i
t be the optimal policy in the RS-MDP xMi

Ut
:“

pSi,Ai, H, si0, ppi, ri, U tq, i.e.:

J pπ˚,i
t pU t; ppi, riq “ J˚pU t; ppi, riq “ J˚pUt; ppi, riq,

where the last passage holds trivially for all Ut P CLpU tq (because there is no evaluation of utility outside Y).

Thus, for all t P t0, 1, . . . , T ´ 1u, we have:

sup
UtPCLpUtq

max
ηPDi

U⊺
t η ´ U

⊺
t pηit˘J

˚pUt; ppi, riq

(1)
ď sup
UtPCLpUtq

ˇ

ˇ

ˇ
J˚pUt; p

i, riq ´ J˚pUt; ppi, riq
ˇ

ˇ

ˇ
`

ˇ

ˇ

ˇ
U t

⊺
´

pηit ´ ηppi,ri,pπ˚,i
t

¯
ˇ

ˇ

ˇ

(2)
ď HLϵ0 ` cH2

c

1

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

`

ˇ

ˇ

ˇ
U

⊺
t

´

pηit ´ ηppi,ri,pπ˚,i
t

¯
ˇ

ˇ

ˇ

(3)
ď HLϵ0 ` cH2

c

1

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

` c1H

d

log NT
δ

K
,

where at (1) we have applied the triangle inequality, and realized that in the second term there is no dependence on the value
of utility outside of Y; moreover, we have used that J˚pUt; ppi, riq “ U

⊺
t η

ppi,ri,pπ˚,i
t by definition of policy pπ˚,i

t . At (2) we
apply Lemma E.13 (our J˚pUt; ppi, riq has the same meaning of pJ˚pUq in the lemma, and we upper bound supUtPCLpUtq

with supUPUL
) w.p. δ{p2Nq,11 and we keep the confidence bound explicit, and we upper bound d ď H{ϵ0 ` 1, and at

(3) we observe that pηit is the empirical estimate of distribution ηppi,ri,pπ˚,i
t (see Line 15) obtained through the sampling of

K sample returns G1, G2, . . . , GK
i.i.d.
„ ηppi,ri,pπ˚,i

t . Indeed, note that the policy pψ˚,i
t , computed at Line 13 and optimal for

Er xMi
Ut

s “ ptSiˆYhuh,Ai, H, si0,pp
i, ritq,12 provides policy pπ˚,i

t through the formula in Section 2, thus Line 14 is actually

simulating pπ˚,i
t in MDP xMi. Therefore, we can apply Hoeffding’s inequality (e.g., see Lemma E.3) w.p. δ{p2TNq.

11We remark that, in doing so, we can still apply Proposition 3 of Wu & Xu (2023) inside the proof of Lemma E.13 even though we
consider increasing utilities instead of strictly-increasing utilities; indeed, it is trivial to observe that the proof of Proposition 3 of Wu &
Xu (2023) does not depend on such property.

12See Section 2 for the meaning of ppi and rit; we use Yh for all h in the state space instead of the sets of partial returns tG ppi,ri

h uh in
order to obtain policy pψ˚,i

t supported on the entire S ˆ Yh space, and to make it compliant with Algorithm 4

54

Learning Utilities from Demonstrations in MDPs

The result follows through the application of the union bound.

We remark that in one case we use probability δ{p2Nq (without T) while in the other we use δ{p2NT q (with T), because
in the former we provide a guarantee for all possible utilities w.r.t. the optimal performance, thus all the T steps are
already included; instead, in the latter, we provide a guarantee for a single utility and for a single policy at a specific
t P t0, . . . , T ´ 1u, thus we have to compute a union bound with T .

Lemma E.17. Let δ P p0, 1q. With probability at least 1 ´ δ, for all i P JNK and t P t0, . . . , T ´ 1u, under the good event
in Lemma E.16, there exists a policy πit such that:

U
E,⊺

pηit ´ UE,⊺ηp
i,ri,πi ď LHϵ0{2 ` cH

d

log NT
δ

K

` c1H2

c

1

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

,

where c, c1 are positive constants.

Proof. First, simply observe that pηit is the empirical estimate (see Line 15) of ηppi,ri,pπ˚,i
t , thus, similarly to the proof of

Lemma E.16, for all i P JNK and t P t0, 1, . . . , T ´ 1u, we can apply Hoeffding’s inequality w.p. δ{p2TNq:

ˇ

ˇ

ˇ
U
E,⊺

´

pηit ´ ηppi,ri,pπ˚,i
t

¯
ˇ

ˇ

ˇ
ď cH

d

log NT
δ

K
.

Now, we compare distributions ηppi,ri,pπ˚,i
t and ηp

i,ri,pπ˚,i
t . Through straightforward passages, we can write:

|UE,⊺
´

ηppi,ri,pπ˚,i
t ´ ηp

i,ri,pπ˚,i
t

¯

|

“ |J pπ˚,i
t pU

E
; ppi, riq ´ J pπ˚,i

t pU
E
; pi, riq|

“

ˇ

ˇ

ˇ

ÿ

s1PS
pi1ps1|si0, pπ

˚,i
t,1 psi0qqV

pπ˚,i
t

2 ps1; pi, riq

´
ÿ

s1PS
ppi1ps1|si0, pπ

˚,i
t,1 psi0qqV

pπ˚,i
t

2 ps1; ppi, riq
ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

pi1ps1|si0, pπ
˚,i
t,1 psi0qq ´ ppi1ps1|si0, pπ

˚,i
t,1 psi0qq

¯

V
pπ˚,i
t

2 ps1; pi, riq

ˇ

ˇ

ˇ

ˇ

`
ÿ

s1PS
ppi1ps1|si0, pπ

˚,i
t,1 psi0, 0qq

ˇ

ˇ

ˇ
V

pπ˚,i
t

2 ps1; pi, riq ´ V
pπ˚,i
t

2 ps1; ppi, riq
ˇ

ˇ

ˇ

ď . . .

ď E
ppi,ri,pπ˚,i

t

„ H
ÿ

h1“1

ˇ

ˇ

ˇ

ˇ

ÿ

s1PS

´

pih1 ps1|sh1 , ah1 q ´ ppih1 ps1|sh1 , ah1 q

¯

V
pπ˚,i
t

h1`1ps1; pi, riq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

s1 “ si0

ȷ

ď H E
ppi,ri,pπ˚,i

t

„ H
ÿ

h1“1

›

›

›
pih1 p¨|sh1 , ah1 q ´ ppih1 p¨|sh1 , ah1 q

›

›

›

1

ˇ

ˇ

ˇ

ˇ

s1 “ si0

ȷ

ď H E
ppi,ri,pπ˚,i

t

„ H
ÿ

h1“1

b

2KLppih1 p¨|sh1 , ah1 q}ppih1 p¨|sh1 , ah1 qq

ˇ

ˇ

ˇ

ˇ

s1 “ si0

ȷ

,

where at the last passage we applied the Pinsker’s inequality. Note that the previous derivation was possible as long as as
policy pπ˚,i

t is defined over all the possible pairs state-cumulative reward ps, yq P SˆYh for all h P JHK. Since we construct
it through policy pψ˚,i

t , obtained at Line 13, i.e., over the entire enlarged state space tS ˆ Yhuh, then policy pπ˚,i
t satsifies

55

Learning Utilities from Demonstrations in MDPs

such property. Now, in the proof of Lemma E.16 we used Lemma E.14, in which event E bounds the KL-divergence
between transition models. Therefore, under the application of Lemma E.16, it holds that:

|UE,⊺
´

ηppi,ri,pπ˚,i
t ´ ηp

i,ri,pπ˚,i
t

¯

| ď H2

c

2

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

,

where n is the number of samples takes at each ps, a, hq P S ˆ A ˆ JHK in the i P JNK MDP.

Therefore, we can finally write:

U
E,⊺

pηit ´ UE,⊺ηp
i,ri,πi˘U

E,⊺
ηppi,ri,pπ˚,i

t ˘ U
E,⊺

ηp
i,ri,pπ˚,i

t

“ UE,⊺
´

ηp
i,ri,pπ˚,i

t ´ ηp
i,ri,πi

¯

` U
E,⊺

´

ηppi,ri,pπ˚,i
t ´ ηp

i,ri,pπ˚,i
t

¯

` U
E,⊺

´

pηit ´ ηppi,ri,pπ˚,i
t

¯

(1)
ď UE,⊺

´

ηp
i,ri,pπ˚,i

t ´ ηp
i,ri,πi

¯

` cH

d

log NT
δ

K

` c1H2

c

2

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

(2)
ď LHϵ0{2 ` cH

d

log NT
δ

K

` c1H2

c

2

n

´

log
SAHN

δ
` pS ´ 1q log

`

ep1 ` n{pS ´ 1qq
˘

¯

,

where at (1) we have used the bounds derived earlier, and at (2) we have applied Lemma E.18, noticing that we can choose
policy πi as we wish, and using that k ď ϵ0{2.

Lemma E.18. Let M1 “ pS,A, H, s0, p, r1q and M2 “ pS,A, H, s0, p, r2q be two MDPs with deterministic rewards
that differ only in the reward function r1 ‰ r2, and assume that, for all ps, a, hq P S ˆ A ˆ JHK, it holds that |r1hps, aq ´

r2hps, aq| ď k, for some k ě 0. Let π1 be an arbitrary (potentially non-Markovian) policy that induces, in M1, the
distribution over returns ηp,r

1,π1

. Then, there exists a policy π2 that induces in M2 the distribution ηp,r
2,π2

such that:

sup
UPUL

ˇ

ˇ

ˇ
EG„ηp,r1,π1 rUpGqs ´ EG„ηp,r2,π2 rUpGqs

ˇ

ˇ

ˇ
ď LHk.

Proof. A non-Markovian policy like π1, in its most general form, prescribes actions at stages h P JHK depending on the
sequence of state-action-reward ps1, a1, r1, s2, a2, r2, . . . , sh´1, ah´1, rh´1, shq received so far. Since, by hypothesis, the
reward functions are deterministic (see also Section 2), then it is clear that the information contained in the rewards re-
ceived so far (tr1, r2, . . . , rh´1u) is already contained in the state-action pairs received ps1, a1, s2, a2, . . . , sh´1, ah´1, shq

(indeed, for deterministic reward r1, we have that r1 “ r11ps1, a1q, r2 “ r12ps2, a2q, and so on). This means that, for
any non-Markovian policy in the MDP M1, since it coincides with M2 except for the deterministic reward function, it is
possible to construct a policy π2 that induces the same distribution over state-action trajectories, i.e., for any state-action
trajectory ω “ ps1, a1, s2, a2, . . . , sH´1, aH´1, sH , aH , sH`1q P Ω, it holds Pp,r1,π1pωq “ Pp,r2,π2pωq.

Therefore, we can write:

sup
UPUL

ˇ

ˇ

ˇ
EG„ηp,r1,π1 rUpGqs ´ EG„ηp,r2,π2 rUpGqs

ˇ

ˇ

ˇ

(1)
“ sup
UPUL

ˇ

ˇ

ˇ

ÿ

ωPΩ

Pp,r1,π1pωqU
´

ÿ

ps,a,hqPω

r1hps, aq

¯

´
ÿ

ωPΩ

Pp,r2,π2pωqU
´

ÿ

ps,a,hqPω

r2hps, aq

¯ˇ

ˇ

ˇ

56

Learning Utilities from Demonstrations in MDPs

(2)
“ sup
UPUL

ˇ

ˇ

ˇ

ÿ

ωPΩ

Pp,r1,π1pωqU
´

ÿ

ps,a,hqPω

r1hps, aq

¯

´
ÿ

ωPΩ

Pp,r1,π1pωqU
´

ÿ

ps,a,hqPω

r2hps, aq

¯
ˇ

ˇ

ˇ

“ sup
UPUL

ˇ

ˇ

ˇ

ÿ

ωPΩ

Pp,r1,π1pωq

´

U
´

ÿ

ps,a,hqPω

r1hps, aq

¯

´ U
´

ÿ

ps,a,hqPω

r2hps, aq

¯¯
ˇ

ˇ

ˇ

(3)
ď sup
UPUL

ÿ

ωPΩ

Pp,r1,π1pωq

ˇ

ˇ

ˇ
U

´

ÿ

ps,a,hqPω

r1hps, aq

¯

´ U
´

ÿ

ps,a,hqPω

r2hps, aq

¯
ˇ

ˇ

ˇ

(4)
ď

ÿ

ωPΩ

Pp,r1,π1pωqL
ˇ

ˇ

ˇ

ÿ

ps,a,hqPω

pr1hps, aq ´ r2hps, aqq

ˇ

ˇ

ˇ

(5)
ď

ÿ

ωPΩ

Pp,r1,π1pωqL
ÿ

ps,a,hqPω

ˇ

ˇ

ˇ
r1hps, aq ´ r2hps, aq

ˇ

ˇ

ˇ

(6)
ď

ÿ

ωPΩ

Pp,r1,π1pωqL
ÿ

ps,a,hqPω

k

“ LHk,

where at (1) we use the fact that the expected utility w.r.t. the distribution over returns can be computed using the probability
distribution over state-action trajectories (since the rewards are deterministic), at (2) we use that policy π2 is constructed
exactly to match the distribution over state-action trajectories, at (3) we apply triangle inequality, at (4) we use the fact that
all utilities U P UL are L-Lipschitz, i.e., for all x, y P r0, Hs: |Upxq ´Upyq| ď L|x´ y|, at (5) we apply again the triangle
inequality, and at (6) we use the hypothesis that r1, r2 are close to each other by parameter k.

F. Experimental Details
In this appendix, we collect additional information about the experiments described in Section 6. Appendix F.1 presents
formally the MDP used for the collection of the data along with the questions posed to the participants. Appendix F.2
contains additional details on Experiment 2. Finally, Appendix F.3 presents an additional experiment conducted on the
collected data.

F.1. Data Description

Below, we describe the data collected.

F.1.1. CONSIDERED MDP

The 15 participants analyzed in the study have been provided with complete access to the MDP in Figure 11, which we
will denote by M. In other words, the participants know the transition model and the reward function of M everywhere.

Intuitively, states L (Low), M (Medium), H (High), and T (Top), represent 4 “levels” so that the received reward increases
when playing actions in “higher” states instead of “lower” states. Formally, MDP M “ pS,A, H, s0, p, rq has four states
S “ tL,M,H, T u, and three actions for each state A “ ta0, a`, a´u. The horizon is H “ 5, i.e., the agent has to take
5 actions. The initial state is s0 “ M . The transition model p is stationary, i.e., it does not depend on the stage h P JHK.
Specifically, p is depicted in Table 1. The intuition is that action a0 keeps the agent in the same state deterministically,
while action a` tries to bring the agent to the higher state with probability 1{3, and action a´ sometimes make the agent
“fall down” to the lower state with probability 1{5.

The reward function r : S ˆ A ˆ JHK Ñ R is deterministic, stationary, and depends only the state-action pair played.
The specific values are depicted in Table 2. Note that we have written the reward values as numbers in r0C, 1000Cs, to
provide a monetary interpretation. Nevertheless, we will rescale the interval to r0, 1s during the analysis for normalization.
Observe that the same actions played in “higher” states (e.g., H or T) provide higher rewards than when played in “lower”
states (e.g., L or M). Moreover, notice that action a`, which is the only action that tries to increase the state, does not
provide reward at all, while the risky action a´, which sometimes decreases the state, always provides double the reward

57

Learning Utilities from Demonstrations in MDPs

Mstart M

L

H

T

L

M

H

T

L

M

H

T

L

M

H

T

h “ 1 h “ 2 h “ 3 h “ 4 h “ 5

Figure 11. The MDP used for data collection.

p L M H T

pL, a0q 1 0 0 0
pL, a`q 2{3 1{3 0 0
pL, a´q 1 0 0 0
pM,a0q 0 1 0 0
pM,a`q 0 2{3 1{3 0
pM,a´q 1{5 4{5 0 0
pH, a0q 0 0 1 0
pH, a`q 0 0 2{3 1{3
pH, a´q 0 1{5 4{5 0
pT, a0q 0 0 0 1
pT, a`q 0 0 0 1
pT, a´q 0 0 1{5 4{5

Table 1. The transition model p of MDP M.

than “default” action a0.

L M H T

a0 0C 30C 100C 500C
a` 0C 0C 0C 0C
a´ 0C 60C 200C 1000C

Table 2. The reward function r of MDP M.

F.1.2. INTUITION BEHIND AGENTS BEHAVIOR

The reward is interpreted as money. Playing MDP M involves a trade-off between playing action a`, which gives no
money but potentially allows to collect more money in the future (by reaching “higher” states), and action a´, which
provides the greatest amount of money immediately, but potentially reduces the amount of money which can be earned in
the future. Action a0, being deterministic, provides a reference point, so that deterministically playing action a0 for all the
H “ 5 stages gives to the agent 30 ˆ 5 “ 150C. Thus, playing actions a`, a´ other than a0 means that the agent accepts
some risk to try to increase its earnings.

58

Learning Utilities from Demonstrations in MDPs

F.1.3. QUESTIONS ASKED TO THE PARTICIPANTS

We remark that the participants have enough background knowledge to understand the MDP described. To each participant,
we ask which action in ta0, a`, a´u it would play if it was in a certain state s, stage h, with cumulative reward up to now y,
for many different values of triples ps, h, yq P S ˆ JHK ˆ r0C, 5000Cs. Specifically, the values of triples s, h, y considered
are:

pM, 1, 0Cq pM, 2, 0Cq pM, 2, 30Cq pM, 2, 60Cq pH, 2, 0Cq

pM, 3, 0Cq pM, 3, 30Cq pM, 3, 60Cq pM, 3, 200Cq pH, 3, 0Cq

pH, 3, 30Cq pH, 3, 60Cq pH, 3, 200Cq pT, 3, 0Cq pM, 4, 0Cq

pM, 4, 30Cq pM, 4, 60Cq pM, 4, 90Cq pM, 4, 120Cq pM, 4, 150Cq

pM, 4, 180Cq pM, 4, 300Cq pM, 4, 400Cq pH, 4, 0Cq pH, 4, 30Cq

pH, 4, 60Cq pH, 4, 100Cq pH, 4, 130Cq pH, 4, 200Cq pH, 4, 300Cq

pH, 4, 1000Cq pT, 4, 0Cq pT, 4, 60Cq.

From state L, we assume all participants always play action a` since it is the only rational strategy. Moreover, from stage
h “ 5, we assume that all participants always play action a´ since, again, it is the only rational strategy.

In all other possible combinations of values of s, h, y, we “interpolate” by considering the action recommended by the
participant in the closest y1 to y, in the same s, h.

F.1.4. THE RETURN DISTRIBUTION OF THE PARTICIPANTS’ POLICIES

We now present the return distribution of the policies prescribed by the participants. Specifically, we have simulated 10000
times the policies of the participants, and we have computed the empirical estimate of their return distributions. Such values
are reported in Figures 12, 13, 14, 15, and 16, where we use notation ηEi to denote the return distribution of participant i,
with i P J15K.

0 1 2 3 4 5
Return G

0.00

0.05

0.10

0.15

0.20

0.25

Pr
ob

ab
ilit

y
(G

) E
1

0 1 2 3 4 5
Return G

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y
(G

) E
2

0 1 2 3 4 5
Return G

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y
(G

) E
3

Figure 12. Plot of ηE1 , ηE2 , and ηE3 .

0 1 2 3 4 5
Return G

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Pr
ob

ab
ilit

y
(G

) E
4

0 1 2 3 4 5
Return G

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y
(G

) E
5

0 1 2 3 4 5
Return G

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
(G

) E
6

Figure 13. Plot of ηE4 , ηE5 , and ηE6 .

F.2. Details Experiment 2

Experiment 2 is made of two parts, the first in which we execute TRACTOR-UL on the MDP (and data) adopted also in
Experiment 1, and the other where we use simulated data. We describe here the former, while we present the latter more
in detail in Appendix F.2.3.

59

Learning Utilities from Demonstrations in MDPs

0 1 2 3 4 5
Return G

0.0

0.1

0.2

0.3

0.4
Pr

ob
ab

ilit
y

(G
) E

7

0 1 2 3 4 5
Return G

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
(G

) E
8

0 1 2 3 4 5
Return G

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Pr
ob

ab
ilit

y
(G

) E
9

Figure 14. Plot of ηE7 , ηE8 , and ηE9 .

0 1 2 3 4 5
Return G

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y
(G

) E
10

0 1 2 3 4 5
Return G

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Pr
ob

ab
ilit

y
(G

) E
11

0 1 2 3 4 5
Return G

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y
(G

) E
12

Figure 15. Plot of ηE10, ηE11, and ηE12.

0 1 2 3 4 5
Return G

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y
(G

) E
13

0 1 2 3 4 5
Return G

0.0

0.1

0.2

0.3

0.4

Pr
ob

ab
ilit

y
(G

) E
14

0 1 2 3 4 5
Return G

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

Pr
ob

ab
ilit

y
(G

) E
15

Figure 16. Plot of ηE13, ηE14, and ηE15.

We consider the policy of the 10th participant (chosen arbitrarily) to the survey, and we execute TRACTOR-UL multiple
times with varying values of the input parameters, specifically: we always use K “10000 trajectories for estimating the
return distribution of the 10th participant’s policy, and the return distribution of the optimal policies computed along the
way; we make 5 runs with each combination of parameters with different seeds. We execute for T “ 70 iterations using
Lipschitz constant L “ 10, which means that we consider only utilities U P UL satisfying |UpGq ´ UpG1q| ď 10|G´G1|

for all G,G1 P r0, 5s (the horizon is 5). As initial utility U0, we try Usqrt, Usquare, and Ulinear (see Appendix F.3), and as
learning rates we try 0.01, 0.5, 5, 100, 1000, 10000.

The experiment has been conducted in some hours on a personal computer with processor AMD Ryzen 5 5500U with
Radeon Graphics (2.10 GHz), with 8,00 GB of RAM.

We note that the choice of U0 is rather irrelevant for the shape of the extracted pU , but it matters for its “location”, as shown
in Fig. 17.

To view the sequence of utilities extracted by TRACTOR-UL during the run, see Appendix F.2.1, while in Appendix F.2.2
we explain better why the best learning rate is large.

F.2.1. THE SEQUENCE OF UTILITIES EXTRACTED BY TRACTOR-UL ON THE COLLECTED DATA

We now present some plots representing the sequence of utilities extracted by TRACTOR-UL during its execution. Specif-
ically, we consider initial utility U0 “ Usquare, and we use learning rates α P r0.01, 0.5, 5, 100, 1000, 10000s. We plot the
sequence of utilities considered by TRACTOR-UL during its execution in Figures 18, 19, and 20, where we adopt notation
that Ut denotes the utility extracted at iteration t, and the number in the legend represents the (non)compatibility of that
utility. We consider again participant 10.

60

Learning Utilities from Demonstrations in MDPs

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

Usqrt
Usquare
Ulinear

Figure 17. Utilities computed by TRACTOR-UL starting with the U0 in the legend (α “ 100).

We observe that, for smaller learning rates (e.g., α P r0.01, 0.5, 5s), the utilities as well as the (non)compatibilities) do not
change much (Figure 18 and Figure 19 left), while for larger learning rates, we obtain more consistent changes (Figure 19
left and Figure 20).

Clearly, larger learning rates require less iterations to achieve small values of (non)compatibilities. Nevertheless, too large
values (e.g., α “ 10000) are outperformed by intermediate values (e.g., α “ 100).

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U0, 0.26
U23, 0.25
U46, 0.24
U69, 0.25

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U0, 0.26
U20, 0.2
U40, 0.17
U59, 0.16

Figure 18. (Left) α “ 0.01. (Right) α “ 0.5.

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U0, 0.26
U3, 0.17
U6, 0.16
U9, 0.14

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U0, 0.26
U2, 0.12
U4, 0.082
U6, 0.073

Figure 19. (Left) α “ 5. (Right) α “ 100.

61

Learning Utilities from Demonstrations in MDPs

0 1 2 3 4 5
Return G

0

1

2

3

4

5
Ut

ilit
y

U
(G

)
U0, 0.26
U1, 0.16
U2, 0.12
U4, 0.086

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U0, 0.26
U1, 0.17
U2, 0.18
U4, 0.14

Figure 20. (Left) α “ 1000. (Right) α “ 10000.

F.2.2. AN EXPLANATION FOR A LARGE LEARNING RATE

As mentioned in the main paper, there two reasons why a large learning rate is required: piq the feasible set is large and
contains utilities that lie on the boundaries of set UL,13 causing larger step sizes to converge sooner;piiq the projection onto
UL results in minimal changes of utility even with very large steps.

Now, we show visually that the projection update represented by operator ΠUL
crucially neglects small variations in the

(non-projected) utilities, requiring us to increase the step size.

Thus, the intuition is that we need a large learning rate because the projection step neglects small variations. To show this,
we take as initial utility U0 “ Usqrt, two return distributions η˚

0 , η
E , where η˚ coincides with the distribution of an optimal

policy for Usqrt, and ηE is the return distribution of the policy played by participant 10. These distributions are plotted in
Figure 21 left, and their difference is plotted in Figure 21 right. In particular, we note that the two distributions are rather
different, with the expert’s distribution ηE that is more risk-averse, in that it provides higher probability to returns around
G “ 0.5, while the optimal distribution η˚

0 is more risk-lover, in that it assigns some probability to higher returns G ě 1,
but suffering from also high probability to small returns G ď 0.3.

0 1 2 3 4 5
Return G

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ilit

y
(G

)

E

*
0

0 1 2 3 4 5
Return G

0.3

0.2

0.1

0.0

0.1

0.2

0.3

Di
ffe

re
nc

e
* 0
(G

)
E (

G
)

Figure 21. (Left) Plot of η˚
0 and ηE . (Right) Plot of η˚

0 ´ ηE .

We aim to perform the TRACTOR-UL update rule:

U
1

1 Ð U0 ´ αpη˚ ´ ηEq,

with some learning rate α, and then to perform the projection:

U1 Ð ΠUL
rU

1

1s.

13UL forces utilities to be increasing, i.e., with constraints UpG1q ď UpG2q @G1 ď G2. The plateau in Fig. 17 (right) indicates that
UpG1q “ UpG2q @G1 ď G2, G1, G2 P r1, 3s, thus, it represents a boundary.

62

Learning Utilities from Demonstrations in MDPs

We execute the update with the following values of steps size: α P t0.01, 0.5, 5, 100, 1000, 10000u, and we plot the
corresponding updated utilities U

1

1 and U1 in Figures 22, 23, and 24.

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U′
1

U1

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U′
1

U1

Figure 22. (Left) α “ 0.01. (Right) α “ 0.5.

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U′
1

U1

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U′
1

U1

Figure 23. (Left) α “ 5. (Right) α “ 100.

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U′
1

U1

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U′
1

U1

Figure 24. (Left) α “ 1000. (Right) α “ 10000.

As we can see from Figures 22, 23, and 24, the update U0 Ñ U1 obtained with step sizes ă 5 are rather neglectable, so
that the return distribution of the new optimal policy η˚

1 for U1 still coincides with the previous one η˚
0 , and the gradient at

the next step is the same. For α “ 5, we begin to notice some changes. See Figure 25.

Instead, with larger gradients, we observe a non-neglectable change in utility, which provides a consistent change in the
return distribution for α “ 100, and a huge change for α P r1000, 10000s (see Figure 26).

Since neglectable changes in both the utility and the optimal return distribution (obtained with small learning rates) mean
that we have to update the utility many times along the same direction, then the update is equivalent to performing a single
update in that direction with a huge step size. This justifies the use of large learning rates.

63

Learning Utilities from Demonstrations in MDPs

0 1 2 3 4 5
Return G

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ilit

y
(G

)

*
1 , =0.01
*
1 , =0.5
*
0

0 1 2 3 4 5
Return G

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ilit

y
(G

)

*
1 , =5
*
0

Figure 25. (Left) Comparison of the return distributions η˚
1 obtained with α “ 0.01 and α “ 0.5, with η˚

0 . (Right) Comparison of the
return distribution η˚

1 obtained with α “ 5, with η˚
0 .

0 1 2 3 4 5
Return G

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ilit

y
(G

)

*
1 , =100
*
0

0 1 2 3 4 5
Return G

0.0

0.1

0.2

0.3

0.4

0.5

Pr
ob

ab
ilit

y
(G

)

*
1 , =1000
*
1 , =10000
*
0

Figure 26. (Left) Comparison of the return distribution η˚
1 obtained with α “ 100, with η˚

0 . (Right) Comparison of the return distribu-
tions η˚

1 obtained with α “ 1000 and α “ 10000, with η˚
0 .

F.2.3. ANALYSIS ON SIMULATED DATA

We have executed TRACTOR-UL on MDPs generated at random. Below (Figures 27-29), we report the truncated
(non)compatibility values of the utilities extracted by the algorithm as a function of the number of iterations, in the five
different experiments conducted. For the experiments, we executed for T “ 70 gradient iterations, with parameters
K “ 10000 and L “ 10, as in the first part of the experiment. We found that the best learning rate is α “ 1.

To comply with the assumption that there exists a utility function for which the expert’s policy is (almost) optimal, we
compute, in each environment, the optimal policy for an S-shaped utility function that is convex for small returns, and
concave for large returns, and then we inject some noise.

0 1 2 3 4 5 6 7
Iteration t

0.15

0.20

0.25

0.30

0.35

0.40

(N
on

)c
om

pa
tib

ilit
y

(U
t)

0 1 2 3 4 5 6 7
Iteration t

0.15

0.20

0.25

0.30

0.35

0.40

(N
on

)c
om

pa
tib

ilit
y

(U
t)

Figure 27. (Left) Simulation with S “ 20 and A “ 5. (Right) Simulation with S “ 100 and A “ 10.

64

Learning Utilities from Demonstrations in MDPs

0 1 2 3 4 5 6 7
Iteration t

0.15

0.20

0.25

0.30

0.35

0.40

(N
on

)c
om

pa
tib

ilit
y

(U
t)

0 1 2 3 4 5 6 7
Iteration t

0.15

0.20

0.25

0.30

0.35

(N
on

)c
om

pa
tib

ilit
y

(U
t)

Figure 28. (Left) Simulation with S “ 1000 and A “ 20. (Right) Simulation with N “ 5.

0 1 2 3 4 5 6 7
Iteration t

0.20

0.25

0.30

0.35

0.40

0.45

0.50

(N
on

)c
om

pa
tib

ilit
y

(U
t)

Figure 29. Simulation with N “ 20.

F.3. Additional Experiment

We conducted an additional experiment using the collected data to understand which utility is more representative of all
the participants’ behaviors under the model of Eq. (1).

The utilities considered for comparison are: Usqrt, Usquare, Ulinear, and USG. The first three can be formally defined as:
UsqrtpGq :“

?
5G, UsquarepGq :“ G2{5, UlinearpGq :“ G, and they are depicted in Figure 30. Instead, utility USG differs

from each participant and is defined in the next section.

F.3.1. STANDARD GAMBLE DATA

Utility USG corresponds to the utility of each participant as fitted using the standard gamble method (Wakker, 2010).

Standard Gamble (SG). The Standard Gamble (SG) method (e.g., see Section 2.5 of (Wakker, 2010)) is a common
method for inferring the von Neumann-Morgenstern (vNM) utility function of an agent. Observe Figure 32. In a SG, the
agent has to decide between two options: a sure option (e.g., x “ 30C), in which the prize is obtained with probability 1,
and a lottery between two prizes (e.g., 5000Cand 0C), in which the best prize (5000C) is received with probability p. For
any value of x, the agent has to answer what is the probability p that, from his perspective, makes the two options (i.e., x
for sure, or the lottery) indifferent.

Given the probability p, we have that the utility U of the agent for x is:

Upxq “ p ¨ Up5000q ` p1 ´ pq ¨ Up0q “ p,

since, by normalization conditions, we have Up0q “ 0 and Up5000q “ 1.

65

Learning Utilities from Demonstrations in MDPs

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
)

U(G) G
U(G) G2

U(G) G

Figure 30. A plot of utilities Usqrt, Usquare, Ulinear.

0 1 2 3 4 5
Return G

0

1

2

3

4

5

Ut
ilit

y
U

(G
) participant 1

participant 2
participant 3
participant 4
participant 5
participant 6
participant 7
participant 8
participant 9
participant 10
participant 11
participant 12
participant 13
participant 14
participant 15

Figure 31. The SG utilities of the participants.

x „
5000C

0C

p

1 ´ p

Figure 32. The SG used for data collection.

Our SG. We have asked the 15 participants to the study to answer some SG questions, which allows us to fit a vNM
utility function USG for each of them. Specifically, we have asked to answer 8 different SG questions, in which the x value
in Figure 32 has been replaced by:

10C, 30C, 50C, 100C, 300C, 500C, 1000C, 2000C.

Next, we linearly interpolate the computed utilities, obtaining the functions in Figure 31.

It should be remarked that this model considers single decisions (i.e., H “ 1), while in MDPs there is a sequence of
decisions to be taken over time, specifically over a certain time horizon H .

F.3.2. RESULTS

To measure the fitness of a utility U to the data (policy π) fairly, we consider a relative notion of (non)compatibility (we
omit p, r for simplicity): Cr

πpUq :“ pJ˚pUq ´ JπpUqq{J˚pUq. Intuitively, Cr
πpUq measures the quality of π as perceived

by the demonstrating agent, if U was its true utility function.

66

Learning Utilities from Demonstrations in MDPs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 mean
Ulinear 39 58 18 1 9 33 25 62 1 56 1 16 16 25 60 28˘22
Usqrt 16 28 8 1 3 16 11 30 1 25 1 6 8 11 28 13˘10
Usquare 70 86 32 1 19 41 44 91 1 88 1 35 28 44 91 45˘32
USG 39 76 11 0 5 28 20 34 10 2 1 8 21 17 51 22˘21

Table 3. Values of Cr
π of various utilities with the demonstrations of the participants in percentage.

We execute CATY-UL (without exploration) for the 15 participants comparing the IRL risk-neutral utility Ulinear with 3
“baselines”: A risk-averse Usqrt (concave) and a risk-lover Usquare (convex) utilities, and the utility USG fitted through the
SG method (see Appendix F for details). We report the (non)compatibilities in percentage in Table 3, where we have used
colors to highlight the best and worst values for each participant (the last column contains the average over the participants).

Some observations are in order. First, this data shows that Ulinear (i.e., IRL) is overcome by Usqrt, which reduces Cr
πp¨q from

28% to 13% on the average of the participants. Next, note that Usqrt outperforms the USG of each participant. This is due
to both the bounded rationality of humans, who can not apply the H “ 1 utility USG to H ą 1 problems, and the fact
that Usqrt probably “overfits” the simple MDP considered, but it might generalize worse than USG to new environments.
14 Finally, observe that all the utilities are compatible with policies 4 and 11, providing empirical evidence on the partial
identifiability of the expert’s utility from single demonstrations.

The experiment has been conducted on the same personal computer as experiment 2, in less than one hour.

The experiment has been conducted collecting 10000 trajectories to estimate the return distribution of each participant’s
policy, and 10000 trajectories for estimating the return distribution of the optimal policy, which has been computed exactly
through value iteration. We have executed 5 simulations with different seeds, and the relative (non)compatibility values
written in Table 3 are the average over the 5 simulations.

For the experiment, we used the true transition model, and we remark that the reward function considered, when discretized,
coincides with itself, i.e., we did not incur in estimation error of the transition model nor in approximation error for the
discretization.

14Further analysis should be carried out on this, that we leave to future works.

67

