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Abstract

People rely heavily on context to enrich mean-
ing beyond what is literally said, enabling con-
cise but effective communication. To interact
successfully and naturally with people, LLMs
and other user-facing NLP systems will require
similar skills in pragmatics: relying on various
types of context—from shared linguistic goals
and conventions, to the visual and embodied
world—to use language effectively.

We survey existing grounded settings and prag-
matic modeling approaches and analyze how
the task goals, environmental contexts, and
communicative affordances in each work en-
rich linguistic meaning. We present recom-
mendations for future grounded task design to
naturally elicit pragmatic phenomena, and sug-
gest directions that focus on a broader range of
communicative contexts and affordances.

1 Using Language in Context

People use language to achieve goals (Wittgenstein,
1953; Austin, 1975; Clark, 1996; Frank and Good-
man, 2012), producing effects on other people and
the world. To achieve their goals efficiently, people
often only sketch their intended meanings: relying
on various types of context to allow their conver-
sational partners to enrich meaning beyond what
the speaker has literally said. For this reason, lan-
guage is highly context-dependent; the meaning of
even a simple sentence such as “it’s nice out today”
depends on the situation—it can be an implicit in-
vitation, a statement contrasting the weather with a
previous day, or even ironic if the weather is poor.
This broad ability to use language in context to
achieve goals is known as pragmatics.

As large language models (LLMs) and other
NLP systems become increasingly integrated into
our world, they will require similar pragmatic skills
to use language to interact successfully and ef-
ficiently with people in context. Recent work
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has focused on general-purpose models (Tan and
Bansal, 2019; Brown et al., 2020; Radford et al.,
2021; Bommasani et al., 2021, inter alia) that have
achieved remarkable performance on a variety of
task benchmarks intended to measure literal, se-
mantic meaning. However, current LLMs have
little, if any, direct access to most of the types of
context that contribute to pragmatic enrichment
(see Section 2.1) — they condition on and generate
text that is only a noisy observation of the underly-
ing world, interaction context, and communicative
effects of language (Andreas, 2022). This lack of
direct access to the context and effects of language
leads to pragmatic failures. Recent work finds that
while LLMs match human performance on some
pragmatic tasks, they still struggle with many phe-
nomena, e.g. those that rely on social expectation
violations (Hu et al., 2022) and theory of mind (Sap
et al., 2022). For multimodal LLMs, contemporary
work has found pragmatic failures when reasoning
about the intended meaning of entities described in
text (Rassin et al., 2022) as well as when reasoning
about visio-linguistic compositions of such entities
(Thrush et al., 2022).

We believe the time is right to focus on evalu-
ating models on tasks (some existing, but mostly
to-be-developed) that require contextual communi-
cation abilities: ones that elicit pragmatic phenom-
ena from people, and benefit from pragmatic abil-
ities in systems. These tasks should give a proxy
for model performance in grounded interactions
with real people, while still facilitating comparing
methods and benchmarking progress. In this paper,
we center our discussion on the role of grounded
and multimodal context in pragmatics, motivated
by the rich contexts of typical language use—our
understanding of language is shaped by the envi-
ronments that we use it in (Baldwin, 1995; Bloom,
2002; Tomasello, 2005; Vigliocco et al., 2014; Ben-
der and Koller, 2020; Bisk et al., 2020).

We first survey how various communicative and



environmental context types elicit pragmatic phe-
nomena. Using these context types and phenomena,
we then survey representative grounded tasks and
datasets which have been used both to study prag-
matic communication in people, and to build goal-
oriented multimodal systems. We present tasks
along a spectrum of complexity, ranging from con-
strained reference games to goal-oriented embod-
ied dialogue. We discuss how choices in grounded
task design—including environment properties,
context types, and communicative affordances—
shape the pragmatic phenomena that arise in tasks,
and provide suggestions for future task and dataset
designers. To model these tasks and phenomena,
we give an overview of a range of computational
pragmatic approaches that view communication as
goal-directed actions by agents in context.

Finally, we suggest further integrations of com-
putational pragmatics with NLP: developing tasks
with rich contexts; contextualizing existing tasks;
using pragmatic and contextual modeling to allow
systems to communicate and interact more suc-
cessfully and efficiently with people; and tackling
challenges of human evaluation and data sparsity.

2 Pragmatic Phenomena

In linguistics and cognitive science, pragmatics is
often defined in contrast to semantics. Broadly
speaking, semantics characterises the literal mean-
ings of linguistic expressions, whereas pragmat-
ics captures the context-dependent components
of meaning, which may contain the bulk of ac-
tual communication (Clark, 1997; Casasanto and
Lupyan, 2015). Pragmatic communication draws
upon many different sources of information, rang-
ing from environmental factors to inferences about
other agents’ unspoken information and goals. This
makes pragmatics both a critical and challenging
component for designing NLP systems that interact
with people. In this section, we discuss the types of
context in which language can be situated and the
non-literal inferences that arise as a result of these
contextual pressures.

2.1 Types of Context

Many aspects of pragmatics involve the mainte-
nance of common ground, a set of contextual in-
formation shared between communicative part-
ners (e.g., Lewis, 1969; Clark and Brennan, 1991;
Traum, 1994; Stalnaker, 2002; Clark, 2015). Key
elements of common ground include (1) social and

communicative norms, (2) task goals and collab-
orative actions, (3) common knowledge, and (4)
discourse context. In addition to common ground,
we focus on pragmatic reasoning that also requires
multimodal context, such as (5) visual information
or (6) embodied interaction. See Appendix A for
definitions and examples for each of these types of
context; we also point readers to Levinson (1983)
and Birner (2012) for more discussion.

2.2 Roles of Pragmatics

We adopt a use-oriented view of pragmatics (Clark,
1996), highlighting various ways that pragmatic
reasoning may be used in grounded language tasks.
Our taxonomy is not intended to be fully exhaus-
tive, and we caveat that some categories may par-
tially overlap with one another. For a focus on
classic linguistic pragmatic phenomena, like deixis
and presupposition, we refer readers to existing sur-
veys such as Levinson (1983) and Birner (2012).

Reasoning About Alternatives. Much of linguis-
tic meaning comes not just from what we say, but
from what we do not say. The utterances that speak-
ers choose not to say i.e., the set of alternative ut-
terances which are likely in a context, can reveal
their intended meanings and mental states (Horn,
1984; Fox and Katzir, 2011; Degen, 2013; Buccola
et al., 2022), e.g., some of the apples are red likely
conveys that some are not, since the speaker did
not say all were red. Many of the following roles
of pragmatics also often involve reasoning over
alternatives.

Understanding Ambiguity. Language is fre-
quently ambiguous for many reasons (Piantadosi
et al., 2012): ambiguity may be used strategically
to achieve communicative efficiency or to remove
information that is unhelpful to the task at hand.
Moreover, ambiguous instructions often require
listeners to reason pragmatically about alternative
intentions that speakers might have. For example,
when asked to pass the knife in a cooking scenario,
a pragmatic agent might have to reason about the
context to determine whether to provide a butter,
bread, or steak knife. By relying on contextual in-
formation to resolve ambiguities in situations such
as these, pragmatic interlocutors can communicate
more efficiently (Solé and Seoane, 2015; Fortuny
and Corominas-Murtra, 2013).

Collaborative Planning. Many grounded dia-
logue tasks require agents to coordinate to carry



out joint activities, e.g., collaboratively agree to a
goal before executing it. To succeed at tasks like
these, participants often must reason about each
other’s possible goals, for example in a collabora-
tive building setting, inferring that four planks can
be either a command or a description depending on
what effect the speaker is trying to produce on the
listener. In environments with many world states,
there are a combinatorial number of goals to rea-
son about and actions to take, but a participant can
usually only communicate with their partner for a
limited time. Therefore, participants must trade-off
between communicating efficiently and acting.

Convention Formation and Abstraction. Con-
ventions, as characterised by Lewis (1969), are
arbitrary but stable solutions to recurring coordina-
tion problems that typically form out of the maxims
of rational communication (Grice, 1975). For ex-
ample, a team of workers who communicate with
one another daily might initially have lengthy de-
scriptions to refer to certain items, but after a while,
might start to develop a common ground of simpler
words to refer to them. These abstractions or con-
ventions are hypothesised to emerge as a result of
repeated interactions (Garrod and Doherty, 1994).
One theory is that conventions form to help resolve
ambiguity, yielding more efficient communication
at the levels of individuals (Hawkins et al., 2017)
or populations (Hawkins et al., 2022).

Efficiency and Mutual Exclusivity. For many
grounded tasks where the goal is to learn a corre-
spondence between meanings and utterances, prag-
matic reasoning can be used to avoid learning de-
generate mappings. For example, on learning that a
certain label (e.g., cat) refers to an object, an agent
might use mutual exclusivity to rule out the pos-
sibility of another label (e.g., dog) also referring
to the object (Markman and Wachtel, 1988; Clark,
1988). Models of pragmatic reasoning often induce
biases toward mutual exclusivity that can lead to
more efficient learning (Wang et al., 2016; McDow-
ell and Goodman, 2019). More broadly, pragmatic
reasoning may be used to manage the dual pres-
sures of informativity and conciseness (Zipf, 1949;
Horn, 1984; Blutner, 1998), which are explicitly
factored into pragmatic models such as RSA (cf.
Section 4.2). As a result, pragmatics may lead
to communicative efficiency both during language
learning and language use.

3 Existing Tasks and Environments

In this section, we critically evaluate several well-
studied grounded language tasks through the lens
of the pragmatic phenomena outlined above. We
focus on tasks in multimodal domains that make
use of natural language data.1

3.1 Types of Tasks

Grounded, task-oriented dialogue provides a gen-
eral setting to study pragmatics. Dialogue tasks
provide rich and varied contexts (e.g., different
types of common ground, goals, and environments)
as well as communicative affordances (e.g., the
ability to ask questions, provide information in in-
stallments, and adapt to a partner’s conventions).
These contexts and affordances interact to produce
a diverse range of pragmatic behavior (Clark, 1996).
However, many of these contexts, affordances, and
behaviors are also present in more restricted and
controlled tasks for which data collection, analysis,
modeling, and evaluation are often more tractable.
For example, image captioning tasks simplify data
collection and modeling by limiting the number of
conversational turns to one; instruction interpreta-
tion tasks additionally simplify evaluation (so long
as it is possible to carry out and validate actions in
the world).

We focus on reference games, image captioning,
instruction following, and grounded dialogue tasks
that give us a broad characterization of the different
properties that tasks might have, as summarized
in Table 1.2 For each task, we specify what type
of context is needed, how pragmatic behavior is
typically exhibited, and several important elements
of task design: partial observability, symmetry, and
iterated interaction (see Section 3.2). We present
these domains in order of increasing complexity,
finding that the most complex grounded dialogue
tasks are more likely to involve features like partial
observability or symmetry which induce additional
pragmatic phenomena.

1We omit large bodies of work on unimodal pragmatics
(Degen, 2013; Jeretic et al., 2020; Choi et al., 2021, inter
alia) or language that might be grounded, but is synthetically
generated (Johnson et al., 2017; Bastings et al., 2018; Zhong
et al., 2020).

2This is not an exhaustive taxonomy of grounded language
learning tasks. For example, VQA (Antol et al., 2015), NLVR2
(Suhr et al., 2019b), the Hateful Memes Challenge (Kirk et al.,
2021), and Winoground (Thrush et al., 2022) do not fit per-
fectly into any of the above categories, although most bear
some similarities to image captioning.



Task (Dataset) Types of Context Role of Pragmatics Par.Ob. Sym. Iter.

Reference Game
ReferItGame
Kazemzadeh et al. (2014) Visual

Reasoning about alternatives, under-
standing ambiguity ✗ ✗ ✗

Colors in Context
Monroe et al. (2017) Visual

Reasoning about alternatives, under-
standing ambiguity ✗ ✗ ✓

Image Captioning
Abstract Scenes
Andreas and Klein (2016) Visual, common knowledge Reasoning about alternatives ✗ ✗ ✗

Conceptual Captions
Sharma et al. (2018);
Alikhani et al. (2020)

Visual, common knowledge, joint
goals, norms of interaction Efficiency considerations ✗ ✗ ✗

Instruction Following
SHRDLURN
Wang et al. (2016) Visual

Mutual exclusivity, convention forma-
tion, efficiency considerations ✗ ✗ ✓

CerealBar
Suhr et al. (2019a) Visual, embodied Collaborative planning, understanding

abstractions and conventions
✓ ✗ ✓

Hexagons
Lachmy et al. (2022) Visual, norms of interaction Understanding abstractions and ambi-

guity, efficiency considerations ✗ ✗ ✓

Grounded Dialogue
Cards Corpus
Potts (2012)

Visual, embodied, joint goals, norms
of interaction, discourse

Collaborative planning, understanding
ambiguity, efficiency ✓ ✓ ✗

OneCommon
Udagawa and Aizawa (2019)

Visual, joint goals, norms of interac-
tion, discourse

Collaborative planning, understanding
ambiguity, efficiency ✓ ✓ ✗

PhotoBook
Haber et al. (2019)

Visual, common knowledge, joint
goals, norms of interaction, discourse

Convention formation, understanding
ambiguity, efficiency ✓ ✓ ✓

Table 1: Example grounded language learning datasets that involve pragmatic reasoning, organized by task type.
The task attributes refer to: partially observable, symmetric, and iterated (multi-turn) interactions. We observe that
grounded dialogue and instruction following tasks often involve a broader range of pragmatic reasoning behaviors.

Reference Games. Reference games typically in-
volve two players, a listener and a speaker agent.
Both players are presented with a shared set of
referents, e.g., images, objects, or abstract illustra-
tions, and the speaker is tasked with describing a
target referent to the listener, who must then guess
the target (Clark and Wilkes-Gibbs, 1986; Gorniak
and Roy, 2004; Steels and Belpaeme, 2005; Gol-
land et al., 2010; Frank and Goodman, 2012; Ken-
nington and Schlangen, 2015). An example refer-
ence game is the Colors in Context (Monroe et al.,
2017) task, in which players are presented with
three color swatches and asked to describe one of
them. Even simple phrases like plain blue may
have different meanings depending on visual con-
text in this task.

Image Captioning. A broad class of image cap-
tioning tasks require producing text to describe an
image (Barnard et al., 2003; Farhadi et al., 2010;
Mitchell et al., 2012; Kulkarni et al., 2013). Most
captioning work has only been implicitly goal-
oriented: corpora have been constructed by asking
annotators to determine and describe the important
parts of an image (Hodosh et al., 2013; Young et al.,
2014; Chen et al., 2015). Systems are evaluated on

how closely their descriptions match these human-
written references, which poses challenges given
considerable variation in what annotators chose to
describe and how they wrote the descriptions (An-
derson et al., 2016).

Other work, particularly in the computational
pragmatics literature, has formulated captioning
as a contrastive task (Andreas and Klein, 2016;
Vedantam et al., 2017; Cohn-Gordon et al., 2018),
where a target image must be described to contrast
it from other similar, distractor images. This set-
ting can be viewed as a scaled-up reference game
involving complex visual inputs, and many such
pragmatically-motivated variations on standard im-
age captioning have appeared in recent years: Nie
et al. (2020) define issue-sensitive image caption-
ing, in which models implicitly caption several
target images at a time, while Alikhani et al. (2020)
train coherence-aware captioning models which
may vary in the degree of subjectivity or the extent
to which inferences about target images are made.

Of the task categories we discuss, image cap-
tioning has the most immediate real-world appli-
cability, especially for accessibility e.g., to pro-
vide descriptions that could substitute for images



for visually-impaired users on the web (Pont-Tuset
et al., 2020). Additionally, practical considerations
in this domain often require pragmatic reasoning
e.g., specifically describing salient characteristics
of an image (e.g., a man versus Barack Obama),
being concise, or describing the relevance of the
image to document context. We refer the reader to
MacLeod et al. (2017) and Kreiss et al. (2021) for
further information on this topic.

Instruction Following. Instruction following
tasks require a listener to take instructions from
a speaker, predicting trajectories in an envi-
ronment (Branavan et al., 2009; Vogel and Ju-
rafsky, 2010; Chen and Mooney, 2011; Tellex
et al., 2011; Anderson et al., 2018). Tra-
jectories can be grammar-based actions (e.g.,
ADD(LEFTMOST(WITH(BROWN)), ORANGE), to
specify add an orange block to the left-most brown
block in the block-stacking setting of Wang et al.
2016), sequences of discrete movements (e.g., be-
tween nodes in a navigation graph in Chen et al.
2019; Ku et al. 2020), or continuous sequences
(e.g., of orientations in Ku et al. 2020).

A speaker must describe a target trajectory in
a way that allows the listener to correctly carry
it out in the presence of (often exponentially
many) alternative trajectories (e.g., left versus
sharp left). These environments often involve
visually-grounded observations (Anderson et al.,
2018; Chen et al., 2019; Ku et al., 2020), ac-
tion hierarchies (Shridhar et al., 2020) or program-
matic abstractions (Lachmy et al., 2022) and some
parts of the environment may be unobserved to the
speaker, the listener, or both (see Section 3.2), caus-
ing language to be more ambiguous and context-
dependent.

Grounded Goal-Oriented Dialogue. We focus
on grounded dialogue tasks that involve two-way
communication between partners to achieve a
shared goal (e.g., Chai et al., 2004; Rieser and
Lemon, 2008; Das et al., 2017; De Vries et al.,
2017; Kim et al., 2019; Narayan-Chen et al., 2019;
Ilinykh et al., 2019).3 These tasks generalize
the one-way communication settings above; how-
ever, two-way communication provides additional
affordances—allowing players to ask clarification
questions, acknowledge understanding, and coordi-
nate actions. For example, in the Cards task (Potts,

3Our focus is on task-oriented dialogue, given that com-
municative goals are less explicit in chit-chat settings (but see
Kim et al. (2020) for a recent pragmatic treatment).

2012), players collaboratively collect a set of cards
in a grid world environment by communicating
with other players while moving around to pick
up cards. Observability is limited to parts of the
environment close to the players, requiring them
to pool information, and they must collaboratively
plan to agree on one of the multiple possible sets
of cards they can collect.

The multi-turn nature of dialogue also necessi-
tates reasoning about past actions and interactions
(perform inference) and likely outcomes in the fu-
ture (planning). These are particularly evidenced
in collaborative reference tasks such as OneCom-
mon (Udagawa and Aizawa, 2019), where players
must infer which items they share with their part-
ners, aggregating information over the course of a
dialogue. Finally, repeated interactions in dialogue
can allow linguistic adaptation. For example, in
PhotoBook task (Haber et al., 2019)—a collabo-
rative reference task where players have repeated
conversations about photographs—players adapt
their language over time to match each other, be-
coming more efficient over time (e.g., reducing the
strange bike with three wheels to strange bike).

3.2 Elements of Task Design

We now outline three especially pragmatically-
relevant dimensions to consider when designing
tasks and describe how they induce various types
of pragmatic phenomena.

Observability. In partially observable tasks, par-
ticipants can only see a limited portion of the envi-
ronment, for example seeing only the parts of the
grid closest to them in the Cards task (Potts, 2012).
This can make language more context-dependent,
in particular creating a dependence on when or
where the language was produced. The most com-
plex partially-observable settings, including all of
the collaborative dialogue tasks in Table 1, involve
participants observing different views of the envi-
ronment — requiring them to collaboratively plan
to pool their information. Different views can also
lead to false agreements where participants believe
they have coordinated but actually disagree (Chai
et al., 2014; Udagawa and Aizawa, 2019), requiring
more explicit pragmatic modeling of the partner’s
perspective to avoid and resolve ambiguity.

Symmetry. Tasks differ in the types of roles per-
formed by the communicating agents, which in
turn shapes the type of language produced and



actions taken. We distinguish between asymmet-
ric and symmetric roles. In an asymmetric set-
ting — e.g., speaker and listener, or teacher and
follower — pragmatics may be helpful for pro-
duction and comprehension of language utterances.
Symmetric settings (Vogel et al., 2013a,b) may be
more naturalistic and are often used in coordina-
tion tasks, although designing such settings is often
more complicated. Asymmetric settings (Monroe
et al., 2017; Andreas and Klein, 2016) are often the
simplest way to introduce pragmatic phenomena,
since asymmetry occurs when one agent is missing
information.

Interaction. The nature of interaction(s) between
communicating agents affects the language that is
produced. In a one-turn interaction, all usable in-
formation must be expressed in a single utterance,
forcing speakers to balance informativity and con-
ciseness. In iterated one-sided interactions, the
speaker has the opportunity to respond to the lis-
tener’s actions before planning each new utterance.
Finally, in dialogue, agents can freely coordinate
and participate in speech acts—they can jointly
build common ground, ask clarification questions,
and share useful information. These repeated inter-
actions between agents require attention to conver-
sation history, and may give rise to the formation
of conventions (e.g., Hawkins et al., 2017).

3.3 Evaluating Pragmatic Models
The ultimate goal for user-facing, situated agents is
to communicate (1) successfully and (2) efficiently
with people. Human evaluations, where agents are
paired with people at test-time, are an ideal way
to measure this (Walker et al., 1997; Koller et al.,
2010; Parent and Eskenazi, 2010; Suhr et al., 2019a,
inter alia), but are not always feasible to carry out
since they complicate controlling and replicating
experimental setups. Thus, evaluation often resorts
either to static, human-produced corpora or auto-
mated model-based evaluations.

Task success. Interpretation tasks are typically
amenable to corpora-based evaluation. For ex-
ample, listener agents in reference games can be
easily evaluated based on the accuracy of refer-
ent selection. In contrast, evaluating language
generation tasks for speaker agents is more chal-
lenging, given that many classical reference-based
automated NLG metrics are unable to measure
whether or not generated language will be under-
stood correctly by human listeners (Krahmer and

Theune, 2010; Fried et al., 2018a; Zhao et al., 2021;
Gehrmann et al., 2022). Automated proxies for
human listeners are models of how people inter-
pret and respond to a system’s language, known
as user simulation or self-play (Georgila et al.,
2006; Rieser and Lemon, 2011; Lewis et al., 2017;
Kim et al., 2019) in dialogue and communication-
based evaluation (Newman et al., 2020) in refer-
ence games, where speaker generations are fed to a
listener model and evaluated on task success. Au-
tomated models can only give rough indicators of
how humans might interpret the system’s language.
For this reason, we stress the importance of making
the evaluation model dissimilar from the system
and using human evaluations whenever possible.

Communicative efficiency. Beyond task success,
a secondary criterion for situated agents is efficient
communication. For example, if the language gen-
erated by a speaker, although correct, is difficult
to understand, this calls for unnecessary interpre-
tation effort from the other agent. To measure
whether pragmatic agents enable efficient commu-
nication, evaluations can use metrics of commu-
nicative cost (Walker et al., 1997) such as time to
task completion, utterance length and complexity
(Effenberger et al., 2021), measures such as lexical
entrainment (Clark and Wilkes-Gibbs, 1986; Par-
ent and Eskenazi, 2010; Hawkins et al., 2020), and
quality ratings (Kojima et al., 2021).

4 Modeling Pragmatics

In this section, we discuss frameworks that have
been proposed to characterize how listeners can de-
rive pragmatic meaning, providing a starting point
for modeling the phenomena and tasks above.

4.1 Gricean Maxims
In his seminal proposal, Grice (1975) argues that
speakers and listeners are guided by an underly-
ing cooperative principle: taking action to jointly
achieve communicative goals, and assuming that
other agents are acting similarly. Grice divides this
principle up into a set of maxims. However, at-
tempts to directly implement the Gricean maxims
computationally (e.g., Hirschberg, 1985a) have
had to grapple with substantial underspecification
and overlap in Grice’s proposal. Later neo-Gricean
work in linguistics has streamlined the maxims con-
siderably (Horn, 1984; Levinson, 2000) and charac-
terizes many pragmatic effects in terms of the trade-
off between speaker and listener effort in achieving



cooperative goals. These approaches have had few
direct computational implementations; however, a
line of computational work, which we outline in
Sections 4.2 and 4.3, derives maxim-like behav-
ior through multi-agent modeling rather than by
prescriptively implementing the maxims.

4.2 Multi-Agent Reasoning

A number of computational frameworks view ut-
terance generation and interpretation using a multi-
agent or game-theoretic lens (Rosenberg and Co-
hen, 1964; Cohen and Levesque, 1990; Golland
et al., 2010; Jäger, 2012; Franke, 2013). We fo-
cus on one representative of these, the Rational
Speech Acts (RSA) framework (Frank and Good-
man, 2012; Goodman and Frank, 2016), as it
has been successfully applied across a range of
grounded language settings.

RSA defines a recursive reasoning process where
speakers and listeners model each other’s goals
and interpretations. A rational speaker chooses
utterances using an embedded model of how the
listener will likely interpret utterances. A rational
listener, in turn, reasons counterfactually about a
rational speaker generating language in this way—
reasoning about why the speaker choose an ob-
served utterance rather than alternatives—which
can resolve ambiguity in the speaker’s utterances.

A variety of work has also applied RSA to im-
prove performance of NLP systems on a range
of tasks involving complex natural language ut-
terances, including reference games (Monroe et al.,
2017), instruction following and generation (Fried
et al., 2018a,b), image captioning (Andreas and
Klein, 2016; Cohn-Gordon et al., 2018), summa-
rization (Shen et al., 2019), MT (Cohn-Gordon and
Goodman, 2019), and dialogue (Kim et al., 2020;
Fried et al., 2021). A number of rational com-
munication frameworks also include noteworthy
variations on the core RSA setup, include vary-
ing the utility function (Zaslavsky et al., 2021),
modeling mis-aligned objectives (Asher and Las-
carides, 2013), using deeper levels of recursive rea-
soning between agents (Wang et al., 2020), and non-
linguistic communication (Hadfield-Menell et al.,
2017; Jeon et al., 2020; Pu et al., 2020).

One key limitation of RSA is that it models
speakers as choosing their utterances from a known
and fixed set of candidate utterances. A second
notable limitation is that, with a few exceptions
(e.g., Khani et al., 2018), applications of full re-

cursive reasoning frameworks have been limited
to single-turn interactions. However, the multi-
turn approaches that we outline in Section 4.3 al-
low modeling repeated interactions by making the
framework simpler along certain axes (e.g., remov-
ing higher-order theory-of-mind).

4.3 Multi-Turn Approaches

A variety of approaches to multi-turn pragmat-
ics have arisen in work on task-oriented dia-
logue. Many of these treat communication as goal-
directed decision-making under uncertainty (Rieser
and Lemon, 2011; Young et al., 2013), and can
be broadly viewed as generalizing the single-turn
frameworks of Section 4.2. For generation, a
variety of dialogue systems explicitly plan utter-
ances or speech acts to convey information to
their partners (Cohen and Perrault, 1979; Traum,
1994; Walker et al., 2004; Rieser and Lemon, 2009;
Kim et al., 2020, inter alia). For interpretation,
many systems infer the latent intent or state of the
user (Allen and Perrault, 1980; Paek and Horvitz,
2000; Williams and Young, 2007; Schlangen et al.,
2009; Young et al., 2013, inter alia).

Planning and inference are classic AI tasks with
broad applicability, and most of the works above
are closely related to general machinery developed
for decentralized POMDPs (Bernstein et al., 2002;
Oliehoek and Amato, 2016). However, given com-
putational challenges, past work on algorithmic ap-
plications of POMDP algorithms to communication
have focused on domain-specific formalisms (the
works above) or restricted language settings (Zettle-
moyer et al., 2008; Vogel et al., 2013a; Hadfield-
Menell et al., 2016; Foerster et al., 2019; Jaques
et al., 2019). To enable pragmatic modeling and
interaction with people in naturalistic grounded
dialogue settings, future work might draw on fur-
ther progress that the multi-agent reinforcement
learning and planning communities make on these
underlying algorithmic challenges.

5 Discussion

5.1 Building Pragmatically-Informed Tasks

Pragmatics becomes most essential — and most
challenging — in grounded and interactive settings,
which have the richest contexts of language use.
When people can rely on shared dialogue, environ-
mental, and task contexts to convey and decode
meanings, pragmatic phenomena emerge that have
so far been understudied in NLP, such as conven-



tion formation (Section 2.2). While pretraining on
multimodal (Lu et al., 2019; Sun et al., 2019; Tan
and Bansal, 2019; Radford et al., 2021) and interac-
tive (Stiennon et al., 2020; Shuster et al., 2022; Bai
et al., 2022) data has driven recent progress in their
respective domains, training data and evaluation
setups for settings that are both grounded and inter-
active remain limited in scope, size, and ecological
validity (De Vries et al., 2020). This sparsity poses
both a challenge and an opportunity for pragmatic
language use.

We encourage future work to focus on realistic
interactive scenarios which contain a wide range
of pragmatic phenomena. As shown in Table 1,
grounded, multi-turn dialogue tasks with partial
observability and symmetry often encompass the
widest variety of pragmatic language behavior. To
date, relatively few tasks have all of these proper-
ties, although there are a few notable exceptions
(e.g., Potts, 2012; Udagawa and Aizawa, 2019).
We argue that such tasks provide useful testbeds
for building models of convention formation and
collaborative planning, which are currently under-
studied in the computational pragmatics literature.

In tandem, we also encourage future work to
contextualize existing NLP tasks in order to bring
them closer to real-world applicability. For exam-
ple, as discussed in Section 3.1, MacLeod et al.
(2017) and Kreiss et al. (2021) argue that current
image captioning systems fail to meet the needs of
visually-impaired users because they do not pro-
vide descriptions in the context of the article or
of the user’s goals. Incorporating and modeling
additional context—such as user intent in caption-
ing (Alikhani et al., 2020), interaction history in in-
struction following (Kojima et al., 2021; Lin et al.,
2022), or emotion (Kim et al., 2021) and person-
ality (Wang et al., 2019) in dialogue—may help
close the gap between current NLP benchmarks
and useful real-world systems.

5.2 Pragmatic Modeling and LLMs

We predict that focusing on tasks that require prag-
matic capabilities will advance the frontier of NLP,
and vice versa. Many of the roles of pragmat-
ics that we outline in Section 2.2 are linguistic
manifestations of classical problems in machine
learning and AI: inference and model calibration
underlie reasoning about alternatives and ambigu-
ity; multi-agent search underlies collaborative plan-
ning; adaptation and abstraction learning under-

lie convention formation. Can these problems be
solved by (multimodal-)LLMs that condition on
the right contexts and are trained on sufficient data,
or does there remain a role for explicit pragmatic
modeling? What is the best path towards producing
human-like pragmatic communicative behavior?

While we view these questions as currently un-
resolved, we predict that to answer them and to
advance grounded NLP, it will prove useful to ex-
plore pragmatic modeling and contextually condi-
tioned, multimodal LLMs in tandem. Reasoning
about how context enriches meaning (Section 2.1)
allows people to say less while still conveying their
intentions, and to learn from what could have been
said but was not. Similarly, practical benefits of
explicit pragmatic modeling include more efficient
and accurate communication (Monroe et al., 2017;
Khani et al., 2018; Fried et al., 2021) and learn-
ing in low data regimes (McDowell and Goodman,
2019; Wang et al., 2016), such as interactive and
personalized settings.

LLMs have already begun to be put to use to
tackle the grounded pragmatic tasks we outline
in Table 1 and Section 3. For example, Kojima
et al. (2021) fine-tune a pre-trained GPT-2 model
to adapt to people for instruction generation in Ce-
realBar. The pragmatic methods in Section 4 are
also compatible with LLMs, e.g., Liu et al. (2023)
combine RSA with meta-learning to apply GPT
models in an image reference game setting; FAIR
et al. (2022) use a large BART model (Lewis et al.,
2020) in conjunction with a multi-agent planning
procedure in the grounded dialogue game of Diplo-
macy. As grounded LLM adapters (Alayrac et al.,
2022; Merullo et al., 2023; Eichenberg et al., 2022;
Koh et al., 2023) continue to improve, we expect
to see more work applying LLMs as components
of pragmatic models for these grounding tasks.

Regardless of the approaches used, we encour-
age future work in NLP to evaluate models not
just on task success, but also other pragmatic aims:
communicative efficiency, understanding of non-
literal language, ability to form conventions (Sec-
tion 3.3) and consider all approaches that are effec-
tive in achieving these goals (e.g., Section 4.2).

5.3 Challenges and Open Questions

Going forward, accurate evaluation of pragmatics
is one key challenge in grounded language learning.
Some recent benchmarks have been proposed to
evaluate pragmatic language behavior in large lan-



guage models (Sap et al., 2022; Hu et al., 2022;
Ruis et al., 2022), but evaluation in interactive,
multimodal scenarios often requires humans or hu-
man proxies. As discussed in Section 3.3, some
models may be evaluated in self-play, and future
work might draw on improved proxies for human
interaction from multi-agent reinforcement learn-
ing (Strouse et al., 2021). However, human eval-
uation remains the gold standard in most settings,
and we encourage future work to (1) improve hu-
man evaluations, taking lessons from the human
computer interaction community and (2) focus on
tasks that are useful (Bigham et al., 2010; Stiennon
et al., 2020), fun (Wang et al., 2017; FAIR et al.,
2022), or otherwise intrinsically motivating.

Another key challenge is handling data sparsity.
Although recent advances in large-scale pretraining
have led to few-shot capabilities on many language
tasks, interactive and grounded tasks pose addi-
tional challenges in sparsity. First, the addition of
multimodal context widens the conditioning space.
Second, many grounded settings involve domain-
specific knowledge; for example, instruction fol-
lowing and grounded dialogue settings often have
unique action spaces, as well as domain-specific ab-
stractions or conventions in language use. Finally,
many settings require adaptation to individual users,
for which there will always be limited data.

As NLP expands to an ever-wider range of con-
texts, we encourage work to include pragmatics as
a central component, with the goal of communi-
cating successfully, efficiently, and naturally with
people in challenging and useful settings.

Limitations
Although we aim to describe a representative sam-
ple of tasks in Table 1, our coverage is necessarily
incomplete, especially in domains such as image
captioning, instruction-following, and collabora-
tive dialogue, so we refer readers to other surveys
on these issues (e.g., Luketina et al., 2019). As
noted in Section 3, we focus exclusively on task-
oriented grounded domains involving natural lan-
guage data. Our survey therefore includes limited
discussion of pragmatic phenomena in unimodal
text domains such as chitchat dialogue, purely tex-
tual task-oriented dialogue, and language classi-
fication tasks (although c.f. Section 4.3 and Ap-
pendix B), and omits much work on analyzing the
abilities of models to perform classic pragmatic
tasks such as implicature and presupposition (e.g.,
Ross and Pavlick, 2019; Jeretic et al., 2020). We

also do not discuss tasks involving synthetic or
emergent language, but see Lazaridou and Baroni
(2020) for a survey of the latter.

While we focus mostly on written or typed lan-
guage, there is also some computational work that
has focused on spoken language pragmatics in
grounded settings (Harwath et al., 2016; Sharma
et al., 2018) as well as work in linguistics at the
intersection of speech and pragmatics, e.g., focused
on prosody (Pierrehumbert and Hirschberg, 1990;
Sedivy et al., 1999).

Our discussion of modeling frameworks for prag-
matics in Section 4 focuses on approaches that dis-
tinguish between semantics and pragmatics through
social reasoning about other agents’ beliefs and
goals. Due to space limitations, we did not discuss
alternate theories proposing that pragmatically en-
riched meanings are derived within the grammar
of a language, without recourse to probabilistic so-
cial reasoning (e.g., Fox, 2007; Chierchia et al.,
2012; Asherov et al., 2021). These theories remain
difficult to implement at scale, but we encourage fu-
ture work to explore them as candidate hypotheses
alongside the frameworks discussed in Section 4.

There is also rich body of work on formaliz-
ing and modeling discourse context beyond the ap-
proaches we cover here, including conversational
analysis (Schegloff, 1968; Sacks et al., 1974) and
discourse coherence and structure (Hobbs, 1979;
Grosz and Sidner, 1986; Webber, 1991; Kamp and
Reyle, 1993; Grosz et al., 1995; Webber et al.,
2003; Asher and Lascarides, 2003; Barzilay and La-
pata, 2008). We refer to Cohen et al. (1990), Clark
(1996), Jurafsky and Martin (2014), and Alikhani
and Stone (2020) for entry points.
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A Types of Context

In this section, we outline the broad types of
context that lead to pragmatic enrichment of lan-
guage, and point readers to Levinson (2000), Birner
(2012), or Yule (1996) for a more comprehensive
discussion. In this paper we focus mainly on vi-
sual and embodied contexts, for several reasons.
First, human communication is typically situated
in settings with modalities beyond language, which
makes it important to capture in order to build NLP
models that interact naturally with humans in the
world. Indeed, recent work has argued that ground-
ing is an essential component of language under-
standing (e.g., Bisk et al., 2020; Bender and Koller,
2020). Second, visual and embodied settings intro-
duce enough complexity to elicit interesting linguis-
tic behaviors and serve as a challenge for models,
while still allowing researchers to control experi-
mental aspects of the tasks. Finally, there has been
a rapid increase in research on multimodal lan-
guage learning, which makes studying pragmatics
in these models and tasks timely and relevant.

A.1 Common Ground

To communicate successfully, speakers and lis-
teners need to maintain a shared set of informa-
tion, taken collectively to be common ground (e.g.,
Lewis, 1969; Stalnaker, 1978; Clark and Bren-
nan, 1991; Traum, 1994; Stalnaker, 2002; Clark,
2015). A large body of work has demonstrated
that humans produce and comprehend language
in ways that depend on assumptions about the
knowledge of their communicative partners (e.g.,
Krauss and Weinheimer, 1966; Horton and Keysar,
1996; Nadig and Sedivy, 2002; Clark and Bernicot,
2008; Hilliard and Cook, 2016; Yoon and Brown-
Schmidt, 2019; Hawkins et al., 2021). Even in
one-shot encounters where there is minimal partner-
specific knowledge, the success of computational
models of pragmatics (Frank and Goodman, 2012;
Goodman and Frank, 2016) suggests that humans
leverage a rich set of shared assumptions in prag-
matic communication – from broad expectations
that their partners abide by cooperative principles
(e.g., Grice, 1975; Horn, 1984) to fine-grained
knowledge of the potential utterances, meanings,
and utterance-meaning mappings under joint con-
sideration. Below, we discuss some key elements
of common ground that give rise to pragmatically
enriched meanings in naturalistic communication.

Norms of Interaction. As language is a social
behavior, speakers and listeners typically abide by
a set of norms. For example, Grice (1975) ar-
gues that it is generally understood that conver-
sational partners act cooperatively and rationally.
Grice also proposes a set of maxims that govern
communication—rational speakers should be con-
cise, informative, and relevant. These norms in
turn give rise to a variety of nonliteral inferences
known as conversational implicatures. Suppose,
for example, Alice says to Bob: “Carl ate some of
the cookies that we baked for the party”. Bob likely
draws the inference that Carl did not eat all of the
cookies, even though the literal meaning of the ut-
terance – that Carl ate at least one of the cookies –
is logically compatible with such a scenario. This
inference can be explained in the following way: if
Alice knows that Carl ate all the cookies, and if she
wants to be informative, then she would have said
“Carl ate all of the cookies” instead.

Goals and Joint Actions. In addition to gen-
eral norms of interaction, the particular social or
task-related goals that elicit a linguistic expres-
sion can affect its meaning. The theory of speech
acts (Searle, 1969; Austin, 1975) frames utterances
(e.g., “please stand up”) as actions on several lev-
els: locutionary, the utterance itself; illocutionary,
the intention (e.g., asking the listener to stand up);
and perlocutionary, the actual effect that the ac-
tion has in the world (e.g., the listener stands up).
Context can have strong effects on the illocutionary
and perlocutionary levels. This is particularly true
for formal speech acts which can only take effect
under felicity conditions, e.g. making a promise,
or performing a marriage, but also occurs in com-
monplace situations e.g., asking “Did you get my
email?” might be an indirect request to reply, or
a direct question while debugging an internet con-
nection. More generally, interlocutors typically
recognize that they are undertaking joint activities
together with their partners (Clark, 1996) and try
to collaboratively plan and act to coordinate on
and realize the relevant goals. These shared goals
provide a source of context that enriches language.

Common Knowledge. Interpretation is aided by
prior information that interlocutors bring to an in-
teraction. For example, suppose Alice asks “What
color was the woman’s scarf?” and Bob answers
“green”. If Bob is a fashion designer with a keen
eye for color palettes, this might implicate that



the scarf was a rather prototypical shade of green,
and not olive green or chartreuse. On the other
hand, if Bob doesn’t know many specific color
terms, Alice doesn’t have grounds to infer that Bob
meant to refer to a specific subspace of green. The
world knowledge and commonsense relationships
shared by conversational partners can also give rise
to scalar implicatures formed by ad-hoc ordering
relationships (Hirschberg, 1985b) and lead to peda-
gogic behavior (Chai et al., 2019).

Discourse Context. Communication is most of-
ten not a one-shot utterance, but instead unfolds
over time. As a document or a conversation pro-
ceeds, the common ground can be updated with
new information from the discourse context. At a
basic level, discourse context includes previously-
established information which can be referred to
later on, whether explicitly (e.g., a dog bounded
into the room... it barked) or implicitly (e.g., a
dog bounded into the room... Sam was surprised).
Information can also be introduced implicitly, for
example through presupposition and accommoda-
tion (e.g., Alex stopped smoking presupposes that
Alex smoked). Implicitly-introduced information
can in some cases (implicature) also be reinforced
or denied, e.g., Carl ate some of the cookies; in-
deed, he ate all of them!.

A.2 Multimodal Context
So far, we have discussed aspects of context given
by social or linguistic factors. While all of the
above types of context also arise in grounded and
multimodal settings, the physical context in which
communication is situated also plays an additional
component in deriving linguistic meaning. As men-
tioned above, we focus on visual and embodied
contexts in this paper, as these contexts reflect nat-
uralistic communication while also allowing for
fine-grained experimental control.

Visual. Visual context serves to disambiguate
and enrich the language of meaning on multiple
levels. On a level close to semantics, visual context
can disambiguate word senses: e.g., “bank” likely
has a different meaning in the caption of a photo
of a river than in a photo of a city street. Referring
expressions (e.g., the red one) often can only be re-
solved in a visual context, and deictic expressions,
like English here, there, this and that, are frequently
used in language to individuate referents in their
immediate context, relying on mutual knowledge
of what the speaker and listener can see (Clark

and Marshall, 1981). Reference intepretation can
also be affected by the location of the speaker and
hearer in the world (Birner, 2012), and can involve
physical analogues of implicature (e.g., the black
one might be a good description for a dark grey ob-
ject if all other visible objects are lighter) (Golland
et al., 2010; Udagawa et al., 2020).

Embodied. Facial expressions, gaze, and ges-
tures (Cassell et al., 1994; Traum and Rickel, 2002;
Sidner et al., 2005; Prasov and Chai, 2008; Bohus
and Horvitz, 2010; Koller et al., 2012; Yu et al.,
2015) can aid interpretation if they are available,
e.g., a speaker first making eye contact with a lis-
tener, then looking at an intended object. Speak-
ers can issue corrections if they are able to ob-
serve a listener carrying out actions (Clark and
Krych, 2004; Koller et al., 2010; Thomason et al.,
2019; Suhr et al., 2019a), and the physical move-
ments of the listener can intentionally convey un-
certainty (Hough and Schlangen, 2017) and in-
tent (Dragan et al., 2013). Physical properties of
the environment and tasks (Chai et al., 2019) and
the capabilities of the speaker and listener (Chai
et al., 2014), also affect the interpretation and gener-
ation of commands and requests — e.g., the classic
pragmatic example Can you pass the salt?, which
typically is an indirect request when spoken to a
person, may have a literal interpretation when spo-
ken to a robot with a faulty gripper.

B Unimodal Pragmatics

Although we primarily focus on the role of prag-
matics in grounded environments, several text-only
tasks that emphasize specific pragmatic phenom-
ena also exist. For example, IMPPRES (Jeretic
et al., 2020) and NOPE (Parrish et al., 2021) are
benchmark datasets designed to test whether large
language models can reliably predict implicatures
and presuppositions, respectively. Similarly, Schus-
ter et al. (2020) and Li et al. (2021) evaluate the
ability of sentence encoding models to predict the
rate at which humans draw scalar implicatures.
Other datasets like the Self-Annotated Reddit Cor-
pus (SARC) for sarcasm detection (Khodak et al.,
2018) may also be viewed as pragmatic in na-
ture (Kolchinski and Potts, 2018). While these
datasets are limited to unimodal text, they have two
main advantages over many multimodal tasks: (1)
many unimodal pragmatic datasets are naturally-
occurring, resulting in larger datasets with more
realistic language, and (2) all of these datasets fo-



cus on specific pragmatic phenomena, such as pre-
supposition. We suggest that future work on mul-
timodal pragmatics should take inspiration from
these properties and build larger and more targeted
datasets.

A separate body of work has investigated situ-
ated language understanding through interactive
fiction (IF) games (e.g., Ammanabrolu and Riedl,
2021; Hausknecht et al., 2020; Urbanek et al.,
2019). IF games offer a framework for investigat-
ing goal-driven linguistic behaviors in a dynamic,
richly structured world. Players observe natural-
language descriptions of the simulated world, take
actions via natural language, and receive scores
based on their actions. The simulations are also par-
tially observable, in that players must reason about
the unerlying world state through incomplete tex-
tual descriptions of immediate surroundings. In this
way, IF games avoid some of the practical issues
of grounding in visual environments, while still re-
quiring actions to be situated in rich, dynamic con-
texts. Furthermore, Shridhar et al. (2021) demon-
strate that commonsense priors learned through IF
games can be leveraged for better generalization
in visually grounded environments, suggesting that
text-only games induce representations that can be
adapted to multimodal settings.


