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Abstract

Multi-domain task incremental learning (MTIL) demands models to master domain-
specific expertise while preserving generalization capabilities. Inspired by human
lifelong learning [1, 2], which relies on revisiting, aligning, and integrating past
experiences, we propose a Learning and Ensembling Bridge Adapters (LEBA)
framework. To facilitate cohesive knowledge transfer across domains, specifically,
we propose a continuous-domain bridge adaptation module, leveraging the distri-
bution transfer capabilities of Schrödinger bridge for stable progressive learning.
To strengthen memory consolidation, we further propose a progressive knowledge
ensemble strategy that revisits past task representations via a diffusion model and
dynamically integrates historical adapters. For efficiency, LEBA maintains a com-
pact adapter pool through similarity-based selection and employs learnable weights
to align replayed samples with current task semantics. Together, these components
effectively mitigate catastrophic forgetting and enhance generalization across tasks.
Extensive experiments across multiple benchmarks validate the effectiveness and
superiority of LEBA over state-of-the-art methods.

1 Introduction

Deep learning has made strides [3, 4, 5], particularly in the realm of large-scale foundation models [6,
7], with recent research further validating these advancements. However, traditional fully-supervised
training methods struggle to address this challenge due to the high computational cost involved in
integrating new-coming data with historical datasets. Incremental learning [8, 9], also known as
continual learning, provides an effective method by incrementally learning classes, with each training
task focusing solely on new-coming samples. Many methods [10, 11, 12] have actively addressed
the challenges of continual learning, such as knowledge graph preservation [13], self-supervised
learning [14], and replay data [15]. While these methods demonstrate potential in memorization and
scalability, they mainly focus on incremental learning from batched data of a homogeneous domain.

In contrast, multi-domain task incremental learning (MTIL)—the focus of this work—aims to learn
from a sequence of heterogeneous domains. The paradigm requires an effective transfer and adaptation
across diverse domains while incrementally learning new ones, where catastrophic forgetting may be
even more severe. Specifically, the model should not only maintain stability in retaining knowledge
from previously learned domains, but also develop generalization capabilities for unseen domains,
referring to the problem of zero-shot. Recently, vision-language models as well as knowledge
distillation have been used for zero-shot MTIL. For instance, incorporating zero-shot generalization
into CLIP has proven effective in mitigating knowledge degradation [16]. Further, MoE-Adapters [17]
designs task-specific and task-independent components and leverages Mixture-of-Experts [18] for
adaptive task learning. These methods offer promising advancements for zero-shot MTIL.
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Fundamentally, MTIL requires not only domain-specific knowledge but also the ability to capture the
cross-domain transfer. A well-constructed cross-domain transfer mode ensures both the mitigation of
catastrophic forgetting and better generalization in an unseen domain. In this process–akin to human
learning [1, 2]–revisiting, aligning and integrating past experiences become crucial for memory
consolidation. To this end, two key challenges need to be addressed: i) How to establish incremental
transfer from previously learned adapters to current adapter? ii) How to replay knowledge beyond the
constraints of task order and domain-specific features?

To address the above issues, in this work, we propose Learning and Ensembling Bridge Adapters
(LEBA), a novel framework for multi-domain task incremental learning. LEBA introduces an incre-
mental bridge-transfer mechanism to align the latent distributions of current and previous adapters,
facilitating effective cross-domain knowledge transfer. Specifically, we design continuous-domain
bridge adapters that act as incremental knowledge bridges across sequential tasks. These adapters
ensure knowledge cohesion and inheritance between existing and new task domains, thereby stabi-
lizing the incremental learning. The integrated transfer mechanism not only mitigates catastrophic
forgetting effectively but also promotes progressive model optimization throughout the task sequence.

During sequential domain learning, LEBA also enhances memory consolidation by actively revisiting
past experiences. Unlike traditional methods [8, 19] that rely on storing subsets of prior samples
for replay– constrained by task order and data characteristics, we propose a progressive knowledge
ensemble method, which could flexibly revisit prior knowledge without these constraints. By lever-
aging a pretrained diffusion model [20], our LEBA could reconstruct samples from any previously
tasks. To optimize memory efficiency, we maintain a compact adapter pool by selectively preserving
representative adapters through similarity-based matching. Furthermore, since different adapters may
interpret replayed samples in distinct ways, we introduce a learnable weighting way to tailor the
replay process to individual sample attributes. By adaptively integrating historical knowledge with
new task adaptation, LEBA can achieve superior performance and generalization capabilities.

In summary, our primary contributions are four-fold: i) propose learning and ensembling bridge
adapters framework for MTIL, facilitating knowledge transfer and mitigating catastrophic forgetting;
ii) design continuous-domain bridge adaptation to align and transfer domain knowledge across
sequential tasks; iii) introduce progressive knowledge ensemble regardless of task-learning sequence,
enabling flexible integration of prior knowledge; iv) report state-of-the-art results on two task settings.

2 Related work

Multi-domain task incremental learning: Although the above method exhibits promising per-
formance in incremental learning, it struggles to address a critical capability of vision-language
incremental models: zero-shot transfer to unseen knowledge. In contrast to incremental learning,
which centers on knowledge from a single domain, multi-domain incremental learning requires
the sequential acquisition of knowledge from multiple domains. This mode necessitates that the
incremental model not only incrementally learn new tasks and mitigate catastrophic forgetting but
also effectively transfer knowledge across a range of diverse domains. Notably relevant is ZSCL [16],
which employs parameter regularization in the incremental learning of large-scale models. Addition-
ally, MoE-Adapters [17] enhance learning by integrating task-specific components into the CLIP
model, thereby boosting its adaptability.

Incremental learning: Previous works in incremental learning have focused on developing a variety
of architectures [21], including memory-based, regularization-based, and dynamic-based models.
Memory-based methods preserve historical knowledge by storing it within a memory bank, which is
periodically accessed and updated during incremental learning [19, 10, 22, 15]. Regularization-based
methods integrate explicit regularization terms into the weights to mediate between previous and
new-coming tasks [23, 24, 25] or data [26, 9]. Dynamic methods tackle incremental learning by
progressively augmenting the baseline with new parameters, such as neurons, branches, or prediction
heads [27, 28, 29, 30, 31].

Schrödinger Bridge: Schrödinger Bridge (SB) [32, 33] is a conditional diffusion model that solves
an entropy-regularized optimal transport problem aimed at identifying the diffusion process between
two distributions. Recently, Liu et al. [34] have introduced a tractable special case of dynamic
stochastic bridges, which has demonstrated notable efficiency in image manipulation tasks such as
image restoration and super-resolution on real-world datasets. Moreover, Schrödinger bridges belong
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to a class of neural stochastic differential equations that, in contrast to diffusion models, facilitate
the translation of samples across arbitrary domains with minimal transport costs. The learning of
these SBs typically involves two main algorithmic approaches: flow matching [35], which distills
SBs between mini-batches using optimal transport; iterative proportional fitting [36], which focus
on iteratively minimizing transport costs by training models on input-output pairs generated by the
models themselves. Together, these methods have enhanced the flexibility and efficiency of learning
in the context of both Schrödinger bridge models [37] and broader stochastic dynamic frameworks.

3 The Proposed Method

3.1 Problem Formulation

Multi-domain task incremental learning (MTIL) involves sequentially learning from a stream of
labeled task domains, where historical data becomes unavailable in subsequent stages. The goal is to
evaluate not only the model’s adaptability to incremental learning but also its resistance to catastrophic
forgetting. Formally, given a sequence of T task domains, denoted as {St}Tt=1, we want to learn an
incremental model (or adapter) Θt based on the current task state S as well as previous available
models. Each task domain St consists of a dataset D and a semantic set C, defined as St := (Dt, Ct)
for the t-th domain. The datasetDt usually consists of input-label pairs, denoted asDt := (xt

i, y
t
i)

Nt

i=1,
where Nt is the total number of samples in task St. The semantic set Ct := {ctj}

Mt
j=1 describes certain

semantic information (e.g., class information yti ), with Mt denoting the number of distinct class
names. In this incremental paradigm, task domains are typically non-overlapping in their class labels,
i.e., for any two task domains Si,Sj , Ci ∩ Cj = ∅ if i ̸= j. A conventional solution of MTIL is to
finetune the previous model via: Θt ← Θt−1 + λ∂ζ(St)

∂Θ , where ζ is a supervised loss function (e.g.,
cross entropy over class labels) and λ is the learning rate. However, balancing new-domain adaptation
with catastrophic forgetting remains a challenging problem, despite some existing efforts [16, 17] to
mitigate this problem.

In contrast, we propose to learn a cross-domain adapter Θ by revisiting and aligning past knowledge.
Concretely, we formulate multi-domain task incremental learning as:

Θt ← arg min
Θt−1,ω,θ

ζS(St; Θt−1)︸ ︷︷ ︸
supervised info.

+α
∑
x̂t
i∼G

ζA(g(x̂
t
i, c

t
i; Θ

t−1), g(x̂t
i, c

t
i;PK , ω); Γ)︸ ︷︷ ︸

knowledge alignment

, (1)

where the replayed sample x̂t
i is sampled from a generator G conditioned on historical semantic

concepts {Cj}t−1
j=1, i.e, x̂t

i ∼ G({Cj}
t−1
j=1;ϑ); a dynamic adapter pool PK of size K is introduced to

store useful historical adapters, i.e., PK = {Θl}jKl=j1
with jk ∈ {1, · · · , t−1}; the weights ω quantify

the relevance of replayed sample x̂t
i to the adapters in the pool PK , while g(·) denotes a feature

extractor; the alignment loss ζA over an operator A, parameterized by Γ, measures distribution
similarity between responses of current adapter and historical adapters in PK . By integrating
supervised learning with historical knowledge alignment, our LEBA could mitigate catastrophic
forgetting and enhance generalization to unseen domains–mirroring human learning processes where
memory consolidation relies on revisiting past experiences.

3.2 Overview

Building on the formulation in Eqn. (1), our framework focuses on two key components: i) designing
A as a cross-domain adapter and ii) dynamically integrating knowledge in PK . To this end, we
propose Continuous-domain Bridge Adaptation (CBA) in Section 3.3 and Progressive Knowledge
Ensemble (PKE) in Section 3.4. In CBA, rather than optimizing Θt solely via the supervised loss ζS ,
we design a bridge-matching adapter Θt aligned with historical adapters through distribution transfer.
A diffusion-based generator G is used to synthesize samples from the observed concept set to facilitate
knowledge alignment. In PKE, we construct a dynamic buffer pool PK (size K) to store historically
significant adapters, balancing computational efficiency with knowledge retention. To address
discriminability variations among adapters, we design an adaptive ensemble way with learnable
weight ω, ensuring both alignment and discriminative inference. Together, these components enable
incremental learning to refine adapters and dynamically enhance knowledge transfer. Alongside these
components, our framework incorporates a vision-language backbone with dedicated encoders for
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Algorithm 1 LEBA Training Procedure
Input: Task sequence St = {(Dt, Ct) | t = 1, . . . , T}; diffusion-based generator G; continuous-domain

bridge adapter Γ; adaptive weight ω; incremental model Θt=1

Output: Incremental model ΘT , adaptive weights ω, and continuous-domain bridge adapter Γ
1: Initialize model Θt=1, generator G, weight ω, and adapter Γ
2: for t = 1 to T do
3: # Supervised update with current task data
4: Train Θt=1 on St=1 = (Dt=1, Ct=1)
5: if t > 1 then
6: # Progressive Knowledge Ensemble
7: Construct adapter pool PK from previous adapters {Θl}jKl=j1

with jk ∈ {1, · · · , t− 1}
8: Generate replay samples x̂t

i from generator G conditioned on semantic concepts {Cj}t−1
j=1

9: Compute adaptive weights ω for each replay sample x̂t
i

10: Evaluate similarity η of current adapter Θt and update adapter pool PK

11: # Continuous-Domain Bridge Adaptation
12: Construct continuous-domain bridge adapter Γ with replay data x̂t

i and adaptive weight ω
13: # Joint Optimization
14: Update Θt, ω, and Γ by minimizing the total loss ζtotal (Eqn. 12)
15: end if
16: # Update the incremental model for the next domain
17: Θt+1 ← Θt

18: end for

processing image and semantic information. Specifically, we extract both image and text features for
label prediction by reformulating the feature extractor g as a decomposing form:

g(xt
i, c

t
i,Θ

t) := gimg(x
t
i,Θ

t
img)⊗ gtxt(c

t
i,Θ

t
txt), (2)

where gimg and gtxt denote the image and text encoders, respectively. ⊗ represents the element-wise
product. Following common practice, we initialize these encoders using pre-trained models (e.g.,
CLIP [38]) as backbones, with additional adaptation layers learned for task-specific fine-tuning.
Please note the adapter parameters that are structured as Θt = {Θt

img,Θ
t
txt}. The subsequent

subsections elaborate on the details of CBA and PKE, followed by the LEBA training optimization.
The LEBA training process is shown in Algorithm 1.

3.3 Continuous-Domain Bridge Adaptation

The adapter requires not only domain-specific adaptation capabilities but also the ability to facilitate
cross-domain knowledge transfer. Effective knowledge transfer should simultaneously mitigate
catastrophic forgetting while improving generalization performance on unseen domains. To achieve
this, we leverage the Schrödinger Bridge (SB) mechanism to facilitate inter-task knowledge transfer
by aligning probability distributions between current and previous adapters. Specifically, we design a
continuous-domain bridge adapter for cross-domain distribution transfer.

Given a sample x̂i, the feature Z1 = g(x̂i, ci,Θ
t) ∼ P1 encoded by the current adapter Θt follows

the probability distribution P1. Similarly, for a historical adapter in the buffer pool PK , Θjk ∈ PK

(where jk ≤ t− 1), the feature Z0 = g(x̂i, ci,Θ
jk) ∼ P0 can be obtained. The continuous-domain

bridge adapter can be formalized as:

dZm = [fm + βm∇ logΨ(Zm,m)]dm+
√
βmdWm, Z0 ∼ P0,

dZm = [fm − βm∇ log Ψ̂(Zm,m)]dm+
√
βmdWm, Z1 ∼ P1,

(3)

where P0 and P1 denotes the source and target distributions, m denotes the time-step, {Wm,Wm}
refer to the standard Wiener process and its time reversal and {fm, βm} are the drift and diffusion
coefficients. The pair of functions {Ψ, Ψ̂} is said to solve the following coupled PDEs. The Eqn.(3)
and its time-reversal are directly derived from the Fokker-Planck equation [39] corresponding to the
SDE in Eqn.(4), as follows:

dZm = fmdm+
√
βmdWm, Z0 ∼ Ψ̂(·, 0),

dZm = fmdm+
√

βmdWm, Z1 ∼ Ψ(·, 1).
(4)
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Since Ψ and Ψ̂ contain complex drift terms that are difficult to compute, we simplify a certain form
for the boundary distributions P0 and P1. We define the energy potential functions as Ψ̂(·, 0) =

P0(·) := δa(·) and Ψ(·, 1) = P1(·)/Ψ̂(·, 1), where δa(·) is the Dirac delta distribution centered on
a ∈ R. This choice ensures that the diffusion process becomes computationally manageable.

Consequently, we can approximate both the forward and backward with the following Gaussian
posterior as:

Zm ∼ q(Zm|Z0,Z1) = N (Zm;µm,Σm),

s.t. µm =
σ2
m

σ2
m + σ2

m

Z0 +
σ2
m

σ2
m + σ2

m

Z1, Σm =
σ2
mσ2

m

σ2
m + σ2

m

,
(5)

where σ2
m =

∫m

0
βm′dm′ and σ2

m =
∫ 1

m
βm′dm′ represent the cumulative noise variances in the

forward and backward directions. We take P (Z0,Z1) = P0(Z0)P1(Z1|Z0) and f = 0, and construct
tractable SB between individual knowledge distribution from Z0 and P1(Z1|Z0).

Based on the adapter formulation, we derive an approximate reverse SDE from Eqn.(3) to
simulate the transfer from Z1 to Z0 by estimating the score function log Ψ̂(Zm,m|x̂i, ci) =
ε(x̂i, ci,Zm,m; Γ)/βm, formally:

dZm = (βm/σm)ε(x̂i, ci,Zm,m; Γ)dm+
√

βmdWm, (6)

where P1 denotes the distribution of Z1, i.e., Z1 ∼ P1(Z1|x̂i, ci), and ε is a continuous-domain
bridge realized through a neural network parameterized by Γ. The adapter network is optimized
to approximate the score function ∇Z log pm(Zm|x̂i, ci) by minimizing the following objective
function:

ζCBA = Ex̂i,ci,Zm

[∥∥∥∥ε(x̂i, ci,Zm,m; Γ)− Zm − Z0

σm

∥∥∥∥2
2

]
, (7)

where m ∈ U([0, 1]) and Zm ∼ q(Zm|Z0,Z1) are defined in Eqn.(5).

For the above formula, we propose to construct a continuous-domain bridge adapter to connect the
previous distribution (from prior adapters) to the current distribution (from the new adapter). This
enables the incremental model to mitigate catastrophic forgetting while optimizing performance
effectively. By facilitating smooth transitions between past and present tasks, our approach offers a
novel framework for understanding and implementing incremental learning.

3.4 Progressive Knowledge Ensemble

The absence of historical samples presents a fundamental challenge to revisiting prior knowledge in
MTIL. Existing methods [19, 8] typically preserve features from selected past samples for replay, but
remain constrained by task order and data-specific dependencies, thereby limiting their robustness
against catastrophic forgetting. To overcome this limitation, we draw inspiration from human
learning [1, 2] and propose a progressive knowledge ensemble that enables flexible knowledge reuse.

To enable flexible knowledge reuse, we dynamically maintain an adapter pool PK of size K to store
useful historical adapters. For each new adapter Θt, we measure its similarity to those in the pool and
update the pool by replacing the least representative one when necessary. Formally, the similarity
between the current adapter and the j-th adapter in the pool is computed as:

ηj = DKL(g(x
t
i, c

t
i,Θ

t)||g(xt
i, c

t
i,Θ

j)), s.t. j = 1, 2, ...,K, (8)

where ηj denotes the similarity between the current adapter and the j-th adapter in the dynamic
adapter pool, computed over the current domain samples using KL divergence [40]. A threshold-based
strategy determines whether the current adapter should replace an existing one.

How can replay samples be obtained without relying on traditional methods such as storing sample
features or task-sequential replay? Inspired by human learning—where individuals can recognize
whether a concept has been previously encountered—we propose an alternative strategy. Specifically,
each replayed sample x̂t

i is drawn from a diffusion-based generator G conditioned on previously
encountered semantic concepts {Cj}t−1

j=1, i.e, x̂t
i ∼ G({Cj}

t−1
j=1;ϑ), where ϑ denotes the generator

parameters. Let the replay set be denoted as X̂t, consisting of |X̂t| samples, i.e., X̂t = {x̂t
i}

|X̂t|
i=1 .
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Meanwhile, an learnable weight ω is computed for each replay data x̂t
i, which can be formulated as:

ζPKE = 1− cos(
k∑

j=1

ωj · gimg(x̂
t
i,Θ

j
img); gtxt(c

t
i,Θ

j
txt)), s.t. ωj = ω1, ω2, ..., ωk, (9)

where ωj represents the similarity between the replay sample x̂t
i. Through this process, we obtain an

adaptive weight ω to evaluate the similarity between the replay sample x̂i and the previous adapters,
thereby providing a more accurate previous distribution to construct the Schrödinger bridge, further
enhancing knowledge transfer between current and previous adapters.

3.5 Optimizing the LEBA

To define the loss function ζtotal in the above process, we can utilize replay data x̂i (see Section 3.4)
and the constructed continuous-domain bridge adapter (see Section 3.3) to facilitate knowledge
transfer and integration between adapters. Formally, considering that each adapter has a different
understanding of the replay data x̂i in the k-th(i.e., k > 1) incremental task, its probability distribution
can be rewritten as:

Ẑ0 =

k∑
j=0

ωj · (gimg(x̂i,Θ
j
img)⊗ gtxt(ci,Θ

j
txt)), (10)

where Ẑ0 denotes the integrated predictive distribution over all adapters for the replay sample x̂i.
Consequently, the final objective loss for the continuous-domain bridge adapter, based on Eqn.(7),
can be reformulated as follows:

ζRCBA = Ex̂i,ci,Zm

∥∥∥∥∥ε(x̂i, ci,Zm,m; Γ)− Zm − Ẑ0

σm

∥∥∥∥∥
2

2

 . (11)

All components are ultimately integrated into the unified LEBA framework, thereby preserving the
learned knowledge distribution across tasks. The final optimization objective can be formally defined
as:

ζtotal = ζCE(Θ
t) + γζRCBA(Γ) + βζPKE(ω), (12)

where γ and β are balance factors. We construct a continuous-domain bridge adapter between
different adapters by replaying samples (instead of stage-wise replay). Our LEBA effectively
mitigates catastrophic forgetting by maintaining the probability distribution of the learned knowledge.
Furthermore, our LEBA not only facilitates knowledge transfer across domains but also enables the
incremental model to retain knowledge of previous tasks while learning new ones.

4 Experiment

4.1 Experimental Setting

Datasets: We evaluate our LEBA in the multi-domain task incremental learning(MTIL) [16]. In this
configuration, tasks are sourced from multiple domains, each necessitating unique domain knowledge
to achieve high accuracy. The MTIL benchmark comprises 11 tasks and contains a total of 1,201
classes. We evaluate the method using two different task orders: the first follows an alphabetical order
(Order-I): Aircraft [41], Caltech101 [42], CIFAR100 [43], DTD [44], EuroSAT [45], Flowers [46],
Food [47], MNIST [48], OxfordPet [49], StanfordCars [50], and SUN397 [51]. The second uses
a random order (Order-II): StanfordCars, Food, MNIST, OxfordPet, Flowers, SUN397, Aircraft,
Caltech101, DTD, EuroSAT, and CIFAR100. By default, experiments are conducted using Order-I.

Evaluation Metrics: To evaluate LEBA in the multi-task incremental learning (MTIL) setting, we
follow the protocol introduced in ZSCL [16], which includes three metrics: “Transfer”, “Last”, and
“Average”. “Transfer” measures the model’s zero-shot generalization to unseen tasks, while “Last”
evaluates its ability to retain knowledge from previous tasks. “Average” captures overall performance
by averaging the results of “Transfer” and “Last”. However, these metrics do not explicitly quantify
the extent of forgetting across tasks. To address this, we introduce a new “Preserve” metric, which
captures forgetting dynamics by analyzing the lower triangular portion of the accuracy matrix.
Formally, “Preserve” is defined as Preserve = 1

T (T−1)/2

∑T
i=1

∑i−1
j=1 acci,j , where acci,j denotes
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Table 1: Comparison with state-of-the-art methods on the multi-domain task incremental learning
benchmark (Order-I) in terms of “Transfer”, “Average”, “Last” and “Preserve” scores (%).

Method
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Average

C
L

IP Zero-shot 24.3 88.4 68.2 44.6 54.9 71.0 88.5 59.4 89.0 64.7 65.2 65.3
Full Fine-tune 62.0 95.1 89.6 79.5 98.9 97.5 92.7 99.6 94.7 89.6 81.8 89.2

Tr
an

sf
er

Continual-FT 67.1 46.0 32.1 35.6 35.0 57.7 44.1 60.8 20.5 46.6 44.6
LwF [9] 74.5 56.9 39.1 51.1 52.6 72.8 60.6 75.1 30.3 55.9 58.9
iCaRL [57] 56.6 44.6 32.7 39.3 46.6 68.0 46.0 77.4 31.9 60.5 50.4
WiSE-FT [58] 73.5 55.6 35.6 41.5 47.0 68.3 53.9 69.3 26.8 51.9 52.3
ZSCL [16] 86.0 67.4 45.4 50.4 69.1 87.6 61.8 86.8 60.1 66.8 68.1
MoE-Adapters [17] 87.9 68.2 44.4 49.9 70.7 88.7 59.7 89.1 64.5 65.5 68.9
Ours 88.5 68.3 44.8 49.4 70.2 88.6 60.9 89.1 64.8 64.2 69.2(+0.3)

Av
er

ag
e

Continual-FT 25.5 81.5 59.1 53.2 64.7 51.8 63.2 64.3 69.7 31.8 49.7 55.9
LwF [9] 36.3 86.9 72.0 59.0 73.7 60.0 73.6 74.8 80.0 37.3 58.1 64.7
iCaRL [57] 35.5 89.2 72.2 60.6 68.8 70.0 78.2 62.3 81.8 41.2 62.5 65.7
WiSE-FT [58] 26.7 86.5 64.3 57.1 65.7 58.7 71.1 70.5 75.8 36.9 54.6 60.7
ZSCL [16] 45.1 92.0 80.1 64.3 79.5 81.6 89.6 75.2 88.9 64.7 68.0 75.4
MoE-Adapters [17] 50.2 91.9 83.1 69.4 78.9 84.0 89.1 73.7 89.3 67.7 66.9 76.7
Ours 53.9 94.9 83.8 70.8 79.8 85.1 89.1 74.8 89.3 69.2 65.8 77.9(+1.2)

L
as

t

Continual-FT 31.0 89.3 65.8 67.3 88.9 71.1 85.6 99.6 92.9 77.3 81.1 77.3
LwF [9] 26.3 87.5 71.9 66.6 79.9 66.9 83.8 99.6 92.1 66.1 80.4 74.6
iCaRL [57] 35.8 93.0 77.0 70.2 83.3 88.5 90.4 86.7 93.2 81.2 81.9 80.1
WiSE-FT [58] 27.2 90.8 68.0 68.9 86.9 74.0 87.6 99.6 92.6 77.8 81.3 77.7
ZSCL [16] 40.6 92.2 81.3 70.5 94.8 90.5 91.9 98.7 93.9 85.3 80.2 83.6
MoE-Adapters [17] 49.8 92.2 86.1 78.1 95.7 94.3 89.5 98.1 89.9 81.6 80.0 85.0
Ours 55.1 95.2 87.4 78.8 97.2 97.3 89.5 99.1 89.6 88.8 82.4 87.3(+2.3)

Pr
es

er
ve

Continual-FT 29.2 87.2 61.5 63.2 84.4 68.5 80.6 96.2 88.3 74.2 71.3
LwF [9] 25.4 84.4 69.3 62.4 75.2 63.8 79.5 97.4 89.5 63.2 69.8
iCaRL [57] 30.5 91.1 74.6 66.4 79.2 83.1 86.5 82.1 89.4 76.2 74.8
WiSE-FT [58] 26.2 85.6 62.1 63.2 82.3 75.1 77.2 97.5 90.4 79.2 74.9
ZSCL [16] 44.1 92.5 82.5 70.7 95.9 91.2 91.9 98.8 94.2 85.3 80.0
MoE-Adapters [17] 50.0 92.3 86.3 78.8 95.4 95.0 89.5 98.2 89.8 81.6 82.4
Ours 53.7 95.4 87.0 80.4 96.9 97.4 89.5 99.1 89.6 88.8 84.5(+2.1)

the accuracy on j-th domain after training on i-th task. This metric provides a more comprehensive
assessment of the model’s ability to preserve learned knowledge in the MTIL.

Implementation Details: Following previous work [16], we adopt CLIP with ViT-B/16 [52] as the
backbone for all experiments. Each task’s adapter is composed using LoRA [53]. For generative
replay, we employ the Stable Diffusion-V1.4 model [54], capable of generating samples that closely
approximate the original data in both fidelity and discriminative quality. The continuous-domain
bridge adapter Γ is implemented as a four-layer MLP. We set the balancing factors γ = 0.1 and
β = 0.4, and use a step size of m = 20 and an adapter selection threshold of η = 0.3, and an adapter
pool containing K = 2 adapters. Optimization is performed using the AdamW optimizer [55], with
label smoothing [56] applied to improve baseline performance. For the MTIL benchmark, we use a
batch size of 64 and search the learning rate α within {1× 10−3, . . . , 1× 10−5}. All experiments
are conducted using PyTorch on NVIDIA GeForce RTX 4090 GPUs.

4.2 Comparison with State-of-the-art Methods

Table 1 presents the detailed results of the “Transfer”, “Avg”, “Last”, and “Preserve” metrics on
the MTIL benchmark across all evaluated methods and datasets. Zero-shot refers to the predic-
tion performance of the initial CLIP model without any task-specific adaptation, while Fine-tune
represents the accuracy achieved by fully fine-tuning on each dataset, serving as an upper bound
in the absence of forgetting. The results reveal that both zero-shot prediction and newly learned
knowledge suffer from performance degradation under incremental learning. While existing methods
partially mitigate this issue, they generally fail to preserve strong zero-shot capabilities. Our proposed
method, LEBA (denoted as Ours), consistently outperforms the strongest MoE-Adapter across most
tasks, demonstrating superior overall performance and a more favorable stability–plasticity trade-off.
Further validation shows that the CBA module, by constructing a continuous-domain bridge adapter,
effectively integrates and revisits previously learned knowledge while adapting to new domains; by
coupling supervised learning with historical knowledge alignment (e.g., feature/adapter consistency),
the model enables smooth knowledge transition and durable retention. In parallel, the PKE mod-
ule addresses task-order limitations, enabling flexible reuse of prior knowledge regardless of the
incremental sequence via progressive knowledge ensemble and selective routing. These components
mitigate catastrophic forgetting and enhance zero-shot generalization to unseen categories.

7



Table 2: Comparison with state-of-the-art methods on the multi-domain task incremental learning
benchmark (Order-II) in terms of “Transfer”, “Average”, “Last” and “Preserve” scores (%).
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Average

C
L

IP Zero-shot 64.7 88.5 59.4 89.0 71.0 65.2 24.3 88.4 44.6 54.9 68.2 65.3
Full Fine-tune 89.6 92.7 99.6 94.7 97.5 81.8 62.0 95.1 79.5 98.9 89.6 89.2

Tr
an

sf
er

Continual-FT 85.9 59.6 57.9 40.0 46.7 11.1 70.0 30.5 26.6 37.7 46.6
LwF [9] 87.8 58.5 71.9 46.6 57.3 12.8 81.4 34.5 34.5 46.8 53.2
iCaRL [57] 86.1 51.8 67.6 50.4 57.9 11.0 72.3 31.2 32.7 48.1 50.9
WiSE-FT [58] 87.2 57.6 67.0 45.0 54.0 12.9 78.6 35.5 28.4 44.3 51.1
ZSCL [16] 88.3 57.5 84.7 68.1 64.8 21.1 88.2 45.3 55.2 68.2 64.1
MoE-Adapters [17] 88.8 59.5 89.1 69.9 64.4 18.1 86.9 43.7 54.6 68.2 64.3
Ours 88.7 60.2 89.3 71.1 65.1 18.4 88.5 45.9 55.3 68.1 65.1(+0.8)

Av
er

ag
e

Continual-FT 42.1 70.5 92.2 80.1 54.5 59.1 19.8 78.3 41.0 38.1 42.3 56.2
LwF [9] 49.0 77.0 92.1 85.9 66.5 67.2 20.9 84.7 44.6 45.5 50.5 62.2
iCaRL [57] 52.0 75.9 77.4 74.6 58.4 59.3 11.7 79.6 42.1 43.2 51.7 56.9
WiSE-FT [58] 52.6 79.3 91.9 83.9 63.4 65.2 23.3 83.7 45.4 40.0 48.2 61.5
ZSCL [16] 81.7 91.3 91.1 91.0 82.9 72.5 33.6 89.7 53.3 62.8 69.9 74.5
MoE-Adapters [17] 84.9 89.9 89.3 91.4 86.2 72.2 33.4 89.4 53.3 61.4 69.9 74.7
Ours 86.0 88.9 92.1 91.9 87.2 72.8 33.9 90.9 54.7 62.7 70.1 75.6(+0.9)

L
as

t

Continual-FT 24.0 67.3 99.1 87.4 44.3 67.0 29.5 92.3 61.3 81.0 88.1 67.4
LwF [9] 34.6 69.6 99.3 88.7 61.1 72.5 32.5 88.1 65.6 90.9 87.9 71.9
iCaRL [57] 46.0 81.5 91.3 82.8 66.5 72.2 16.3 91.6 68.1 83.2 87.8 71.6
WiSE-FT [58] 35.6 76.9 99.5 89.1 62.1 71.8 27.8 90.8 67.0 85.6 87.6 72.2
ZSCL [16] 78.2 91.1 97.6 92.5 87.4 78.2 45.0 92.3 72.7 96.2 86.3 83.4
MoE-Adapters [17] 84.1 88.5 94.0 91.8 94.1 77.8 50.4 93.3 77.1 87.7 86.6 84.1
Ours 86.2 88.9 99.2 93.0 96.5 79.2 50.1 95.2 78.2 95.9 88.1 86.4(+2.3)

Pr
es

er
ve

Continual-FT 40.5 68.1 89.1 77.8 51.4 56.7 18.4 76.2 39.8 35.4 55.3
LwF [9] 47.4 76.1 90.1 83.6 63.8 64.5 17.2 80.7 41.8 43.4 60.7
iCaRL [57] 49.2 74.3 75.6 71.2 55.7 57.6 10.3 76.8 39.5 40.8 55.1
WiSE-FT [58] 49.7 76.8 90.4 81.6 61.2 63.2 20.4 80.6 41.2 38.1 60.3
ZSCL [16] 77.1 89.2 95.1 90.2 85.6 77.5 42.9 90.6 72.1 94.2 81.5
MoE-Adapters [17] 81.2 87.6 97.5 85.1 90.9 74.1 48.2 91.4 74.1 97.1 82.9
Ours 85.4 88.2 98.8 92.3 96.2 78.6 49.6 94.2 78.7 95.6 85.8(+2.9)

Table 3: Performance comparison of CBA module and PKE module of LEBA

Method

A
ir

cr
af

t

C
al

te
ch

10
1

C
IF

A
R

10
0

D
T

D

E
ur

oS
A

T

Fl
ow

er
s

Fo
od

M
N

IS
T

O
xf

or
dP

et

C
ar

s

SU
N

39
7

Average

Transfer Baseline 87.2 67.1 43.3 48.4 68.5 86.9 57.1 87.7 63.2 63.2 67.3
+CBA 88.1 67.6 44.1 49.1 69.4 87.5 58.2 88.6 64.1 64.3 68.1
+CBA+PKE 88.5 68.3 44.8 49.4 70.2 88.6 60.9 89.1 64.8 64.4 69.2

Average Baseline 52.8 93.3 81.2 68.7 77.9 82.1 88.1 73.9 89.1 66.9 63.8 76.1
+CBA 53.5 94.3 83.2 69.6 78.4 84.5 88.4 74.1 88.6 68.7 64.4 77.2
+CBA+PKE 53.9 94.9 83.8 70.8 79.8 85.1 89.1 74.8 89.3 69.2 65.8 77.9

Last Baseline 52.1 93.8 84.3 76.6 95.3 95.2 86.7 97.1 89.1 84.2 78.1 84.7
+CBA 54.2 94.4 86.8 78.3 96.3 96.4 87.5 98.3 89.2 87.1 79.6 86.2
+CBA+PKE 55.1 95.2 87.4 78.8 97.2 97.3 89.5 99.1 89.6 88.8 82.4 87.3

Preserve Baseline 52.3 93.5 86.1 77.4 94.9 94.8 87.7 98.1 88.4 85.2 82.5
+CBA 53.4 94.2 86.7 78.2 95.8 95.6 88.4 98.6 88.7 86.1 83.6
+CBA+PKE 53.7 95.4 87.0 80.4 96.9 97.4 89.5 99.1 89.4 88.7 84.5

4.3 Ablation Study

This section focuses on analyzing the effectiveness of the proposed LEBA method. All experiments
are conducted in a multi-domain task incremental learning setting, with additional analysis available
in the supplementary material.

Effectiveness of different modules: We conduct experiments to assess the effectiveness of the
proposed CBA and PKE, with detailed results shown in Table 3. The results clearly demonstrate that
incorporating the CBA module consistently improves performance over the baseline, highlighting
its effectiveness in enhancing cross-task knowledge adaptation and generalization. Furthermore, the
integration of the PKE module leads to additional gains across all evaluation metrics, particularly
in preserving prior knowledge and maintaining strong performance on the most recent tasks. This
indicates that the PKE module plays a crucial role in mitigating catastrophic forgetting while enabling
forward transfer. It should be noted that the PKE module cannot be used alone. Overall, the synergistic
effect of CBA and PKE contributes to stable and consistent improvements, validating the robustness
of the proposed LEBA architecture in MTIL.

T-SNE visualization analysis: We present t-SNE visualizations of ZSCL, MoE-Adapter, and LEBA
(Ours) on the Flowers and Aircraft tasks, using the final models obtained after completing all
incremental sessions, as shown in Fig. 1. From a visual perspective, LEBA exhibits more distinct
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Figure 1: The t-SNE visualizations illustrate the representation evolution across multi-domain
task-incremental learning sessions for various methods on two benchmark datasets.

Figure 2: The ablation experi-
ments on the m-step.

Figure 3: The ablation experi-
ments on the adapter pool K.

Figure 4: The ablation experi-
ments of computational cost.

class-wise separability compared to other baselines, suggesting improved representation stability and
task-specific disentanglement. Notably, LEBA demonstrates stronger robustness in multi-domain
continual learning, effectively consolidating previously acquired knowledge while flexibly adapting
to novel tasks. These results highlight LEBA’s advantage in achieving both knowledge retention and
forward transfer in complex task-incremental scenarios.

The quantity of m-step: To assess the impact of the iterative step size m on adapter integration in
the LEBA framework, we plot the accuracy trends of “Transfer”, “Average”, “Last”, and “Preserve”
metrics as a function of m-step as shown in Fig. 2. Across all metrics, the performance remains
remarkably stable with increasing m, exhibiting minimal fluctuation. This consistency suggests that
the model effectively preserves previously acquired knowledge while maintaining robust performance
throughout the incremental learning process. The observed stability underscores the adaptability and
robustness of our LEBA framework in mitigating catastrophic forgetting and sustaining high learning
capacity, particularly in retaining and transferring knowledge across long sequences of tasks in MTIL.

Effectiveness of adapters pool size K: To investigate how the size of the adapter pool influences
performance and resource efficiency in LEBA, we evaluate the model under varying values of K.
As shown in Fig. 3, increasing the adapter pool size K yields only marginal changes across all
four evaluation metrics, with the model maintaining consistently high performance under different
settings. This phenomenon is consistent with observations in Mixture-of-Experts models, where
an excessive number of experts may lead to performance degradation [59], indicating that LEBA
is robust to the choice of pool size and does not depend on retaining a large number of adapters
to sustain its effectiveness. Given the negligible performance improvement beyond K = 2, and
considering the trade-off between memory overhead and model complexity, we select K = 2 as the
default configuration to ensure efficient memory usage.

Computational cost: To evaluate the computational efficiency of LEBA, we compare the “Average”
and memory consumption across different methods, as shown in Fig. 4. Compared to existing
approaches, LEBA achieves higher accuracy with significantly lower memory usage. This indicates
that our method not only improves performance but also offers superior efficiency in resource
utilization. These results further highlight the effectiveness of LEBA in multi-task incremental
learning, demonstrating its advantage in balancing accuracy and computational cost.

5 Conclusion
In this paper, we propose a novel LEBA framework designed to mitigate catastrophic forgetting
in multi-domain task-incremental learning. A core component of LEBA is the continuous-domain
bridge adaptation to establish a stable transfer pathway between adapters, effectively aligning the
distributions of previous and current tasks. Furthermore, our progressive knowledge ensemble departs
from traditional task-replay paradigms by removing the dependency on task-learning order, allowing
the model to revisit and integrate prior knowledge flexibly. Extensive experiments validate the
effectiveness of LEBA in enhancing both knowledge retention and transfer. In future work, we plan
to extend LEBA to broader AI domains beyond vision-language tasks.
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A Proof of Continuous-Domain Bridge Adaptation

To support our continuous-domain bridge adaptation, we draw on the theory of Schrödinger bridges
and their connection to stochastic differential equations (SDEs). Specifically, we model knowledge
transition as a bidirectional diffusion process governed by forward and reverse SDEs, whose densities
evolve according to the Fokker-Planck equation. By conditioning on the samples’ representations,
we obtain a time-dependent posterior that aligns with the solution of a Schrödinger bridge.

We begin by recalling that the density evolution of an Itô process is governed by the following
stochastic differential equations (SDEs):

dZm = [fm + βm∇ logΨ(Zm,m)]dm+
√
βmdWm, Z0 ∼ p0,

dZm = [fm − βm∇ log Ψ̂(Zm,m)]dm+
√
βmdWm, Z1 ∼ p1,

(13)

where these SDEs correspond to a forward and reverse Schrödinger bridge process and are described
by the Fokker-Planck equation [39]:

∂p(z,m)

∂m
=−∇ · (fm p) +

1

2
βm∆p, p(z, 0) = p0(z). (14)

We suggest that the PDE ∂(z,m)
∂m can be interpreted as the Fokker-Planck equation for the SDE.

The equivalence Ψ̂ ≡ p(4) holds up to an additive constant, which vanishes when applying the
“∇log” operator or in the context of the Fokker-Planck equation (since all operators are linear). A
similar interpretation applies to the PDE ∂Ψ(z,m)

∂m can be equivalently viewed from the reversed time
coordinate as: {

∂Ψ(z,s)
∂s = ∇ · (Ψ̂fs) +

1
2βs∆Ψ

∂Ψ̂(z,s)
∂s = ∇ΨT fs − 1

2βs∆Ψ̂
, (15)

where s := 1−m. This implies that Ψ(z, s) can be interpreted as the density (up to a constant factor)
of the SDE as:

dZm = fmdm+
√

βmdWm, Z0 ∼ Ψ̂(·, 0),

dZm = fmdm+
√

βmdWm, Z1 ∼ Ψ(·, 1),
(16)

Eqn.(5) naturally follows by conditioning Nelson’s duality [60], i.e., q(·,m) = Ψ(·,m)Ψ̂(·,m), on a
boundary pair (Z0, Z1),

q(Zm|Z0, Z1) = Ψ(Zm,m|Z0)Ψ̂(Zm,m|Z1).

Because Ψ(Zm,m|Z0) and Ψ̂(Zm,m|Z1) are solutions to the Fokker-Planck equations, we can
express the posterior as the product of two Gaussian distributions:

Ψ(Zm,m|Z0)Ψ̂(Zm,m|Z1)

= exp(−1

2
(
||Zm − Z0||2

σ2
m

+
||Zm − Z1||2

σ̄2
m

))

=N (Zm;
σ̄2
m

σ̄2
m + σ2

m

Z0 +
σ2
m

σ̄2
m + σ2

m

Z1,
σ2
mσ̄2

m

σ̄2
m + σ2

m

· I),

(17)

where σ2
m :=

∫m

0
βm dm and σ̄2

m :=
∫ 1

m
βm dm represent the analytical marginal variances of the

SDEs Eqn. 16 when f := 0. We demonstrate that q(Zm|Z0, Zm) is the marginal density of the
DDPM posterior p(Zn|Z0, Zn+1). First, observe that when f := 0, p(Zn|Z0, Zn+1) takes the form
of an analytic Gaussian:

p(Zn|Z0, Zn+1)

= N (Zn;
α2
n

α2
n + σ2

n

Z0 +
σ2
n

α2
n + σ2

n

Zn+1,
σ2
nα

2
n

α2
n + σ2

n

· I),
(18)

where we define α2
n :=

∫mn+1

mn
βm dm as the accumulated variance between two consecutive time

steps (mn,mn+1). It is evident that at the boundary mn := mN−1, we obtain:

q(ZN−1|Z0, ZN ) = p(ZN−1|Z0, ZN ) (19)
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because αN−1 =
∫mN

mN−1
βm dm = σ̄2

N−1. Assuming the relation holds at mn+1, it is sufficient to
demonstrate as shown in:

q(Zn|Z0, ZN )
?
=

∫
p(Zn|Z0, Zn+1)q(Zn+1|Z0, ZN )dZn+1. (20)

Since both p and q are Gaussians, the Gaussian with the mean as:

α2
n

α2
n + σ2

n

Z0 +
σ2
n

α2
n + σ2

n

(
σ̄2
n+1

σ̄2
n+1 + σ2

n+1

Z0 +
σ2
n+1

σ̄2
n+1 + σ2

n+1

ZN

)
=

σ̄2
n

σ̄2
n + σ2

n

Z0 +
σ2
n

σ̄2
n + σ2

n

ZN ,

(21)

where we use the fact that σ̄2
n + σ2

n is constant for all n and that α2
n = σ2

n+1 − σ2
n = σ̄2

n − σ̄2
n+1 by

design. Similarly, the right-hand side of Eq.20 contains the covariance as:

α2
nσ

2
n

α2
n + σ2

n

+
σ̄2
n+1σ

2
n+1

σ̄2
n+1 + σ2

n+1

(
σ2
n

α2
n + σ2

n

)2

=
α2
nσ

2
n(σ̄

2
n+1 + σ2

n+1) + σ̄2
n+1σ

4
n

σ2
n+1(σ̄

2
n+1 + σ2

n+1)

=

σ2
n

[
α2
n(σ̄

2
n + σ2

n) + (σ̄2
n − α2

n)σ
2
n

]
σ2
n+1(σ̄

2
n+1 + σ2

n+1)
=

σ2
nσ̄

2
n

σ̄2
n + σ2

n

.

(22)

We demonstrate the consistency of the continuous-domain bridge adaptation posterior with the DDPM
backward posterior. This validates the continuous-domain bridge adaptation of knowledge transitions
in our framework.

B Other Result

Experimental results of order-I: We provide detailed experimental results under order-I in Ta-
ble 4. This setup reflects a standard incremental learning protocol, allowing for a fair comparison
across methods. The results demonstrate the effectiveness of our approach under this specific task
progression.

Table 4: The accuracy (%) of our method (Ours) on the MTIL benchmark with order-I. Each row
shows the performance on each dataset for the model trained after the corresponding task. The
metrics for Transfer , Average , Last , and Preserve are highlighted in color.
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Transfer 88.5 68.3 44.8 49.4 70.2 88.6 60.9 89.1 64.8 64.2 69.2

Aircraft 56.1 88.5 68.3 44.8 55.3 71.1 89.1 59.5 89.1 64.8 65.1
Caltech101 53.1 97.1 68.3 44.8 55.3 70.9 88.5 59.5 89.1 64.8 65.6
CIFAR100 53.3 95.4 89.4 44.8 44.1 70.8 88.5 59.5 89.1 64.8 65.6
DTD 52.5 95.0 86.2 81.3 42.7 68.9 88.5 62.7 89.1 64.8 63.4
EuroSAT 52.9 95.0 86.2 81.2 98.3 68.9 88.5 62.8 89.1 64.8 63.6
Flowers 52.4 95.6 86.3 81.2 96.9 97.8 88.5 62.7 89.1 64.8 63.5
Food 54.9 95.6 87.4 80.4 96.8 97.6 89.5 59.5 89.1 64.8 63.6
MNIST 54.9 95.6 87.4 80.4 96.9 97.5 89.5 99.1 89.1 64.8 63.3
OxfordPet 53.5 95.6 87.2 80.5 96.2 97.3 89.5 99.1 89.6 64.8 63.7
Cars 53.6 95.6 87.6 80.3 97.5 97.3 89.5 99.1 89.6 88.8 63.8
SUN397 55.1 95.2 87.4 78.8 97.2 97.3 89.5 99.1 89.6 88.8 82.4 87.3

Preserve 53.7 95.4 87.0 80.4 96.9 97.4 89.5 99.1 89.6 88.8 84.5

Average 53.9 94.9 83.8 70.8 79.8 85.1 89.1 74.8 89.3 69.2 65.8 77.9

Mixup training: Our LEBA adopts a phased training strategy: it first trains a new domain adapter
independently, then fine-tunes it through cross-domain bridging, rather than mixing new and replayed
data for joint optimization. This design choice is motivated by the significant distributional shift
across domains—directly mixing replayed samples with current task data would require the model to
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align with multiple domains simultaneously, which can hinder adaptation to the new task. As shown
in the Table 5, our experimental results validate this observation. Moreover, since the amount of data
for new tasks is typically much smaller than the replayed historical samples, joint training may lead
to overfitting on past tasks and suppress the domain-specific adaptation required for the new task.

Table 5: Performance comparison between LEBA and mixup training strategy

Transfer Average Last Preserve

Mixup Training 68.3 76.2 85.4 82.6
Ours (LEBA) 69.2 77.9 87.3 84.5

Balance factor analysis: We conduct ablation studies on the balance parameters γ and β, as shown
in the Tables 6 and 7. The best performance is achieved when γ = 0.1 and β = 0.4. Setting γ too
high (e.g., γ > 0.1) causes the CBA loss to dominate training, hindering the acquisition of new
knowledge. Likewise, a large β (e.g., β > 0.4) leads to overly smoothed integration weights, which
diminish task-specific distinctions and negatively impact performance.

Table 6: Sensitivity to balance factor γ

γ Avg Last Transfer Preserve

0.05 76.1 85.2 68.4 84.1
0.1 77.9 87.3 69.2 84.5
0.2 77.3 86.1 68.8 83.4

Table 7: Sensitivity to balance factor β

β Avg Last Transfer Preserve

0.2 76.1 85.2 68.4 83.6
0.4 77.9 87.3 69.2 84.5
0.6 77.3 86.1 68.8 83.1

Memory usage and training time: We evaluated the training time and memory usage of our method
compared to other methods. As shown in Table 8, the proposed LEBA framework achieves better
computational efficiency compared to existing baselines. It requires less GPU memory and converges
faster during training. This demonstrates that LEBA not only improves performance but also reduces
resource overhead.

Table 8: Comparison of memory usage and training time

Method GPU (MiB) Training Time (Min)

ZSCL [16] 28,293 823.1
MoE-Adapter [17] 26,294 803.4
Ours (LEBA) 24,698 786.6

Threshold η analysis: We investigate the effect of varying the threshold parameter η, which controls
adapter selection in our method. As shown in Table 9, performance remains relatively stable across a
range of η values, indicating the robustness of our approach. Notably, the best overall performance
is achieved when η = 0.3, suggesting an optimal balance between selective adapter reuse and new
knowledge integration.

Table 9: Performance sensitivity to threshold η

η Avg Last Transfer Preserve

0.1 76.6 85.9 68.3 84.6
0.3 77.9 87.3 69.2 84.5
0.5 77.5 86.8 68.8 83.7
0.7 77.4 86.6 68.5 83.6

Other task order: we randomized the task order and conducted two independent experiments based
on the resulting orders. The corresponding results are presented in Table 9 and Table 9, with the task
orders specified as: (a) [CIFAR100, DTD, Aircraft, Flowers, Food, StanfordCars, MNIST, EuroSAT,
SUN397, OxfordPet, Caltech101] and (b) [EuroSAT, OxfordPet, SUN397, DTD, CIFAR100, Food,
StanfordCars, MNIST, Caltech101, Flowers, Aircraft]. Experimental results demonstrate that the

16



proposed LEBA consistently achieves superior performance compared to state-of-the-art methods
across different randomized task orders, indicating its robustness to task order variations.

Table 10: Comparison of methods across four evaluation metrics for task order (a)

Method Transfer Average Last Preserve
ZSCL 67.23 75.89 84.21 81.35
MoE-Adapters 68.67 76.21 85.36 82.65
Ours(LEBA) 69.42 77.66 87.13 84.01

Table 11: Comparison of methods across four evaluation metrics for task order (b)

Method Transfer Average Last Preserve
ZSCL 60.95 75.12 83.54 85.32
MoE-Adapters 61.57 75.26 84.92 86.16
Ours(LEBA) 62.46 76.69 86.62 88.93
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The key contributions and scope claimed in abstract and Introduction 1. We
provide experimental results in Sec. 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The following are the limitations of our method. Considering that the
Schrödinger bridge method employed in our paper utilizes relatively fundamental and
classical techniques.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: The relevant proof process has been shown in the proof of appendix A

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: In the Sec. 4, detailed algorithm, network framework and experimental setting
are given.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: No codes are included in this submission, but the codes will be provide when
the paper is accected.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The content involved in the question has been experimentally analyzed in the
Sec. 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: Due to the increased training time, error bars were omitted from the presen-
tation. It’s worth noting that the absence of error bars in the previous MTIL method is
consistent with our approach.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The computer resource requirements are given in the Sec. 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The pre-model and datasets involved in the experiment have been mentioned
in Sec. 4.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.

22



• If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The LLM is used only for writing, editing, or formatting purposes and does
not impact the core methodology.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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