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Abstract

Implicit Neural Representations (INRs) rely heav-
ily on architectural choices for good general-
ization. Developing theoretically grounded ap-
proaches for architecture design remains an active
area of research. Via theoretical analysis of the
infinite-width limit, we establish a methodology
that characterizes INR’s generalization by means
of kernel alignment. We first formulate the op-
timal kernel that minimizes pointwise expected
squared error, then demonstrate that the Neural
Tangent Kernel of the composed function (INR
with input encoding) can approximate any posi-
tive semidefinite dot-product kernels through in-
put feature mapping adjustments. Building upon
these insights, we propose a Kernel Alignment
Regularizer (KAR) that naturally integrates with
existing INR systems to enhance kernel align-
ment. We further develop Plug-in Encoding for
Aligned Kernels (PEAK) to refine INR models
with KAR using learnable input encoding. This
work contributes to the ongoing research efforts
in bridging theory and practice for principled
INR architecture design. Code is available at
https://github.com/lizhemin15/KAR.

1. Introduction
Implicit Neural Representation (INR) has emerged as a pow-
erful paradigm for continuous signal modeling (Sitzmann
et al., 2020), advancing various domains from computer
vision to scientific computing via its ability to handle in-
verse problems (Mildenhall et al., 2020; Chen et al., 2021;
Martin-Brualla et al., 2021; Wadhwani & Kojima, 2022).
At its core, INR achieves these successes by leveraging
neural networks to map low-dimensional input coordinates
directly to output values. Although showing great promise,
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Figure 1. Overview of PEAK: (a) Function space representation
showing how an INR network fθ with a learnable encoder γ ap-
proximates the Ground Truth, where dark blue dots D represent
training samples and the light blue region represents µf , the con-
ditional distribution from which the ground truth function f∗ is
sampled; (b) Theoretical analysis in kernel space illustrating how
the Kernel Alignment Regularizer (KAR) guides the Vanilla INR
from the initial kernel K towards the optimal kernel K∗. PEAK
achieves kernel alignment while maintaining data fidelity through
the joint optimization of encoder parameters and INR weights.

the generalization ability of INR can be influenced by archi-
tectural choices, including activation functions (Sitzmann
et al., 2020; Saragadam et al., 2023), network structures
(Fathony et al., 2021; Lindell et al., 2022), and input en-
codings (Tancik et al., 2020; Müller et al., 2022; Xie et al.,
2022; Liu, 2024). Developing systematic strategies for INR
architecture design presents an important opportunity for
further advancement in the field (Dupont et al., 2022).

We investigate this design problem through theoretical anal-
ysis. Due to INR’s highly non-linear nature, direct analysis
proves difficult. Neural Tangent Kernel (NTK) theory of-
fers a breakthrough by showing that at infinite width, INR’s
training dynamics can be precisely characterized by kernel
regression (Jacot et al., 2018; Chizat et al., 2019). This fun-
damental connection enables us to leverage well-established
kernel method theories to analyze and enhance INR’s per-
formance (Tancik et al., 2020; Yüce et al., 2022; Li et al.,
2023). Building upon kernel methods, we formulate the
optimal kernel that minimizes pointwise expected squared
error to measure INR’s generalization ability. Finding an
INR architecture whose corresponding kernel aligns with
the optimal kernel becomes our main focus. This process,
known as kernel alignment, has shown promising results in
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traditional kernel methods (Bordelon et al., 2020; Cristian-
ini et al., 2001; Jacot et al., 2020) and in aligning kernels
between tasks and data (Chapelle et al., 2002; Cortes et al.,
2012; Liu et al., 2016; Liu, 2024). Nevertheless, its potential
for INR optimization remains to be fully explored.

Matching INR’s kernel with the optimal kernel remains a
challenging inverse problem. Previous work on NTK re-
verse engineering has made important theoretical progress,
showing that single-layer networks with polynomial activa-
tions can approximate any semidefinite dot-product kernel
(Simon et al., 2022). However, when moving from the-
ory to practice, deeper architectures have shown particu-
larly promising results (Delalleau & Bengio, 2011; Eldan
& Shamir, 2015; Lu et al., 2017), motivating us to explore
more flexible architectural choices. In exploring activa-
tion functions, designed initialization strategies have proven
valuable for maintaining training efficiency and performance
(Sitzmann et al., 2020). Drawing from these insights, we
focus on input feature mapping since it allows us to leverage
existing well-designed deep architectures and their tuned ini-
tializations without modification (Tancik et al., 2020; Müller
et al., 2022; Xie et al., 2022; Liu, 2024).

Guided by these practical considerations, this work estab-
lishes a novel theoretical foundation showing that the Neural
Tangent Kernel of INR with input encoding can approxi-
mate any positive semidefinite dot-product kernel. Based
on this insight, we propose Plug-in Encoding for Aligned
Kernels (PEAK), which combines a learnable encoder with
a Kernel Alignment Regularizer (KAR) to enhance kernel
alignment. PEAK can be readily incorporated into any exist-
ing INR system as a plug-in solution without architectural
modifications. Figure 1 illustrates this workflow, where the
theoretical analysis in kernel space directs the vanilla INR
towards the optimal solution using learnable input encoding
and kernel alignment.

Our kernel alignment approach shows promising improve-
ments for INR’s generalization on inverse problems. The
main contributions of this work include:

• Theoretical Foundation: A Kernel Alignment Regu-
larizer abbreviated as KAR is proposed in this paper
which explores the theoretical connection between INR
generalization and kernel alignment, providing a princi-
pled approach to enhance INR’s performance through
kernel alignment.

• Algorithm Design: We further propose PEAK algo-
rithm, a plug-in solution that combines learnable encod-
ing with KAR to align INR’s kernel with the optimal
kernel adaptively.

• Empirical Validation: Experiments on image inpaint-
ing, phase retrieval, and Neural Radiance Field demon-

strate the effectiveness of the proposed approach in
improving the generalization of INRs.

2. Related Works
Implicit Neural Representations. Implicit Neural Rep-
resentation (INR) offers continuous, differentiable signal
encoding, unlike discrete tensor representations that require
interpolation and finite differences (Reddy et al., 2021; Sitz-
mann et al., 2020). This enables efficient physics simulation,
shape optimization, and novel view synthesis (Guan et al.,
2022; Mildenhall et al., 2020; Martin-Brualla et al., 2021).
Research on improving INR’s generalization has led to var-
ious architectural advances, from activation functions (Xu
et al., 2019; Luo et al., 2021; Cao et al., 2021; Vakevičius
et al., 2019; Zhao et al., 2019; Sitzmann et al., 2020) to
neural network structure (Fathony et al., 2021; Lindell et al.,
2022), and input encoding methods (Tancik et al., 2020;
Müller et al., 2022; Xie et al., 2022; Liu, 2024). These
advances motivate theoretical exploration of architecture
design.

Neural Tangent Kernel Theory. The NTK framework
(Jacot et al., 2018; Chizat et al., 2019) bridges the gap be-
tween neural networks and kernel methods by showing that
infinitely wide networks behave as kernel regression. This
connection enables the theoretical analysis of neural net-
work generalization (Tancik et al., 2020; Li et al., 2023)
and expressive power (Yüce et al., 2022). The selection
of appropriate kernels for optimal generalization remains a
central problem in the field. While single-layer networks
with polynomial activations can theoretically approximate
any kernel (Simon et al., 2022), recent studies have shown
that input feature mapping can significantly alter the NTK’s
spectral properties (Tancik et al., 2020).

Kernel Alignment. Kernel Alignment (KA) has emerged
as a powerful principle for improving model generalization
by ensuring the kernel used in regression matches the target
function’s optimal kernel (Bordelon et al., 2020; Cristianini
et al., 2001; Jacot et al., 2020). This approach has proven
successful in various domains, from kernel parameter tuning
(Chapelle et al., 2002) to multiple kernel learning (Cortes
et al., 2012) and clustering (Liu et al., 2016; Liu, 2024).
Recent theoretical advances have established rigorous con-
nections between kernel alignment and generalization error
bounds (Bordelon et al., 2020; Canatar et al., 2021; Wang
et al., 2024). Building upon the success of input encoding
methods in INR (Tancik et al., 2020; Müller et al., 2022), our
work explores the potential synergy between kernel theory
and INR practice.
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3. Plug-in Encoding for Aligned Kernels
Previous works have made significant contributions to INR
architecture design using innovative empirical approaches.
Drawing from these advances, we aim to complement ex-
isting methods by establishing theoretical foundations for
achieving optimal generalization via kernel alignment in
the infinite-width limit. Stemming from this insight, we
propose PEAK to bridge theory and practice using learnable
input encoding.

3.1. Approximate an Infinite-width INR with Kernel
Regression

To establish a theoretical foundation for optimal INR de-
sign, we first examine the connection between INRs and
kernel methods in the infinite-width limit. Recent theo-
retical advances have demonstrated that training a neural
network under certain conditions resembles a kernel method
at infinite width (Jacot et al., 2018; Yang & Littwin, 2021;
Golikov et al., 2022). Consider an INR fθ : X 7→ Y with L
hidden layers:

x(ℓ) = σ
(
W(ℓ)x(ℓ−1) + b(ℓ)

)
, 1 ≤ ℓ ≤ L,

fθ(x) = W(L+1)x(L) + b(L+1),
(1)

where σ(·) denotes an element-wise activation function,
x(0) = x, W(ℓ) ∈ Rnℓ×nℓ−1 and b(ℓ) ∈ Rnℓ represent the
weight matrix and bias vector of layer ℓ respectively, and θ
encompasses all network parameters.

To formalize the learning process, let X ⊆ Rd denote the
d-dimensional input space and Y ⊆ R be the output space,
i.e., n0 = d, nL+1 = 1. Given a training dataset D =
{(xi, yi) | xi ∈ X , yi ∈ Y, i = 1, . . . , N} of size N , the
INR is trained by minimizing the mean squared error (MSE)
loss L(θ) on D:

L(θ) = 1

2

N∑
i=1

(yi − fθ(xi))
2. (2)

We aim to find the optimal parameters θ∗ such that the
trained INR fθ∗(x) approximates the ground-truth function
f∗(x) for any input x ∈ X . However, as we all know, it is
difficult to find the optimal parameters. Frequently, what we
obtain are only sub-optimal solutions (shown in Figure 1),
which leads to the generalization problem of INR.

Let us denote the matrix of input samples as X =
[x1, . . . ,xN ]⊤ ∈ RN×d and the vector of output samples
as Y = [y1, . . . , yN ]⊤ ∈ RN . When the width of INR ap-
proaches infinity and the training time t→∞, fθt → fθ∞

which can be characterized by kernel regression (detailed
derivation in Appendix A.1):

fθ∞(x) = K0(x,X)K†
0(X,X)Y, (3)

where the Neural Tangent Kernel (NTK) of this INR is ex-
pressed as:

K0(x,x
′) = ∇⊤

θ0
fθ0

(x)∇θ0
fθ0

(x′). (4)

Here, K0(x,X) represents a row-vector of length N whose
i-th element is K0(x,xi) and K†

0(X,X) ∈ RN×N whose
i-th row is K†

0(xi,X). K†
0 indicates the Moore-Penrose

pseudoinverse of matrix K0. The NTK captures the evolu-
tion of network predictions during training by measuring
how changes in parameters affect the output, providing a
powerful tool for analyzing the limiting behavior of INR.

3.2. Optimal Kernel

Equation (3) indicates that given an INR fθ , we can charac-
terize its prediction by fθ∞ at any x. Next, we examine a
pointwise expected squared error as follows,

Ef∗∼µf |D

[
(fθ∞(x)− f∗(x))

2
]
, (5)

where the target function f∗ is sampled from a measure
µf over an appropriate function space. The key insight
of this section lies in formulating the optimal kernel K∗

that minimizes this expected error, which will serve as a
theoretical guide for designing enhanced INR architectures.

Theorem 3.1. The kernel that minimizes the error defined
in equation (5) is expressed as

K∗(x,x′) = Ef∗∼µf |D [f∗(x)f∗(x′)] . (6)

Proof. To begin with, we introduce a 1×N vector Mx :=
K0(x,X)K†

0(X,X). Substituting equation (3) into the ob-
jective function (5) and differentiating with respect to Mx,
we obtain

∇MxEf∗∼µf |D

[
(fθ∞(x)− f∗(x))

2
]

= ∇MxEf∗∼µf |D
[
(MxY)2 − 2(MxY)f∗(x) + (f∗(x))2

]
= 2MxYY⊤ − 2Ef∗∼µf |D[f

∗(x)Y⊤] = 0.

This leads to

MxYY⊤ = Ef∗∼µf |D[f
∗(x)Y⊤],

and therefore

Mx = Ef∗∼µf |D[f
∗(x)Y⊤](YY⊤)†. (7)

Note that the Hessian of Ef∗∼µf |D with respect to Mx is

HMx = 2YY⊤.

As it is positive semi-definite, (5) reaches minimum at Mx

given by (6).
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Recalling that Mx = K0(x,X)K†
0(X,X), by compar-

ing with (7) and noting that YY⊤ = K∗(X,X) and
Ef∗∼µf |D[f

∗(x)Y⊤] = K∗(x,X), we arrive at:

K0(x,X)K†
0(X,X) = K∗(x,X)K∗†(X,X). (8)

This equality holds when

K∗(x,x′) = Ef∗∼µf |D [f∗(x)f∗(x′)] , (9)

which completes the proof.

Remark 3.2. In this context, we employ the Moore-Penrose
pseudo-inverse rather than the regular inverse because the
kernel matrices may be singular or ill-conditioned in prac-
tice. Additionally, K∗ in equation (6) is not unique, as the
scaled version of K∗, namely αK∗, α > 0, yields the same
Mx = K∗(x,X)K∗†(X,X).

Since f∗ is sampled from µf conditioned on D, for any
x ∈ X and training sample xi ∈ S = {xi}Ni=1, where we
deliberately introduce S to distinguish between the entire
domain X and the training set,

K∗(x,xi) = Ef∗∼µf |D [f∗(x)f∗(xi)]

= yiEf∗∼µf |D[f
∗(x)].

Specifically, for xi,xj ∈ S, we obtain

K∗(xj ,xi) = Ef∗∼µf |D [f∗(xj)f
∗(xi)] = yiyj .

Utilizing kernel regression with the optimal kernel K∗ for-
mulated in Theorem 3.1 faces two fundamental limitations.
Computing K∗(x,x′) = Ef∗∼µf |D [f∗(x)f∗(x′)] remains
intractable in practice due to lack of direct access to µf .
Moreover, even with K∗ available, evaluating K∗† requires
O(N3) operations, posing computational constraints for
large-scale datasets. In comparison, INRs provide an alter-
native approach that can potentially handle various inverse
problems with O(N) complexity during forward propaga-
tion. Therefore, we propose to improve INR performance
by incorporating theoretical insights from optimal kernel
selection while circumventing the computational overhead
of explicit kernel regression.

3.3. Optimal INR

Without loss of generality, we assume each input xi sat-
isfies ∥xi∥2 = 1. This condition can be achieved utiliz-
ing a feature map F (x) = [cosx, sinx] which ensures
∥F (xi)∥2 = 1. Under this normalization, the NTK ex-
hibits rotation-invariance, meaning K(x,x′) = K(c) with
c = x⊤x′ ∈ [−1, 1]. For notational simplicity, we employ
the same K to denote both the functions of one variable and
two variables. We refer to kernels of this form as dot-product

kernels (Jacot et al., 2018). Reverse engineering shows that
any dot-product kernel can be approximated by carefully
initializing a single-hidden-layer INR (Simon et al., 2022).
Specifically, it requires specialized initialization schemes
and restricts us to shallow architectures, preventing us from
leveraging the benefits of modern deep networks.

A more practical solution involves utilizing a feature map
encoder γ(x) : X → Rde (Tancik et al., 2020; Müller et al.,
2022; Liu, 2024). In contrast to the reverse engineering
approach, this encoder can be seamlessly integrated into
any existing deep architecture without modifying their ini-
tialization or depth. The resulting INR becomes fθ(γ(x)),
with its NTK Kγ(x,x

′) = K(γ(x), γ(x′)). The following
theorem demonstrates that with appropriate design, such a
learnable encoder can achieve the optimal kernel K∗:

Theorem 3.3. Given dot-product kernels K,K∗ (see
Lemma A.1 for detailed properties), where K : [−1, 1]→
B ⊆ R represents a Lipschitz continuous bijection with
Lipschitz constant CK and K∗ is continuous on [−1, 1]
(i.e., K∗ ∈ C([−1, 1])) satisfying K∗[−1, 1] ⊆ B∗ ⊆ R.
If B∗ ⊆ B, then for any ε > 0, there exists a mapping
γε : X → R

∑Nε
k=0 dk

such that

sup
c∈[−1,1]

|Kγε
(c)−K∗(c)| < ε,

where Kγε(c) = K(γε(x), γε(x
′)) with c = x⊤x′ for any

unit vectors x,x′ ∈ X .

Proof. Since K represents a bijection, its inverse K−1 :
B → [−1, 1] exists and h(c) = K−1(K∗(c)) maps [−1, 1]
to itself with K(h(c)) = K∗(c). As the composition of
dot-product kernels, h(c) is clearly a dot-product kernel. By
Theorem A.2, h(c) admits a non-negative power series:

h(c) =

∞∑
k=0

akc
k, ak ≥ 0,

∞∑
k=0

ak <∞.

For any ε > 0, choose Nε such that
∑

k>Nε
ak < ε/CK

and construct:

γε(x) =

Nε⊕
k=0

√
akx

⊗k ∈ R
∑Nε

k=0 dk

,

where x⊗k denotes the k-fold tensor product, ⊕ and ⊗
represent the direct sum and direct product, respectively.
For unit vectors x,x′ ∈ X :

γε(x)
⊤γε(x

′) =

Nε∑
k=0

ak(x
⊤x′)k.
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Algorithm 1 PEAK Training Algorithm
Input: INR fθ, attention network gθ′ , polynomial en-
coder γ, initial parameters {θ0,θ

′
0, {aj(0)}

Nγ

j=0}, train-
ing data D, grid points XG, loss Lall, learning rate α,
epochs T
for t = 0 : T − 1 do
Lall(t)← Lall(θt, {aj(t)}Nγ

j=0 ,θ
′
t) {Eq. (12)}

θt+1 ← θt − α∇θtLall(t)
θ′
t+1 ← θ′

t − α∇θ′
t
Lall(t)

for j = 0 : Nγ do
aj(t+ 1)← aj(t)− α∇aj(t)Lall(t)

end for
end for
return fθT

(γ(x, {aj(T )}
Nγ

j=0)), gθ′
T

By Lipschitz continuity of K:

|Kγε(c)−K∗(c)| =

∣∣∣∣∣K
(

Nε∑
k=0

akc
k

)
−K

( ∞∑
k=0

akc
k

)∣∣∣∣∣
≤ CK

∑
k>Nε

ak < ε,

where the first inequality follows from |c| ≤ 1, ak ≥ 0.

Remark 3.4. The key insight enabling this construction is
the tensor product property: (x⊗k

1 )⊤(x⊗k
2 ) = (x⊤

1 x2)
k for

unit vectors. When Nε = 1, the encoder takes a simple form
γε(x) = [

√
a0,
√
a1x]

⊤. This often suffices in practice
since higher-order terms (k > 2) contribute less as ck =
cosk θ rapidly approaches zero, particularly in scenarios
where x⊤

1 x2 < 1.

Remark 3.5. The construction is not unique. We can
decompose

√
a0 into [

√
a0α1, . . . ,

√
a0αm] for any parti-

tion {αi}mi=1 with
∑m

i=1 αi = 1, which yields: γε(x) =

[
√
a0α1, . . . ,

√
a0αm]⊕

⊕Nε

k=1

√
akx

⊗k.

3.4. The PEAK Algorithm

Although Theorem 3.3 offers theoretical guidance, direct
computation remains challenging since we cannot directly
access the underlying distribution µf . Nevertheless, we can
leverage a key insight: f∗(x) can be characterized via its re-
lationships with Y. Following this intuition, we model µf as
a discrete distribution where P(f∗(x) = yi) = A(x,xi) for
i = 1, 2, . . . , N , with

∑N
i=1 A(x,xi) = 1 and A(x,x′) ≥

0 (∀x,x′ ∈ X ) denotes a function that measures the simi-
larity between x and x′. Combining equations (3) and (6),

we obtain

fθ∞(x) = K∗(x,X)K∗†(X,X)Y

= Ef∗∼µf |D[f
∗(x)] ·Y⊤(YY⊤)†Y

= Ef∗∼µf |D[f
∗(x)] =

N∑
i=1

A(x,xi)yi.

(10)

It is worth noting that Ef∗∼µf |D[f
∗(x)] resides in the row

space of Y. According to the properties of the Moore-
Penrose pseudoinverse, for any vector v within the row
space of Y, we have vY⊤(YY⊤)†Y = v. This elucidates
why the second-to-last equality in equation (10) holds.

In numerous practical applications, such as NeRF (Milden-
hall et al., 2020), the ground truth yi is not directly observ-
able. In these scenarios, fθ∞ also remains unknown since it
depends on yi. However, we recognize that fθt

(xi) should
converge to the true yi as t→∞. Consequently, we can sub-
stitute both fθ∞ and yi in equation (10) with fθt

(denoted as
fθ for simplicity), yielding fθ(x) =

∑N
i=1 A(x,xi)fθ(xi).

When incorporating the encoder γ, this relationship suggests
that the optimal INR fθ should satisfy

R(fθ(γ(x)),A) = ∥fθ(γ(x))−A(x,X)fθ(γ(X))∥p = 0,

for some vector norm ∥ · ∥p, where A(x,X) ∈ R1×N . We
designate this term as the Kernel Alignment Regularizer
(KAR), as it enforces alignment between the INR’s kernel
and the optimal kernel derived from our theoretical analysis.
In this work, we adopt ∥ · ∥2 as our choice of norm.

Consequently, to achieve optimal INR representation (in
terms of kernel alignment) while maintaining fidelity on
training data, we formulate the following optimization prob-
lem:

min
θ,γ,A

N∑
i=1

L(fθ(γ(xi)), yi) + λ

∫
X
R(fθ(γ(x)),A)dx,

(11)
where γ serves as a learnable encoder for kernel alignment
and λ represents a trade-off hyperparameter. The first term
ensures fidelity on S, and the integral term constitutes the
continuous form of KAR that enforces kernel alignment
across the entire input space X .

We observe that both γ and A possess inherent structural
constraints that must be satisfied, necessitating their pa-
rameterization in a structure-preserving manner. Addi-
tionally, the integral in equation (11) requires discretiza-
tion for practical implementation. Following the construc-
tion established in the proof of Theorem 3.3, we express:
γ(x) =

⊕Nγ

k=0

√
akx

⊗k, where x⊗k signifies the k-fold
tensor product of x (when k = 0, it reduces to the scalar√
a0). In practical applications, we discover that setting

Nγ = 1 yields satisfactory performance in realistic image
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tasks, resulting in γ(x) = [
√
a0,
√
a1x]

⊤. This simpli-
fication proves reasonable since higher-order terms con-
tribute diminishingly to the kernel due to (x⊤

1 x2)
k rapidly

approaching zero for larger k.

The function A(x,x′) should exhibit continuity in mapping
from X × X to R, while satisfying two key conditions: (a)∑N

i=1 A(x,xi) = 1, and (b) A(x,x′) ≥ 0, ∀x,x′ ∈ X .
We parameterize A as:

Aθ′(x,X) = softmax(gθ′(x)⊤gθ′(X)),

where gθ′ : Rd → Rr is implemented as a compact INR.
This elegant formulation naturally satisfies both conditions
while enabling flexible coordinate relationships.

Taking 2D image processing as an illustrative ex-
ample, we can sample a uniform discrete grid XG

from X with dimensions m × n, where XG ={
( i
m , j

n ) | 1 ≤ i ≤ m, 1 ≤ j ≤ n
}
⊆ X . The complete

loss function can be reformulated as:

Lall = min
θ,{aj}

Nγ
j=0,θ

′

N∑
i=1

L(fθ(γ(xi, {aj}Nγ

j=0)), yi)

+ λ
∑

x∈XG

R(fθ(γ(x, {aj}Nγ

j=0)),Aθ′),

(12)
where the second term represents the discretized KAR that
ensures kernel alignment on the uniform grid XG.

The optimization of equation (12) becomes feasible since
it exhibits differentiability with respect to parameters
θ, {aj}Nγ

j=0 ,θ
′ when L, fθ and g′θ are differentiable with

respect to these parameters. This differentiability prop-
erty holds for common loss functions such as L2 and INRs
equipped with differentiable activation functions like sin(·).
Consequently, we can employ gradient-based optimization
techniques, such as gradient descent, to minimize equa-
tion (12). Upon convergence, we obtain the optimal pa-
rameters θ∗,

{
a∗j
}Nγ

j=0
,θ

′∗, yielding the optimized INR

fθ∗(γ(x,
{
a∗j
}Nγ

j=0
)). Given thatR facilitates kernel align-

ment by guiding the encoder γ towards the kernel regres-
sion solution, we designate this methodology as the Plug-
in Encoding for Aligned Kernels (PEAK) algorithm. For
notational clarity, we present the complete algorithm in
Algorithm 1.

The optimal INR is encompassed within equation (11), yet
not all solutions to equation (11) necessarily represent the
optimal INR. Thus, equation (11) serves as a necessary
condition for the optimal INR rather than a sufficient one.
Notably, our experimental results (Figure 2) demonstrate
that the INRs discovered through our algorithm closely ap-
proximate the optimal kernel.

Proposition 3.6. Let XG = X and defineR(fθ(γ(x)),A)

as

R(fθ(γ(x)),A) = ∥fθ(γ(x))−A(x,X)fθ(γ(X))∥2 .

Then, the following equality holds:∑
x∈XG

R(fθ(γ(x)),A) = ∥(I−A(X,X))fθ(γ(X))∥2 .

This result reveals that KAR corresponds to the Dirichlet
Energy (Li et al., 2022). From a geometric perspective,
the learned function A(x,x′) characterizes the similarity
between points x and x′. Our framework provides a more
comprehensive formulation of this relationship through the
lens of kernel alignment.

4. Experiments
We evaluate PEAK from three aspects: (1) verifying the ker-
nel alignment properties of PEAK, (2) analyzing the impact
of architectural choices, and (3) examining performance in
both linear and nonlinear inverse problems, comparing with
strong baseline methods, including vanilla MLP (ReLU ac-
tivation), Fourier feature networks (Fourier) (Tancik et al.,
2020), and Hash (Müller et al., 2022).

4.1. Kernel Alignment Verification

(a) No mapping NTK (b) Fourier mapping NTK

(c) Optimal NTK (d) Our NTK

Figure 2. Visualization of Neural Tangent Kernels (NTK) for dif-
ferent architectures on the interval [−1, 1]× [−1, 1].

To examine how PEAK influences kernel alignment, we con-
duct experiments on a 1D signal fitting task where we can nu-
merically compute both kernels. We consider a synthetic sig-
nal f∗(x) = sin(4πx) with x ∈ [−1, 1]. The optimal kernel
K∗ is computed using equation (6), while INR’s empirical
kernel is calculated as K(x,x′) = ∇⊤

θ fθ(x)∇θfθ(x
′).
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As shown in Figure 2, standard INR with Fourier features
(Figure 2(b)) exhibits shift-invariant properties that are ben-
eficial for many tasks. PEAK learns a kernel (Figure 2(d))
that shares characteristics with the optimal kernel (Fig-
ure 2(c)), suggesting the effectiveness of our kernel align-
ment approach.

4.2. Impact of Polynomial Degree

1 2 4 8 16 32 64 128
Polynomial Order

23.2

23.4

23.6

23.8

24.0

24.2

PS
NR

 (d
B)

Mean PSNR
Min/Max PSNR

Figure 3. Analysis of polynomial order’s impact on reconstruction
quality. The blue curve shows mean PSNR values, with shaded
regions indicating min/max variations.

Following Theorem 3.3, we study how the polynomial de-
gree Nγ in encoder γ affects approximation accuracy. We
conduct experiments on the Jetplane image using the image
reconstruction task with combined random and structured
missing patterns. We evaluate polynomial degrees from
Nγ = 1 to Nγ = 128. Results in Figure 3 show that
while higher degrees can improve performance, the gains
become modest after Nγ = 1, suggesting that balancing
performance and complexity is a practical choice. Further-
more, the influences of the regularization coefficient λ, the
output dimension r of the regularization network, and the
activation function in PEAK are thoroughly examined in
Appendix B.1.

4.3. Linear Inverse Problem: Image Reconstruction

We evaluate PEAK on image reconstruction with missing
data. This involves predicting unseen regions from partial
observations. The linearity of this problem provides a clear
testbed for studying INR’s generalization in the basic set-
ting. We test three complex scenarios with missing patterns
shown in Figure 4(a): Random (50% pixels randomly re-
moved), Patch (structured regions missing), and Textural
(complex patterns missing).

Results in Table 1 indicate that PEAK improves across
different scenarios. For the Baboon image with random
missing pixels, PEAK achieves 22.60dB PSNR compared
to 18.64dB (MLP), 20.10dB (Fourier), and 19.67dB (Hash).
Similar trends are observed for structured missing patterns,
where PEAK reaches 35.20dB PSNR on the Cameraman

Table 1. PSNR (dB) of reconstructed images by INRs. Results
from six standard test images under three missing types: random,
patch, and textural.

Image Missing Type MLP Fourier Hash PEAK

Baboon
Random 18.64 20.10 19.67 22.60

Patch 18.82 22.35 25.44 36.08
Textural 18.69 23.77 28.84 31.41

Boat
Random 22.38 25.17 26.57 26.85

Patch 22.22 27.70 26.52 33.26
Textural 22.79 29.68 33.85 38.96

Cameraman
Random 23.87 26.17 28.51 29.06

Patch 23.71 28.68 28.19 35.20
Textural 24.03 30.03 33.07 38.02

Jetplane
Random 21.59 25.39 25.26 27.55

Patch 21.61 26.09 26.59 34.40
Textural 21.10 30.67 32.65 36.94

Lake
Random 20.01 23.52 24.40 26.65

Patch 19.71 24.41 21.58 31.93
Textural 19.66 26.53 32.78 34.08

Livingroom
Random 22.40 25.52 27.32 27.95

Patch 21.99 24.21 27.63 33.76
Textural 22.03 30.00 34.20 38.15

image with patch missing, compared to 23.71dB (MLP),
28.68dB (Fourier), and 28.19dB (Hash). Visual results in
Figure 4 also show that PEAK helps maintain fine textures
and natural transitions in the reconstructed regions.

4.4. Nonlinear Inverse Problem: Phase Retrieval

Table 2. PSNR (dB) achieved by various neural network based
phase retrieval methods for FPR and GPR with different sample
ratios s.

Image s MLP Fourier Hash PEAK

FPR
(Net-ADM)

House
1.9 28.02 16.25 31.75 40.44
1.8 28.72 17.40 28.78 31.77
1.7 26.76 16.92 25.38 28.11

Boston
1.9 17.73 16.64 18.88 21.82
1.8 17.37 15.21 17.86 18.75
1.7 18.13 13.08 15.32 18.83

Boat
1.9 22.83 20.90 28.96 33.47
1.8 22.00 15.22 23.79 30.52
1.7 22.12 13.61 22.22 24.90

GPR
(Net-GD)

House
1.0 19.14 21.88 23.03 33.19
0.9 19.03 21.57 20.81 33.25
0.8 19.05 20.98 19.20 32.65

Boston
1.0 17.95 19.27 17.56 24.97
0.9 17.97 19.03 16.08 24.74
0.8 17.93 18.59 15.63 22.25

Boat
1.0 19.97 21.18 19.00 29.92
0.9 19.91 20.85 17.05 30.05
0.8 19.95 20.36 15.95 29.10

We evaluate PEAK on the nonlinear inverse problem of
phase retrieval (PR), which reconstructs a signal using only
magnitude measurements obtained from the Fourier trans-
form, referred to as Fourier phase retrieval (FPR), or Gaus-
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PSNR (dB) 18.64 20.10 19.67 22.60

PSNR (dB) 23.71 28.68 28.19 35.20

PSNR (dB) 19.66 26.53 32.78 34.08

(a) Missing (b) MLP (c) Fourier (d) Hash (e) PEAK

R
an

do
m

Pa
tc

h
Te

xt
ur

al

Figure 4. Qualitative comparison of image reconstruction results. Each row represents a different scenario: Baboon with random 50%
missing pixels (top), Cameraman with large patch missing (middle), and Lake with textural pattern missing (bottom).

(a) Ground Truth (b) MLP (c) Fourier (d) Hash (e) PEAK

FP
R

G
PR

Figure 5. The first row displays the reconstruction images (House) of FPR by Net-ADM at 1.9 sampling ratio, while the second row
displays the reconstructions (Boston) of GPR by Net-GD at 1.0.

sian matrix linear operations, known as Gaussian phase re-
trieval (GPR). A reduced number of measurements increases
the challenge of PR, with the sampling ratio s defined as
the ratio of measurements to the signal length in each di-
mension. Building on this foundation, Net-GD (Jagatap
& Hegde, 2019a;b) and Net-ADM (Ma et al., 2024) com-

bine a deep decoder with GD and ADMM, respectively (see
Appendix B.2). Since both the deep decoder and INR are
untrained networks, we replace the former with an INR in
Net-GD and Net-ADM, testing different input encodings.

Results in Table 2 show that PEAK provides improvements
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of up to 8.69dB in FPR and 11.68dB in GPR, while main-
taining stable performance at lower sampling rates. Visual
results in Figure 5 indicate that PEAK helps reconstruct both
global image structure and local details. These results sug-
gest the potential benefits of kernel alignment in nonlinear
inverse problems.

4.5. Neural Radiance Field

Table 3. Average PSNR (dB) of NeRF by Instant-NGP and our
proposed PEAK under different numbers of view perspective sam-
ples.

Synthetic view Sample numbers Instant-NGP PEAK

chair
100 30.60 30.32
50 24.97 28.34
25 23.79 24.42

hotdog
100 32.50 32.76
50 29.85 31.34
25 23.32 24.51

lego
100 27.98 28.01
50 26.23 27.03
25 21.74 23.27

drums
100 23.93 24.19
50 19.43 20.08
25 16.92 17.66

ficus
100 24.07 24.08
50 21.48 21.86
25 18.75 19.65

mic
100 28.35 29.94
50 25.17 26.87
25 21.72 22.39

chair

hotdog

lego

mic

Instant-NGP PEAK Instant-NGP PEAK

26.00 dB 29.65 dB 23.49 dB 26.55 dB

25.50 dB 29.19 dB 23.99 dB 27.37 dB

27.08 dB 27.88 dB 24.00 dB 25.22 dB

25.50 dB 27.09 dB 26.43 dB 27.88 dB

Figure 6. Visual results of Neural Radiance Field by Instant-NGP
and our proposed PEAK with 50 view perspectives.

Neural Radiance Field (NeRF) synthesizes novel views from
multi-view images. We compare PEAK with Instant-NGP

(Müller et al., 2022) on NeRF using 25, 50, and 100 input
views from the NeRF synthetic dataset. PEAK outperforms
vanilla Instant-NGP in PSNR (25 views, Table 3), especially
with fewer samples. Figure 6 shows PEAK reduces sparse-
sample artifacts, demonstrating better generalization.

4.6. The Computational Efficiency of PEAK

0 1 2 3 4 5 6 7 8
Time (s)

0

10

20

30

40

50

PS
NR

 (d
B)

MLP SIREN Fourier Hash PEAK

Figure 7. PSNR (dB) of INRs for the Baboon image reconstruction
over time.

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Number of parameters (×1e7) 1e7

20

30

40

50

PS
NR

 (d
B)

MLP SIREN Fourier Hash PEAK

Figure 8. PSNR (dB) of INRs for the Baboon image reconstruction
with varying number of parameters.

We compare PEAK’s efficiency with MLP, SIREN (Sitz-
mann et al., 2020), Fourier, and Hash on Baboon image
reconstruction. PEAK trains faster (Figure 7) and achieves
higher PSNR with fewer parameters (Figure 8), outperform-
ing alternatives in speed and performance.

5. Concluding Remarks
In this work, we have presented PEAK, a principled frame-
work for enhancing INR’s generalization through kernel-
guided design. Looking forward, we believe understanding
the theoretical relationship between kernel alignment and
INR’s expressiveness could provide deeper insights into
neural network design.
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Appendix

A. Theoretical Analysis
A.1. Kernel Regression and Neural Tangent Kernel

Let X ⊆ Rd denote a d-dimensional input space and Y ⊆ R be the output space. For a dataset D =
{(xi, yi) | xi ∈ X , yi ∈ Y, i = 1, . . . , N} of size N , we denote X = [x1, . . . ,xN ]⊤ ∈ RN×d and Y = [y1, . . . , yN ]⊤ ∈
RN . The ground-truth function is denoted as f∗ : X → Y .

A.1.1. KERNEL REGRESSION FRAMEWORK

We start from the mean squared error (MSE) loss function:

L(θ) = 1

2

N∑
i=1

(yi − fθ(xi))
2. (13)

The gradient of the loss with respect to the parameters θ is:

∇θL(θ) = −
N∑
i=1

(yi − fθ(xi))∇θfθ(xi). (14)

The continuous-time gradient descent dynamics for minimizing the square loss corresponds to the following ordinary
differential equation (ODE):

θ̇t = −∇θt

(
1

2

N∑
i=1

(yi − fθt
(xi))

2

)

=

N∑
i=1

(yi − fθt
(xi))∇θt

fθt
(xi).

A.1.2. NEURAL TANGENT KERNEL

When analyzing the training dynamics of neural networks through the lens of kernel regression, a particular kernel known as
the Neural Tangent Kernel (NTK) naturally arises. For a neural network fθ with L hidden layers, the NTK is defined as:

K(x,x′) =

〈
∂fθ(x)

∂θ
,
∂fθ(x

′)

∂θ

〉
. (15)

This kernel function characterizes how the network output at two different input points changes with respect to the parameters
during training. Under the gradient flow dynamics, we have:

ḟθt
(x) = θ̇

⊤
t ∇θt

fθt
(x)

=

N∑
i=1

(yi − fθt(xi))∇⊤
θt
fθt(xi)∇θtfθt(x)

= Kt(x,X)(Y − fθt
(X)).

(16)

A.1.3. PROPERTIES OF NTK

For standard feedforward neural networks, the NTK can be computed recursively using:

K(ℓ+1)(x,x′) = σ2
wΣ̇

(ℓ)(x,x′)K(ℓ)(x,x′) + σ2
b , (17)

where K(ℓ) denotes the NTK at layer ℓ, Σ̇(ℓ) represents the expectation of activation function derivatives, and σ2
w, σ2

b are the
variances of weights and biases, respectively.

In the infinite-width limit, the NTK exhibits several remarkable properties:
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1. Pre-activations converge to a Gaussian process:

h(ℓ)(x)→ GP(0,K(ℓ)). (18)

2. The empirical kernel converges to a deterministic kernel:

lim
n1,...,nL→∞

Kt(x,x
′) = K0(x,x

′). (19)

3. The convergence rate is O(1/
√
minℓ nℓ) (Jacot et al., 2018).

A.1.4. TRAINING DYNAMICS THROUGH NTK

The evolution of network outputs during training can be described through the NTK:

d

dt
fθt

(x) = −Kt(x,X)K†
t (X,X)(fθt

(X)−Y). (20)

As t→∞, the solution converges to:
fθ∞(x) = K0(x,X)K†

0(X,X)Y. (21)

This result demonstrates that in the infinite-width limit, neural network training becomes equivalent to kernel regression
with the NTK, providing a theoretical foundation for understanding the learning dynamics of deep neural networks.

A.2. Dot-Product Property

For normalized inputs (∥x∥2 = 1), the NTK becomes a function of only the dot product between inputs:

K0(x,x
′) = K0(c), c = x⊤x′. (22)

Lemma A.1. For any two unit vectors x,x′ on the unit sphere, considering a neural network with ReLU activation function,
their pre-activations at each layer ℓ in an infinitely wide network follow a Gaussian process with covariance K(ℓ)(c)
depending only on c = x⊤x′.

Proof. We prove this result for the case of ReLU activation function. We proceed by induction over layers under the joint
infinite-width limit (n1, ..., nL →∞).

Base Case (ℓ = 1): The first layer’s pre-activations:

h(1)(x) = W(1)x+ b(1) (23)

with W
(1)
ij ∼ N (0, σ2

w/d), b
(1)
i ∼ N (0, σ2

b ), yield covariance:

K(1)(x,x′) = σ2
wx

⊤x′ + σ2
b = σ2

wc+ σ2
b . (24)

Inductive Step (ℓ→ ℓ+ 1): Assume h(ℓ)(x) ∼ GP(0,K(ℓ)(c)). For ReLU activation ϕ, the post-activation covariance
becomes:

E[ϕ(h(ℓ)(x))ϕ(h(ℓ)(x′))] =
K(ℓ)(c)

2π

√1−
(
K(ℓ)(c)

K(ℓ)(1)

)2

+ arcsin

(
K(ℓ)(c)

K(ℓ)(1)

) , (25)

where K(ℓ)(1) = σ2
w + σ2

b by normalization. This defines a new dot-product kernel g(ℓ)(c).

The (ℓ+ 1)-th layer covariance:
K(ℓ+1)(c) = σ2

wg
(ℓ)(c) + σ2

b , (26)

thus preserving the dot-product dependence.
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NTK Recursion: Following (Jacot et al., 2018), the NTK decomposes as:

K0(c) =

L∑
ℓ=1

(
L∏

k=ℓ+1

Σ̇(k)(c)

)
Σ(ℓ)(c), (27)

where Σ(ℓ)(c) = K(ℓ)(c) and Σ̇(ℓ)(c) = E[ϕ′(h(ℓ−1)(x))ϕ′(h(ℓ−1)(x′))]. In the infinite-width limit, both terms become
deterministic functions of c (Arora et al., 2019). Note that while this proof focuses on ReLU activation, similar results may
hold for certain other activation functions under appropriate conditions.

Theorem A.2. For any dot-product kernel K(x,x′) = K(x⊤x′) defined on the unit sphere Sd−1, if K is continuous and
positive definite, it can be decomposed into a power series with positive coefficients and their sum is finite:

K(c) =

∞∑
n=0

anc
n, an > 0,

∞∑
n=0

an <∞.

Proof. We prove this result in three steps:

Step 1: Power Series Expansion

For a continuous positive definite kernel on [−1, 1], by Mercer’s theorem, it has a uniformly convergent eigenfunction
expansion. For dot-product kernels on the sphere, these eigenfunctions are polynomials, which gives us the power series
expansion:

K(c) =

∞∑
n=0

anc
n.

Step 2: Positivity of Coefficients

To prove an > 0, we use the positive definiteness of the kernel. For any f ∈ L2(Sd−1):∫
Sd−1

∫
Sd−1

K(x⊤y)f(x)f(y)dxdy > 0.

Substituting the power series expansion and using the fact that ∥x∥2 = ∥y∥2 = 1:
∞∑

n=0

an

∫
Sd−1

∫
Sd−1

(x⊤y)nf(x)f(y)dxdy > 0.

Since this inequality holds for all f and the integrals are non-negative by construction, we must have an > 0 for all n ≥ 0.

Step 3: Convergence of Coefficients

Finally, we prove that
∑∞

n=0 an <∞. Since K is continuous on the compact set Sd−1, it is bounded. In particular, K(1) is
finite. At c = 1, we have:

K(1) =

∞∑
n=0

an.

Since all an > 0 and their sum equals the finite value K(1), we conclude that
∑∞

n=0 an <∞.

This result guarantees that any dot-product kernel can be approximated arbitrarily well by a finite polynomial with positive
coefficients.

B. Experimental Details
B.1. Ablation Studies

To better understand the impact of different components in PEAK, we conducted comprehensive ablation studies on three
key aspects. All experiments in this section were conducted on the same task setting as in Section 4 - image reconstruction
on the Jetplane image with combined random and structured missing patterns.
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Effect of Regularization Coefficient We investigated the impact of regularization coefficient λ on model performance. We
examined λ ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1, 10, 102}. As shown in Figure 9(a), PEAK achieves optimal performance
(PSNR around 23.5dB) when λ is between 10−2 and 10−1. Both too small (< 10−3) and too large (> 1) values of λ lead to
significant performance degradation, with PSNR dropping to around 14dB at λ = 102.

Output Dimension of Regularization Network We analyzed the effect of varying the output dimension r of the
regularization network. As shown in Figure 9(b), we explored dimensions r ∈ {10, 50, 100, 200, 300, 400, 500}. The
results indicate that PSNR improves significantly (from 19.5dB to 23.8dB) as r increases from 10 to 100. However, further
increasing r beyond 100 yields diminishing returns and even slight performance degradation, with PSNR decreasing to
around 22dB at r = 500. This suggests that r = 100 achieves the optimal balance between performance and computational
cost.

Choice of Activation Function We compared the performance of various activation functions including ReLU, Sigmoid,
Tanh, Softmax, HardTanh, ELU, Leaky ReLU, and others. Figure 9(c) shows that most activation functions achieve PSNR
values between 23-24dB, demonstrating relatively stable performance. Softmax shows marginally better stability and slightly
higher average PSNR across multiple trials. Sigmoid and Softmin demonstrate competitive performance with minimal
difference from Softmax. ReLU and LeakyReLU show slightly lower performance, potentially due to the vanishing gradient
problem.

Our ablation studies revealed several key findings:

• The choice of regularization coefficient λ significantly impacts model performance, with optimal values between 10−2

and 10−1.

• An output dimension of r = 100 achieves the best performance, with larger dimensions showing diminishing returns.

• Most modern activation functions perform well, with Softmax showing marginally better stability, followed closely by
Sigmoid and Softmin.

These results provide insights into PEAK’s optimal configuration and demonstrate our method’s robustness across different
parameter settings.

B.2. Integration with Net-GD and Net-ADM

For both the Net-GD and Net-ADM frameworks, we replace the original deep decoder network with our INR as follows,
where m denotes the number of measurements and n represents the length of the signal to be reconstructed.

Net-GD Integration:

1. The INR fθ directly maps coordinates to pixel values

2. Gradient descent updates follow:
θt+1 = θt − η∇θt∥|Afθt(X)| − y∥22

where A : Rn → Rm is the Gaussian random matrix.

Net-ADM Integration:

1. The INR output is treated as the primal variable

2. The ADMM updates follow:

zt+1 = argmin
z

ρ

2
∥Pz− fθt(X) + ut∥22

θt+1 = argmin
θ

1

2m

∥∥∥√|Afθ(X)|2 + ϵ1−
√

y2 + ϵ1
∥∥∥2
2
+

ρ

2
∥Pzt+1 − fθ(X) + ut∥22

ut+1 = ut + Pzt+1 − fθt+1
(X)
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where A : Rm → Cm denotes the discrete Fourier transform operator and P : Rn → Rm is the zero padding operator
that extends signals to match target lengths. The Lagrangian multiplier is expressed as u, while ρ serves as the penalty

parameter in the augmented Lagrangian framework. The data fidelity term 1
2m

∥∥∥√|Afθ(X)|2 + ϵ1−
√

y2 + ϵ1
∥∥∥2
2

is a smoothing version of 1
2m∥|Afθ(X)| − y∥22, where 1 is a vector of all ones. We empirically used ρ = 1 and

ϵ = 0.001, and took zT ∈ Rn as the final reconstruction result.
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(a) Impact of regularization coefficient λ on model performance.
PEAK achieves optimal performance when λ is between 10−2 and
10−1.
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(b) Performance vs. output dimension of the regularization net-
work. Output dimension of r = 100 achieves the best trade-off
between performance and efficiency. The PSNR of the baseline
on the Jetplane image is 22.56 dB. In most cases, the utilization
of diverse output dimensions within the PEAK framework signifi-
cantly surpasses this baseline performance.
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(c) Comparison of different activation functions. Softmax shows marginally
better stability, followed closely by Sigmoid and Softmin.

Figure 9. Ablation studies on three key aspects of PEAK: (a) regularization coefficient λ, (b) output dimension of regularization network,
and (c) choice of activation function. The results demonstrate the robustness of our method across different parameter settings and
architectural choices.
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