
Submitted to the GSK.ai CausalBench challenge (ICLR 2023)

CAUSALBENCH CHALLENGE: DIFFERENCES IN MEAN
EXPRESSION

Marcin Kowiel, Wojciech Kotlowski & Dariusz Brzezinski
Institute of Computing Science
Poznan University of Technology
{dbrzezinski,wkotlowski}@cs.put.poznan.pl

ABSTRACT

In this write-up, we describe our solution to the 2023 CausalBench Challenge. We
describe our approaches to preprocessing the data, parameterizations of DCDI and
GRNBoost, and modifications to the baseline algorithms.

1 DATA PRE-PROCESSING AND POST-PROCESSING

Parallel to developing modifications of the baseline DCDI and GRNBoost algorithms, we considered
modifications to the input and output data of these algorithms. In particular, we analyzed good initial
values for the gene expression threshold and output graph size.

Gene expression threshold. The gene expression threshold is used to remove genes that have
a non-zero expression in less than a user-defined fraction of the samples. The default value of
0.25 resulted in DCDI performance that was visibly worse than that reported in (Chevalley et al.,
2022). Therefore, we changed the default expression threshold to 0.5 and used this value in further
experiments. Moreover, we omitted samples labeled as ‘excluded‘.

Figure 1: Mean Wasserstein distance for different
sizes of GRNBoost output graphs.

Output graph size. The challenge submis-
sions are evaluated based on the mean Wasser-
stein distance between the expression distribu-
tions of connected pairs of nodes in the output
graph. Seeing that not all pairs are equally im-
portant and methods such as GRNBoost rely
on sorting pairs according to importance and
then selecting only a subset of them using a
threshold, we assumed that smaller graphs will
be more likely to have a higher value of the
mean Wasserstein distance. To verify this hy-
pothesis, we plotted the mean Wasserstein dis-
tance for GRNBoost graphs of different sizes.
As can be noticed by looking at Figure 1, the
mean Wasserstein distance indeed decreases as
the number of edges in the graph grows. Al-
though GRNBoost does not perfectly sort gene
pairs according to differences between expres-
sion distributions, the results are still very good. Therefore, in further experiments, we have always
limited the number of edges to 1,000, which was the smallest allowed output graph according to the
competition rules.

2 TESTED APPROACHES

In this section, we will discuss the subsequent models we tested while preparing our final Causal-
Bench Challenge submission.
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DCDI and GRNBoost baselines. Before designing modifications, we ran experiments on
DCDI (Brouillard et al., 2020) and GRNBoost (Huynh-Thu et al., 2010) with different parame-
ters. As mentioned in the previous section, we finally settled for a gene expression threshold of 0.5
and an output graph consisting of 1,000 edges. We also tested different versions of DCDI-G (which
offered better performance than DCDI-DSF). As can be seen in the left panel of Figure 4, our results
on the RPE dataset (Tsherniak et al., 2017) are in accordance with those presented in (Chevalley
et al., 2022), i.e., DCDI-G offers the best performance followed by GRNBoost. These results served
as a reference point for our modifications.

GRNBoost with intervention encoding. Our first modification involved adding information about
interventions to GRNBoost. GRNBoost creates multiple regressors, each one predicting the ex-
pression value of a gene based on the expression values of the other genes. In its original form,
GRNBoost treats all samples equally and has no notion of gene interventions. The first and sim-
plest modification involved changing the expression value of perturbed genes to -100 (Figure 2, left
panel). By doing so, our goal was to differentiate between interventions and naturally occurring
zero-expression of a given gene. Since GRNBoost relies on regression trees, we did not worry about
the concrete intervention encoding value, as long as it separated interventions from observational
values. Hence we only tested the value -100. The experimental results of this modification for
the RPE dataset are presented in the right panel of Figure 4. As can be noticed, the intervention
encoding strategy offered slightly better performance than the baseline GRNBoost.

Figure 2: Schematic of data modifications performed to introduce intervention information to GRN-
Boost. Each table presents the dataset used to train one regressor to predict the expression of gene
Z based on expression values of genes X and Y.

GRNBoost with intervention flag columns. The approach described in the previous paragraph
has a downside in that the intervention encoding value -100 hides the true expression of the gene
in the sample, thus removing some of the information from the dataset. Therefore, as our second
modification, instead of replacing expression values, we have added a set of columns with binary
flags determining whether a particular gene was perturbed in a given sample (Figure 2, center panel).
Somewhat surprisingly, this strategy of extending the dataset performed worse than intervention
encoding (Figure 4).

GRNBoost with only intervention flag columns. Since extending the dataset with more columns
seemed to have added more noise, we also tried another strategy—one wherein we discarded the
expression values altogether and left only intervention flags (Figure 2, right panel). This GRN-
Boost modification worked significantly better than the previous two (Figure 4). Since using only
binary (one-hot) intervention flags to predict expression boils down to estimating the means for
sub-populations of the dataset, we decide to test strategies that estimate mean expression directly.

Mean expression estimation. We measured the strength of causal relationship X → Y for every
gene pair X,Y , for which interventions on X were available. To this end, we separately calculated
for gene Y its mean expression values ȲO and ȲX on the observational data and on the interventional
data concerning perturbations of X , respectively. The difference in means, |ȲO − ȲX |, was used to
measure the strength of the relationship, and then to sort gene pairs and select 1,000 pairs with the
largest differences. It turns out that this simple approach, which is essentially a regression model of
Y on the intervention flag of X , turned out to significantly outperform all previously tested strategies
on the RPE dataset, as seen in Figure 3. We note that for mean difference estimation, we did not
employ any gene expression threshold.
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Figure 3: Comparison of all algorithms. Note
that both mean difference methods (Mean diff,
Mean diff Bayes) have practically the same per-
formance.

Mean expression estimation with Bayesian
correction. Since some of the interventions
contained few samples, we decided to correct
the mean expression value on the interventional
data ȲX by employing a Bayesian estimator,
treating ȲO as the prior mean, and the vari-
ance of Y on the observational data, Var(YO),
as the prior variance. This effectively boils
down to expressing the difference in means by
cXY |ȲO−ȲX |, with Bayesian correction factor
cXY = Var(YO)

Var(YO)+Var(YX)/nX
, where Var(YX)

is the variance of Y on the interventional data
concerning perturbations of X , while nX is the
number of samples in that intervention. Since
cXY ≤ 1 and increasing with nX , this has the
effect of discounting the mean differences for
small interventional datasets. However, the Bayesian estimation brought only an insignificant im-
provement when compared with the previous approach, essentially returning an almost identical set
of top 1,000 pairs (Figure 3).

Considering all of the experimental results (Supplementary Table 1) and the above analyses, our
final submission consisted of omitting samples labeled as ‘excluded‘, estimating the mean expres-
sion of genes for each intervention, and selecting the 1,000 gene pairs with the largest expression
differences.

3 DISCUSSION

Our final submission consisted of a very simple algorithm that estimates the mean expression of
genes in situations when a different gene is intervened upon. The reason why we have settled for
such a simple method rather than a more elaborate one stems from three factors:

1. the fact that this is a competition, not an exploratory analysis;
2. the format of the training and testing data;
3. the competition’s evaluation metric.

The first factor is obvious: since we are participating in a competition, discovering new interesting
causal gene relationships becomes less important than achieving the best performance according
to the competition rules. During the explanatory analysis and tests of various approaches, we re-
alized that every step which led to the performance improvements was essentially pulling a given
method towards estimating the difference in means on the observational and the interventional data.
Therefore, we eventually decided to use the mean estimation as the sole method for causal graph
edge prediction. The second factor, the data format, required us to predict interactions only be-
tween genes that were present in the input data and which, in most cases, had interventions. Without
expression data for genes without interventions, there was no reason to predict causality between
unperturbed genes. Finally, for a well-behaved predictor, the value of the competition evaluation
metric will decrease as the number of predicted edges increases; therefore, it was always optimal to
predict as few gene interactions as the competition allowed.

The above factors made our submission much simpler, but also much less applicable to industry
needs. To alleviate the above-mentioned issues, we believe it would be necessary to require con-
testants to predict causal relations between genes that have interventions as well as those pairs that
are purely observational. For that to be possible, the input data should have more genes without any
observations, and the algorithm should receive as input the pairs of genes it is going to be evaluated
on. With such a setup, the organizers would be able to force predictions on observational genes from
the training data and evaluate them based on held-out interventional data. By prespecifying, which
gene pairs the algorithm is supposed to assess, the problem of predicting the smallest possible graph
would also disappear. In general, gene pairs could be evaluated in three cross-validation or holdout
settings (cv1, cv2, cv3) as proposed for synthetic lethality pairs by Wang et al. (2022).
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A APPENDIX

Baseline Modification
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Figure 4: Mean Wasserstein distance of baseline algorithms and modifications of GRNBoost on the
RPE dataset. Left panel: baseline algorithms—DCDI-G and GRNBoost. Right panel: GRNBoost
modifications.
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Table 1: Experimental results of all the algorithms on the RPE dataset.

Algorithm Fraction of intevention data Mean Wasserstein distance

DCDI-G 0.25 0.1771
DCDI-G 0.50 0.1755
DCDI-G 0.75 0.1890
DCDI-G 1.00 0.1845
GRNBoost 0.25 0.1462
GRNBoost 0.50 0.1471
GRNBoost 0.75 0.1473
GRNBoost 1.00 0.1520
GRNBoost intervention encoding 0.25 0.1669
GRNBoost intervention encoding 0.50 0.1679
GRNBoost intervention encoding 0.75 0.1662
GRNBoost intervention encoding 1.00 0.1548
GRNBoost expression + intervention 0.25 0.1510
GRNBoost expression + intervention 0.50 0.1513
GRNBoost expression + intervention 0.75 0.1604
GRNBoost expression + intervention 1.00 0.1598
GRNBoost only intervention flag 0.25 0.3913
GRNBoost only intervention flag 0.50 0.4995
GRNBoost only intervention flag 0.75 0.5542
GRNBoost only intervention flag 1.00 0.5855
Mean diff 0.25 0.4697
Mean diff 0.50 0.6357
Mean diff 0.75 0.7541
Mean diff 1.00 0.8130
Mean diff Bayes 0.25 0.4699
Mean diff Bayes 0.50 0.6354
Mean diff Bayes 0.75 0.7542
Mean diff Bayes 1.00 0.8128

5


	Data pre-processing and post-processing
	Tested approaches
	Discussion
	Appendix

