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LEGATO: Cross-Embodiment Imitation Using a Grasping Tool
Mingyo Seo12, H. Andy Park2, Shenli Yuan2, Yuke Zhu1†, and Luis Sentis12†

Abstract—Cross-embodiment imitation learning enables poli-
cies trained on specific embodiments to transfer across different
robots, unlocking the potential for large-scale imitation learning
that is both cost-effective and highly reusable. This paper presents
LEGATO, a cross-embodiment imitation learning framework for
visuomotor skill transfer across varied kinematic morphologies.
We introduce a handheld gripper that unifies action and obser-
vation spaces, allowing tasks to be defined consistently across
robots. We train visuomotor policies on task demonstrations
using this gripper through imitation learning, applying transfor-
mation to a motion-invariant space for computing the training
loss. Gripper motions generated by the policies are retargeted
into high-degree-of-freedom whole-body motions using inverse
kinematics for deployment across diverse embodiments. Our eval-
uations in simulation and real-robot experiments highlight the
framework’s effectiveness in learning and transferring visuomo-
tor skills across various robots. More information can be found on
the project page: https://ut-hcrl.github.io/LEGATO.

Index Terms—Imitation Learning, Transfer Learning, Whole-
Body Motion Planning and Control

I. INTRODUCTION

RECENT advancements in robot hardware—from wheeled
manipulators to humanoid robots [1–5]—have greatly

increased access to diverse robotic platforms. To fully leverage
these advancements in supporting human activities, robots
must autonomously perform a wide range of complex tasks.
Deep imitation learning has shown promise in training au-
tonomous policies for sensorimotor skills, reducing the need
for extensive human programming compared to traditional
rule-based approaches. It has yielded impressive results in
complex robotic systems [6, 7] and across diverse dexter-
ous manipulation tasks [8–10]. However, such an approach
typically requires demonstration data from a specific target
robot, which limits scalability due to high hardware costs and
the intensive workload involved in operating the robot during
demonstrations. Additionally, individualized training for each
robot restricts cross-embodiment applications, as data cannot
be transferred to different robot systems, even for similar tasks.

To enable scalable demonstration collection, pioneering
works have introduced data collection tools that allow humans
to directly manipulate during demonstrations [11–15]. These
approaches enable training visuomotor policies that are de-
ployable to specified target robots, reducing human workload
and avoiding the costs and risks associated with using real
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Fig. 1: Overview of LEGATO. LEGATO addresses the challenge of
transferring visuomotor skills across diverse robot embodiments. We present
a cross-embodiment imitation learning framework using a versatile handheld
grasping tool that ensures consistent physical interactions across different
embodiments. Visuomotor policies trained on demonstrations by humans or
teleoperated robots using the tool can be deployed across various robots
equipped with the same gripper. Motion retargeting enables the execution of
trajectories on different robots without requiring robot-specific training data.

robots for data collection. However, these methods require
either designing specialized data collection tools for specific
robot gripper mechanisms or replacing robots’ original grip-
pers with customized hardware. This limitation restricts the ap-
plicability of these tools for robots with diverse gripper mech-
anisms. For example, Universal Manipulation Interface [15]
is designed specifically for the Schunk WSG-50 gripper with
its parallel-jaw mechanism but is incompatible with grippers
employing other mechanisms, such as hinge types. Addition-
ally, variations in control latency and trajectory-tracking errors
across robots, absent in human demonstrations, complicate
policy transfer between embodiments. Chi et al. [15] addressed
this by compensating for control and observation latencies,
while Song et al. [11] used fine-tuning through trial and
error on the target robot system. However, these strategies are
difficult to generalize across diverse robots, as control latency
varies between platforms due to differences in hardware and
controllers.

Our key idea to address hardware differences across
robots is to integrate a handheld grasping tool that can be
shared across various robot embodiments for performing the
same tasks (see Figure 1). We name our method LEGATO
(Learning with a Handheld Grasping Tool). In our method, the
LEGATO Gripper, a custom-designed handheld gripper, acts
as a versatile and adaptive tool, representing tasks through
its trajectories and grasping actions to ensure consistency
across embodiments during both demonstration and deploy-
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ment. This handheld gripper—compatible with various robot
grippers—enables a single visuomotor policy to be applied
across diverse robot systems without requiring modifications
to the original systems. Sharing the gripper across robots
and directly manipulating human demonstrators ensures con-
sistent, actively actuated grasping actions. In contrast, other
data collection methods often create discrepancies in grasping
actions because demonstrations rely on passive actuation by
demonstrators, while robots require active actuation during
deployment.

Our framework incorporates low-level motion retargeting
through inverse kinematic (IK) optimization, tailored to each
robot, along with a high-level transferable visuomotor policy
(see Figure 2). Commands from the visuomotor policy for
the handheld gripper are converted into whole-body motions
using IK, enabling adaptation across robotic systems with
only kinematic information, thereby avoiding extensive robot-
specific training. While the IK optimization adapts gripper
motions to each robot, variations in hardware and kinematics
introduce differences in control latency and errors. To address
this, we incorporate regularization on the gripper’s trajectories
in a motion-invariant space during training, preventing bias
toward the demonstration embodiment and effectively learning
motor skills. This approach ensures that gripper trajectories
from the visuomotor policy can be consistently translated into
whole-body robot motions, regardless of control latency and
IK response differences. Together, these components enable
the learned visuomotor policy in LEGATO to be effectively
transferred across diverse robotic systems.

We validate our approach through simulation and real-
robot experiments, demonstrating its cross-embodiment trans-
ferability. In simulation, visuomotor policies trained on hu-
man demonstrations are successfully deployed across various
embodiments, including a tabletop manipulator, a wheeled
robot, a quadruped, and a humanoid. We further demonstrate
the reusability of demonstration data by transferring a policy
trained on one robot to another. In real-world tabletop ma-
nipulator setups, our method achieves a 72% success rate in
complex manipulation tasks through policy transfer from direct
human demonstrations.

II. RELATED WORK

A. Skill Learning Across Embodiments
Cross-embodiment policy transfer enables collecting

demonstration data from easier or less costly embodiments
and reusing it across different robot embodiments. One
approach involves learning from videos of direct human
demonstrations, which has been extensively explored in
earlier works [16–21]. However, robot deployment is limited
by its reliance on third-person visual observations and the
absence of real-world physical interaction data.

Another approach integrates tools specifically designed for
demonstration collection. One method involves leader-follower
systems, which have been shown to be successful [22, 23].
However, this method requires designing leader hardware with
a kinematic structure identical to a target robot, enabling its
joint states to be directly mapped onto the robot. Alterna-
tively, recent works use handheld tools to record on-hand

visual observationstask demonstration

tool actions

imitation learning

LEGATO

tool actions

Visuomotor
Policy

IK
Optimizer

whole-body 
motions robot deployment

💾 demo-collection

🤖

Dataset

Fig. 2: LEGATO’s cross-embodiment learning pipeline. During data
collection, the LEGATO Gripper records its trajectories, grasping actions, and
visual observations captured by its egocentric stereo camera. A visuomotor
policy is then trained on these demonstrations through imitation learning.
During deployment, the visuomotor policy’s outputs are retargeted to the
robots’ whole-body motions through IK optimization.

visual observations and corresponding motions from demon-
strations [11–13, 15, 24]. While these approaches simplify tool
design, they still require a system-specific tool or modifications
to a robot’s original hardware to align the end-effector’s
physical interactions and the recorded visual observations.

Unlike prior methods, we aim to generalize cross-
embodiment learning by incorporating an adaptable handheld
gripper and flexible kinematics-based motion retargeting. As
a result, our learned policies are deployable across various
types of robots without requiring robot-specific hardware for
demonstrations.

B. Whole-body Motion Retargeting

Motion retargeting enables the generation of practical mo-
tions across different embodiments. A substantial body of
research exists on motion retargeting between similar mor-
phologies, such as from humans to humanoid robots, em-
ploying either model-based methods [25–28] or data-driven
approaches [29–31]. In contrast, translating human move-
ments into equivalent motions for varying target morphologies
presents a challenge due to the inherently ambiguous nature
of the task. Recent studies have investigated motion retarget-
ing across embodiments with diverse morphologies [32–34].
While these studies have successfully demonstrated motion
retargeting from humanoid to non-humanoid morphologies,
they often rely on either embodiment-specific or task-specific
models.

Our method shares similarities with previous works [27,
28] in utilizing kinematic optimization for motion retargeting.
Unlike these works, however, we use a lower-dimensional ac-
tion space based on the motions of the handheld gripper. This
approach enables flexible motion retargeting across diverse
robot embodiments with varying morphologies.

C. Trajectory Representations

To effectively transfer motions across diverse embodiments,
motion primitives offer a practical solution. These primitives
facilitate the assembly of elemental motions, as extensively
explored in the literature [35–37]. However, their adaptability
is inherently limited by design, making them less effective
for novel tasks or environments. Recent advancements, such
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Fig. 3: High-level visuomotor policy architecture. The trained policies generate desired handheld-gripper trajectories and grasping actions ut at 10 Hz
from ego-centric stereo camera observations and previous policy actions. These action and observation spaces, defined in the handheld-gripper frame, remain
consistent across various robot platforms. To learn actions on handheld-gripper trajectories, we apply two action losses: the negative log-likelihood loss LNLL
for the distribution in SE(3) and the L2 loss Linvar in the DHB motion-invariant space. The grasping actions are trained using the cross-entropy loss LCE.

as encoder-decoder frameworks that project trajectories into a
latent space, have significantly improved the learning of mo-
tion primitives [38–40]. Encoding motions into learned latent
spaces facilitates the transfer of human motions to simulated
humanoid models [41] and adapts them to robot embodiments
with varying kinematic structures [34]. Nevertheless, these
approaches often encounter challenges in achieving broad
generalization across different scenarios.

To address these challenges, our method employs motion
representations as training regularization elements rather than
directly using them for motion generation. Specifically, we
utilize the Denavit-Hartenberg Bidirectional (DHB) invariant
representation [42], which offers invariance to rotational-
translational shifts and scaling. The regularization in this
motion-invariant space ensures robust alignment with demon-
strated trajectories, enhancing policy generalizability across
various embodiments.

III. METHOD

Here, we introduce LEGATO, a cross-embodiment imita-
tion learning framework comprising a visuomotor policy at the
high level and motion retargeting at the low level, as illustrated
in Figure 2. The visuomotor policy is trained through imitation
learning on task demonstrations, collected either from humans
directly using the tool or from teleoperated robots holding the
tool. The consistency of the action space of handheld gripper
motions and ego-centric visual observations across different
robots enables deployment to various embodiments. The low-
level motion retargeting realizes these gripper trajectories as
whole-body motions across different robot platforms.

A. Problem Formulation

We model the problem of cross-embodiment manipula-
tion as a discrete-time Markov Decision Process M =
(S,A,P, R, γ, ρ0) where S is the state space, A is the action
space, P(·|s, a) is the transition probability, R(s, a, s′) is the
reward function, γ ∈ [0, 1) is the discount factor, and ρ0(·) is
the initial state distribution. Our objective is to learn a closed-
loop visuomotor policy π(at|st) that maximizes the expected
return E[

∑∞
t=0 γ

tR(st, at, st+1)] across different robot sys-
tems. In our problem, S is the space of visual observations
captured by the handheld gripper’s egocentric cameras, the
robot’s proprioceptive feedback, and previous actions, while
A is the space of the robot’s joint-space commands. These
two spaces vary across different robot systems, reflecting the

diversity in sensory capabilities and actuation mechanisms
inherent to each robot platform. R(s, a, s′) is the reward
function designed for the manipulation task, and π is a closed-
loop policy deployed on the robot.

To handle the complexity of visuomotor skills and ensure
that the policy π is deployable across various robot systems,
we decompose the policy into a two-level hierarchy. At the
high level is a cross-embodiment visuomotor policy πH ,
implemented as neural networks that compute target motion
trajectories of the handheld gripper u. We train πH through im-
itation learning with demonstrations collected by manipulating
the handheld gripper. At the low level, we use a whole-body
motion optimizer πL, which determines target joint configura-
tions to follow the trajectories u established by πH through IK.
This eliminates the need for additional training on target robot
systems. With this hierarchical structure, the entire policy can
be represented as π(at|st) = πL(at|st, ut)πH(ut|st).

B. Actions Based on the Handheld Gripper

We incorporate the LEGATO Gripper, which can be shared
across different robot systems. Inspired by Noguchi et al. [43],
each robot uses its own gripper to hold the handheld grip-
per, integrating it as part of the embodiment. The handheld
gripper maintains a consistent shape and viewpoint, unifying
visual observation and action spaces across embodiments. This
reduces the complexity of the cross-embodiment problem,
streamlining the mapping of handheld-gripper motions and
coordinating whole-body motions to execute them.

We define the action space as the differential pose in SE(3)
between consecutive time steps. This action space is suitable
for generalizable whole-body manipulation on floating-base
robots, as it eliminates reliance on a fixed reference frame.
Actions are thus represented in the current handheld-gripper
frame. Differential pose actions, sampled from a Gaussian
Mixture Model [44], capture the multimodal nature of human
demonstrations and essential motion information within the
motion-invariant space, as described in Section III-D.

C. Whole-body Motion Retargeting

In this section, we detail our approach for mapping the
trajectory actions of the handheld gripper ut into whole-
body robot motions at. We employ an optimization-based IK
method to handle the constrained IK problem. This enables our
motion optimizer πL to map commands effectively to robot
motions by leveraging degree-of-freedom (DOF) redundancy
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Fig. 4: LEGATO Gripper design. The LEGATO Gripper is designed for both human demonstration collection and robot deployment. (Left) It features a
shared actuated gripper with adaptable handles, ensuring reliable human handling and consistent grasping across robots while minimizing components. (Right
top) A human demonstrator can directly perform tasks by carrying the LEGATO Gripper in hand. The design includes a simple yet intuitive button interface
with a status LED, allowing data recording to start and end with a double-click and grasping actions to trigger with a single click. (Right bottom) The
LEGATO Gripper is easily installed on various robots, securely held by their original grippers, and is ready for immediate use.

while respecting actuation bounds and other constraints. Our
approach addresses kinematic differences, constraints, and
the diversity in DOFs across robot embodiments by using
kinematic redundancy to satisfy joint and other constraints
during deployment, without requiring additional robot-specific
demonstrations.

The motion retargeting formulation is expressed as the
following quadratic programming (QP) problem:

min
at

∑ 1

2
a⊤t Hat

subject to

Ji(qt)at = ẋdes
i ,

Li ≤ Ciat ≤ Li,

(1)

where Li, Li and Ci define the velocity-level constraints
for joint positions q, velocities q̇, and accelerations q̈, along
with other Cartesian limits (e.g., virtual walls and collision
distance bounds). H is a positive-definite weighting matrix.
ẋdes
i represents the desired velocities at the prioritized tasks,

formulated in the following order:

J1 = Jgrip, ẋdes
1 = Kgrip(xdes − x(q)),

J2 = Inj
, ẋdes

2 = Kbias(qbias − q),
(2)

where Jgrip and Inj
represent the Jacobians for gripper pose

control and maintaining the configuration bias qbias of nj

DOFs, respectively, with the control gains Kgrip and Kbias.
xdes represents the target pose of the handheld gripper, as
determined by the visuomotor policy outputs ut.

To solve the QP problem with the hierarchical priorities and
the inequality constraints, we utilize the extended Saturation
in the Null Space (eSNS) algorithm [45]. The constrained
optimization problem of Equation 1 is formulated as follows:

maximize
∑
i

ci

subject to

Ji(qt)at = ciẋ
des
i ,

Li ≤ Ciat ≤ Li.

(3)

Here, ci represents scaling factors within the range [0,1]
that allow for scaling speed of the prioritized tasks defined
in Equation 2, while accurately tracking their trajectories.
This optimization problem, maximizing the sum of scaling
factors, yields the closest mapping motions while meeting all
constraints. Our framework ensures that robot movements not
only follow the prescribed hierarchy but also adhere to the
constraints, guaranteeing flexible task execution and robust
motion generalization.

D. Training of Visuomotor Policies
Task demonstrations can be performed on any embodiment

capable of executing the tasks within its joint space. The
collected demonstration dataset D consists of state-action pairs
D = {(si, ui)}Ni=1. Here, N represents the total number of
data points. The observations si comprise stereo images from
the handheld gripper’s onboard camera and a history buffer
of previous actions ukk=t−T :t−1. The visual observations are
provided as stereo grayscale images with a resolution of
128 × 128 pixels. The demonstration commands ui include
the subsequent setpoints for the handheld gripper (6D) and
the grasping actions (1D).

We train our policy πH using a deep imitation learning
algorithm, specifically using a behavioral cloning policy with
LSTM networks [46, 47], as shown in Figure 3. The visuo-
motor policy employs two separate ResNet18-based image
encoders [48], trained end-to-end. The encoded features are
flattened and processed by two-layer LSTM networks, each
with 400 hidden units. The policy outputs are generated
by a three-layer Multi-Layer Perceptron (MLP), with each
layer containing 2048 hidden units. For hand trajectories, the
policy outputs Gaussian Mixture Model (GMM) parameters to
determine the next target pose based on spatial and rotational
differences from the previous frame, using a 5-mode GMM.
Grasping actions are provided as binary classifications for
opening and closing the gripper.

For imitation learning, we employ behavioral cloning with
the following training loss:
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Fig. 5: Timelapse of deploying LEGATO in simulation. We trained visuomotor policies using demonstrations from the Abstract embodiment and deployed
them on robots with diverse morphologies, from the top: Abstract, Panda, Spot, GR-1, and Google Robot. The timelapse of deploying these policies reveals
consistent time steps. The tracking performance of the IK motion retargeting varies with morphology, leading to domain gaps across embodiments. Despite
these challenges, LEGATO achieves successful deployment on various robots.

L = LNLL + Linvar + LCE. (4)

Here, LNLL and Linvar, associated with the trajectories of the
handheld gripper, represent the negative log-likelihood loss
and the regularization term in the motion-invariant space,
respectively. Additionally, LCE denotes the cross-entropy loss
for binary grasping actions. The term Linvar is calculated as
the L2 loss in the motion-invariant space, specifically using
the DHB invariant transformation [42], ϕ(·) (see Appendix
for details). This transformation is applied to the differential
poses of the gripper in SE(3) from the policy outputs ut and
the demonstrations ût:

Linvar =
∑

∥ϕ(ut, {ûk}t−1
k=t−T )− ϕ({ûk}tk=t−T )∥2. (5)

Incorporating Linvar into the training loss influences the dis-
tribution of handheld-gripper motions, preventing the policy
from being biased by embodiment-specific properties like
tracking errors and control latency. Unlike SE(3), these in-
variants represent motion by breaking it down into magnitude
and directional changes, unaffected by embodiment-specific
factors such as viewpoints, reference frames, pose offsets,
or scales. Leveraging motion invariance ensures the policy
captures essential motion information from demonstrations
without bias toward specific embodiments. This is critical for
cross-embodiment learning, as it makes the policy robust to
domain mismatches across different robot embodiments.

IV. EXPERIMENTS

In this section, we demonstrate the feasibility and ef-
fectiveness of LEGATO for cross-embodiment transfer of
visuomotor policies, both in MuJoCo simulation [49] and
real-world settings. Leveraging the scalability and ease of
simulation environments, we employ them to investigate the
following research questions: 1) How does the regularization
in the motion-invariant space impact the training of cross-
embodiment policies? 2) How do differences in morphology

and controllability affect the task capacity of robot embodi-
ments?

A. LEGATO Gripper

The LEGATO Gripper design described in Section III-B is
implemented on real hardware. It is designed for intuitive use
in both direct human demonstrations and robot operations, as
illustrated in Figure 4. During human demonstrations, a user
carries the LEGATO Gripper and controls the grasping actions.
Robots, on the other hand, can hold the tool with their original
grippers without needing any hardware modifications.

To enable easy attachment and replacement, the design is
modularized, particularly the handle parts that robots grip,
as presented in Figure 4. Thus, only the handle parts need
replacement for different robots, allowing all other core com-
ponents to be shared across robots. These handle parts can be
easily designed using CAD models of target robots provided
by manufacturers, ensuring adaptability to diverse robot sys-
tems. The LEGATO Gripper features two pairs of parallel four-
bar linkage mechanisms, each actuated by one DOF, enabling
a wider and more flexible range of opening distances. The
tool employs fingertips of compliant fin ray mechanisms for
high compliance and adaptability during contact. Made from
3D-printed parts, with TPU 95A for the fingertips and PLA
for other components, the LEGATO Gripper is significantly
lighter than typical commercial grippers. These key features
facilitate the concept of integrating the tool as part of the
embodiment, even under robots’ limited payload capacities,
while supporting generalizable grasping actions.

The LEGATO Gripper is equipped with a Realsense
T265 [50] camera (or an alternative stereo tracking camera
such as the SeerSense XR50 [51]), with fisheye stereo cameras
and an IMU for streaming visual observations and estimating
the handheld gripper’s motions via visual odometry. During
demonstrations, both stereo images and visual odometry data
are recorded to form observation-action pairs. In contrast,
during robot deployment, only stereo images are streamed.
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Fig. 6: Quantitative results in simulation. We report success rates on 50 trials of our LEGATO policies compared to baselines. On average, LEGATO
outperforms all other methods in cross-embodiment deployment by 28.9%, 10.5%, and 21.1%, compared to BC-RNN, Diffusion Policy, and LEGATO (SE3),
respectively. Notably, unlike the baselines that achieve high success rates only on specific robot embodiments, typically the Abstract embodiment used for
training, LEGATO demonstrates consistent success rates across different embodiments.

In simulation, the mechanism and geometry of the real
hardware are modeled. Visual observations are emulated by
adapting the properties of the tracker camera used in the
hardware design. The LEGATO Gripper is attached to each
robot’s original gripper with an offset.

B. Experimental Setup
We designed the following three realistic manipulation tasks

to study the cross-embodiment deployment of our method for
both simulation and real robot systems.
• Closing the lid: A robot grasps the lid and places it on the

pot within reach. This task requires precise manipulation to
accurately close the lid.

• Cup shelving: A robot places the cup into the shelf. In
addition to requiring a large workspace, this task involves
complex collision-free motion to position the cup against
the shelf’s non-convex shapes.

• Ladle reorganization: A robot picks up the ladle from the
pot and places it into the utensil organizer. This task involves
complex manipulation and handling objects potentially out
of view due to limited visibility and occlusion.

A task is considered successful if a robot accomplishes the
designated goals within a specific time limit. Across all base-
lines and tasks, the initial states of robots are consistent, and
the initial poses of objects, other than the table, are uniformly
randomized.

C. Quantitative Evaluation in Simulation
In these experiments, we demonstrate the effectiveness of

our domain-transfer method across different embodiments. To
systematically evaluate our method, we use embodiments rep-
resenting various kinematic morphologies, as shown in Figure
1: Franka Emika Panda [52], Boston Dynamics Spot [2],
Fourier GR-1 [5], and Google Robot [53].
• Abstract: an idealized embodiment designed for simulation

that can manipulate hands along continuous trajectories
without speed or workspace limitations. Human motion
commands are directly mapped to the simulation, replicating
direct human demonstration in real-world settings.

• Panda: a 7-DOF tabletop manipulator, used to demonstrate
the impact of redundant DOFs on motion retargeting com-
pared to the robots listed below.

• Spot: a quadrupedal robot with 6 DOFs in its arm and
6 DOFs in its body pose. To demonstrate achieving an
extensive workspace through whole-body motion alone, the
robot’s locomotion is not considered; instead, the leg joints
track the robot’s body within a limited SE(3) range.

• GR-1: a humanoid robot with 7 DOFs per arm and 3 DOFs
each for the head and torso. Similar to Spot, the robot’s
locomotion is not considered, and the leg joints are fixed.
This demonstrates the application of our method to highly
redundant DOF systems.

• Google Robot: a wheeled mobile robot with 7 DOFs in its
arm and 3 DOFs in planar base motion, used to show how
handheld-gripper trajectories map to mobile manipulation.

We focus on demonstrations from the Abstract embodiment,
where commands from human demonstrators are directly
mapped, enabling task performance without being affected by
tracking errors that occur in robots. The trained policies are
then transferred directly to the robots without any adaptation,
using the pre-defined IK optimizer, as shown in Figure 5.

Figure 6 reports quantitative evaluations of our simulated
tasks, comparing our model with the following baselines.
• BC-RNN: a baseline that uses recurrent neural networks to

learn manipulation skills from teleoperated demonstrations,
as introduced by Mandlekar et al. [47]. It employs flat GMM
outputs and is trained with the negative log-likelihood loss.

• Diffusion Policy: a baseline that employs a receding-
horizon visual-motor policy based on a diffusion model, as
introduced by Chi et al. [54]. In particular, we adapt the
Velocity Diffusion Policy. Due to the requirement for precise
tracking and state estimation of the end-effector pose with
respect to the global frame, the Position Diffusion Policy is
not applicable in our settings.

• LEGATO (SE3): a variant of our final model that excludes
the motion-invariant regularization loss Linvar from the train-
ing loss, with all other components unchanged. This variant
is designed to evaluate the impact of the regularization in the
motion-invariant space on cross-embodiment deployment.

All baselines are trained on the same dataset of 150 task
demonstrations using the Abstract embodiment with identical
policy inputs, as shown in Figure 3. They output handheld
gripper trajectories realized by the same IK optimizer, using
consistent parameters within a single robot.
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As shown in Figure 6, LEGATO outperforms the three
baseline methods across various robot embodiments. The
success rates for the Abstract embodiment indicate that all
baselines are well-trained within that domain. However, the
higher success rates of LEGATO (SE3) and Diffusion Policy,
which uses the state-of-the-art diffusion model and performs
best in the Abstract domain, are followed by a notable decline
when applied to other robots. This suggests that exclusive
training in SE(3) may introduce domain bias toward the train-
ing embodiment. In contrast, the performance improvement
of LEGATO across diverse embodiments suggests that its
regularization in the motion-invariant space enhances policy
robustness across different robot domains, even with a simple
model architecture. In addition, LEGATO and the baselines
show reduced performance overall in the Cup shelving task
with the Panda and GR-1 robots, as well as in the Ladle
reorganization task with the Panda robot. This underscores the
limitations of fixed-base robots for tasks requiring extensive
motion, highlighting the need for whole-body manipulation.
Supplementary evaluations for further discussion are provided
in Appendix.

D. Varying Demonstration Embodiments

We investigate how different embodiments used in demon-
strations affect policy performance in simulation. We collected
150 trajectories by teleoperating each robot in Section IV-C for
the Closing the lid task and trained policies on these demon-
strations. Figure 7 shows the success rates for deploying these
policies across the robots. The policies trained on the Abstract
embodiment performed best, indicating that joint controller
latency and the IK motion retargeting affect demonstration
quality. Among the policies trained on robot teleoperation,
demonstrations on the Spot robot yield the highest success
rates, whereas those on the Panda robot yield the lowest. This
suggests that whole-body motion capability and redundancy
influence task demonstration quality, as the Spot robot has full
6 DOFs in its body, while the Panda robot has less redundancy.
Notably, policies trained on the Panda and Google Robot
exhibit lower success rates when deployed on the robot used
for demonstrations compared to other robots. This highlights
that the trajectory tracking capabilities constrained by the
deployment embodiments affect task complexity.

EndStart

Closing the lid

Cup shelving

EndStart

EndStart

Ladle reorganization

Fig. 8: Timelapse of deploying LEGATO in the real-robot system. We
trained visuomotor policies on direct human demonstrations and successfully
deployed them on the Panda robot system. The timelapse of deploying these
policies demonstrates consistent time intervals.

E. Real-Robot Experiments

We aim to validate the robustness of our method against
variations caused by controller limitations and sensor inac-
curacies in real-world settings. We collected direct human
demonstrations through the LEGATO Gripper to train policies
and deployed them, particularly on the Panda robot, the most
challenging due to its limited workspace at the IK motion
retargeting, as shown in Section IV-C. During the evaluation
of each task, the same visuomotor policy was attempted for 20
trials on the Panda robot. Our method succeeded in 16 trials
of the Closing the lid task, 13 trials of the Cup shelving task,
and 14 trials of the Ladle reorganization task, respectively (see
Figure 8). More videos are provided on our project website.

V. CONCLUSION

We present LEGATO, a cross-embodiment learning frame-
work for transferring visuomotor skills across diverse robot
morphologies. By using a handheld gripper for consistent
observations and actions, our framework enables visuomotor
policies to transfer across embodiments without hardware
modifications. Handheld-gripper trajectories from the visuo-
motor policies are mapped to whole-body robot motions
through IK optimization. Although trained on specific embod-
iments, regularization in a motion-invariant space allows these
policies to adapt easily to different robots, managing variations
in control latency and tracking errors. Our current focus is
on whole-body manipulation, employing redundant DOFs for
flexibility and an extended workspace through coordinated
body movements, though our method is limited to non-walking
scenarios. Future work will incorporate loco-manipulation,
integrating manipulation with walking to enable legged robots
to perform diverse tasks with larger workspaces. Additionally,
while our method currently relies on designing handles specific
to target robots, this can be addressed by identifying grasping
location to enable the use of universal handles across robots.
We also believe our approach is adaptable to a wide range of
tools and applications beyond the LEGATO Gripper design.
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APPENDIX

A. Motion-Invariant Regulation Loss

The motion-invariant transform ϕ(·), used to compute Linvar
in Equation 5, follows the DHB motion-invariant frame-
work [42]. Given trajectories {uk}tk=t−T with T ≥ 2, we
compute the relative positions pk and orientations rk of the
gripper with respect to the initial frame at t− T , where pt−T

and rt−T are at the origin.
The differences ∆pk = pk+1 − pk and ∆rk = rk+1 − rk

represent the linear and angular trajectory changes between
k + 1 and k. The initial linear frames are defined as:

x̂p,k =
∆pk

∥∆pk∥
,

ŷp,k =
x̂p,k × x̂p,k+1

∥x̂p,k × x̂p,k+1∥
,

ẑp,k = x̂p,k × ŷp,k.

Similarly, the initial angular frames are:

x̂r,k =
∆rk

∥∆rk∥
,

ŷr,k =
x̂r,k × x̂r,k+1

∥x̂r,k × x̂r,k+1∥
,

ẑr,k = x̂r,k × ŷr,k.

The directions of the axes in both frames are chosen to prevent
discontinuities across time steps.

In the DHB transformation, the motion of a rigid body is
separated into position and orientation components using two
frames. Two invariants are the norms of the relative positions
and orientations between these frames:

mp,k = ∥∆pk∥,
mr,k = ∥∆rk∥.

These invariants, mp and mr, describe the translation of the
linear and angular frames. Four additional values describe their
rotation:

θ1p,k = arctan

(
x̂p,k × x̂p,k+1

x̂p,k · x̂p,k+1
· ŷp,k

)
,

θ2p,k = arctan

(
ŷp,k × ŷp,k+1

ŷp,k · ŷp,k+1
· x̂p,k+1

)
,

θ1r,k = arctan

(
x̂r,k × x̂r,k+1

x̂r,k · x̂r,k+1
· ŷr,k

)
,

θ2r,k = arctan

(
ŷr,k × ŷr,k+1

ŷr,k · ŷr,k+1
· x̂r,k+1

)
.

This process produces the linear and angular invariant values
(mp,k, θ

1
p,k, θ

2
p,k) and (mr,k, θ

1
r,k, θ

2
r,k), as established in the

original work.
To ensure continuity, the computed frame rotations are

transformed using sin(·) and sin(2·). The final transformation
applied in our regularization loss thus yields 10 variables of
length T − 1:

ϕ
(
{uk}tk=t−T

)
=





mp,k

sin(θ1p,k)

sin(2θ1p,k)

sin(θ2p,k)

sin(2θ2p,k)

mr,k

sin(θ1r,k)

sin(2θ1r,k)

sin(θ2r,k)

sin(2θ2r,k)





t−2

k=t−T

.

When computing Linvar, we transform two types of trajectories:
1) ϕ({ûk}tk=t−T ), the transformed values from the demonstra-
tion trajectories, and 2) ϕ(ut, {ûk}t−1

k=t−T ), the transformed
values from the given previous trajectories {ûk}t−1

k=t−T and
the predicted target ut at time t. By calculating the L2
loss between these two transformed values and using it as
a training loss, the predicted trajectories ut are aligned with
the demonstration trajectories in the motion-invariant space,
given {ûk}t−1

k=t−T .

B. Supplementary Evaluation in Simulation

We provide additional quantitative evaluations in simula-
tion to further discuss cross-embodiment visuomotor policies.
Specifically, we aim to address: 1) a comparison with existing
cross-embodiment learning frameworks that utilize different
action spaces, and 2) the applicability of the motion-invariant
regularization to varied neural network architectures and its
impact on their performance.

a) Comparison with the Diffusion Policy Using Relative-
Trajectory Actions: To compare our method with existing
works aimed at cross-embodiment learning of ego-centric
visuomotor policies, we adapted the Diffusion Policy with the
action space of relative end-effector trajectories, as used in
Universal Manipulation Interface [15], to our setting, where
the visuomotor policy outputs gripper trajectories based on
previous actions and visual observations. We refer to this base-
line as Diffusion Policy (Relative Trajectory). This baseline
serves as a reference for Universal Manipulation Interface [15],
but without the latency compensation process. As described in
Section I, generalizing latency compensation across various
robot embodiments is challenging because it requires fine-
tuning for each target robot system. Therefore, we exclude
the latency compensation process in our evaluation.

We used the same setup as the quantitative evaluation in
Section IV-C, utilizing the same dataset of 150 task demon-
strations with the Abstract embodiment. In Figure 9, we report
the success rates for deploying Diffusion Policy (Relative
Trajectory) with LEGATO and the Diffusion Policy baseline
used in Section IV-C. For clarification, the Diffusion Policy
baseline from Section IV-C is referred to as Diffusion Policy
(Velocity). In our work, we considered only the action space
of the handheld gripper’s differential poses to minimize the
impact of visual odometry errors during demonstration collec-
tion and to eliminate reliance on specified frames other than
the handheld gripper’s pose. This ensures suitability across
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Fig. 9: Comparison with different types of Diffusion Policy baselines We report success rates from 50 trials of our LEGATO policies compared to
Diffusion Policy baselines, using different action spaces: end-effector velocities [54] and relative end-effector trajectories [15]. Although Diffusion Policy
(Relative Trajectory) outperformed Diffusion Policy (Velocity) in cross-embodiment settings, LEGATO policies achieved the highest success rates across most
cross-embodiment settings, except for deployment on the Goodle Robot for the Cup shelving task and the Spot robot for the Ladle reorganization task.

various robot platforms, including floating-base robot systems.
Unlike our setting, training with the action space of relative
trajectories requires additional geometric information, such as
the initial gripper pose for a sequence of receding-horizon
actions, to generate the training dataset. This information is not
incorporated into other baselines or the LEGATO framework.
Nevertheless, LEGATO achieved higher performance than
Diffusion Policy (Relative Trajectory) in cross-embodiment
settings for the Closing the lid and Ladle reorganization tasks,
though not in deployment within the same domain. As noted
by Chi et al. [15], Diffusion Policy (Relative Trajectory)
outperformed Diffusion Policy (Velocity) in their evaluation,
and this was also observed in our setting.

b) Impact of Training with the Motion-Invariant Reg-
ularization: We provide an additional ablation study on
the complementary use of the motion-invariant regulariza-
tion loss to enhance cross-embodiment transferability in poli-
cies, as shown in Figure 10. Specifically, we applied the
motion-invariant regularization loss Linvar, as described in
Section III-D and Appendix A, to BC-RNN [47], Diffusion
Policy (Velocity) adapted from the Velocity Diffusion Policy
introduced by Chi et al. [54], and Diffusion Policy (Relative
Trajectory) adapted from the Diffusion Policy using relative
end-effector trajectories as the action space in Universal Ma-
nipulation Interface [15]. Similar to the quantitative evaluation
in Section IV-C, all baselines are trained on the same dataset
of 150 task demonstrations using the Abstract embodiment.
Additionally, the same IK optimizer with consistent parameters
is used within a single robot.

As outlined in Equation 4 of Section III-D, the motion-
invariant regularization loss are added to the original loss
functions for each baseline. In BC-RNN, the motion-invariant
regularization loss is added to the negative log-likelihood
between the predicted and demonstration actions. For the
Diffusion Policy baselines, the motion-invariant regularization
loss is integrated with the L2-based DDPM loss during the
denoising process. The motion-invariant regularization loss is
adapted for the sequence of receding-horizon actions used in
the Diffusion Policy baselines and is defined as:

Linvar =
∑

∥ϕ({uk}t+P
k=t , {ûk}t−1

k=t−T )− ϕ({ûk}t+P
k=t−T )∥

2,

where P is the prediction horizon, and the sequence of actions

of length P+1 is transformed into the motion-invariant space.
Our findings indicate that incorporating the motion-invariant

regularization during training generally reduces success rates
when deploying policies on the Abstract embodiment but
enhances performance in cross-embodiment settings with dif-
ferent robot embodiments, regardless of the neural network
architectures. This highlights the applicability of leveraging
motion invariance across various neural network architectures
and its effectiveness for cross-embodiment learning.

C. Implementation Details

The visuomotor policy πH predicts target poses for the
handheld gripper at 10 Hz. The IK optimizer πL realizes these
target poses by retargeting them into whole-body motions,
updating target joint positions and body orientation at 100
Hz. In simulation, we applied low-level PD control for each
joint and body at 500 Hz. For the Spot robot, we additionally
computed joint positions for the legs by solving IK analytically
based on the target body pose. For the Google Robot, body
motion was controlled similarly to other arm joints with PD
control, though using high gains. In real robot setups, we
controlled the robots through APIs provided by the manu-
facturers. For quantitative evaluation on the Panda robot, we
used JOINT_IMPEDANCE mode via Deoxys [55] for joint
position control. In the demonstration on the Spot robot, we
directly streamed one-point trajectories for arm joint positions
and body poses through Boston Dynamics’ Spot SDK.

D. Demonstrations in Simulation

Task demonstrations in simulation use the same track-
ing camera setup as in real-robot evaluations—a Realsense
T265 [50] camera. To replicate real-world human demon-
stration behaviors, visual odometry data from the tracking
camera is mapped to simulated handheld gripper motions in
the Abstract embodiment or to IK commands for teleoperated
simulation robots. The button interface for triggering grasp
actions and recording data is kept consistent with the real-
world setup. However, unlike real-world demonstrations, sim-
ulation does not require physical interaction with the handheld
gripper. Therefore, shared gripper components were removed,
and a simplified handle was used to reduce the workload on
the human demonstrators.
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Fig. 10: Impact of training with the motion-invariant regularization We evaluate the success rates of policies trained with and without the motion-invariant
regularization, Linvar, over 50 trials across varied architectures. Each policy is trained on demonstrations from the Abstract embodiment. While the success
rates on the Abstract embodiment (used for demonstrations) decrease with the motion-invariant regularization, the success rates improve in cross-embodiment
settings, where policies are deployed to other robots.
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