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ABSTRACT

Text-driven video editing utilizing generative diffusion models has garnered sig-
nificant attention due to their potential applications. However, existing approaches
are constrained by the limited word embeddings provided in pre-training, which
hinders nuanced editing targeting open concepts with specific attributes. Di-
rectly altering the keywords in target prompts often results in unintended dis-
ruptions to the attention mechanisms. To achieve more flexible editing eas-
ily, this work proposes an improved concept-augmented video editing approach
that generates diverse and stable target videos flexibly by devising abstract con-
ceptual pairs. Specifically, the framework involves concept-augmented textual
inversion and a dual prior supervision mechanism. The former enables plug-
and-play guidance of stable diffusion for video editing, effectively capturing
target attributes for more stylized results. The dual prior supervision mecha-
nism significantly enhances video stability and fidelity. Comprehensive evalu-
ations demonstrate that our approach generates more stable and lifelike videos,
outperforming state-of-the-art methods. The anonymous code is available at
https://anonymous.4open.science/w/STIVE-PAGE-B4D4/.

1 INTRODUCTION

Text-driven video editing using generative diffusion models (Ho et al., 2020; Song et al., 2020;
Rombach et al., 2021) has garnered significant attention due to its potential applications in various
fields, including film production, art, and advertising (Ho et al., 2022; Hong et al., 2022; Blattmann
et al., 2023).

Existing text-driven video editing methods based on diffusion models, such as Tune-A-Video (Wu
et al., 2023), FateZero (Qi et al., 2023), Zeroscope (Sterling, 2023), and VideoComposer (Wang
et al., 2024), have significantly improved the ability to edit objects, backgrounds, and styles in video
scenes while maintaining overall scene consistency through the optimization of attention mech-
anisms and spatiotemporal continuity. These approaches have demonstrated notable success in
video generation. However, they are often limited by the restricted word embeddings provided
by CLIP (Radford et al., 2021) during the text-driven encoding process, which restricts their ability
to perform diverse and nuanced edits on targets with specific attributes. Modifying words in the
target prompt can disrupt the attention mechanisms, leading to inconsistencies in non-target areas
before and after the editing process.

To address these limitations, recent methods such as (Bar-Tal et al., 2022; Lee et al., 2023; Chai
et al., 2023) have explored the use of Neural Layered Atlases (NLA) (Kasten et al., 2021). These
methods primarily focus on extracting layered atlases from video frames, editing these atlases us-
ing text-driven image-editing diffusion models (Rombach et al., 2021; Zhang et al., 2023), and then
synthesizing the final edited video through post-processing. While this approach is effective at pre-
serving non-edited background areas, it exhibits poor performance in maintaining spatio-temporal
continuity. Moreover, the processing of individual image frames makes the generation of neural
atlases extremely time-consuming.

To achieve more diverse editing results easily, one feasible approach is to draw inspiration from
the Textual Inversion (Gal et al., 2022) method used in image generation by incorporating external
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concept word embeddings. In text-to-image generation, external word embeddings (referred to as
”concepts”) are optimized within the CLIP text encoder (Radford et al., 2021) while freezing the
diffusion model’s parameters. This allows the model to address the need for user-provided custom
images to guide image editing. However, using a pre-trained diffusion model for self-supervised
textual inversion presents limitations in the expressive power of these external embeddings, which
are constrained by the size of the latent space and the number of training iterations, often leading to
under-fitting and restricted expressive capacity.

In this paper, we propose an improved concept-augmented video editing method. This approach
flexibly generates diverse and stable target videos by defining abstract conceptual pairs (concept
prompt and concept video) that describe the target scene. Specifically, we propose the Concept-
Augmented Textual Inversion method, which reliably and accurately captures the target attributes
in the user’s custom video. In addition, we also introduce a Dual Prior Supervision mechanism
that stabilizes the generated video by crossing the attention between the source and target, prevent-
ing attention dispersion caused by modifications to the target prompt. This mechanism effectively
improves the consistency of non-target areas before and after video editing, while also enriching the
fidelity of the concepts in the edited results. Our key contributions are as follows:

• We orchestrate a framework that allows users to extract concepts from custom videos to
efficiently generate diverse edited videos through concept templates.

• We propose a concept-augmented textual inversion method, which efficiently and stably
extracts detailed attributes of the target in the user’s custom concept video and supports
plug-and-play guiding of stable diffusion for video editing.

• We present a dual prior supervision mechanism, which effectively improves the consistency
and stability of video editing results.

2 RELATED WORK

Text-Driven Video Synthesis. A series of works based on diffusion models (Ho et al., 2020; Song
et al., 2020; Rombach et al., 2021) has made significant progress in text-driven image generation.
Subsequent efforts (Esser et al., 2023; Wang et al., 2023; Blattmann et al., 2023) further achieve
text-driven video generation by extending existing image generation diffusion models. These works
commonly inherit the spatial parameters of UNet and fine-tune the newly added temporal modules
with large-scale video-text pair datasets to improve inter-frame stability for video synthesis. These
works laid a good foundation for video editing with textual descriptions.

Text-Driven Video Editing. Current approaches for text-driven video editing mainly fall into three
categories: fine-tuning video generation models (Zhao et al., 2023; Wang et al., 2024), fine-tuning
image generation models extended with temporal modules (Wu et al., 2023; Qi et al., 2023), and
combining NLA (Kasten et al., 2021) with pre-trained image generation models (Bar-Tal et al.,
2022; Lee et al., 2023; Chai et al., 2023). MotionDirector (Zhao et al., 2023) improves the ability of
editing camera and object motions by adding LoRA (Hu et al., 2022) to the attention modules of the
pre-trained Zeroscope (Sterling, 2023), strengthening the connection between texts and motions in
edited videos. VideoComposer (Wang et al., 2024) enhances inter-frame consistency by introducing
a condition fusion module with spatial and temporal conditions such as motion vectors, depth maps,
and sketches. Recent advances have demonstrated various innovative approaches in these categories.
For example, (Ku et al., 2024) employs a pretrained model for diverse video editing tasks, while
GenVideo (Singer et al., 2025) utilizes a target-image-aware approach with novel InvEdit masks
to overcome text-prompt limitations. Besides, (Singer et al., 2025) introduces the EVE model by
distilling pretrained diffusion models. (Bar-Tal et al., 2022; Lee et al., 2023; Chai et al., 2023) extract
layered neural atlases from video frames to edit atlases which are further processed to synthesize
videos; however, generating a neural atlas demands considerable computational time.

Recently, Tune-A-Video (Wu et al., 2023) achieves one-shot video editing with improved inter-
frame coherency by updating self-attention with sparse causal attention. FateZero (Qi et al., 2023)
further proposes self-attention blending and incorporates attention control (Hertz et al., 2023) to
enhance the ability of editing objects, background, and styles while maintaining scene consistency.
For temporal consistency specifically, VidToMe merges self-attention tokens across frames, while
(Geyer et al., 2023) leverages inter-frame correspondences to propagate features. In spatial editing,
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approaches like (Ceylan et al., 2023; Cohen et al., 2024; Liu et al., 2024) improve results using spa-
tial or temporal attention features and diffusion models. For editing targets with specific attributes, it
becomes necessary to introduce external word embeddings. Our method supports the incorporation
of external concept word embeddings. Furthermore, inspired by Tune-A-Video (Wu et al., 2023) and
FateZero (Qi et al., 2023), we introduce a dual prior supervision mechanism between video frame
latents and word embeddings to enhance scene consistency before and after video editing based
on the prompt-to-prompt attention control method. Compared to existing approaches, our method
focuses on attention supervision and control mechanisms and operates on a one-shot video editing
paradigm. It also improves temporal consistency through extended temporal module parameters and
enables the flexible integration of external concept objects, while CLIP-based (Radford et al., 2021)
methods above are constrained by finite word embeddings.

Textual Inversion. (Gal et al., 2022) proposes a textual inversion method that optimizes newly
added concept word embeddings in the CLIP (Radford et al., 2021) text encoder, supervised by the
latent variable distribution of specific images in the diffusion model. However, using a pre-trained
diffusion model for self-supervised text inversion may lead to under-fitting for some specific images
due to the finite latent variable space. Although it’s feasible to optimize concept word embeddings
with a smaller learning rate simultaneously, or to train the diffusion model with frozen concept
embeddings in the next stage, this process faces issues of easy over-fitting and high storage costs.
Our method, building upon textual inversion (Gal et al., 2022), attempts to add LoRA (Hu et al.,
2022) modules to the diffusion model, optimizing them simultaneously with concept words at a
smaller learning rate, to enhance the text editing capabilities of concept words.

Cross Attention Control and Supervision. Prompt-to-Prompt (Hertz et al., 2023) proposes three
attention control methods for stable text-driven image editing based on diffusion models: word swap,
refinement, and reweighting. By applying the cross-attention probability map recorded from the
original text and original image latent variables to the denoising process of edited text and original
image latent variables, it has achieved significant success in stable text-driven image editing (Avra-
hami et al., 2022; 2023). Additionally, (Qi et al., 2023) proposed self-attention blend effectively
transfers the stability of text-driven image editing to the video editing domain. Our method, build-
ing upon this foundation, introduces external concept words to support editing with higher degrees of
freedom. However, when performing text-driven editing, whether using existing word embeddings
or external concept word embeddings as editing words, there exists a problem of attention disper-
sion. This means that editing words have non-negligible effects on latent variables other than the
editing target. Inspired by the work of (Yang & Tang, 2022), we introduce an attention supervision
mechanism to address the issue of dispersed attention in editing words.

3 METHOD

3.1 PRELIMINARIES

Textual Inversion. Textual inversion (Gal et al., 2022) learns new embeddings that represent user-
provided visual concepts within the textual embedding space. These learned embeddings are then
associated with pseudo-words that can be incorporated into novel sentences to achieve text-to-vision
editing. The learning process of textual inversion relies on a latent variable diffusion model, which
typically consists of an autoencoder and a noise prediction network. For an image x, the autoencoder
is pretrained such that the encoder E maps the image to a latent variable z = E(x), and the decoder
D reconstructs the original image from the latent variable x ≈ D(z). Particularly, textual inversion
leverages a CLIP (Radford et al., 2021) text encoder cθ with additional concept words to encode
conditional text input y. The optimization objective is defined as:

Lnoise = Ez∼E(x),y,ϵ∼N (0,1),t[∥ϵ− ϵθ(zt, t, cθ(y))∥22], (1)

where zt is the noised latent at time step t, ϵ is the noise, and ϵθ is the noise prediction network.

Low-Rank Adaption. (Hu et al., 2022) proposes an efficient fine-tuning scheme based on matrix
low-rank decomposition. For the pre-trained weight W0 ∈ Rd×k in the original model, it applies
low-rank decomposition to update the weight as W = W0+∆W , where ∆W = BA, B ∈ Rd×r,
A ∈ Rr×k, and r ≪ min(d, k). During the fine-tuning process, the pre-trained weight W0 is
frozen, while A and B are trainable parameters. For the forward computation of the original weight
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Figure 1: Overview of our training and inference pipelines. During the training stage, we first
adapt the diffusion model to new visual concepts using our introduced Concept-Augmented Textual
Inversion (CATI), and then we tune the temporally extended diffusion model with our proposed Dual
Prior Supervision (DPS) mechanism to prevent unintended changes in edited videos. During the
inference stage, we blend self-attention matrices to retain semantic layout (Self-Attention Blending)
and swap cross-attention matrices to achieve text-driven video editing (Cross-Attention Swap).

h = W0x, the updated forward computation becomes:

LoRA(h) = W0x+∆Wx. (2)

Video Diffusion Models with Temporal Extensions. Tune-A-Video (Wu et al., 2023) introduces
Spatio-Temporal Attention (ST-Attn) to replace the original Self-Attention (Vaswani, 2017) in the
2D UNet. When calculating the keys K and values V , ST-Attn concatenates latent variables of the
first and former frames of the video, leading to the attention result where the current frame attends
to both the first and former frames. The specific operations for replacing K,V in Self-Attention are
as follows:

K = WK [zv1 ; zvi−1 ],V = W V [zv1 ; zvi−1 ], (3)

where WK and WV are projection matrices for key and value respectively, zvi denotes the latent
variable of the i-th frame of the video to the current attention layer, and [·] denotes concatenation.

3.2 STABILIZED TEXT-DRIVEN VIDEO EDITING

Our training and inference pipelines are visualized in Fig. 1. We adopt a UNet that inherits the pre-
trained 2D UNet parameters from Stable Diffusion (Rombach et al., 2021) as the noise prediction
network. The original 2D UNet consists of a series of spatial convolution layers and cross-attention
layers. To adapt it for 3D video inputs, we replace the original spatial self-attention layers with
spatio-temporal attention as explained in Eq. (3). Following FateZero (Qi et al., 2023), we also
incorporate LoRA-structured temporal convolution layers after the spatial convolution layers, and
temporal self-attention layers with zero-initialized linear output layers after the cross-attention lay-
ers. The outputs of these newly added modules are residually connected to the outputs of the original
modules.

Our approach for stabilized text-driven video editing has two learning phases. In the first phase, we
introduce Concept-Augmented Textual Inversion (CATI) to adapt the diffusion model to new visual
concepts. In the second phase, we tune partial parameters of the temporally extended diffusion
model to suppress unintended changes in edited videos by calibrating cross-attention results.

Concept-Augmented Textual Inversion. Textual inversion (Gal et al., 2022) learns to represent
a specific set of user-provided images with pseudo-words in the latent space, offering an intuitive
way for natural language-guided image editing. We incorporate this technique into our framework
to facilitate video editing. However, due to the self-supervised nature within the limited latent space
of the pre-trained diffusion model, the vanilla textual inversion often results in varied performance
in terms of quality and efficiency for different image sets, requiring meticulous adjustments for
learning rates and iteration counts.
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Figure 2: Visualization of the dual prior supervision mechanism. Each row displays a video
frame, a set of cross-attention maps between this video frame and prompt words, and a pseudo
ground truth mask. The scam loss and tcam loss are computed between relevant words and pseudo
masks to prevent unintended changes for stabilized video editing.

To alleviate this issue, we draw inspiration from existing parameter-efficient fine-tuning techniques
and propose adding LoRA modules (Hu et al., 2022) to the value projection parameters in the cross-
attention layers of the UNet. Consequently, the values V are updated to LoRA(V ) according to
Eq. (2). The rationale behind our approach is that we aim to enhance the expressiveness of the pre-
trained diffusion model by slightly adjusting its capacity to accommodate new visual concepts while
preserving its original generation capability. Besides, inserting LoRA modules not only augments
textual inversion with low storage overhead but also maintains a plug-and-play characteristic during
inference. We train the concept-word embeddings of textual inversion and the weight parameters of
LoRA modules in an end-to-end manner (see orange blocks in Fig. 1), where the learning rate for
LoRA parameters is relatively smaller than that for concept-word embeddings to avoid over-fitting.
Denote the noise prediction network with LoRA modules loaded on value projection parameters as
ϵθL , the optimization objective of concept-augmented textual inversion is then updated from Eq. (1)
to the following:

Lnoise = Ez∼E(x),y,ϵ∼N (0,1),t[∥ϵ− ϵθL(zt, t, cθ(y))∥22]. (4)

Model Tuning with Dual Prior Supervision. After learning concept-augmented textual inversion,
we adapt and tune the video diffusion model for text-driven video editing in line with the paradigm
of few-shot learning. Specifically, we learn the LoRA-structured temporal convolution layers, the
query projection weights within spatio-temporal attention layers and cross-attention layers, and the
temporal self-attention layers (see red blocks in Fig. 1). These parameters are selected for updates
during training due to their strong relevance to the temporal modeling of 3D videos. To attain more
stable and higher quality editing results, we tried directly integrating existing attention control tech-
niques (Hertz et al., 2023) in an early attempt; however, we found that when applying text-driven
video editing types such as word swap, the dispersion phenomenon of cross-attention between text
embeddings and video latents leads to reduced stability in editing results. To address this chal-
lenge, we propose a dual prior supervision mechanism, which includes a source cross-attention
mask (scam) loss and a target cross-attention mask (tcam) loss.

The scam loss is designed to reduce the attention influence of the words to be replaced in the source
prompt on irrelevant frame areas (see the first row in Fig. 2). It is also applied to modulate attention
between concept words and concept videos (see the second row in Fig. 2). Specifically, for K
cross-attention layers in the UNet, we record cross-attention matrices Ms between the words and
the video frame latents in each cross-attention layer. To obtain ground truth for optimization, we
use an off-the-shelf object detection network OWL-ViT (Minderer et al., 2022) to localize objects in
video frames and generate corresponding binary pseudo-labels Mgt

s . We further apply max pooling
to generate K pseudo-labels, each with a designated resolution Pk. The loss is then calculated as
the mean absolute loss on irrelevant areas:

Lscam =
1

K

K∑
k=1

Pk∑
i=1

[
∥Mgt

s,k,i −Ms,k,i∥ · (1−Mgt
s,k,i)

]
. (5)
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The tcam loss is introduced to diminish the attention influence of the target words in the edited
prompt to further promote the consistency of irrelevant areas before and after video editing (see the
third row in Fig. 2). Similar to the scam loss, we obtain cross-attention matrices Mt and pseudo-
labels Mgt

t between the target words in the edited prompt and the video frame latents. The loss is
computed as:

Ltcam =
1

K

K∑
k=1

Pk∑
i=1

[
∥Mgt

t,k,i −Mt,k,i∥ · (1−Mgt
t,k,i)

]
. (6)

Let the trainable parameters during the model tuning phase be denoted as ϵθT . The noise prediction
loss Lnoise is then obtained by substituting ϵθ in Eq. (1) with ϵθT . Given α and β as the weighting
coefficients for our proposed scam loss and tcam loss, respectively, the total loss for model tuning
with dual prior supervision is formulated as:

L = Lnoise + αLscam + βLtcam. (7)

Inference. As shown in Fig. 1, the inference pipeline involves an inversion stage using the source
text prompt, and an editing stage using the modified text prompt. We cache the intermediate self-
attention matrices and cross-attention matrices at each time step during inversion. These matrices are
then leveraged to manipulate attention during editing. Specifically, we blend self-attention matrices
to retain the semantic layout following FateZero Qi et al. (2023) (Self-Attention Blending), and
swap cross-attention matrices between the changed words and video latents similar to Prompt-to-
Prompt Hertz et al. (2023) (Cross-Attention Swap).

4 EXPERIMENTS

4.1 SETTINGS AND DATASETS

Our experiments are conducted on a machine equipped with an NVIDIA GeForce RTX 4090. Dur-
ing the concept augmented textual inversion stage, we set the learning rate for CLIP (Radford et al.,
2021) word embeddings to 1×10−3, and the learning rate for LoRA modules inserted into the UNet
to 1×10−5, with the number of training steps set to 5000. Additionally, we randomly sample frame
numbers within the range [4, 8] from the concept video during training, to prevent the inversion pro-
cess from over-fitting to a fixed frame number. For the video diffusion model fine-tuning stage, we
empirically set α = 0.1 and β = 0.1 in Eq. (7). The training steps above all use AdamW (Loshchilov
& Hutter, 2017) optimizer. In the inference stage of video editing, the guidance scale is set to 12.5,
the number of DDIM Inversion steps is T = 50, and the self-attention blending and cross-attention
swap steps are within the interval [0, 0.7T ]. To evaluate our proposed method, we used a portion of
the DAVIS (Caelles et al., 2019) dataset and clip videos from the internet to construct video editing
pairs, either with or without concept videos.

4.2 METRICS

Frame Consistency. To compare the coherence of the video frames F, we refer to the metric used
in (Wu et al., 2023; Hessel et al., 2021), which calculates the average cosine distance d between
features (vi,vj) of each two different frames (fi,fj) encoded by the CLIP visual encoder (Radford
et al., 2021), as Eq. (8). Here, fi,fj ∈ F, fi ̸= fj , and D denotes the set of the vector pairs (vi,vj).

d =
1

|D|
∑

(vi,vj)∈D

vi · vj

∥vi∥∥vj∥
. (8)

Masked Peek-Signal-Noise Ratio. To compare the stability of the video non-target areas before
and after target editing, we design a Masked Peak Signal-to-Noise Ratio (M-PSNR) metric. We
use the OWL-ViT (Minderer et al., 2022) open-vocabulary object detection model with text pseudo-
labels to estimate the bounding box mask M of the edited target. We then compare the average
peek-signal-noise ratio of the original video frames and the edited video frames after applying this
mask. The calculation formula for the specific function f for the Mean Squared Error (MSE) used

6
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as input is as follows, where M ∈ RH×W , Is ∈ RH×W×C , and Ie ∈ RH×W×C refer to the mask
value, the frame pixel value of video before and after editing, respectively.

f(Is, Ie,M) =
1

C

∑
k∈C

∑
i∈H

∑
j∈W (Isi,j,k − Iei,j,k)

2(1−Mi,j)∑
i∈H

∑
j∈W (1−Mi,j)

. (9)

Concept Consistency. To evaluate the correlation between the video editing results guided by
the concept video and the concept video itself, while minimizing non-target areas interference, we
employ a multi-step approach. First, we utilize a pre-trained OWL-ViT (Minderer et al., 2022)
model in conjunction with pseudo-label prediction to generate object masks for both videos. Using
these masks, we then extract pixel segments of the target objects from both the edited video and
the concept video. Finally, we leverage the CLIP model to predict visual encoding vectors for these
extracted segments and calculate the average cosine similarity between them.

4.3 COMPARISONS WITH EXISTING METHODS

Quantitative Evaluation. As illustrated in Tab. 1, we quantitatively assess text-driven video editing
results in three aspects. Compared with existing methods that extend and fine-tune the Stable Diffu-
sion model, including Tune-A-Video (Wu et al., 2023), FateZero (Qi et al., 2023), RAVE (Kara et al.,
2024), and MotionDirector (Zhao et al., 2023), our approach demonstrates superior inter-frame co-
herence in terms of the Frame Consistency Metric. To evaluate the consistency of unrelated areas
before and after video editing, we employ M-PSNR as a reference metric, and our method achieves
the highest score by a large margin. Concretely, our method outperforms MotionDirector (Zhao
et al., 2023) by a noticeable 6.98 M-PSNR in editing with concept video. This is attributed to our
proposed prior supervision mechanism, which effectively reduces the editing noise in non-target ar-
eas for both source and concept videos. Furthermore, to evaluate the target fidelity in concept and
edited videos, we utilize Concept Consistency as a reference metric, and our method demonstrates
greater fidelity compared to others.

Qualitative Evaluation. The visual comparison results of video editing with and without concept
video guidance are shown in Fig. 3. As can be seen, our method can maintain content consistency in
non-target areas before and after video editing with and without concept videos. Particularly, when
using concept videos, our method can effectively introduce the visual concept from the concept
video into the edited video. For example, in Fig. 3 (Setting I), our method successfully replaces
‘man’ with the concept ‘$OPTIMUS’, while others either fail to preserve the background or cannot
transfer the integral target shape.

On the other hand, other approaches commonly face instability in non-target areas of their edited
videos. Tune-A-Video (Wu et al., 2023) encounters the issue of dispersed cross-attention between
word embeddings and video latents as it fine-tunes the model using only one video-text pair. While
FateZero (Qi et al., 2023) and RAVE (Kara et al., 2024) mitigate this issue by manipulating cross-
attention matrices or shuffling noise in a zero-shot manner, these methods directly use concepts to
drive video editing, which results in compromised non-target area consistency and degraded concept
fidelity. MotionDirector (Zhao et al., 2023) naturally supports extracting targets from concept videos
via its trainable spatial path; however, the coupled spatial and temporal paths struggle to provide
stable guidance, leading to noticeable inconsistencies in non-target areas. In contrast, our proposed
concept-augmented textual inversion and dual prior supervision can effectively maintain content
consistency in non-target areas before and after video editing while accurately capturing specific
attributes of user-provided concepts.

Method Editing w/ Concept Video Editing w/o Concept Video
M-PSNR ↑ Concept Cons. ↑ Frame Cons. ↑ M-PSNR ↑ Frame Cons. ↑

Tune-A-Video (Wu et al., 2023) 14.70 0.6982 0.9399 15.72 0.9397
FateZero (Qi et al., 2023) 17.08 0.6822 0.9413 19.42 0.9246
MotionDirector (Zhao et al., 2023) 12.73 0.7222 0.9452 16.86 0.9403
RAVE (Kara et al., 2024) 17.39 0.6990 0.9379 16.20 0.9306

Ours 19.71 0.7642 0.9472 22.10 0.9405

Table 1: Quantitative comparison of video editing results.
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Figure 3: Video generation with (Setting I) and without (Setting II) concept pairs. The top row
of the figure contains the concept video with its prompt in the left part, and comparison settings in
the right part. The second row is the source video frames to be edited and its prompt. The rows
below show the editing results of the source video using the editing prompt, for (Wu et al., 2023),
(Qi et al., 2023), (Zhao et al., 2023), (Kara et al., 2024) and our method, respectively, in which words
with ‘$’ ahead mean concept words, and the same applies to subsequent results.

4.4 ABLATION STUDY

Concept Augmentation Alleviates Under-Fitting of Textual Inversion. In this work, we draw on
the idea of Textual Inversion (TI) from text-to-image generation and apply it to text-driven video
editing to address the embedding of external concept words. However, simply applying TI may
lead to under-fitting, resulting in a lack of realism. For instance, in the results shown in Fig. 4(a)
and Fig. 4(c), where the keywords ‘jeep’ are altered to ‘$LAMBO’ and ‘$CYBERTRUCK’, al-
though some attributes (e.g., shape) of the target concepts are partially retained, the results appear
to ”drift” due to insufficient inductive bias. In contrast, the concept-augmented textual inversion can
effectively capture the color, shape, and other attributes, as demonstrated in Fig. 4(b) and Fig. 4(d).
The concept augmentation provides more detailed features to the target, significantly improving the
fidelity of details in the inversion results.

Dual Prior Supervision Improves Stability and Fidelity. In this work, we propose a Dual Prior
Supervision strategy, which consists of two main components (See Sec. 3.2): scam loss and tcam
loss. Both components play crucial roles in maintaining the stability of the target generation. By

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Comparison of whether to use Concept Augmentation (CA) for textual inversion.
Compared the text inversion results without and with concept augmentation for pairs (a), (b): ‘jeep’
→ ‘$LAMBO’; and (c), (d): ‘jeep’ → ‘$CYBERTRUCK’, respectively, from the same source
prompt “a jeep driving down a curvy road in the countryside”.

Figure 5: The impact of dual prior supervision. From the first to the last row, using the editing
example in Fig. 1, we compare the average cross-attention maps and the editing results with and
without the supervision mechanism of scam and tcam. Each case contains three pairs, and each pair
consists of an average cross-attention map on the left and an edited frame on the right. The full
comparisons are put in Fig. 11 and Fig. 12.

comparing the attention regions in Fig. 5 (a) (w/o tcam, w/o scam), Fig. 5 (b) (w/o tcam, w/ scam),
and Fig. 5 (c) (w/ tcam, w/o scam), we can conclude that both scam and tcam (Fig. 5 (d)) significantly
reduce background disturbances and improve stability. However, the generated video results reveal
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that using either component alone cannot effectively reproduce the target object’s attributes, such as
the car’s color. The proposed Dual Prior Supervision, which combines both components, not only
enhances the stability of the background in the target results, but also captures the target object’s
attributes more accurately, thereby improving the fidelity of the edited concept target.

Tuning w/ Concept Video Produces Stylized Results. Recall that we construct the target videos
in this work by templating the concept pairs to make the editing process more flexible. To explore
the impact of the concept video in Setting I (Fig. 3), we conduct a simple experiment as shown
in Fig. 6. As shown in Fig. 6(a) and Fig. 6(b), tuning models with both concept video and concept
prompt produce more stylized videos. The possible explanation for this is that the introduction of the
concept video alleviates the over-fitting issue. Note that tuning with only the concept video (without
the concept prompt) is not viable here, as we cannot analyze the intent without any textual guidance.

Figure 6: Comparison of whether to tune with the concept video. Compared the video editing
results without and with tuning concept video for the left part: ‘car’ → ‘$GT3’; and the right part:
‘car’ → ‘$LAMBO’, from the source prompt “a car is drifting around a curve road with the back-
ground of a forest” and “a car is drifting in the snow”, respectively.

5 LIMITATIONS AND FUTURE WORK

Mismatch when Significant Deformation. Although our proposed method effectively mitigates
the inconsistency in non-target areas caused by attention dispersion in video editing methods us-
ing attention replacement mechanisms, it may struggle when a single concept video guides target
replacement in cases of significant deformation in the source video, such as running people. For in-
stance, there may be insufficient detailed correspondences between the internal parts of the replacing
and replaced targets during deformation, such as moving arms and legs. Potential solutions include
ControlNet (Zhang et al., 2023) and OpenPose (Cao et al., 2019), which utilize motion conditions,
like human pose, to guide the video editing process.

6 CONCLUSION

In this paper, we propose an improved concept-augmented video editing approach that generates
diverse and stable target videos flexibly by devising abstract conceptual pairs. Specifically, the
framework introduces a Concept-Augmented Textual Inversion (CATI), which extracts the target
concept from user-customized videos. In practice, CATI enables plug-and-play guidance of stable
diffusion for video shaping, effectively capturing target attributes for more stylized editing results.
In addition, a Dual Prior Supervision (DPS) mechanism is designed to prevent unintended changes
in non-target visual areas by crossing the attention between the sources and targets. Experimental
results demonstrate that our method significantly improves the flexibility, consistency, and stability
of text-guided video editing.
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7 ETHICS STATEMENT

This research adheres to ethical guidelines and standards. No human subjects were involved, and
the dataset used was publicly available and anonymized to ensure privacy. The methodologies em-
ployed were carefully chosen to avoid introducing bias or unfair outcomes. There are no conflicts
of interest or sponsorships influencing the findings. All legal and institutional regulations, including
IRB approval where necessary, were strictly followed.

8 REPRODUCIBILITY STATEMENT

This work provides a clear link to the anonymized code: https://anonymous.4open.science/r/STIVE-
79D5/README.md. The details of the data used in the experiments have been clearly outlined in
the main text, and additional results in the Appendix demonstrate convincing superiority.
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A APPENDIX

A.1 TRAINING AND INFERENCE DETAILS

Details of Concept Augmented Textual Inversion. During the stage of concept augmented textual
inversion, we use AdamW optimizer (Loshchilov & Hutter, 2017), with the default betas set to 0.9
and 0.999, the weight decay set to 1 × 10−2 and the epsilon set to 1 × 10−8. Besides, LoRA
modules inserted to UNet are without bias trainable parameters, in which the LoRA rank is set to
16, the weight coefficient to scale LoRA output is set to 1.0, and the dropout parameter is set to 0.1.
Additionally, we add a prefix to the head of concept prompts and use one embedding to represent a
concept word as the same as in Textual Inversion (Gal et al., 2022).

Figure 7: Additional qualitative comparison of text-driven video editing without concept video.
At the top of the figure are the source video frames to be edited and its corresponding descriptive
prompt. The rows below show the editing results of the source video using the editing prompt,
for (Wu et al., 2023), (Qi et al., 2023), (Zhao et al., 2023), (Kara et al., 2024), and our method,
respectively.

Details of Dual Prior Supervision. During the stage of tuning the temporally extended diffusion
model with dual prior supervision, we use the same optimizer settings in concept augmented textual
inversion stage. For each training epoch, we sequentially use the pairs of source video with source
prompt and concept video with concept prompt as input for one training iteration, predicting noise
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Figure 8: Additional qualitative comparison of text-driven video editing with concept video.
At the top of the figure are the concept videos and the prompt containing the concept word. Below
are the source video frames to be edited along with its descriptive prompt. The rows below show
the editing results of the source video using the prompt containing the concept word, for (Wu et al.,
2023), (Qi et al., 2023), (Zhao et al., 2023), (Kara et al., 2024), and our method, respectively.

and computing the noise prediction loss. During one training iteration, we retain all the cross-
attention probability matrices from the cross attention layers in the UNet and compute scam based
on the pseudo ground-truth mask corresponding to each video. Before the end of each iteration, we
then input the pair of source video and target prompt, also retaining the cross-attention probability
matrices, and compute tcam based on the pseudo ground-truth mask. The number of training epochs
are less than 250. The input data frames have a resolution of 512 × 512 pixels and a length of 6
frames. The training time does not exceed 30 minutes on an NVIDIA GeForce RTX 4090 device.

Details of editing w/ concept video in comparison methods. The methods we compared (like
Tune-A-Video (Wu et al., 2023), FateZero (Qi et al., 2023) and RAVE (Kara et al., 2024)) are all
based on the same CLIP (Radford et al., 2021) text encoder that enables us to integrate the same
input concept pairs into the models. For MotionDirector (Zhao et al., 2023), it supports a spatial
path to bring the object of concept video into latent space originally. That is to say, we can make
fair comparisons for existing approaches. Therefore, we are able to uniformly integrate the concept
video into these existing methods, which ensures the fairness of our comparison experiments.

Details of Inference. During the stage of inference, we use the device equipped with an NVIDIA
GeForce RTX 4090 and store the model parameters and data inputs in fp16 format. During the
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Figure 9: Additional qualitative comparison of text-driven video editing with concept video.
The form is the same as Fig. 8.

denoising of the source video, we store intermediate variables including the self-attention and cross-
attention probability matrices and source latents at each step in RAM, occupying approximately
100 GB space. The attention control processes of self-attention blending and cross-attention swap
consume most of the inference time. Depending on different attention control configurations, the
inference time generally ranges between 1 to 3 minutes.

Additionally, to reduce the host memory overhead of intermediate variables during inference, we
have designed and implemented a memory-saving inference scheme. This scheme requires about
twice the inference time compared to the original but reduces the overhead of RAM to 5 GB. The
key difference between this scheme and the original is that it does not store the self-attention and
cross-attention probability matrices; instead, it only stores the source latents at each denoising step
and recalculates the self-attention and cross-attention probability matrices during attention control.

A.2 ADDITIONAL COMPARISONS WITH EXISTING METHODS.

Text-driven Video Editing without Concept Video. We provide an additional set of comparison
examples without concept video guidance for video editing, as shown in Fig. 7.

Text-driven Video Editing with Concept Video. We provide six additional comparison examples
with concept video guidance for video editing, as shown in Fig. 8, Fig. 9, and Fig. 10.
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Figure 10: Additional qualitative comparison of text-driven video editing with concept video.
The form is the same as Fig. 8.

A.3 ADDITIONAL ABLATION STUDY RESULTS

Additional Results for Dual Prior Supervision. We provide the full comparison of the editing
results for Fig. 5, as shown in Figure 11, and the comparison of the full average cross attention map
in Fig. 12.
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Figure 11: Full comparison of whether to tune with attention supervision. The first column
shows frames from the source video to be edited. From the second column to the last column,
using the editing pair in Fig. 1 as the example, we compare the editing results with and without the
attention supervision mechanism of scam and tcam.
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Figure 12: Average cross attention probability map explorations. The first column shows frames
from the source video to be edited. From the second column to the last column, using the editing pair
in Fig. 1 as the example, we compare the average cross attention maps with and without the attention
supervision mechanism of scam and tcam, visualization of plasma colormap in matplotlib (Hunter,
2007).
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Additional Results for Tuning w/ Concept Video Produces Stylized Results. We provide addi-
tional comparisons of whether to tune with the concept video, as shown in Fig. 13.

Figure 13: Additional comparison of whether to tune with the concept video. Compared the
video editing results without and with tuning concept video for the left part: ‘man’ → ‘$OPTI-
MUS’; and the right part: ‘man’ → ‘$NEO’, from the same source prompt “a man rides a wooden
skateboard on the handrail of the staircase with arms outstretched”.

Impact of Attention Supervision Weights. Considering the impact of different attention supervi-
sion weights, Fig. 14 shows that as the weight increases, there is a higher degree of overlap between
the area of the replacement target and the edited target. Simultaneously, the consistency in non-target
areas improves to a certain extent.

Figure 14: Hyperparameters of different attention supervision weights. The first column shows
frames from the source video to be edited. From the second column to the last column, using the
editing pair in Fig. 4(c) as the example, we compare the editing results with attention supervision
weights from 0.05, 0.1 and 0.3.
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