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ABSTRACT

Sequential text-to-image retrieval, a.k.a. Story-to-images task, requires semantic
alignment with a given story and maintaining global coherence in drawn image
sequence simultaneously. Most of the previous works have only focused on mod-
eling how to follow the content of a given story faithfully. This kind of overfit-
ting tendency hinders matching structural similarity between images, causing an
inconsistency in global visual information such as backgrounds. To handle this
imbalanced problem, we propose a novel image sequence retrieval framework
that utilizes scene graph similarities of the images and a dual learning scheme.
Scene graph describes high-level information of visual groundings and adjacency
relations of the key entities in a visual scene. In our proposed retriever, the graph
encoding head learns to maximize embedding similarities among sampled images,
giving a strong signal that forces the retriever to also consider morphological rel-
evance with previously sampled images. We set a video captioning as a dual
learning task that reconstructs the input story from the sampled image sequence.
This inverse mapping gives informative feedback for our proposed retrieval sys-
tem to maintain global contextual information of a given story. We also suggest
a new contextual sentence encoding architecture to embed a sentence in consider-
ation of the surrounding context. Through extensive experiments, Our proposed
framework shows better qualitative and quantitative performance with Visual Sto-
rytelling benchmark compared to conventional story-to-image models.

1 INTRODUCTION

Visual content and textual description are in synergytic relations, have advantageous on delivering
information and being a proper expression means in real world communications. In this sense,
successful cross-modal learning requires neural networks to deeply comprehend semantic relations
between corresponding visual concepts and their textual descriptions. Examples include learning

joint representation( s ; s ; s ), text generation from visual
depiction( s ; s ; s ), and image or video retrieval
from text queries( R ; s ). Such multi-modal tasks build on common

embedding space where semantlcally associated visual and text embeddings are jointly mapped into
similar location. Hence, the key of multi-modal learning is understanding semantic relationship
between distinct modality representations.

In this sense, image-text retrieval have been widely explored as a one of the core tasks in the multi-
modal learning. The performance of such retrieval system has been measured by examining how the
retrieved samples are semantically aligned with given query. In addition, most of them have been
trained on singleton image-text pair dataset(e.g., COCO( , )). These requirement and
condition enforces the existing retrieval system to output the sample which is the most semantically
fitted to the query. In other words, the performance of the system is dominantly determined by the
level of overfitting tendency of the output. The more output sample is relational to the input, the more
performance increases. This comes with potential arguments in sequential cross-modal learning
since it only cares infer relationship with certain modality input at given time step, while neglecting
the intra relations of output modality. Consequently, when we qualitatively analyze output samples,
we can observe some incoherencies between output samples.
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Figure 1: An Overall illustration of GD framework

In sequential text-to-image, many of conventional approaches attempt to maximize the visual co-
herence with given set of descriptions. Though they largely improved modeling a cross-modal
coherency between text and image, many of them neglect scenery coherence among images. In
other words, since the system focuses on reflecting objects, optical discrepancies frequently occur
between neighboring images. For example, peripheral visual cues like background objects, weather,
and location changes as the story proceeds. We view this problem as an optimization problem whose
goal is alleviating the one-sided overfitting to a certain modality. To address this, we have to consider
an additional method which can teach the retriever to also count similarity in the other modality.

To overcome the suggested issue, we should handle two main challenges. First, we also have to
measure how much are two successive landscapes similar, that is, we need an organized representa-
tion that includes spatial information of each photo. Second, even if an image sequence was chosen
considering scenery similarity, the curated image sequence must be still capable of narrate given
input story. In this paper, we address aforementioned challenges with scene graph structure and dual
learning framework.

Scene graph( , ) is a graph representation that includes abstract summaries of
the objects and their relationships within an image. The objects are represented as nodes, and the
relations between them is usually represented as bidirectional edges. Due to it’s canonicalized de-
scription, scene graphs are very effective structured representation to easily figuring out global in-
formation of both images and language. We generate scene graph of every image in training set
to provide extra spatial information for the retriever. Hence, we need to also develop a encoding
module to process scene graphs. In this paper, we attach GCN(graph convolutional network)(

, ) as a scene graph encoding head of the retriever which extracts compressed repre-
sentation from nodes and edges from given scene graph. By drawing the scene graphs of retrieved
image sequence and passing to the following encoding head, model can compute the extent of their
similarities in graph embedding level.

Dealing with second challenge, we utilized dual learning framework which first introduced by

( ). In dual learning, two agents are involved where one agent solves primal task and the
other solves dual task. For example, ( ) set English-to-French translation as a primal,
and French-to-English as a dual. This cyclic loop gives each agent to learn error feedback from each
other. We set story-to-images as a primal task, and images-to-story, which can be regarded as video
captioning, be a dual task. The main purpose of leveraging dual framework is providing informative
error signal from dual task to the primal retriever system. The signal will teach the retriver to pick
well-curated photos which become the input for the dual agent. In overall, dual task contributes to
enhance the qualitative confidence for an output of the retriver.

Figure 1 depicts our aforementioned approaches in a single architecture. We experiment our ap-
proaches to the most popular visual storytelling benchmark: VIST( , ). Specific
configuration of VIST will be explained in section 4.
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In a nutshell, out key contributions are as follows:

1. We propose end-to-end sequential text-to-image retriever which achieves semantic co-
herency in both inter and intra modalities, which resolves overfitting on single modality

2. We explore visual storytelling, which is non-trivial task that requires balance in semantic
dependencies between distinct modalities.

2 RELATED WORKS

2.1 IMAGE RETRIEVAL

Much cross-modal retrieval research has dealt with learning a latent space that jointly embeds im-
ages and sentences into the same metric space. Especially, image-caption retrieval focuses on match-
ing the most relevant image(s) from a database with a given text query( , ). As
retrieval-based system finds output candidates in a pre-structured database, it is more advantageous
in overall likeliness in output qualities and shows less variation in sample mean quality. However,
most of multi-modal retrieval systems deals with mapping a single instance. Few retrieval works
have been explored to retrieve sequential outputs for structured queries. Some previous retrieval

systems ranked images based on visual phrases( , ), or multi-attribute de-
scriptions( , ). ( ) first proposed a ranking system to retrieve
image sequences from natural language paragraphs. Recently, ( ) proposed visual

segment matching framework to improve the output coherency and storyboard creation tool for how
retrieval system can be applied to practical field application. Nevertheless, none of which considered
the semantic arrangement with previously sampled instances.

2.2 SCENE GRAPHS

A scene graph depicts the contents of an image in the form of graph structure. Graph nodes rep-
resent objects, their attributes, and the relationshipo among them. As a scene graph provide visual
information in abstractive level, it has been proven to be effective in a range of visual compre-
hension tasks such as image retrieval( , ), image or video captioning( ,
; R ), visual question answering( s ), and image genera-
tion( , ). A number of applications utilizing scene graph information have been
widely spread after a large-scale scene graph annotations of real world images revealed from Visual
Genome dataset( , ). In representation learning context, there have been many
recent works focusing on learning intermediate representations of scene graphs. Those works sug-
gest scene graph representation as an useful compressed information for downstream applications.
( ) proposed differentiable scene graphs, which can be trained end-to-end with rea-
soning supervision. ( ) constructed semantically rich representation through
rankmg loss( ; , ) coupled with triple sampling strategy in
image retrieval task. The closest related work ( , ) proposed experimental approach
that leverages similarities of scene graph embedding for image-to-image retrieval task.

2.3 DUAL LEARNING

The application of dual learning was first proposed by ( , ) to relieve the burden for
preparing paired training data of English-to-French translation. The key idea of dual learning is
setting a primal and a dual task in a domain translation task. Learning source-to-target(primal)
and target-to-source(dual) mappings simultaneously gives ..... Especially, such a mutual reinforcing
mechanism have shown effective results on generation tasks in unsupervised settings. ( ,

)The advanced image-to-image translation GANs( R ; s ) have shown
competitive performance with unlabeled data by leveraging primal- dual relation to guarantee stable
domain translation performance without daunting the qualities of the generated images. In our work,
we set an image sequence retrieval from given story as a primal task and regenerating the original
story from chosen images as a dual. The informative error signals from reconstruction(dual) task
enforces the retrieval agent to choose more ’thoughtful” inputs for dual agent.
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Figure 2: An illustration of overall architecture of Contextual Sentence Encoder

3 APPROACH

3.1 PROBLEM STATEMENT

Let S = {s; } _, 1s a story comprises N text descriptions, where each description composed of
a single or a few sentences. For the simplicity and avoid annotation confusion, consider a smgle

description as a single sentence. The goal of the task is retrieving an image sequence I = {i; }J 1
that is semantically aligned to a story S and each image ij is descriptive photo of the description
si—;. Hence, the retrieval system F' : {s; }Z L — {zj} _, should map given story to the most
probable image sequence without losing visual coherency In this paper, we set I and S to have a
same cardinality to easily compare the matching results by one-to-one. We left one-to-many retrieval
as our future work.

3.2 IMAGE SEQUENCE RETRIEVAL VIA GRAPH SIMILARITIES

Contextual Sentence Encoder. We give a story for the direct input to our retrieval system. A story
describes given image sequence(video) as a set of natural language descriptions. Many of previous
text-image retrieval system receives a single text query as an input for their text encoders. If we
try to process a story with traditional text encoders, contextual connection between each description
will be break inevitably since there’s no other way to encode a story without recurrently injecting
the description. In consequence, feature representation of each description will be separately located
even in text-image joint embedding space. To encourage each description to be encoded in homo-
geneous way, each embedding must imply contextual information of preceding text. In other words,
the desired text encoder in story-to-images retrieval system must be context-recognizable. Thus, we
need to implement a novel story encoder for the task. Inspired by ( ), we suggest
C.S.E(Contextual Sentence Encoder) which is suitable for sequential text-to-image retrieval.

?? describes the overall architecture of C.S.E. The key idea of C.S.E is considering structured hier-
archical relation between text and it’s tokens. To extract a dense representation of the description,
the tokens in the description should also contain relevant information about other surrounding texts.

C.S.E efficiently encodes each description s; € S, considering other surrounding descriptions in S.
C.S.E consists of bottm Bi-LSTM layer, intermediate attention layer, and final Bi-LSTM layer with
global average pooling head. Let a single description in S as s; = {w;,, wq,, ..., w;, } , which is a
sequence of L token w;, _s> Low;, € RIVI1 <t < L. At time step ¢, the forward hidden state of the

bottom Bi-LSTM layer h! receives ¢! € Rt an embedding of e!, and the last hidden state hZ
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The backward hidden state at time t h} receives arguments in the same way. The final hidden state
%

of at time ¢ is a concatenation of hZ and h}. This can be summarized as

— LSTM (}Tiw wi s Wh,bh)

W( L Wewd s W f) (1)

i _ [, 5
ht:[t;ht}

We can regard h! as a compreseed representation of token w;;. To embed the context of surrounding
descriptions, we set hy as a query of Bahdanau attention( , ) module.

To compute textual coherency with the description s; which includes query w;;, we select other
descriptions except s; as candidates for keys, and their hidden representations as keys. We pass all
s € S,1 <k < N,s.t.k # i to pre-trained sentence encoder( , ) and extract a
set of hidden representations {k',..,k*~1 ki*1 . kN1, Then, the value vector of attention v! is
computed as a weighted sum of keys and queries:

vi= > By 2)
1<j#i<N
The attention weight «;; is a softmax score of attention layer with tanh activation computed by
exp (€;;)
Ty
2 kZ1 exp (€ik) 3)
€ij = U(;r tanh (Wahé + Uak'j)

Oéij =

where v, W, and U, are learnable parameters of above attention layer. As v} is a value vector
from h! and {kY, . ki1 kL kN, we can regard v! dense token representation which embeds
contextual semantic relationships with other surrounding descriptions in a single story.

Now we pass the concatenation of v} and h! as a new input for the second Bi-LSTM layer. We denote
the hidden state of the second RNN-based layer as g, and the second layer goes same progress to
extract the t*" token representation of description s; :

gzm@i——iv[ t,vt],m_/;, g)
:m (<gt:7 [hiQ Ut] ) ng)
g = [gi;gil
r' = avgpool ([gi; ...; g ])

4)

Finally, we average-pool along time steps 1 < ¢ < L to get the final contextual representation of the
description s;.

3.3 SCENE GRAPH GENERATION AND EMBEDDING

Scene Graph Generation. A scene graph is an abstract representation of the visual contents of an
image( , ). Formally, we define scene graph G of an image [ as G = {O, R}
a set of object nodes O, and a set of relationship between two certain nodes R. Every relation-
ship 7, € R is represented by a triplet of nodes (subjective, predicate, objective), explaining
dynamical association between two nodes. Predicate is represented as undirected edge. We treat
GloVe( , ) embedding of the label name as a feature representation of all nodes
in O and all edges in R. Spe01ﬁc conﬁguration will be explained in section 4. The combination of
constituents of scene graph varies in related works( s ; s ;

, ; , ; ; , ). For
example, some works( s ; , ) also 1ncluded a set of attributes
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of objects A as another constituent of scene graph. In this work, we .... to relieve computational
burden.

Generating scene graph G structure from an image [ is equivalent to parsing an object detection
result of a target image. We used Faster R-CNN( , ) as an underlying detector. For
each image I, the detector predicts a set of region proposals B = by, bs, ..., b,. Each proposal
bi € B comes with bounding box feature representation and probabilities for corresponding object
label. Building on these information, we applied recently proposed method( , ) for
our scene graph generator. In detail, we utilized VG(Visual Genome) dataset( s )
configuration to assign proper predicate for constructing R. Predicate label is predicted based on
frequency prior knowledge from VG. In overall retrieval pipeline, we generate scene graphs from
primarily picked image sequence I for given story .S and pass to the graph encoding head layer to
compare the scenery similarities via computing similarity scores of their graph embeddings.

Encoding Scene Graphs via GCN. In order to encode a scene graph with end-to-end fashion, we
need a suitable neural architecture that can operate directly on graph-structured data. We apply

Graph Convolutional Network( , ) as our main graph encoding module since
it’s learning ability on graph representation have been proved in many related works( ,
; ; ; ) ; ) )-

3.4 DUAL LEARNING WITH VIDEO CAPTIONING

We adopt dual learning framework for enhancing a contextual coherency of output image sequence.
The primal task can be represented as ' : S — I with proposed retriever F'. We denote G as
a dual agent, st. G : I — S. G can be also regarded as visual storyteller, which generates
figurative and consistent narrative for successive images. As F' recurrently selects I, we primarily
considered image captioning( , ) as a dual. However, since each description
in a single story narrates same circumstance, reconstructed descriptions will be semantically isolated
from global context. On this, the output format must be a paragraph-level captions. Hence we regard
dual task as a video captioning problem, to generated semantically aligned sentences while keeping
global context. We construct video captioning module based upon the proposed architecture of
GLAC Net( , ).

3.5 TRAINING OBJECTIVES

image Sequence Retrieval. Let f7( - ; 07) a textual encoder parameterized by 6, which is C.S.E
in this paper. h7(S) = f7(S;67) € R?7 is a dense representation of an input description S which
embeds contextual relations with surrounding S in a story. Similarly, let hy,(I) = fy,(I;6y) € R%
be a feature representation from pre-trained image encoder(e.g., VGG19(

), ResNet152( , )) before the last FC layer when given an input image /. We map
h7 andhy into joint embedding space through following linear transformation.

¢7(S: Wr,07) = Wihy(S) € R%
Pv(1; Wy, 8y) = Wy hy(I) € R%
With linear operators W € R?7 %4 and Wy, € R% %% we now can do vector computation across

different modalities. We measure the similarity of two distinct modality representation through
cosine-similarity base score function, defined as

s(s, 1) = sim(p7(s), oy (i) (6)

where sim(a, b) = To retrieve an image which semantically matches current input descrip-
HaH HbH

tion and morphologlcally similar with previous image, we jointly use hinge ranking losses(
; , ) between correct matches and other wrong ones
and graph embeddmg 51m11ar1ty At time step ¢, the step wise loss /4 is

Zmaz s,1) + s(8,1),0)

&)

—i—Zmax 5,1) + s(s,1),0)
(wit—17wit)
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with margin A, negative description § for i and negative image sample i for s. A hinge ranking
loss, a.k.a triplet ranking loss, directs the retriever F' to minimize the first and the second term via
choosing the closest counterpart i or s than to any unmatched samples  or § by margin A. At the
same time, the last term of ¢; contributes F' to search a photo that is structurally similar to an earlier

image. The total loss for image retrieval iS L, ctricval = Ziv 0(s¢, 1¢).

Video Captioning. After selecting aligned images as a sequence I = {i1,...,ix}, we input I and
a story S as a target ground-truth text, training video caption generator G to reconstruct S. We use

cross-entropy loss
captzon = Z Z yLl IOg pll (7)
=1 v=1

where v € {1, ..., V'} is an index of vocabulary set. pY is predicted probability for i — th token, and
5 is the target token.

Overall Objective. The overall objective is the sum of image sequence retrieval loss and video
captioning loss. The total objective is as follows:

Ltotal = Lretreival + Lcaption (8)

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We evaluate the proposed method on the VIST training set for the training, and evaluate
story-to-images retrieval on VIST test set. VIST includes total 210,819 unique photos within 10,117
Flickr albums. There are two data type in VIST, DII(description-in-isolation) and SIS(story-in-
sequence) respectively. The DII data only contain pairs of single sentence and sinle image, while
SIS contains pairs of story and images for training. For our task, we only use SIS type. A single story
in SIS consists of five successive images with the corresponding captions. After excluding broken
images, we finally use 40,071 stories for training, 4,998 stories for validation and 5,055 stories for
test set.

Baselines. We compare our approach with conventional text-to-image retrieval baselines. Primarily
we adopt VSE++( , ), which exploits the idea of hard negative mining(

, ) for learning visual-semantic embeddings for cross-modal
retneval We also apply variant of VSE++, denoted as VSEO which uses hinge-based triplet ranking

loss( ; s ). Since both of them are single
entry retrieval model, we also compare our retrleval system with existing sequential text-to-image
model, CNSI( , ). CNSI is a global visual semantic matching model that utilizes pre-

computed modality feature as an encoder. Lastly, we conduct ablation study to examine the power
of contextual text encoding, which is implemented by comparing our suggested retriever and the
retriver without CSE.

Metrics. We use Recall QK (k = {1,5, 10}) for main evaluation metric for VIST. For each descrip-
tion in the story, we retrieve top-K image predictions and measure the total percentage of sentence
descriptions whose ground-truth images are whether ranked in the top-K predictions. Hence, the
desired retrieval system maximizes recall at top-K. Also, we jointly evaluate on common retrieval
metrics including median rank (MedR).

Hyperparameters. The target parameters are included in CSE, graph encoding head, and video
captioning module. We unified optimizers for each module with Adam, setting distinct initial learn-
ing rates. In order, we set 0.0002, 0.0001, and 0.001. We only decay the learning rate for CSE,
keeping initial learning rate for the first 15 epochs and then lower the learning rate to 0.00002 for
remaining epochs. We set a minibatch size as 32, all parameters are trained for 30 epochs. We
employ 300-dimensional GloVe as a feature representations of nodes and relations in a scene graph.

4.2 QUANTITATIVE RESULTS

Table 1 shows story-to-images retrieval performance on the VIST testing set. Overall, We observe
sequential retrieval system(CNSI, Ours) performs better than single entry retrieval models(VSEOQ,
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Table 1: story-to-images retrieval performance on the VIST testing set. All scores are reported in
percentage(%) .

Method R@1 R@5 R@10 Medr
VSEO 11.25 1227 1231 11.74
VSE++ 12.28 12,29 13.27 12.57
CNSI 13.01 13,99 14.27 13.77
Ours(w/o CSE) 10.39 11.48 12.10 11.50
Ours 13.35 14.07 14.40 13.98

VSE++). In story-to-images setting, we could easily expect this kind of result since the form-
ers(CNSI, Ours) sequentially embeds features from a given story compared to the latters(VSEQ,
VSE++). Besides, we presume usage of hard negatives for objective function for retrieval can bring
positive effect for increasing the retrieval performance through comparing the results of VSE series.
CNSI yields the best performance among baselines. Because CSE is one of the main contributors
to maintain global semantic context in a story, our suggested retriever without CSE shows compa-
rable performance with VSE series. Overall, our suggested pipeline outperforms the baselines. We
empirically observe that leveraging scene graph similarity and dual framework helps gives better
predictions in retrieved images. Nevertheless, there are not dramatic increases in performances. We
assume that even the design choices of architecture for the main system pretty differs a lot, the dif-
ferences in recall percentages of top-K output samples are relatively trivial. We leave evaluation on
larger K, and other visual storytelling benchmark for our future work.

Graduation day has finally arrived. All the
students startd filing in. He was thrilled to
finally be graduation. Everyone posed for
pictures outside the venue. And to capp off
the day; we all hung out at the pool

GT

CNSI

Figure 3: Qualitative comparison on predicted images from test set sample.

4.3 QUALITATIVE ANALYSIS

Figure 3 depicts samples of predicted images for when given a random story in the test set. We can
observe that VSE++ does not maintain global context in both images and text. CNSI shows better
result, still less incoherent. Compared to others, our retrieval system provides better visual descrip-
tions. Nevertheless, we conclude there’s a lot of room to develop the performance in qualitative
way.
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5 CONCLUSION

In this paper, we introduced a new story-to-images retrieval framework that can alleviate potential
pitfall of sampling visually incoherent images from a database. Our main technical contributions
include (1) utilizing scene graph similarities with prior sample and (2)apply video captioning as a
dual task. Our suggested framework shows superior performance in VIST benchmark compared to
conventional text-to-image retrieval works.
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