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ABSTRACT

Current Chain-of-Thought (CoT) verification methods predict reasoning correct-
ness based on outputs (black-box) or activations (gray-box), but offer limited in-
sight into why a computation fails. We introduce a white-box method: Circuit-
based Reasoning Verification (CRV). We hypothesize that attribution graphs of
correct CoT steps, viewed as execution traces of the model’s latent reasoning cir-
cuits, possess distinct structural fingerprints from those of incorrect steps. By
training a classifier on structural features of these graphs, we show that these
traces contain a powerful signal of reasoning errors. Our white-box approach
yields novel scientific insights unattainable by other methods. (1) We demonstrate
that structural signatures of error are highly predictive, establishing the viability
of verifying reasoning directly via its computational graph. (2) We find these sig-
natures to be highly domain-specific, revealing that failures in different reasoning
tasks manifest as distinct computational patterns. (3) We provide evidence that
these signatures are not merely correlational; by using our analysis to guide tar-
geted interventions on individual transcoder features, we successfully correct the
model’s faulty reasoning. Our work shows that, by scrutinizing a model’s com-
putational process, we can move from simple error detection to a deeper, causal
understanding of LLM reasoning.

1 INTRODUCTION

Chain-of-Thought (CoT;|Wei et al., 2022} [Kojima et al., [2022a)) prompting has proven to be a pow-
erful method for boosting the performance of Large Language Models (LLMs). This capability is
now central to the latest generation of reasoning models, such as DeepSeek-R1 (DeepSeek-Al et al.,
20235) and OpenAl’s ol (OpenAl et al.,[2024). Despite this success, a fundamental vulnerability per-
sists across the spectrum of these systems: the reasoning process itself is sometimes flawed (Turpin
et al.,[2023b; [Li et al., [2025b; |Arcuschin et al., 2025} [Lindsey et al.,|[2025};|Chen et al., 2025b)).

This reliability gap has spurred research into automated verification. Current methods fall into two
main categories. Black-box approaches analyze the generated text or final logit distribution (Jacovi
et al., [2024; |Wang et al., [2025b; Baker et al., |2025b). Gray-box approaches look at the model’s
internal state, using simple probes on raw activations or analyzing the trajectory of hidden states
(Xie et al., 2024; Zhang et al., 2025} |Afzal et al., [2025] Bi et al., [2025; Wang et al., 2025a)). While
insightful, these methods are fundamentally limited; they can detect that a model’s internal state is
correlated with an error, but not explain why the underlying computation leads to an error.

This limitation motivates a deeper, more mechanistic approach. We postulate that models implement
latent algorithms that solve specific tasks through specialized subgraphs, or circuits (Olah et al.,
2020; |[Elhage et al., [2021). From this perspective, a reasoning failure is not merely an erroneous
state, but a flaw in the execution of a latent algorithm. To diagnose such flaws requires inspecting the
underlying computational process, akin to examining an execution trace in classical software. We
propose to approximate this trace by constructing an attribution graph (Dunefsky et al., 2025)—a
structural representation of the causal information flow between model components.

For such a graph to serve as a meaningful trace, its components must be interpretable. We therefore
first create an interpretable surrogate model by replacing its standard MLP modules with trained
transcoders (Dunefsky et al., 2025). We then construct and analyze attribution graphs over the
sparsely activating features of such surrogate model (Ameisen et al., [2025). Finally, to formally
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test whether these traces contain a detectable signal of error, we train a diagnostic classifier on their
structural properties. This entire methodology, which we call Circuit-based Reasoning Verifica-
tion (CRYV), is thus designed as a scientific instrument to investigate our central hypothesis: that
reasoning failures manifest as detectable structural signatures on their computational execution
traces, which can be leveraged for automated verification.

As a scientific instrument, CRV requires a controlled experimental setting. While advanced reason-
ing models employ complex mechanisms like search and backtracking, their convoluted reasoning
paths can obscure the fundamental computations of a single reasoning step. Our work therefore
focuses on standard, instruction-tuned models generating autoregressive CoT, as this paradigm pro-
vides a clearer window into the primitive computations that underpin emergent reasoning. While
our approach, despite being effective, is too computationally intensive to be intended as a prac-
tical, drop-in verifier, it yields novel scientific insights unattainable by other methods. Our main
contributions are therefore not just about performance, but about understanding:

* We introduce Circuit-based Reasoning Verification, a white-box method for analyzing rea-
soning failures, showing that verifying reasoning via its computational graph is feasible.

e We find that the structural signatures of error are highly domain-specific, revealing that
failures in executing different reasoning tasks manifest as distinct computational patterns.

* We establish the causal role of these error signatures, successfully correcting faulty reason-
ing via targeted interventions on individual transcoder features.

* To support future research, we release datasets with step-level correctness labels for CoT
reasoning on synthetic and real-world tasks, along with our trained transcoders.

2 PROBLEM FORMULATION AND PRELIMINARIES

2.1 PROBLEM STATEMENT

Let an LLM generate a Chain-of-Thought S = (s1,S2,...,S,,) to solve a problem, where each
step s; is a sequence of tokens. During the generation of step s;, the underlying model produces a
computational state M;. From this state, we construct an attribution graph G; = (V, ), where
vertices V' represent interpretable features and tokens, and edges £ represent the causal influence
between them (see Section [3.2). From each graph G;, we extract a fixed-size feature vector x; =
®(G;), where ¢ is a feature extraction function designed to capture the graph’s structural properties.
We term this vector the step’s structural fingerprint. Our goal is to learn a diagnostic classifier fy
that takes this structural fingerprint as input to predict the correctness of the reasoning step:

Ui = fo(xi)

where §; € {correct, incorrect}.

2.2  PRELIMINARIES: CIRCUITS IN TRANSFORMERS

The term “circuit” in mechanistic interpretability refers to a specific subgraph within a neural
network that implements a human-understandable algorithm (Olah et al.l 2020). In Transform-
ers (Vaswani et al.l [2017), these circuits are composed of attention heads and MLP computations.
Our work is conceptually motivated by the prospect of finding patterns distinguishing sound and
faulty activations of circuits involved in reasoning. While our method does not observe these cir-
cuits directly, our hypothesis is that they cast detectable structural fingerprints onto the attribution
graphs we construct. A primary goal of our subsequent analysis is therefore to interpret the graph-
based features that are most predictive of failure as the signatures of these underlying error patterns.

2.3  PRELIMINARIES: TRANSCODERS FOR INTERPRETABLE FEATURES

A significant challenge in analyzing model activations is their high dimensionality and lack of direct
interpretability. A powerful approach to this challenge is to learn a sparse, overcomplete basis for
these activations using a sparse autoencoder (SAE; |Cunningham et al.| [2023). An SAE is trained to
reconstruct an activation vector # € R? from a much higher-dimensional, but mostly zero, feature
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Figure 1: The CRV pipeline. (1) The LLM’s MLP modules are replaced with per-layer transcoders
(PLTs), making it interpretable. (2) For a given CoT step, we generate an attribution graph captur-
ing causal flow between interpretable features and model components. (3) Structural features are
extracted from this graph, and (4) fed to a diagnostic classifier to predict the step’s correctness.

vector f € RP, where D > d. The elements of f correspond to a set of learned, interpretable
features, sparsely activated by inputs. While the canonical SAE objective is to reconstruct its own
input (f(z) =~ x), our work leverages a variant known as a transcoder (Dunefsky et al.,2025), which
is instead trained to approximate the input-output function of a target component, such as an MLP
(f(z) =~ MLP(x)). This approach makes the transcoder a true functional substitute for the original
module. Its objective is not mere reconstruction, but the emulation of a computational step in an
interpretable, sparsely activated basis. By replacing a model’s standard MLP module with a trained
transcoder, we force its intermediate computations to be represented not by a dense vector, but by a
sparse combination of these meaningful features.

3 METHODOLOGY

Unlike in Process Reward Modeling (PRM), where the goal is limited to judging the correctness of
a reasoning step, we take the perspective of a model developer interested in debugging reasoning
failures in a specific model to which they have full access. We introduce Circuit-based Reasoning
Verification (CRYV), a method for detecting flawed reasoning by analyzing its structural fingerprint.

3.1 DATASET CURATION AND STEP-LEVEL ANNOTATION

A prerequisite for developing our method is a dataset with reliable step-level correctness labels.
Furthermore, our white-box methodology imposes a critical requirement that distinguishes our data
needs from prior work. Since CRV analyzes the causal computational graph that produces a rea-
soning step, we must capture the full internal state of our specific model during the generation
process. Consequently, existing text-only datasets such as PRM800OK (Lightman et al., [2024)) and
REVEAL (Jacovi et al.,[2024)), which provide static ‘(text, label)’ pairs and are designed for training
black-box verifiers, are incompatible with our mechanistic approach. We must generate and label
our own model’s CoT outputs to create the necessary ‘(text, label, computational trace)’ tuples for
analysis. We therefore created a new benchmark covering both controlled synthetic tasks and the
real-world GSMS8K dataset (Cobbe et al.,[2021)).

Synthetic Datasets (Boolean and Arithmetic). To study reasoning failures in a controlled environ-
ment, we generated two datasets. The first involves evaluating complex boolean expressions, while
the second involves multi-step arithmetic problems. The motivation for these datasets is the unam-
biguous ground truth: the correctness of any step in the reasoning chain (e.g., “15 + 7 = 22”) can be
verified automatically by a simple parser and evaluator. This allows us to generate a large, labeled
dataset for initial training and analysis. Furthermore, these tasks are intrinsically compositional, and
the complexity of samples can be fully controlled. Further details are provided in Appendix [A]
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Step-Level Annotation for GSM8K. Annotating a real-world dataset like GSMS8K is challenging.
To scale, we used a semi-automated process with a stronger LLM (e.g., Llama 3.3 70B Instruct) as
an expert judge. For each CoT, the judge evaluated step correctness given the full problem context.
We validated these labels through manual review of a substantial subset, yielding a high-fidelity
dataset for real-world reasoning. Further details are provided in Appendix

3.2 CIRCUIT-BASED REASONING VERIFICATION (CRV)

CRV is a four-stage pipeline designed to classify the correctness of a CoT step by analyzing the
computational graph of a modified, interpretable LLM. An overview is presented in Figure I]

3.2.1 STEP 1: REPLACING MLPS WITH INTERPRETABLE TRANSCODERS

The foundation of CRV is an architectural modification that makes the target LLM interpretable.
For each MLP module in the model, we train a corresponding transcoder on a large, diverse dataset
of activations harvested from the original LLMF_-] The training objective combines an L2 reconstruc-
tion loss with a TopK activation function, which enforces sparsity by preserving only the k-largest
feature activations. Once trained, we replace the MLP module for each layer in the LLM with its
corresponding transcoder. The forward pass of the model is now forced to flow through these sparse,
interpretable bottlenecks. All subsequent analysis is performed on this modified, interpretable re-
placement model. Full details of the transcoder architecture and training are provided in Appendix[B]

3.2.2 STEP 2: CONSTRUCTING STEP-LEVEL ATTRIBUTION GRAPHS

With our transcoder-infused replacement model, we require a principled method to trace information
flow and construct a causal graph of the computation. To this end, we adapt the recent circuit analysis
methodology of Dunefsky et al.| (2025). Applying their greedy path-finding algorithm allows us
to trace high-attribution connections backward from the final logits, yielding a sparse, weighted,
directed graph G; = (V, £) for each reasoning step s;. This graph represents the core computational
subgraph, where the nodes V are the disjoint union of input tokens, active transcoder features, and
output logits. The directed edges £ represent the high-attribution causal pathways between these
components (e.g., from an early-layer feature to a later-layer feature, or from a feature to a logit),
with weights quantifying the strength of their influence. For a complete derivation and description
of the circuit-finding algorithm, we refer the reader to the original work (Dunefsky et al.| 2025)E]

3.2.3 STEP 3: EXTRACTING INTERPRETABLE GRAPH FEATURES

From each attribution graph G;, we extract a fixed-size feature vector x; as a structural fingerprint of
the computation. We prune the graph to its most influential components, retaining nodes and edges
accounting for a threshold (e.g., 80%) of total influence to the final logits. The feature set, calculated
on this pruned subgraph (unless stated otherwise), is organized into three hierarchical levels.

Global Graph Statistics: These features capture a high-level summary of the computational sub-
graph, including the count of active feature nodes after pruning and the final logit probability and
entropy. They provide a coarse measure of the computation’s complexity and uncertainty.

Node Influence and Activation Statistics: This group quantifies the properties of the inter-
pretable feature nodes. We compute statistics (mean, max, std) on their activation values and in-
fluence scores. This helps distinguish computations driven by a few highly active, decisive features
from those driven by a diffuse combination of many weak features. We also include a histogram of
active features by layer, which characterizes the computational depth of the reasoning step.

Topological and Path-Based Features: To analyze the structure of the information flow, we com-
pute arich set of topological features on the pruned subgraph. These include graph density, centrality
measures (degree, betweenness) to identify computational hubs, and connectivity metrics.

IThis is also referred as per-layer transcoders (PLTs) by |/Ameisen et al.[(2025).
>We use implementation from Hanna et al.| (2025) for computing attribution graphs in our work.
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This comprehensive feature set provides the foundation for our diagnostic classifier. A full list and
detailed motivation for each feature is provided in Appendix

3.2.4 STEP 4: DIAGNOSTIC CLASSIFIER

For the final classification step, we use a Gradient Boosting Classifier (GBC) trained on the extracted
feature vectors: fy(x;) = ¢;. GBC suits for our heterogeneous, tabular features and provides robust
feature importance measures, which we leverage to identify the most predictive structural properties
of error circuits. We also benchmark against several alternative classifiers in Appendix

4 EXPERIMENTS

We conduct a series of experiments designed to validate the central hypothesis of our work: that the
attribution graphs of reasoning steps contain a rich, structural signal of their correctness. Our
evaluation is structured around three primary research questions. First, we investigate whether
CRV’s white-box approach significantly outperforms a comprehensive suite of gray-box and black-
box baselines in verification accuracy and test its robustness to domain shifts and increasing task
difficulty (RQ1). Next, we analyze our trained models to identify which specific computational
structures within the graph are most predictive of failure, moving from detection to mechanistic un-
derstanding (RQ2). Finally, we conduct exploratory studies to assess if these mechanistic insights
can be used to perform targeted, causal interventions that correct faulty reasoning (RQ3).

4.1 EXPERIMENTAL SETUP

Models and Datasets. Our experiments are conducted on the Llama 3.1 8B Instruct model
(Al@Metal 2024). We select the instruction-tuned variant, as its prompt-following optimization
is critical for reliably eliciting the CoT reasoning traces for our analysis. This model is then mod-
ified with our trained transcoders as described in Section 3| We evaluate performance on our three
datasets: Synthetic (Boolean), Synthetic (Arithmetic), and the annotated GSM8K benchmark.

Baselines. We compare CRV against two categories of baselines. First, black-box methods that use
the final logit distribution: Maximum Softmax Probability (MaxProb), Perplexity (PPL), Entropy,
Temperature Scaling (Temp. Scaling;|Shih et al.,2023), and Energy (Liu et al., |2020). Second, gray-
box methods that operate on internal states. This includes trajectory-based methods that analyze
hidden state dynamics across layers, such as Chain-of-Embedding (with its real-space CoE-R and
complex-space CoE-C variants; [Wang et al., |2025a) and CoT-Kinetics (B1 et al., 2025), as well as
a standard logistic regression probe (LR Probe) trained on the step’s average hidden state While
CoE and CoT-Kinetics were originally designed for full CoT evaluation, they prove to be strong
step-level baselines. All implementation details are deferred to Appendix

Evaluation Metrics. We use AUROC, FPR@95, and AUPR to evaluate verifier performance. As
our goal is the detection of reasoning failures, we treat the incorrect label as the positive class for
all metric calculations. AUROC assesses how well the method ranks correct versus incorrect steps
across thresholds. AUPR captures the precision-recall trade-off for the positive (incorrect) class.
FPR@95 measures the false positive rate when 95% of positives are correctly identified, reflecting
reliability under strict conditions; a lower score indicates the verifier can detect most errors with
minimal false alarm. Together, these metrics provide complementary views of performance.

4.2  VERIFICATION PERFORMANCE AND ROBUSTNESS (RQ1)

We first address RQ1 by evaluating CRV against all baselines on the task of reasoning step verifica-
tion and then probing its robustness under more challenging conditions.

Main Verification Performance. The results, presented in Table[I} provide strong empirical sup-
port for our central hypothesis: that the structural signatures present in a reasoning step’s compu-

3We also evaluated a last-token probe, but found that using the average representation yielded slightly better
performance.



Under review as a conference paper at ICLR 2026

Table 1: Verification performance. Arrows indicate preferred direction (1 higher is better, | lower is
better). Best and second-best results are highlighted for each metric. The low AUPR on the Boolean
dataset reflects extreme label imbalance, with the incorrect label only 0.2% (Appendix [A.5).

. Synthetic (Boolean) Synthetic (Arithmetic) GSMSK
Paradigm  Method
AUROCT AUPRT FPR@95| AUROCT AUPR{ FPR@95| AUROCT AUPR{ FPR@95 ]

MaxProb 58.81 0.34 95.20 61.87 1.81 84.98 54.91 7.99 91.86

Black-Bor  PPL 57.37 0.29 91.02 60.19 1.68 85.52 55.46 8.12 90.69

ack-BOX Entropy 53.56 0.24 97.55 60.03 1.52 85.40 56.67 7.29 87.08

Temp. Scaling 5877 0.36 91.41 59.67 1.66 86.96 54.42 8.24 92.28

Energy 51.08 0.28 95.11 76.45 5.59 73.86 62.55 9.11 86.34

GravBor  COER 53.17 0.33 92.85 58.47 1.93 76.68 52.38 8.34 96.20

Y CoE-C 51.03 0.38 92.07 69.39 3.03 63.33 53.57 10.80 96.33

CoT-Kinetics 53.62 0.24 97.13 60.83 1.58 85.09 56.54 7.35 86.83

LR Probe 5291 0.25 88.42 54.22 1.50 91.90 55.86 7.99 90.32

White-Box CRYV (Ours) 75.87 0.97 79.17 92.47 28.92 37.09 70.17 143 79.61

tational trace contain a directly verifiable signal of its correctness. CRV consistently outperforms
all black-box and gray-box baselines across every dataset and metric. The strength of this structural
signal is particularly evident on the synthetic datasets. On the Arithmetic task, for instance, CRV
achieves an AUROC of 92.47, a significant leap over the strongest baseline score of 76.45. This
advantage in reliability is further underscored by the FPR@95, where CRV reduces the false posi-
tive rate to 37.09% from the baseline’s 63.33%. The performance gap is most pronounced on these
structured, synthetic datasets. We hypothesize that the structured nature of algorithmic reasoning in-
duces highly consistent execution traces for valid solutions. Consequently, the structural signatures
of error manifest as more uniform deviations from this baseline, rendering them highly detectable.

Analysis of Cross-Domain Generalization. Table 2: Cross-domain generalization perfor-
A key difference between CRV and most base- mance. For each test dataset, we compare the
lines is that its diagnostic classifier requires strongest baseline (based on AUROC) against
training. A critical question, therefore, is CRV trained in-domain and out-of-domain.
whether CRV learns domain-specific correla-
tions or more fundamental, generalizable signa- ] Metrics

. . Test Set Method (Train Set)
tures of flawed reasoning. To test this, we con-
duct a comprehensive cross-domain evaluation.

AUROC 1T AUPR 1T FPR@95 |

We train a CRV classifier on each of our three Eﬁé‘}‘g&‘;ﬁ‘)’“’b’ R G
datasets individually and evaluate its zero-shot B CRV (Arithmetic) 61.58 0.51 87.55
performance on the other two unseen domains. CRYV (Boolean) 75.87 0.97 79.17
Table 2] shows that CRV’s learned error fin- Baseline (Energy) 7645 559 73.86
gerprints are highly domain-specific. In cross-  Arithmetic gg Egg(])\g;)) 23;;; {22 3;:3;
domain transfer, the performance of CRV drops CRY (Arithmetic) 247 25,92 3709
substantially compared to in-domain and often -

falls below the strongest training-free baseline. ggh(gig;:::;f” gi'gg Z'g ggg?
For example, CRV trained on the arithmetic OSM8  Cry (Arithmetic) 5704 785 9437
task achieves an AUROC of 57.04 on GSM8K, CRV (GSMSK) 7017 14.3 79.16

falling short of the Energy baseline’s 62.55.

This domain specificity reveals that errors in different reasoning tasks (e.g., formal logic, arithmetic
calculation, natural language arithmetic) produce distinct structural patterns in the model’s computa-
tional graph. While it limits current supervised verification, it highlights the rich signal captured by
CRYV. The performance gap confirms that domain-specific signatures are powerful, motivating future
work on diverse training or domain adaptation to improve generalization of circuit-based verifiers.

Performance Under Increasing Difficulty. To further probe CRV’s robustness, we analyze its
performance on the synthetic arithmetic dataset as a function of problem complexity, controlled by
the number of operators (n € {5,7, 10})E] Figure [2| plots the performance of CRV against key
baselines across these difficulty levels. While most methods show stable AUROC and FPR@95,
CRV maintains a consistent advantage across all difficulty levels. AUPR generally improves for all
methods as difficulty rises because harder problems increase the proportion of incorrect examples (a

*We exclude n = 3 as the model’s high accuracy yields too few incorrect examples for reliable evaluation.
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Figure 2: Performance of the step correctness predictors on the synthetic arithmetic task as a function
of difficulty (number of operators). CRV retains a clear advantage as complexity increases.

condition to which AUPR is sensitive). Importantly, CRV’s advantage persists despite these shifts,
highlighting the robustness of its structural signals across task difficulty and class balance.

4.3 MECHANISTIC ANALYSIS OF ERROR COMPUTATIONS (RQ2)

Having demonstrated CRV’s predictive power, we now turn to its key advantage: interpretability. To
address RQ2, we dissect our graph representation to identify structural “fingerprints” of error, from
high-level feature ablation to fine-grained analysis of the most predictive structures.

Ablation of Feature Families. A leave-one- Table 3: Leave-one-out ablation study on the Syn-
out ablation study on the Synthetic (Arithmetic) thetic (Arithmetic) dataset.
dataset reveals a clear hierarchy of feature im-
portance, as summarized in Table [3| The Node Arithmetic

. . Feature Set
Influence & Activation features are demonstra- AUROCT AUPRT  FPR@95 |

bly the most critical; their removal causes the

. CRYV (All three families) 92.47 28.92 37.09
most performance degradation across all met-
rics, most notably increasing FPR@95 by over Ab"’v’;;?’mobal Stats 0.2 2435 wasa
12 points. The Global Graph Statistics also _ w/o Node Stats 8831 2325 49.07
provide a substantial contribution. Interest- — wlo Topological Stats 90.89 26.83 39.19

ingly, the Topological & Path-Based features

appear least critical for this specific task, suggesting that the state of key local features is a more
dominant signal than the holistic graph structure. Nevertheless, the full CRV model, which inte-
grates all three signal types, is required to achieve optimal verification performance.

Visualizing the Structural Signatures of Error. To provide qualitative evidence for our hypoth-
esis, we visualize the “structural fingerprints” learned by our classifier. Figure ] shows distributions
of five highly predictive features for correct versus incorrect GSM8K reasoning steps. Across di-
verse feature types, from graph topology (e.g., Graph Density) to node statistics (e.g., Total Active
Features), distributions are clearly distinct. Similar patterns are observed on our synthetic datasets
(see included in Appendix [C.4), confirming that the graph representation captures separable struc-
tural differences between valid and flawed computations.

While individual features are =y = o By
predictive, CRV’s strength lies

in their combination. To illus-
trate this, we project the full
high-dimensional feature vec-
tors into two dimensions via
Principal Component Analysis ) )
(PCA). Figure E] reveals that in- (a) Boolean (b) Arithmetic (c) GSM8K
correct steps form a dense sub- Figure 3: Distributions of features after PCA for correct (blue)
set within the broader distribu- vs. incorrect (red) reasoning steps.

tion of correct steps. Crucially,

correct steps also occupy a distinct region not shared by incorrect computations. This suggests many




Under review as a conference paper at ICLR 2026

Total Active Features Mean Node Influence Pruned Feature Node Count Mean Edge Weights Graph Density
p=0.000, d=0.855 p=0.000, d=0.662 p=0.000, d=0.719 p=0.000, d=0.529 p=0.000, d=0.600

0.0025

0.0020

ity
Ly

00015 T

Dens}

10 0.0010 400 10

5 0.0005 200 5

05

20 0.60 066 1750 2000 2250 2500 2750 =0.6025-0.6020-0.0015-0.0010-0.0005 020 022 024 026 028 030 032
e Feature Value Feature Value eature Value

10 15 62 064
Feature Value Feature Value

Figure 4: Topological Fingerprints of Error on GSMS8K. Distributions of five selected graph
features for correct (blue) vs. incorrect (red) reasoning steps. The visual separation is statistically
significant for each feature shown (independent t-test, p < 0.001) and represents a medium-to-large
effect size (Cohen’s d). This provides quantitative evidence that attribution graphs contain a clear,
separable structural signal of a computation’s integrity.

reasoning failures are computational “near misses”, structurally similar to valid steps, which explains
the overlap. Yet there exists a zone of computational integrity, a region defined by structural prop-
erties accessible only to correct reasoning. A complementary t-SNE visualization in Appendix [C.4]
shows the same structure, confirming that CRV succeeds by learning the complex boundary of this
zone rather than separating two simple clusters.

4.4 FROM DIAGNOSIS TO CAUSAL INTERVENTION (RQ3)

Finally, we conduct an exploratory study to test whether CRV’s diagnostic insights can guide pre-
scriptive interventions. A key advantage of our white-box approach is that failure-predictive graph
features can be traced to specific components of the model’s computation. We illustrate this with a
case study on the arithmetic task, correcting an order-of-operations error.

Given the expression (7« ( (5+9)+7) ), the model incorrectly computed 7+14=98 in its second
step (Table[d). CRV flagged this step as incorrect, and feature importance highlighted an unusually
high activation of a late-layer transcoder feature. Tracing the signal back to the graph, we found a
single highly active last-layer transcoder feature (ID 91814) strongly associated with multiplication.

We hypothesized that this premature activation caused the error, and performed a direct intervention.
We re-ran the generation up to the point of failure and used a forward hook to manually clamp the
activation of this specific multiplication feature to zero. The effect was immediate: as shown in
the right column of Table {] with the premature multiply impulse suppressed, the model correctly
generated the next step 14+7=21 and proceeded to the correct final answer.

Table 4: Side-by-side comparison of a reasoning trace before and after causal intervention. The
highlight indicates the point of divergence where suppressing a single multiplication transcoder
feature corrects the model’s computational path.

Before Intervention (Incorrect) After Intervention (Correct)

Evaluate the arithmetic expression below. Evaluate the arithmetic expression below.
(7*((5+9)+7)) (7*((5+9)+7))

To evaluate this expression, we need to follow To evaluate this expression, we need to follow
the order of operations (PEMDAS): the order of operations (PEMDAS):

1. Evaluate the expression inside the innermost 1. Evaluate the expression inside the innermost
parentheses: 5 +9 =14 parentheses: 5 +9 = 14

2. Multiply 7 by the result: 7 * 14 = 98 2. Add 7 to the result: 14 + 7 =21

3. Add 7 to the result: 98 + 7 = 105 3. Multiply 7 by the result 7 * 21 = 147
Therefore, the expression evaluates to 105. Therefore, the value of the expression is 147.

While not a general-purpose solution, this proof-of-concept is a crucial step. Beyond suppressing
faulty features, we also corrected an error by amplifying an under-active feature (Appendix [C.4).
The success of both interventions provides closed-loop evidence that CRV’s structural signatures
are causally implicated in errors, opening a promising direction for targeted model interventions.
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5 RELATED WORK

CoT Prompting for Improved Reasoning. Chain-of-Thought (CoT) prompting was introduced
by [Wei et al.| (2022) to elicit more complex reasoning from LLMs through few-shot examples that
demonstrate step-by-step problem solving. Subsequent work has expanded this idea in several direc-
tions. [Kojima et al.|(2022b) showed that even a simple zero-shot instruction such as “Let’s think step
by step” can trigger coherent reasoning traces. While this reduces the need for handcrafted prompts,
providing structured examples often remains beneficial. To scale this process, recent studies gener-
ate CoT exemplars synthetically (Zhang et al.l 2022} Shao et al.,|2023}; |L1 et al.,2025a)). Other work
leverages test-time compute scaling to extend reasoning chains, enabling longer and more elaborate
solutions (Snell et al., |2024). For comprehensive surveys of CoT techniques and their applications,
see|Chu et al.|(2023) and |Chen et al.[(2025al).

Verifying and Improving CoT Reasoning. The transparency of CoT has also made it a focal
point for research into model interpretability and reliability. While some work assumes reasoning
traces are to some extent faithful representations of the model’s internal process (Yeo et al., 2024;
Korbak et al., [2025), a significant body of evidence highlights their unreliability (Arcuschin et al.;
Bentham et al., 2024} |Chen et al.; Turpin et alJ 2023a). This has spurred a rich field of research
dedicated to verifying and improving CoT traces. This research broadly investigates (i) the model’s
intrinsic ability to self-evaluate its reasoning steps (Zhang et al.| 2025)), (ii) how to measure the
faithfulness of a reasoning chain to the final answer (Lanham et al.| |2023; Bi et al., |2025; Tutek
et al., 2025), and (iii) when reasoning steps are needed or useful (Bogdan et al., 2025; Wang et al.,
2025c). A parallel line of work aims to improve reasoning chains through various forms of neuro-
symbolic reasoning (Lyu et al. [2023)), correction (Tyen et al., 2024), uncertainty calibration (Ji
et al., 2025), or by enforcing internal consistency (Xie et al., 2024; [Wang et al.,|2025a). A distinct
approach involves training auxiliary models, such as Process Reward Models (PRMs), to assess
step-level correctness and guide post-training (Lightman et al.| 2024;|Wang et al., [2024} /Guan et al.,
2025). While all these methods aim to improve reasoning outcomes, they primarily operate on the
textual or hidden state representations. We are not aware of previous attempts to verify reasoning by
analyzing the structural properties of its underlying computational graph.

Mechanistic Interpretability of CoT Reasoning. Our work is most directly situated within the
field of mechanistic interpretability, which seeks to reverse-engineer the algorithms learned by neu-
ral networks, moving beyond the surface-level analysis of CoT traces (Yeo et al.,[2024; |[Korbak et al.,
2025} Baker et al.l 2025a). A central tenet of this field is that models develop specialized subgraphs,
or circuits, to perform specific computations (Olah et al.,2020). Recent work has begun to apply this
lens to reasoning, not just for interpretation, but also to improve performance by eliciting or steering
behavioral circuits (Zhao et al.| 2025, Ward et al., 2025). A particularly powerful and increasingly
popular tool in this area is the use of sparse autoencoders (SAEs), which learn to decompose a
model’s dense activation vectors into a sparse basis of interpretable features (Bricken et al., 2023
Cunningham et al.| [2023). Our work builds directly on a variant, the transcoder (Dunefsky et al.,
2025])), which acts as a functional, interpretable substitute for an MLP module. While prior work has
used transcoder-based attribution graphs to qualitatively analyze the faithfulness of CoT reasoning
(Ameisen et al., [2025)), our work is the first to operationalize this approach for automated verifica-
tion. We move beyond visual inspection by systematically extracting quantitative, structural features
from these graphs and demonstrating that they can be used to diagnose computational failures.

6 CONCLUSION

In this work, we introduced CRYV, a white-box methodology for studying the computational struc-
ture of reasoning failures. By treating attribution graphs as execution traces of latent circuits, we
showed that correct and incorrect reasoning leave distinct structural fingerprints. CRV revealed that
these error signatures not only enable accurate verification but are also domain-specific, with fail-
ures in different reasoning tasks manifesting as distinct patterns. Moreover, targeted interventions on
transcoder features demonstrated that these signatures are causally implicated, allowing us to correct
faulty reasoning. Together, these findings establish CRV as a proof-of-concept for mechanistic anal-
ysis, showing that shifting from opaque activations to interpretable computational structure enables
a causal understanding of how and why LLMs fail to reason correctly.
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ETHICS STATEMENT

Our research yields insights into success and failure patterns in LLM reasoning. Such knowledge
could theoretically be used for malicious purposes, such as designing adversarial attacks or engineer-
ing more subtle, undetectable reasoning failures. However, the computationally intensive nature of
CRY, which also requires deep expertise and white-box model access, positions it as a tool for deep
scientific analysis rather than a scalable method for generating exploits. The primary and intended
application of our work is defensive: by providing a scientific instrument for developers to diagnose
why a model fails, we aim to accelerate the development of more robust, reliable, and safer Al sys-
tems. We believe the benefits of enabling a deeper, causal understanding of Al failures for safety
and alignment research significantly outweigh the risks of misuse.

REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our work. Our newly generated datasets with step-level
labels and our trained transcoders will be made publicly available upon acceptance. We provide
details on our experimental setup in Section Comprehensive details are provided throughout
the Appendix, including: our dataset construction, annotation prompts, and full data statistics (Ap-
pendices [A.T] [A.2] and[A.3)); our transcoder training procedure (Appendix [B); the attribution graph
computation (Appendix[B.2); and all classifier and baseline configurations (Appendix [C.2).
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A ADDITIONAL DETAILS ON DATASETS

Here we provide a detailed description of our dataset construction, our labeling protocol, and the
final dataset statistics.

A.1 SYNTHETIC DATASET CONSTRUCTION

To create a controlled environment for studying reasoning failures, we procedurally generated two
synthetic datasets: Boolean and Arithmetic. For each, we first generated a ground-truth expression,
then prompted our base model (Llama 3.1 8B Instruct) to produce a Chain-of-Thought solution
towards solving the expression. We provide the prompt template used to generate CoT in Table [5
Once the CoT is generated, we split them into steps using regular expression.

Table 5: Prompts used for CoT generation across the three datasets. Placeholders for dynamic
content are shown in italics.

Dataset Llama 3.1 8B Instruct Prompt Template

Boolean <|begin_of_text|><|start-header_id|>system<|end-header_id|>
Evaluate the boolean expression below.
<|eot_id|><|start_header_id|>user<|end_header_id|>
{boolean_expression’}

<|eot_id|><|start_header_id|>assistant<|end.header_id|>

Arithmetic <|begin_of_text|><|start_header_id|>system<|end_header_id|>
Evaluate the arithmetic expression below.
<|eot_id|><|start_header_id|>user<|end._header_id|>
{arithmetic_expression}

<|eot_id|><|start_-header_id|>assistant<|end-header.id|>

GSMSK <|begin_.of_text|><|start_header_.id|>system<|end.-header_id|>
Solve the following math problem step by step.
<|eot_id|><|start_header_id|>user<|end._-header_id|>
{gsm8k_question}

<|eot_id|><|start_header_id|>assistant<|end.header_id|>

Expression Generation. The complexity of the expressions was controlled by the number of oper-
ators, n € {3,5,7,10}. For the Arithmetic task, we generated expressions with single-digit integers
and the operators {+, —, x }. For the Boolean task, operands were simply {True,False}, and
possible operators are {and, or, not }. We generated 10,000 unique expressions for each difficulty
level, with the exception of the Boolean task at n = 3, where the number of unique expressions is
inherently limited. Table[6]shows examples from these datasets with their associated CoTs generated
by Llama 3.1 8B Instruct model.

A.2 LABELING PROTOCOL

Our primary goal was to create labels of the highest possible quality. For the synthetic datasets,
we developed a rigorous two-pronged strategy that leverages both a powerful LLM judge and direct
programmatic verification, keeping only the annotations where both methods agree.

Method 1: LLM-as-a-Judge. Our first annotation method uses a powerful, external LLM—
Llama 3.3 70B Instruct—as an expert judge. For each reasoning step, the judge model was provided
with the full problem context and the generated step, and was prompted to output a binary correct-
ness label and a justification. This method was used for all three datasets including the GSM8K
dataset. We provide the prompts used for the judge in Table|/| (Boolean), Table [8| (Arithmetic), and
Table 9] (GSM8K).

Method 2: Programmatic State Verification (Synthetic Datasets only). For the synthetic tasks,
we developed a programmatic method to verify the logical integrity of the entire reasoning trace.
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Table 6: Examples of generated expressions and the corresponding CoT generated by our base model
for the synthetic datasets.

Task

Example

Boolean (n = 5) Expression: ( ((True or True) and (True and True)) or (True and False))

Generated CoT: To evaluate the boolean expression, we need to follow the order of operations (PEMDAS):
1. Evaluate the expressions inside the innermost parentheses:

* (True or True) = True

* (True and True) = True

2. Now the expression becomes:
* (True and True) or (True and False)

3. Evaluate the expressions inside the parentheses:
* (True and True) = True
* (True and False) = False

4. Now the expression becomes:
*True or False

5. Evaluate the final expression:
*True or False = True

The final answer is True.

Arithmetic (n = 7) Expression: ( (((=3)+(=6))* (9%6))+(-4))

Generated CoT: To evaluate this expression, we need to follow the order of operations (PEMDAS):

1. Evaluate the expressions inside the innermost parentheses:
*(=3) + (-6) = -9

2. Multiply 9 and 6:
¥9 x 6 = 54

3. Multiply -9 and 54:
¥-9 x 54 = -486

4. Add -4 to -486:
*—-486 + (-4) = -490

The final answer is -490.

This goes beyond simply checking the correctness of a single calculation. After each reasoning step
1 generated by the model, we use a specially crafted prompt to ask the model to output the current,
simplified state of the original expression.

For example, if the original expression is (3+5) 2 and the model’s first stepis 1. 3+5=8, we
then prompt it: “Now the original expression becomes: ”. The model is expected to return the
reduced expression 8x2. We then programmatically evaluate the ground-truth value of both the
original expression and this new, simplified expression returned by the model. A step is labeled
‘correct’ only if the two values are identical. If at any point the value of the simplified expression
diverges from the ground-truth value of the original, that step is labeled ‘incorrect’. While occa-
sionally the model outputs a reduced expression which evaluates to the same value despite being
incorrect, this method filters a significant amount of errors.

Final Label Agreement. To create our final, high-fidelity label set for the synthetic tasks, we took
the intersection of the labels from both methods. That is, a reasoning step was only included in our
final dataset if both the LLM-as-a-Judge and the programmatic verifier agreed on its label. This
strict agreement protocol ensures an exceptionally clean dataset by filtering out ambiguous cases or
potential errors from either annotation methodE]

A.3 HUMAN VALIDATION OF LLM-AS-A-JUDGE LABELS

To validate the quality of our LLM-as-a-Judge annotation pipeline, a subset of 100 randomly sam-
pled Boolean and Arithmetic expressions (=700 steps) was independently annotated by four authors.
Each annotator labeled half of the set, with every step covered by at least two annotators. To mitigate
the rarity of incorrect steps, we upsampled the positive class. Because of the extreme class imbal-

SWhile this significantly increases our confidence in the label quality, it also has the effect of making the
class distribution more imbalanced, as ambiguous incorrect cases are more likely to be filtered out.
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Table 7: Prompt used for step-level annotation by the Llama 3.3 70B Instruct judge model on the
Synthetic Boolean dataset. Placeholders for dynamic content are shown in italics.

Llama 3.3 70B Instruct Prompt Template

<|begin.of_text|><|start_-header_id|>system<|end-header_id|>

You are an expert in logical reasoning and boolean algebra. You evaluate the correctness of reasoning steps in boolean expression
evaluation with high precision.
<|eot_id|><|start_header_id|>user<|end_header_id|>

Evaluate this reasoning step for logical correctness:

Original Boolean Expression: {original_expression}
Correct Truth Value: {correct_value}

Context (previous steps):
{context}

Step to evaluate: {step}

Evaluation criteria:

- Is the boolean operation applied correctly?

- Does the step follow proper order of operations?
- Are the truth values computed accurately?

- Is the reasoning logically sound?

Respond with exactly one of the following:

- CORRECT: if the step is logically sound and mathematically accurate

- INCORRECT: if the step contains logical errors, mathematical mistakes, or invalid reasoning

Your response should start with either “CORRECT” or “INCORRECT"” followed by a brief explanation.

<|eot_id|><|start_header_id|>assistant<|end_header_id|>

Table 8: Prompt used for step-level annotation by the Llama 3.3 70B Instruct judge model on the
Synthetic Arithmetic dataset. Placeholders for dynamic content are shown in italics.

Llama 3.3 70B Instruct Prompt Template

<|begin.of_text|><|start-header_id|>system<|end-header_id|>

You are an expert in mathematical reasoning and arithmetic operations. You evaluate the correctness of reasoning steps in arithmetic
expression evaluation with high precision.
<|eot_id|><|start_header_id|>user<|end_-header_id|>

Evaluate this reasoning step for mathematical correctness:

Original Arithmetic Expression: {original_expression}
Correct Value: {correct_value}

Context (previous steps):
{context}

Step to evaluate: {step}

Evaluation criteria:

- Are the arithmetic operations applied correctly?

- Does the step follow proper order of operations (PEMDAS/BODMAS)?
- Are the numerical computations accurate?

- Is the mathematical reasoning sound?

Respond with exactly one of the following:

- CORRECT: if the step is mathematically sound and computationally accurate

- INCORRECT: if the step contains mathematical errors, computational mistakes, or invalid reasoning
Your response should start with either “CORRECT” or “INCORRECT” followed by a brief explanation.

<|eot_id|><|start_header_id|>assistant<|end_header_id|>

ance, Cohen’s Kappa (x) can underestimate agreement, so we report both x and raw percentage
agreement to give a fuller view of inter-annotator reliability.

The results are summarized in Table [T0] The agreement among human annotators was moderate
as measured by Cohen’s Kappa (x = 0.42) but high in simple agreement (87.3%). When compar-
ing the consensus human labels to the LL.M-as-a-Judge labels, we found fair agreement by Kappa
(k = 0.26) and similarly high simple agreement (84.1%). A qualitative review of the disagreements
revealed a recurring pattern: the vast majority of discrepancies, both among humans and between hu-
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Table 9: Prompt used for step-level annotation by the Llama 3.3 70B Instruct judge model on the
GSMBSK dataset. Placeholders for dynamic content are shown in italics.

Llama 3.3 70B Instruct Prompt Template

<|begin.of_text|><|start_-header_id|>system<|end-header_id|>

You are an expert in mathematical word problems and quantitative reasoning. Your purpose is to evaluate a single reasoning step taken
to solve a multi-step word problem. You must be precise, focusing only on the provided step and its relationship to the problem and
previously established facts.

<|eot_.id|><|start_header_id|>user<|end_-header_id|>

Your task is to evaluate the provided reasoning step for logical and mathematical correctness.

Original Math Problem: {original_question}
Correct Final Answer: {correct_value}

Context (previous steps):
{context}

Step to evaluate: {step}

Evaluation criteria:
- Does the step correctly extract and interpret information from the ‘Original Problem’ or the ‘Context’?
- Is it using the right numbers for the right concepts?
- Is the chosen mathematical operation (e.g., addition, subtraction) the correct one to achieve the step’s goal, based on the narrative of
the ‘Original Problem’?
- Is the arithmetic in the step performed correctly?
- Is the mathematical reasoning sound?
- Is the step logically consistent with the problem and previous steps?
- The following types of steps do not contain an error and must be classified as CORRECT:
- A simple, factually accurate restatement of information from the problem or context.
- A non-substantive introductory or conversational phrase (e.g., “Let’s solve this step by step”, “First, we need to find...”).

Respond with exactly one of the following:

- CORRECT: if the step is mathematically sound and computationally accurate

- INCORRECT: if the step contains mathematical errors, computational mistakes, or invalid reasoning
Your response should start with either “CORRECT” or “INCORRECT” followed by a brief explanation.

<|eot_id|><|start_header_id|>assistant<|end_.header_id|>

mans and the LLM judge, occurred on steps that followed an initial reasoning error. This highlights
the inherent ambiguity of labeling steps on a corrupted computational path and directly motivates
our strict truncation policy, as detailed in the following section.

Table 10: Inter-Annotator Agreement (IAA) statistics for the human validation study. The com-
parison shows moderate-to-high agreement, with lower Kappa scores reflecting the extreme class
imbalance.

Comparison Cohen’s Kappa (k) Agreement (%)
Human vs. Human (Inter-Annotator) 0.42 87.3%
Human vs. LLM-as-a-Judge 0.26 84.1%

A.4 HANDLING ERROR PROPAGATION

A key challenge in labeling CoT is handling steps that occur after the first mistake. A model can
make a technically correct calculation based on a previously incorrect number or expression. This
creates a fundamental ambiguity: should a step be judged on its local correctness or its global
contribution to the final answer?

To illustrate this problem, consider the flawed CoT trace shown in Table The model correctly
evaluates the innermost parentheses in Step 1. However, in Step 2, it makes a critical structural error
by incorrectly dropping parentheses, which alters the order of operations. The correct simplification
in Step 4 should have been “not (False or True)”. While subsequent steps like 5 and 7
are arithmetically valid given the new, flawed expression from Step 2, their ultimate correctness is
undefined as they exist on a corrupted computational path. To avoid this ambiguity and create a
clean, well-defined verification task, we adopted a strict truncation policy. For any given reasoning
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Table 11: An example of a flawed CoT trace demonstrating error propagation. The first unrecover-
able error in Step 2 renders the correctness of all subsequent steps ambiguous.

Original Expression: ( not ( ( False or ( True and False ) ) or ( True or False ) ) )

Model’s Generated Chain-of-Thought: To evaluate this expression, we need to follow the order of operations (PEMDAS):

1. Evaluate the innermost parentheses: (True and False) = False. So, (False or (True and False)) =
False or False = False

2. Now, the expression becomes: (not (False or (True andFalse)) or (True or False))

3. Evaluate the next innermost parentheses: (True or False) = True. So, (not (False or (True and False))
or (True or False)) = (not False or True)

4. Now, the expression becomes: (not False or True)

5. Evaluate the NOT operator: not False = True

6. Now, the expression becomes: True or True

7. Finally, evaluate the OR operator: True or True = True
Therefore, the final result of the boolean expression is: True

chain, we only retain the steps up to and including the first incorrect step. All subsequent steps are
discarded from our dataset.

A.5 DATASET STATISTICS AND MODEL PERFORMANCE

For GSM8K, we used the official testset split. Since its reasoning steps are expressed in natural
language and are not always programmatically verifiable, we relied solely on our validated LLM-as-
a-Judge pipeline for annotation. Table[I2]provides the final statistics for all three datasets, including
size and label distribution. Table [T3] reports the base performance of our Llama 3.1 8B Instruct
model on these tasks.

Table 12: Final statistics of our curated datasets, showing the number of reasoning steps and the
distribution of correct/incorrect labels after our full annotation and filtering process.

Dataset Total Steps % Correct % Incorrect
Synthetic (Boolean) 126,624 99.8% 0.2%
Synthetic (Arithmetic) 155,434 98.8% 1.2%
GSMBK 8,737 93.4% 6.6%

Table 13: End-to-end task accuracy of our base model (Llama 3.1 8B Instruct). For the synthetic
datasets, we provide a fine-grained breakdown by difficulty, controlled by the number of operators

(n).

Dataset Difficulty (Operators) Final Answer Accuracy

n=3 98.4%

n=5 93.27%
Synthetic (Boolean) n=7 89.4%

n=10 78.43%

n=3 94.83%

n=5 86.8%
Synthetic (Arithmetic) n=7 73.07%

n=10 52.8%
GSMB8K - 75.82%
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B TRANSCODER TRAINING DETAILS

Our methodology relies on high-fidelity, sparsely activating transcoders to create an interpretable
model. To this end, we trained a TopK-Transcoder for each target MLP module in the Llama 3.1 8B

Instruct model. Our training protocol is designed for robustness and follows several best practices
established in recent literature.

The transcoders were trained on a high-quality, 10B token subset of the RedPajama-V2 dataset (We-
ber et al.| |2024). We pre-processed the entire training corpus by concatenating and chunking all
passages into a uniform length, and we explicitly discarded all beginning-of-sequence (BOS) to-
keng’, which we found to be detrimental to stable transcoder training. The transcoder architecture
consists of a simple autoencoder with a single hidden layer and a ReLU activation. For each MLP
layer in the base model, the transcoder is trained to take the residual stream before the MLP block
as input and reconstruct the residual stream after the MLP’s computation. The input dimension
matches the Llama 3.1 8B’s MLP hidden dimension (4096), and the latent feature dimension was
set to an overcomplete basis of 131,072. We enforced sparsity structurally using a TopK mechanism,
preserving only the k£ = 128 largest feature activations in the forward pass.

We followed several established training techniques to improve feature quality and avoid common
pitfalls (Gao et al.| [2024;|Yang et al.,2025). The decoder weights were normalized to have unit norm,
and we did not tie the encoder and decoder weights. To prevent feature collapse, we implemented
a dead neuron revival mechanism: if a feature neuron had not activated in 10 million tokens, its
activation was forced with an auxiliary loss (coefficient of 1/32).

The transcoders were trained for 4 epochs using the AdamW optimizer. The learning rate was
set to 7e-5 with a warmup ratio of 0.5. Training was conducted on 4 nodes, each with 8 Nvidia
H200 GPUs, using a total batch size of 4,096. This was achieved with a per-device batch size
of 32 and gradient accumulation steps. We found that the training loss generally saturated after

approximately 4,000 steps, indicating efficient convergence. We show the training loss on selected
layers in Figure[3]

Loss

— topk-transcoder-Top-128_layers_31-Llama-3.1-8B-instruct-latents131072 total_loss/layers.31

i
i
i
i
i
i
i
1
i
i
i
i

Figure 5: Transcoder Training Loss Curves. The x-axis represents training steps. In all cases, the
loss converges efficiently, generally saturating after approximately 4,000 steps.

B.1 IMPACT OF TRAINING TRANSCODERS ON INSTRUCTION-TUNING DATA

Since our base LLM used is an instruct model, a natural hypothesis is that transcoders fine-tuned on
instruction-following data might learn features more relevant to CoT reasoning, thereby improving
verification performance. To test this, we trained an version of our transcoders with instruction-
tuning (IT) data. Starting from our pre-trained base transcoders, we continued fine-tuning for 1
epoch on the LMSYS-Chat-1M dataset (Zheng et al.| [2024), using the same hyperparameters as for

SBOS tokens are retained when generating activations but their activations are removed afterward for train-
ing the transcoders.
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Table 14: Performance comparison of CRV with Base transcoders vs. transcoders further trained
on Instruction-Tuning (IT) data. Arrows indicate preferred direction (1 higher is better, | lower is
better).

Trangcgder Synthetic (Boolean) Synthetic (Arithmetic) GSMSK

Training % 'ROCY AUPR{ FPR@95| AUROCT AUPR{ FPR@95| AUROC] AUPR{ FPR@95 |
Base 75.87 0.97 79.17 92.47 28.92 37.09 70.17 143 79.61
+IT Data 76.04 1.20 66.82 91.39 28.44 38.47 72.01 15.40 83.27

the base transcoder training. Following the methodology of [Lieberum et al.| (2024), we prepended
and appended the Llama 3.1 8B Instruct model’s IT prefixes to the user queries and model responses
respectively.

However, as shown in Table this additional training on IT data did not yield a consistent or
meaningful improvement in verification performance on our tasks. This finding is consistent with
recent work by|[Kissane et al.|(2024)), who found that SAEs trained on base model activations can also
faithfully reconstruct the activations of derived IT models. While a deeper mechanistic investigation
into how instruction-tuning affects the underlying feature space is a promising direction, we leave
this for future work. For our main experiments, we therefore use the more general base transcoders.

B.2 ATTRIBUTION GRAPH COMPUTATION

Implementation Details. We use the implementation from|Hanna et al.|(2025) to compute attribu-
tion graphs. The primary hyperparameters were set as follows: a maximum of 4096 feature nodes,
attribution traced from a maximum of 10 logit nodes (selected by a cumulative probability threshold
of 0.95), and a batch size of 16 for backward passes. All other parameters follow the repository
defaults.

Table 15: Performance comparison of CRV using different token positions for attribution graph
computation. The “After” setting computes the graph at the final token of the current step, while
“Before” uses the final token of the previous step. Arrows indicate preferred direction (1 higher is
better, | lower is better).

. L. Synthetic (Boolean) Synthetic (Arithmetic) GSMSK
Attribution Position
AUROC1T AUPR?T FPR@95| AUROCT AUPR?T FPR@95| AUROC?tT AUPRT FPR@95 |
Before 68.66 1.80 77.44 85.95 12.05 47.89 70.32 16.19 85.29
After 75.87 0.97 79.17 92.47 28.92 37.09 70.17 14.3 79.61

Ablation on Attribution Position. The attribution graph is computed with respect to a specific
token position. The choice of this position is a critical methodological decision, as it determines
which computational moment we analyze. We investigate two hypotheses: analyzing the state before
a step is generated (the “pre-computation” trace) versus the state after it is complete (the “post-
computation” trace). To test this, we compare two settings: (1) Before: computing the graph at
the position of the final token of the previous reasoning step. For the first step of the CoT, this
corresponds to the final token of the input question. (2) After: computing the graph at the final token
of the current reasoning step, which is the default setting for our main experiments.

The results, presented in Table [I5] show a clear and consistent advantage for the “After” setting
across nearly all metrics and domains. We hypothesize that this is because the structural signatures
of a flawed computation are most fully consolidated in the final token’s representation after the step
has been fully executed. The pre-computation state may contain signals of intent or planning, but the
post-computation state contains the definitive trace of the executed algorithm, including the evidence
of its failure. Based on these results, all experiments in the main body of the paper use the “After”
(current step) position.
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C ADDITIONAL CLASSIFICATION DETAILS

C.1 ATTRIBUTION GRAPH FEATURES

Here we give details about the extracted features for our attribution graphs that we used for our
classifier. The feature set is organized into three hierarchical levels:

1. Global Graph Statistics: These features provide a high-level summary of the pruned computa-
tional graph.

e Node Counts: The total number of active transcoder features, as well as the count of
transcoder feature nodes and residual stream nodes remaining after pruning. This captures
the overall sparsity and composition of the influential subgraph.

* Logit Statistics: The probability of the top-ranked token and the entropy of the final logit
distribution. These classic uncertainty measures serve as simple but informative baseline
features.

2. Node Influence and Activation Statistics: This group of features characterizes the properties of
the nodes within the pruned graph, moving beyond simple counts.

* Influence Scores: The mean influence of all nodes in the pruned graph, along with the
total and mean influence specifically from the residual stream (“error”’) nodes. This helps
quantify how much of the final output is attributed to specific learned features versus the
model’s direct pass-through states.

* Activation Statistics: For the pruned transcoder feature nodes, we compute the mean, max,
and standard deviation of their activation values. This captures the intensity and distribution
of the active, interpretable features. A high maximum activation, for instance, might signal
that a single, highly decisive feature was responsible for the step.

* Layer-wise Feature Histogram: A histogram of active transcoder features across the
model’s layers. This feature vector characterizes the distribution of computational effort
across the model’s depth, allowing us to test hypotheses such as whether errors correlate
with the activation of components at specific layers.

3. Topological and Path-Based Features: To capture the structure and efficiency of the information
flow, we compute a rich set of topological features on the pruned, directed subgraph.

» Edge and Density Statistics: Aggregate statistics on the edge weights (sum, mean, std),
the total number of edges, and the graph density. We hypothesize that a sparse, fragmented
graph (low density, few edges) may indicate a breakdown in information flow characteristic
of an error.

* Centrality Measures: To identify critical “hub” nodes in the computation, we calculate
the mean and max for both degree centrality and weighted betweenness centrality. These
features assess whether influence is concentrated or diffused.

* Connectivity and Path Lengths: The number of weakly connected components and the
average shortest path length within the largest component. A highly fragmented graph may
suggest a failed computation. A particularly crucial feature is the shortest path length
from any input token node to any final logit node. This directly measures how efficiently
information from the prompt propagates to the final decision. A long or non-existent path
is hypothesized to be a strong signal that the model is “ignoring” its instructions or context.

C.2 ADDITIONAL DETAILS ON BASELINES

Here we provide additional implementation details for the baseline methods used in our main exper-
iments, ensuring full reproducibility.

Black-Box Baselines. This category includes methods that operate solely on the output logits of
the final token for each reasoning step. We use implementations from |Wang et al.| (2025a).
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Gray-Box Baselines. This category includes methods that leverage the model’s internal hidden
states. For CoE (Wang et al.,2025a) and CoT-Kinetics (B1 et al.,[2025), which are training-free, we
followed the official implementations and protocols described by their respective authors to compute
the verification scores. We set v in CoT-Kinetics to 0.8, and use mean pooling for reasoning token
aggregation.

For our supervised LR Probe baseline, the choice of which layer’s hidden states to use is a hyper-
parameter. To determine the optimal layer for each dataset, we performed a hyperparameter search,
training a separate probe on the average hidden states from each of the 32 layers of Llama 3.1 8B
Instruct on a small validation split. This process allowed us to identify the layer that contained the
most predictive signal for each distinct reasoning task. The best-performing layers, which were
subsequently used for the main results reported in Table|l| were found to be:

* Layer 0 (the token embedding layer) for the Synthetic (Boolean) dataset.
* Layer 9 for the Synthetic (Arithmetic) dataset.
* Layer 0 (the token embedding layer) for the GSMS8K dataset.

Table 16: Performance comparison of different diagnostic classifiers. Arrows indicate preferred
direction (1 higher is better, | lower is better).

Method Synthetic (Boolean) Synthetic (Arithmetic) GSMSK

AUROCT AUPRT FPR@95] AUROCT AUPRT FPR@95] AUROCT AUPRT FPR@95 |
Dummy 50.8 0.25 100 49.84 1.20 100 48.06 6.46 100
Logistic Regression 76.4 0.75 68.91 89.5 11.46 41.56 73.8 18.70 78.69
Random Forest 61.71 4.49 100 92.99 43.68 30.56 71.7 17.65 76.18
Gradient Boosting 75.87 0.97 79.17 92.47 28.92 37.09 70.17 14.3 79.61

C.3 ADDITIONAL CLASSIFIER AND THEIR RESULTS

To validate our choice of a Gradient Boosting classifier for the main experiments, we benchmarked
its performance against several standard alternatives on our curated graph feature set. We evalu-
ated a simple baseline, a linear model, and another tree-based ensemble to understand the trade-offs
between model complexity and verification performance. For this analysis and main experiments
in this work, we used the default hyperparameters from the scikit-learn library (Pedregosa et al.,
2011) for each classifier, as an initial, non-exhaustive hyperparameter search did not yield any sig-
nificant improvements, suggesting that the feature set itself provides a strong signal that is not overly
sensitive to classifier configuration.

The results are presented in Table[T6] As expected, the Dummy classifier, which makes predictions
based on the training set’s class distribution, performs near chance level (AUROC = 50). This
confirms that our graph features contain a significant predictive signal that is non-trivial to learn.
Interestingly, a standard Logistic Regression model achieves competitive performance, yielding the
best AUROC on two of the three datasets and the strongest overall results on GSMS8K. This indicates
that the features are highly informative even with a simple linear model.

However, the tree-based ensembles often achieve superior performance on other key metrics. The
Random Forest classifier, for instance, yields a substantially higher AUPR and lower FPR@95 on
the complex Arithmetic dataset, suggesting its ability to capture non-linear feature interactions is
critical for high-precision verification in that domain. Overall, no single classifier is dominant across
all domains and metrics. We chose Gradient Boosting for our main experiments as it consistently
provides a strong and robust performance profile, but these results highlight that the optimal choice
of diagnostic classifier may be domain-specific.

C.4 ADDITIONAL RESULTS FOR RQS

Here we provide additional results for our research questions. We first show distributions of highly
predictive features for correct versus incorrect reasoning steps on our synthetic datasets (Figure [6]
for arithmetic; Figure 7] for Boolean). Next, we display the distributions of full feature vectors after
t-SNE projection in Figure
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Figure 6: Topological Fingerprints of Error on Arithmetic. Distributions of five selected graph
features for correct (blue) vs. incorrect (red) reasoning steps. The visual separation is statistically
significant for each feature shown (independent t-test, p < 0.001) and represents a medium-to-large
effect size (Cohen’s d). This provides quantitative evidence that attribution graphs contain a clear,
separable structural signal of a computation’s integrity.
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Figure 7: Topological Fingerprints of Error on Boolean. Distributions of five selected graph
features for correct (blue) vs. incorrect (red) reasoning steps. The visual separation is statistically
significant for each feature shown (independent t-test, p < 0.001) and represents a medium-to-large
effect size (Cohen’s d). This provides quantitative evidence that attribution graphs contain a clear,
separable structural signal of a computation’s integrity.

We demonstrate another casual intervention with a concrete case study on the arithmetic task, where
we correct a subtle mathematical parsing error not by suppressing a faulty feature, but by amplifying
a correct one. We present the model with the expression (— (5+ (4x9) ) ). As shown in Table
the model initially misinterprets the leading unary minus, treating it as a subtraction from an implicit
-1 and producing the incorrect result of -42. Our CRV classifier flagged this step as incorrect,
and its feature importance analysis suggested that the error stemmed from the absence of a strong
“multiplication” signal.

Hypothesizing that the model failed to recognize the unary minus as a multiplication by -1, we
performed a direct intervention. We identified a transcoder feature from the graph whose semantics
corresponded to multiplication and, using a forward hook, manually amplified its activation value
just before the model generated its erroneous step. The effect was immediate and successful. As
shown in the “After Intervention” column, this boost was sufficient to steer the model onto the
correct computational path. It now correctly multiplies by -1 and arrives at the final answer of -41.

Correct
Incorrect

Correct
Incorrect

Correct
Incorrect

(b) Arithmetic (c) GSM8K

(a) Boolean

Figure 8: Distributions of features after t-SNE for correct (blue) vs. incorrect (red) reasoning steps.
The separation validates that CRV captures a distinct structural fingerprint of error.
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Table 17: A successful causal intervention via feature amplification. A subtraction error is corrected
by amplifying a multiplication feature, steering the model to the correct reasoning path.

Before Intervention (Incorrect)

After Intervention (Correct)

Evaluate the arithmetic expression below.
(-(5+(47%9)))

To evaluate this expression, we need to follow

the order of operations (PEMDAS):
1. Multiply 4 and 9: 4 * 9 =36

2. Add 5 and 36: 5 +36 =41

3. Subtract 41 from -1: -1 - 41 =-42
The final answer is -42.

Evaluate the arithmetic expression below.
(-(5+(4%9)))

To evaluate this expression, we need to follow
the order of operations (PEMDAS):

1. Multiply 4 and 9: 4 * 9 =36

2. Add 5 and 36: 5 +36 =41

3. Multiply -1 by 41: -1 * 41 = -41

The final answer is: -41.
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D USAGE OF LANGUAGE LANGUAGE MODELS

In the preparation of this manuscript, we utilized LLMs as writing assistants. Their role was strictly
limited to improving the clarity, conciseness, and grammatical correctness of the text. The authors
take full responsibility for all content and any remaining errors.

E LIMITATIONS

Our work introduces a new methodology for the scientific analysis of reasoning, and its limitations
are intrinsically linked to its design as a white-box, mechanistic instrument.

Computational Intensity. A primary limitation of CRV is its computational intensity. The pro-
cess, which involves training a suite of transcoders, replacing model modules, and constructing a
detailed attribution graph for every reasoning step, is orders of magnitude more resource-intensive
than black-box or gray-box verification methods. This cost is a direct consequence of our white-box
approach, which prioritizes mechanistic depth over practical efficiency. As such, CRV in its cur-
rent form is positioned as a scientific tool for deep analysis, not as a scalable, real-time verifier for
production systems.

Aggregative vs. Feature-Level Analysis. The feature set used by CRV is primarily aggregative;
it captures statistical and topological properties of the graph, such as node counts, influence scores,
and density. As an early work, it does not yet fully exploit the semantic content of the individual
transcoder features that constitute the graph’s nodes. For instance, our current classifier learns statis-
tical correlations over the entire feature set; it does not reason symbolically about whether a specific
feature for numerical addition is appropriately activated by numerical inputs. This represents a sig-
nificant opportunity. A promising future direction lies in developing more sophisticated classifiers
or rule-based systems that operate directly on the semantics of these disentangled features, paving
the way for a new class of neuro-symbolic verifiers.

Generalizability of Error Signatures. Our empirical results are based on a single model family
(Llama 3.1) at the 8B scale. Whether the precise structural fingerprints we identified generalize
to different architectural paradigms, such as Mixture-of-Experts, or across significant model scales
(e.g., 70B and larger) remains an open question. Furthermore, as our cross-domain experiments
revealed, the error signatures are highly domain-specific. Our work provides a strong foundation
and a methodology for discovering these signatures, but further studies are needed to determine if
more universal principles of computational failure exist.

Fidelity of Interpretability Tools. The validity of our analysis is contingent on the quality and
fidelity of the underlying interpretability tools. The features identified by our transcoders, while
demonstrably useful, represent one possible sparse basis and are not exhaustive. Similarly, the attri-
bution method provides a powerful but ultimately incomplete approximation of the true information
flow within the model. Future improvements in these foundational techniques, such as the develop-
ment of more faithful sparse autoencoders or more precise attribution methods, will directly enhance
the resolution and reliability of analyses like ours.
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