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Abstract

Parallel thinking has emerged as a novel approach for enhancing the reasoning
capabilities of large language models (LLMs) by exploring multiple reasoning
paths concurrently. However, activating such capabilities through training remains
challenging, as existing methods predominantly rely on supervised fine-tuning
(SFT) over synthetic data, which encourages teacher-forced imitation rather than
exploration and generalization. Different from them, we propose Parallel-R1,
the first reinforcement learning (RL) framework that enables parallel thinking
behaviors for complex real-world reasoning tasks. Our framework employs a
progressive curriculum that explicitly addresses the cold-start problem in training
parallel thinking with RL. We first use SFT on prompt-generated trajectories
from easier tasks to instill the parallel thinking ability, then transition to RL to
explore and generalize this skill on harder problems. Experiments on various
math benchmarks, including MATH, AMC23, and AIME, show that Parallel-R1
successfully instills parallel thinking, leading to 8.4% accuracy improvements over
the sequential thinking model trained directly on challenging tasks with RL. Further
analysis reveals a clear shift in the model’s thinking behavior: at an early stage, it
uses parallel thinking as an exploration strategy, while in a later stage, it uses the
same capability for multi-perspective verification. Most significantly, we validate
parallel thinking as a mid-training exploration scaffold, where this temporary
exploratory phase unlocks a higher performance ceiling after RL, yielding a 42.9%
improvement over the baseline.

1 Introduction

Google’s Gemini recently credited its success at the International Mathematical Olympiad in part
to a new capability: parallel thinking [Luong and Lockhart, 2025]. This approach, as exemplified
by Figure 1 (top), involves jointly conducting both parallel and sequential thinking. This success
highlights the value of parallel thinking as more than a technical trick. Indeed, cognitive science
suggests that humans often engage in such thinking, considering multiple possibilities simultaneously
before synthesizing them into coherent conclusions. This process encourages divergent thought,
prevents premature “lock-in” to a single, potentially suboptimal solution, and facilitates structured,
deliberate reasoning [Clark, 1989, Jackendoff, 2011]. Inspired by these, we investigate how to
effectively instill parallel thinking in large language models (LLMs).
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How many positive whole-number divisors does 196 have?Q

To find the number of positive whole number divisors of 196, we first need to determine its prime

factorization.… <Parallel> {Parallel Thinking Results} … cotinine generation…

<Path> Use the formula derived from 

the prime factorization: … </Path>

<Path>One way is to list all the 
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them …</Path> 

<Summary>Both Approach confirms the answer is 9. </Summary>
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Figure 1: An overview of the proposed framework. (Top) During inference, the model generates in
a standard auto-regressive fashion until it emits a special <Parallel> tag. At that point, it spawns
multiple threads to explore different solution paths or perspectives, then summarizes their outputs.
These contents are merged back into the main context, and generation continues. This cycle may
repeat several times before the model arrives at the final answer. (Bottom) Parallel thinking ability
is obtained by a progressive multi-stage training approach. Intuitively, the approach first equips the
model with parallel thinking ability on easy math problems and then progressively extends it to more
general and difficult problems through reinforcement learning.

Despite its potential, the question of how to activate parallel thinking remains open. While test-
time strategies [Yao et al., 2023, Wang et al., 2022, Brown et al., 2024, Zhang et al., 2024, Hsu
et al., 2025, Rodionov et al., 2025, Fu et al., 2025] can elicit such behavior at the cost of high
inference overhead, there is a growing interest in permanently instilling this capability through
training. However, current training-based approaches fall short of this goal. Methods based on
supervised fine-tuning (SFT) [Yang et al., 2025b, Macfarlane et al., 2025, Chen et al., 2025a],
for instance, essentially perform behavioral cloning on pre-generated reasoning trajectories. This
approach often relies on complex and costly data pipelines to synthesize high-quality parallel thinking
data, leading to superficial pattern matching rather than the acquisition of a deep, intrinsic reasoning
skill. Consequently, while models can replicate known patterns, their ability to generalize the
underlying parallel thinking strategy is severely limited.

In contrast, reinforcement learning (RL) offers a more scalable approach to activating the parallel
thinking ability of LLMs since we could let the model explore and learn such behaviors in the wild.
However, applying RL to teach models to conduct parallel thinking is not trivial. Since the current
LLMs have not seen parallel thinking behavior during the pre-training and sft, they cannot generate
such trajectories during explorations for the model to learn from. Thus, the cold-start training becomes
crucial. The goal of this stage is to teach the model basic formats without harming it too much, which
requires a small-scale, high-quality dataset. However, the fact is that high-quality parallel thinking
data for complex, real-world problems is extremely rare in natural text and difficult to synthesize.
This explains why successful applications of RL for parallel thinking have been confined to narrow,
synthetic domains, such as the CountDown task [Pan et al., 2025]. Additionally, the best reward
function for RL remains unclear. If we only use the final correctness as the reward, the model might
take shortcuts to forget the complex but better parallel thinking strategy. On the other hand, if we force
the model to use a thinking strategy, the model might learn to use parallel thinking in unnecessary
scenarios. Lastly, the strategic role and underlying mechanisms of parallel thinking in LLMs are
largely a black box. Even if a model acquires this ability, critical questions remain unanswered. For
instance, how does the model’s strategy evolve throughout training? Without understanding this
dynamic, it’s impossible to fully unlock the potential of parallel thinking technology.

To address these challenges, we present the first reinforcement learning framework designed to
help models to learn parallel thinking behavior via exploration on general mathematical reasoning
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tasks. First, to resolve the critical cold-start problem, we propose a progressive curriculum. As
shown in Figure 1, it begins with supervised fine-tuning on simpler problems, for which we find
high-quality parallel thinking data can be generated easily via simple prompting (see Table 1). This
initial stage, using our created Parallel-GSM8K dataset, effectively teaches the model the basic
format of parallel thinking before it transitions to reinforcement learning on more difficult tasks to
explore and generalize this new ability. Second, we tackle the critical challenge of reward design
by exploring how to balance final accuracy with the desired parallel thinking structure. We propose
and investigate multiple reward schemes. Our key finding is an effective alternating reward strategy,
which switches between an outcome-based (accuracy) reward and a reward that encourages parallel
thinking behaviors within fixed windows, e.g., every 10 steps. We show this approach achieves a
superior balance between high performance and consistent utilization of parallel thinking compared
to using a single reward type alone. Lastly, to open the "black box" of its strategic role, we conduct a
detailed analysis of the model’s learned behavior throughout the training process. Our analysis reveals
a clear strategic evolution: the model initially leverages parallel paths for computational exploration
to discover potential solutions, but as it gains proficiency, its strategy shifts towards using them for
multi-perspective verification to confirm the final answer. This finding provides the first empirical
evidence of how an LLM’s reasoning strategy with parallel thinking evolves, offering crucial insights
into the underlying mechanisms that drive its effectiveness. Based on this, we further conceptualize
and empirically validate the idea of using parallel thinking as a mid-training exploration scaffold—a
temporary exploratory phase that unlocks a higher performance ceiling, notably achieving a peak
accuracy of 25.6% on the challenging AIME25 benchmark. We investigate these contributions across
both causal and structured model variants to provide robust insights into architectural design.

In all, our core contributions can be summarized as follows:

• We present the first RL framework to learn parallel thinking from scratch on general mathematical
reasoning tasks, enabled by our progressive curriculum and dedicated Reward Design.

• We provide a deep analysis of the learning dynamics, revealing that the model’s strategy evolves
from exploration to verification. We further identify and empirically validate the concept of
parallel thinking as a mid-training exploration scaffold.

• We provide comprehensive empirical validation, including a comparison of causal and structured
model variants. Our approach yields consistent gains across multiple benchmarks, and ablations
offer practical insights into reward and architectural design.

2 Learning Parallel Thinking via Reinforcement Learning

2.1 Overview

Previous methods for training parallel thinking, such as those in [Yang et al., 2025b, Macfarlane
et al., 2025, Chen et al., 2025a], primarily rely on SFT, a paradigm that suffers from several key
limitations. By its nature, SFT’s success is entirely dependent on the quality of pre-generated training
data. This creates a critical dependency on complex and costly data pipelines, especially when
generating data for final, challenging problems. Furthermore, this approach constrains the model to
merely mimicking known patterns, which hinders the acquisition of a deep, generalizable reasoning
skill. To overcome these limitations, we introduce a reinforcement learning (RL) framework.

The key insight of our approach is to bypass the need for the complex data pipelines often considered
essential for generating training data on final challenging problems [Yang et al., 2025b, Macfarlane
et al., 2025]. Instead, we generate high-quality ’cold-start’ data by using simple tasks, and then
leverage this data to enable the model to learn parallel thinking on much harder problems via
reinforcement learning. We then explore two distinct settings for learning parallel thinking via
RL: without architectural modifications and with architectural modifications. Specifically, the latter
involves modifying the model’s self-attention mask and position ids to prevent cross-attention between
parallel reasoning paths, thereby enforcing their structural independence.

In the subsequent sections, we first define our parallel thinking behaviors and their inference workflow.
We then describe our data pipeline for generating high-quality training data. Finally, we present our
RL training recipes for both settings.
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Table 1: Comparison of Parallel-Thinking Data Quality Generated by DeepSeek-R1-0528-Qwen-
3-8B on DAPO and GSM8K under identical prompts and sampling settings. The results show that,
with simple prompting, state-of-the-art models still struggle to produce concise, high-quality parallel
reasoning traces for challenging mathematics problems.

Data # Samples Parallel Thinking Format (%)
GSM8K 7472 83.7
DAPO 17916 0.0

2.2 Formulation of Parallel Thinking Behaviors

Intuitively, in human problem-solving, we often encounter moments of confusion or uncertainty,
which are referred to as "critical steps" within a reasoning chain. At these points, engaging in parallel
thinking allows us to explore multiple solution paths simultaneously and converge on a higher-quality
conclusion. Inspired by human problem-solving patterns, we formalize LLM’s parallel thinking in
two stages:

1. Exploration: When the model detects a critical step, it temporarily suspends the main chain and
launches a multi-thread search, generating N independent trajectories simultaneously.

2. Summary: After exploration, the model aggregates the outcomes, distills key insights, and resolves
conflicts to arrive at the most promising conclusion. It then automatically resumes the main
reasoning chain with the summarized conclusion.

We allow the model to repeat these two phases whenever needed during the reasoning process. We
illustrate this process in Figure 1 (Top). To implement this behavior, we introduce three control tags,
<Parallel>...</Parallel>, <Path>...</Path>, and <Summary>...</Summary>, which cor-
respond to the exploration phase, the isolation of reasoning threads, and the summary of the parallel
thinking, respectively. With these tags, we can define the workflow at the inference phase as follows:

Workflow at Inference Phase At inference time, our model dynamically executes the parallel
thinking behaviors as follows: It first conducts auto-regressive generation in the main reasoning
process. Whenever it predicts a <Parallel> token, it pauses the main reasoning chain and con-
currently expands multiple reasoning threads within separate <Path>...</Path> blocks. After
generating all parallel threads, the model automatically aggregates their outputs into a concise
<Summary>...</Summary> block, integrating insights from diverse perspectives. Finally, all con-
texts of parallel thinking are used to resume and complete the main reasoning path. Such adaptive
and dynamic parallel inference effectively leverages parallelism.

2.3 The Simple and Scalable Data Pipeline for Parallel Thinking

Collecting high-quality parallel thinking data is a significant challenge. Even though humans think in
the parallel fashion, they will summarize and only say/write the summarization. Thus, such data is
extremely rare in the natural distribution. Existing approaches, such as the one described in [Yang
et al., 2025b], try to solve this by leveraging the inherent parallelism of long CoT reasoning chains.
However, these methods rely on complex, multi-stage data pipelines that, while avoiding costly
human annotations, are computationally intensive and fundamentally limited in their scalability.

Our approach is based on a key finding from our preliminary experiments. We found that while a
simple prompting approach struggles to generate high-quality parallel-thinking data for complex
problems like DAPO, it proves highly effective for simpler tasks like GSM8K. The data in Table 1
supports this finding. Based on this discovery, we propose a simple and scalable data pipeline that
uses detailed zero-shot prompts to construct a large, high-quality corpus for these easier problems.

As the structured model variant (described in Section 2.5) utilizes architectural modifications like
path-window attention masks, it requires strict format adherence for successful training. Therefore,
to ensure the quality and alignment of this corpus, we perform an additional filtering step, a Parallel
Thinking Format Check, which is implemented by Algorithm 1. Crucially, we make the strategic
choice to use this ’cold-start’ data not to teach the model how to solve the final target tasks, but
specifically to teach it the format of parallel thinking. This initial stage allows us to transition from a
data-intensive approach to a more efficient reinforcement learning framework that can learn to elicit
and strengthen parallel thinking behaviors from the ground up.
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2.4 Eliciting Parallel Thinking via Reinforcement Learning in Causal Models

Unlike prior approaches that use complex and costly data pipelines, we design a simple and scalable
data pipeline to efficiently generate a large, high-quality parallel thinking dataset on easy math
problems. This dataset serves as a crucial cold start to teach the model the correct format for parallel
thinking. Our key idea is to use an RL framework to generalize this format and ability from simple
problems to more difficult mathematical tasks. In this section, we explore strategies to elicit this
parallel thinking behavior without modifying the model’s architecture.

2.4.1 Reinforcement Learning Algorithms

We use Group Relative Policy Optimization (GRPO) [Shao et al., 2024] as our reinforcement learning
algorithm. Our model’s rollout process follows a multi-turn interactive framework where the LLM
alternates between autoregressive generation, parallel exploration, and summarization. The concrete
process follows the same procedure as described in Section 2.2.

2.4.2 The Training Recipe and Reward Modeling

The overall training recipe consists of three stages: 1) Cold-Start Stage; 2) RL on Easy Math, and 3)
RL on General Math.

Cold-Start Stage We construct and collect a small set of parallel-thinking format examples to
fine-tune the initial RL actor using the approach in Section 2.3. Specifically, we use a distilled
Qwen3-8B model (i.e., DeepSeek-R1-0528-Qwen-3-8B) to produce high-quality parallel-thinking
outputs, extracting only non-thinking parts (final short CoT) as gold annotations.

We select the GSM8K training set, which consists of approximately 7k samples, as the seed dataset.
We call the resulting cold-start dataset Parallel-GSM8K. This cold-start training is used to teach
model the basic format of parallel thinking.

RL on Easy Math After the cold start with SFT, the model already possesses the basic ability to
generate the tags for parallel thinking, but the behavior is not stable since this special token has never
appeared in the pre-training. To address this issue, we further perform small-scale reinforcement
learning to enhance the format learning. In this stage, we use the same question set as the cold-start
data and use GRPO for our RL training. To ensure parallel ratio and accuracy, the final reward
format in this stage is: Rfinal = R⟨Parallel⟩ ×Racc. Here, the Accuracy Reward (Racc) evaluates the
correctness of the final response, while the Parallel Reward (R⟨Parallel⟩) incentivizes the model to use
parallel reasoning paths. This reward structure is designed to be binary and strict: a positive reward
of +1 is given only if the generated output contains at least one parallel thinking unit AND the final
answer is correct. Otherwise, the model receives a penalty of -1.

RL on General Math After the initial training, the model can stably generate control tags and
produce outputs in the correct parallel thinking format if needed, but it still struggles with more
challenging mathematical tasks. To address this, we apply reinforcement learning to general math
datasets, thereby generalizing the model’s parallel thinking ability beyond simple cases.

Specifically, we use the same GRPO algorithm introduced in Section 2.4.1 with accuracy reward
(Racc) as our sole reward. This is because the primary goal of this stage is to improve task performance.
For the seed problems, we choose the widely used DAPO dataset [Yu et al., 2025]. Finally, the models
produced by this stage are our Parallel-Seen variants.

2.5 Eliciting Parallel Thinking via Reinforcement Learning in Structure Models

In the previous section, we explored an RL framework that trains models to use parallel thinking
without modifying their underlying architecture. However, this approach, which we call Parallel-Seen,
does not explicitly isolate reasoning paths. As a result, hidden representations from one path can
inadvertently leak into others, and gradients across paths can interfere with each other during training.

To explore an alternative solution, we introduce a structured variant of our framework, Parallel-
Unseen. This model incorporates explicit inductive biases into the attention mechanism to enforce
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path isolation. Specifically, inspired by prior work [Yang et al., 2025b], we design path-window
masking and multiverse position encodings to achieve the goal.

2.5.1 Structured Attention Mechanism

Figure 2: Illustration of the structured atten-
tion mask and position IDs, where different
paths and the summary block have distinct
visibility regions. Blank regions indicate to-
kens that cannot attend to each other, while
colored regions indicate tokens that can.

We incorporate these inductive biases directly into the
attention layer, as shown in Figure 2.

• Path-window masking restricts each token within a
<Path> block to attend only to tokens from the same
path and the shared context. This prevents cross-path
information leakage.

• Multiverse position encodings assign a disjoint set
of position indices to each path, ensuring that the
positional embedding space does not overlap.

Together, these constraints enforce explicit isolation
among reasoning threads while preserving visibility
from the shared <Summary> block, which is essential
for integrating insights across paths.

2.5.2 The Training Recipe and Reward Modeling

In preliminary experiments, we find that directly ap-
plying the progressive training recipe from Parallel-R1-
Seen to the structured variant proves ineffective. We
attribute this to the poor generalization of attention masks from easy to hard math [Yang et al., 2025c].
To address this limitation, we remove the stage one RL and redesign the reward schedule and evaluate
two alternative schemes.

(S1) Accuracy-only. We optimize solely for task correctness.

(S2) Alternating accuracy and parallel. In this scheme, we alternate between two different
rewards within fixed windows of W=10 steps. For 80% of the steps, we use a standard accuracy-only
reward (Racc). For the remaining 20% of the steps, we use a tiered reward system to provide a
nuanced incentive for parallel thinking: 1) +1.2: If the generated output contains at least one parallel
thinking unit AND the final answer is correct; 2)+1.0: If the generated output does not contain a
parallel thinking unit AND the final answer is correct; 3) -1.0: For all other cases, including incorrect
answers.

This schedule reintroduces a calibrated incentive for parallel usage without letting it dominate training.
Together, these reward designs equip Parallel-R1-Unseen with parallel thinking behaviors.

3 Experiments

3.1 Experimental Setups

Model. We use Qwen-3-4B-Base [Yang et al., 2025a] as our backbone, the latest state-of-the-art
open-source model at this scale, offering an ideal balance between performance and efficiency.

Evaluation. We measure our models on four standard mathematical reasoning benchmarks, includ-
ing AIME’24, AIME’25, AMC’23, and MATH [Hendrycks et al., 2021]. On the MATH dataset, we
generate one response per question using a sampling temperature of T = 1.0. For the remaining three
datasets, we sample 16 independent responses per question at the same temperature and report the
average accuracy (i.e., mean@16) to reduce randomness, which is consistent with settings in Wang
et al. [2025c]. We additionally report pass@16 to show the upper bound of our approach.

Training Details. Our codebase is adapted from VERL [Sheng et al., 2024], where we primarily
follow its official training recipe without any hyperparameter tuning. In the cold start stage, we
perform SFT on our curated Parallel-GSM8K, using a batch size of 128, a learning rate of 1e-5, a
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Table 2: Performance comparison on mathematical reasoning benchmarks for the Qwen-3-4B-Base
model trained under different parallel thinking configurations. We report Mean@16 and Pass@16 for
AIME25, AIME24, and AMC23, while MATH is evaluated with Mean@1.

Method # Parallel AIME25 AIME24 AMC23 MATH Avg.
Mean@16 Pass@16 Mean@16 Pass@16 Mean@16 Pass@16 Mean@1

Qwen3-4B-Base 0.0 1.3 10.2 2.9 16.5 8.1 51.2 13.9 6.6

SFT + Parallel
Parallel-SFT-Seen 95.6 8.0 29.8 10.6 26.4 48.9 79.2 76.6 36.0
Parallel-SFT-Unseen 95.6 5.2 20.9 8.5 26.7 41.7 80.1 71.5 31.7

RL Approach
GRPO (DAPO) 0.0 14.8 32.4 18.5 30.6 63.6 85.1 83.5 45.1

+ RL on GSM8K 0.0 13.3 26.3 18.8 34.9 66.4 82.2 82.6 45.3
Parallel-R1-Seen 27.3 19.2 38.9 19.4 37.1 70.5 85.0 86.7 48.9
Parallel-R1-Unseen (S1) 13.6 17.7 37.8 18.3 33.2 69.7 88.9 82.6 47.1
Parallel-R1-Unseen (S2) 63.0 19.0 42.2 16.3 31.8 67.5 91.5 84.5 46.8

Table 3: Ablation Study on Reward Modeling for the PARALLEL-R1-UNSEEN Model.
Training Configuration Parallel Ratio AIME 25 AIME 24 AMC 23 MATH

Accuracy 13.6 17.7 18.3 69.7 82.6
Parallel 80.3 17.7 15.2 59.4 81.7
Alternating Acc./Parallel 63.0 19.0 16.3 67.5 84.5

weight decay of 0.01, and a warm-up step ratio of 0.1 with the cosine learning-rate schedule, resulting
in 58/230 gradient update steps for Parallel-SFT-Seen and Parallel-SFT-Uneen, respectively. For Stage
1, we optionally perform RL on GSM8K for five epochs, using a batch size of 1024, 5 rollouts, and a
learning rate of 1e-6 without warm-up or learning rate scheduling, resulting in 35 gradient update steps.
For Stage 2, we perform RL on the DAPO training set for 300 gradient update steps, using a batch
size of 512, a rollout of 8, and a learning rate of 1e-6 without warm-up or learning rate scheduling.

3.2 Main Results

Table 2 presents the results across four benchmarks: AIME25, AIME24, AMC23, and MATH. We
compare our method against two baselines: 1) RL with GRPO algorithm directly on the DAPO
training set, and 2) RL with GRPO in two stages: first trained on the GSM8K data, then further
trained with RL on the DAPO training set. The second baseline is included to ensure fair comparison.

Our progressive Parallel-R1 framework proved to be the most effective approach, consis-
tently outperforming all baselines as shown in Table 2. The top-performing causal variant,
Parallel-R1-Seen, achieved the highest average score of 48.9. This success stems from a curricu-
lum designed to overcome the limitations of simpler methods. For instance, while SFT provides a
substantial foundational improvement (e.g., 31.7 for Parallel-SFT-Unseen vs. 4.6 for the base
model), it is insufficient for advanced reasoning and falls considerably short of the standard GRPO
baseline’s score of 45.1. Besides, we found that a naive additional RL on easier data offers only a
marginal benefit on average (45.3 vs. 45.1), validating our strategy of using cold start for targeted
format and behavior learning.

Our results also reveal key design trade-offs. The superior performance of the Seen model compared
to its structured counterparts suggests that explicit architectural modifications can be detrimental
to RL training. Furthermore, the comparison between reward schedules for Parallel-R1-Unseen
(S1) and (S2) highlights that reward design is essential for effectively managing the trade-off
between the parallel ratio and overall performance. We provide detailed analysis in Section 3.3.1.

3.3 Analysis

3.3.1 Ablation Studies on Reward Modeling: How to Effectively Stimulate Parallel Thinking

In our work, a key question is “how to effectively stimulate parallel thinking behavior.” To answer
this, we test several reward modeling strategies, including direct accuracy, direct parallel, and an
alternating approach. We present the results in Table 3. First, we can see the “Accuracy” configuration,
which optimizes solely for problem correctness, yields the highest performance on two out of four
benchmarks, particularly on the AMC dataset (69.7). However, this approach yields a very low
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parallel ratio of 13.6. In contrast, the “Parallel” configuration, which directly rewards the generation
of parallel structures, achieves a high parallel ratio of 80.3. However, this focused optimization leads
to a significant performance drop across most benchmarks. With our "Alternating Acc./Parallel"
strategy, which periodically switches between rewarding accuracy and parallel structures, provides a
superior balance. We also provide more ablation studies on the effect of training stages and parallel
thinking prompts in Appendix D.

3.4 Evolution of Parallel Thinking Behavior During RL Training

0 100 200

0.4

0.6

0.8

Training Steps

R
el

at
iv

e
Po

si
tio

n

Figure 3: Dynamics of the relative po-
sition of the <Parallel> block during
RL training. The increasing trend indi-
cates the model learns to apply parallel
thinking later in the reasoning process.

To better understand how the model’s strategy evolves,
we analyzed the positional dynamics of the <Parallel>
block throughout the RL training. We measured the rela-
tive position of each block by dividing its starting token
index by the total sequence length of the solution. The
training dynamics in Figure 3 show a clear and consistent
trend: the average relative position of the <Parallel>
block steadily increases as RL training progresses, indicat-
ing a strategic shift from applying this feature early in the
reasoning chain toward the very end.

We interpret this positional shift as the model adopting
a more conservative strategy to maximize its reward, a
behavior shaped directly by the final-answer-dominated
reward design. In the early stages of training, when the
model’s reasoning ability is weak, using parallel paths for
computational exploration is a necessary, high-variance
strategy to discover a potential solution. However, as the model’s core reasoning ability improves,
such early-stage exploration becomes a liability that could introduce errors and jeopardize the final
reward.

Consequently, the model learns a more risk-averse strategy to secure a correct answer. It first derives
a solution using a single, high-confidence reasoning path. Only after a potential answer is found, it
deploys the <Parallel> block for multi-perspective verification. This late-stage use of parallel
thinking confirms the result without risking the integrity of the primary solution path, thus maximizing
the probability of receiving a positive reward. This learned behavior aligns with our broader finding
of a tension between final-answer optimization and the preservation of diverse reasoning structures.

To further illustrate this behavioral evolution, we present two representative case studies below (Figure
5 and 6). The first case, from an early-stage model, demonstrates the use of parallel thinking for
exploration. The second, from the late-stage model, exemplifies the learned, verification-oriented
strategy.

3.5 Extra Bonus: Parallel Thinking as a Mid-Training Exploration Strategy for RL Training

In this section, we investigate the hypothesis that parallel thinking itself can serve as an effective
structured exploration mechanism to improve RL training. A fundamental challenge in RL is
ensuring the model sufficiently explores the policy space to avoid converging to local optima. We
posit that by compelling the model to generate multiple, parallel thought blocks at specific reasoning
steps, we introduce a strong inductive bias that forces a more structured and diverse exploration,
guiding the model toward more robust policy spaces.

To empirically validate this hypothesis, we designed a two-stage training curriculum, with its dynamics
and results presented in Figure 4.

• Stage-1 (Exploration Phase, steps 0-200): The primary goal of this initial phase is to maximize
exploration. In this stage, we follow the training approach of our Parallel-R1-Unseen (S2), which
explicitly incentivizes the use of the parallel thinking structure by applying an alternating ACC/PAR
reward. As shown by the green dashed line in Figure 4, this successfully maintains a high parallel
ratio, forcing the model to explore a wide breadth of reasoning paths constantly.

• Stage-2 (Exploitation Phase, after 200 steps): At the 200-step mark, we change the focus from
exploration to exploitation. The training objective is then switched to optimize for accuracy alone,
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Figure 4: Two-stage training with parallel reasoning as a mid-training exploration scaffold. Left axis
plots AIME25 accuracy for Baseline (gray), Stage-1 (blue), and Stage-2 (red); right axis shows the
proportion of outputs using the explicit parallel thinking structure. Stage-1 (0–200 steps; vertical
dashed line) alternates ACC/PAR rewards to promote exploration, while Stage-2 continues GRPO
with an accuracy reward only and is plotted after a +200-step shift to align the timeline. As training
transitions from parallel to more sequential reasoning, the parallel ratio decreases yet accuracy
continues to improve, peaking at 25.6%, which exceeds single-thread model trained via GRPO.

allowing the model to refine and exploit the effective strategies discovered during the exploration
phase.

The experimental results provide evidence in support of our hypothesis. As depicted in Figure 4, upon
entering stage 2, the model’s performance (red line) improves, reaching a peak AIME25 accuracy
of 25.6%, a notable improvement over the Baseline GRPO model. Critically, this performance gain
occurs even as the model’s reliance on the parallel structure decreases (as shown by the declining
parallel ratio in stage 2). This key observation suggests that the value of parallel thinking lies not
only in the effectiveness of the parallel structure itself (which already outperforms the baseline), but
more importantly, in the robust policy space it helps discover through exploration. The initial forced
exploration acted as a scaffold, guiding the model to a more effective region in the policy space, from
which it could then learn a final policy.

4 Conclusion

In this work, we presented Parallel-R1, the first reinforcement learning framework to teach large
language models to perform parallel thinking from scratch on real-world mathematical reasoning
tasks. We proposed a progressive training curriculum, enabled by a simple and scalable data
pipeline, that successfully bootstraps this complex skill by separating the learning of format, behavior,
and core reasoning into distinct stages. Our approach achieved consistent accuracy improvements on
several challenging mathematical reasoning benchmarks compared to strong baselines.

Our analysis yielded several key insights into the learning dynamics. We discovered that the model
learns a risk-averse strategy, shifting its use of parallel thinking from early-stage computational
exploration to late-stage multi-perspective verification. Most significantly, we empirically identified
and validated the potential of parallel thinking as a mid-training scaffold, showing that adding this
temporary, forced-exploration phase can unlock higher final performance ceilings after RL training.
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A Related Work

A.1 Parallel Thinking

Parallel thinking has emerged as an active area of research recently [Yao et al., 2023, Wang et al.,
2022, Brown et al., 2024, Zhang et al., 2024, Huang et al., 2025a, Pan et al., 2025, Huang et al.,
2024, Hsu et al., 2025, Rodionov et al., 2025, Yang et al., 2025b, Jin et al., 2025b]. Among them, a
common brute-force strategy is to spawn multiple independent trajectories at the very beginning and
join their outcomes only at the end [Brown et al., 2024, Wang et al., 2022], or to exchange thoughts
at fixed intervals [Rodionov et al., 2025, Hsu et al., 2025]. Obviously, such schemes lack adaptivity
as the points of branching and aggregating are dictated by a pre-defined schedule, not conditioned on
the intermediate progress of the thinking process itself. To achieve finer-grained control, methods
such as Monte Carlo Tree Search [Zhang et al., 2024] and Tree of Thoughts [Yao et al., 2023] offer
more nuanced parallelism; however, they are still guided by hand-crafted heuristics based on external
verifiers. More recent work [Pan et al., 2025, Yang et al., 2025b] strives for adaptivity through RL
or SFT. However, these studies either (i) focus mainly on efficiency—losslessly converting a single
long chain-of-thought into an adaptive parallel form via SFT, which limits the discovery of new
reasoning patterns, or (ii) demonstrate RL only on toy tasks such as Countdown. In this work, we
argue that learning parallel thinking via RL is a more generic and promising direction: it not only
retains efficiency but also uncovers novel, highly adaptive reasoning behaviors, leading to improved
performance beyond the “lossless transformation” paradigm of Yang et al. [2025b]. To this end, we
proposed the first RL framework to stimulate adaptive parallel thinking for general mathematical
tasks.

A.2 Improving Reasoning via RLVR

Reinforcement Learning with Verifiable Rewards (RLVR) optimizes language models via reinforce-
ment learning using outcome-based, automatically checkable rewards, eliminating the need for
trained reward models or step-level human annotations. Recent advances have demonstrated RLVR’s
effectiveness across diverse domains—including mathematical problem solving [Guo et al., 2025],
coding [Wang et al., 2025a], multi-modal reasoning [Huang et al., 2025c, Wang et al., 2025b, Zheng
et al., 2025, Li et al., 2025b], Search [Jin et al., 2025a, Xiong et al., 2025] text generation [Li et al.,
2025a] and interactive GUI navigation [Shi et al., 2025]. In parallel, a growing body of work aims
to make RLVR more efficient and stable, proposing new training paradigms such as self-play [Liu
et al., 2025, Huang et al., 2025b] and test-time RL [Zuo et al., 2025, Zhou et al., 2025a], as well as
more robust RL algorithms including DAPO [Yu et al., 2025], VAPO [Yue et al., 2025], and high
entropy guided optimization [Wang et al., 2025c]. However, important challenges remain. Existing
methods often leave unresolved issues of faithfulness [Tanneru et al., 2024, Chen et al., 2025b, Zhou
et al., 2025b] and robustness [Sabbaghi et al., 2025, Dai et al., 2025]. Moreover, most approaches
adopt a strictly sequential reasoning paradigm. This limitation is fundamental, as LLMs do not
inherently possess parallel thinking capabilities, making it a significant and unresolved challenge to
instill this skill using standard RLVR methods. To address this specific challenge, we introduce the
first reinforcement learning framework that leverages a progressive curriculum to effectively instill
the parallel thinking ability in LLMs, fundamentally enhancing their intrinsic reasoning capabilities.

B Prompts

Baseline Prompt

{Problem} Let’s think step by step and output the final answer after "Final
Answer: ".
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Parallel Thinking Prompt

Solve the following problem step by step.
During the reasoning process, whenever you encounter a step that may benefit

from multiple perspectives or independent reasoning, insert a <Parallel>
block at that point.

Within each <Parallel> block:

Include at least two distinct and independent reasoning paths.
Each path must be enclosed within <Path> and </Path> tags.
Do not include any ordering information or cross-references between paths, as

they are generated simultaneously and independently.
Close the block with </Parallel>.
Immediately after each </Parallel>, write a concise summary of insights or

conclusions drawn from all paths, enclosed in <Summary> and </Summary>
tags.

Repeat this process adaptively as needed throughout the reasoning.
Do not explicitly mention that you are triggering parallel thinking-just

insert the <Parallel> block naturally within the reasoning chain.

End your response with a line starting with Final Answer: followed by the
final result.

Problem: {Problem}

C Case Studies
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Case Study: Find the sum of all integer bases b > 9 for which 17b is a divisor of 97b.

First, the number 17b in base b is equal to 1 × b + 7 = b + 7 in base 10. Similarly, 97b is equal to
9× b+ 7 = 9b+ 7 in base 10. We need to find all integer bases b > 9 such that b+ 7 divides 9b+ 7.
At this point, consider two distinct strategies for finding b:

<Parallel >
<Path >
Factor theorem approach: Consider 9b + 7 as a polynomial in b

and use the factor theorem.
Since b + 7 divides 9b + 7, by the factor theorem , 9(-7) + 7 =

-63 + 7 = -56 must be divisible by b + 7.
Since b > 9, b + 7 > 16, and -56 can be factored as -56x1 ,

-28x2, -14x4 , or -7x8 (and their positive counterparts).
Only b + 7 = 14 gives b = 7, but b > 9, so no solution from

this path.
However , we should also consider the positive factors for

completeness.
The positive factorization 56x1 , 28x2 , 14x4, or 7x8 yields b +

7 = 56 (giving b = 49),
b + 7 = 28 (giving b = 21), b + 7 = 14 (giving b = 7, invalid),
and b + 7 = 8 (giving b = 1, invalid).
Thus , the only valid solution from this path is b = 21 and b =

49.
</Path >
<Path >
Using base arithmetic: In base b, 97\_b - 1x17\_b = 97\_b -

17\_b = 80\_b ,
which is 8xb + 0 = 8b in base 10.

Since 9b + 7 = 8b + (b + 7), b + 7 must divide 8b, implying
that for some integer k,

9b + 7 = (b + 7)(8 + k).
Simplifying , 9b + 7 = 8b + 8k + kb + 7k, so b(1 - k) = 8k + 7.
Since b > 9, 1 - k must be positive or negative to keep b an

integer.
If 1 - k = 1, then b = 8k + 7 with k < 1.
Possible integer k values are k <= 0, but k = 0 gives b = 7 <=

9,
and k < 0 gives negative b, which is invalid.
Thus , this path leads to no valid solutions directly.
However , it reinforces that b + 7 must divide 8b.
</Path >
</Parallel >
<Summary >
These two approaches consider both the algebraic factorization

method
and an alternative numerical or arithmetic approach to find

possible values of b,
but only the factorization method yields valid bases greater

than 9.
</Summary >

Next, consider the condition that b+ 7 divides 9b+ 7. From the earlier, 9b+ 7 = 9(b+ 7)− 56. For
b+7 to divide 9b+7, it must divide 56. Since b+7 ≥ 17 for b > 9, the only divisors of 56 exceeding
16 are 28 and 56, giving b+ 7 ∈ {28, 56} and thus b ∈ {21, 49}.
Finally, verify:
For b = 21: 1721 = 21 + 7 = 28, 9721 = 9× 21 + 7 = 196, 196÷ 28 = 7.
For b = 49: 1749 = 49 + 7 = 56, 9749 = 9× 49 + 7 = 448, 448÷ 56 = 8.

Thus, the sum is 21 + 49 = 70. Final Answer: 70

Figure 5: A qualitative case study showcases that our model uses parallel exploration of two distinct
algebraic methods for solving a number theory problem, both converging on the correct answer.

15



Case Study: Find the sum of all integer bases b > 9 for which 17b is a divisor of 97b.
First, I need to find all integer bases b > 9 for which 17b is a divisor of 97b. To do this, I’ll start by
converting these base-b numbers to base 10, as that’s more familiar.
In base b, the number 17b means 1× b+7 = b+7 in base 10. Similarly, 97b means 9× b+7 = 9b+7
in base 10.
So, the condition that 17b divides 97b translates to b+ 7 dividing 9b+ 7 in base 10.
Now, for b+ 7 to divide 9b+ 7, the remainder when 9b+ 7 is divided by b+ 7 must be zero. I can
perform polynomial division or use the remainder theorem to find this.
Let me compute the remainder of 9b+ 7 divided by b+ 7.
Divide 9b+ 7 by b+ 7: - The quotient is 9, since 9× (b+ 7) = 9b+ 63. - Subtract this from 9b+ 7:
(9b+ 7)− (9b+ 63) = 9b+ 7− 9b− 63 = −56.
So, the remainder is −56. For b+ 7 to divide 9b+ 7, it must divide −56, or equivalently, b+ 7 must
be a positive divisor of 56.
The positive divisors of 56 are: 1, 2, 4, 7, 8, 14, 28, 56.
Since b > 9, we have b+ 7 > 16. So, b+ 7 must be a divisor greater than 16. - b+ 7 = 28 ⇒ b = 21
(valid) - b+ 7 = 56 ⇒ b = 49 (valid)
So, the valid bases are b = 21 and b = 49. Now, I need to find the sum: 21 + 49 = 70.
But before finalizing, I should confirm that these are the only valid bases. From the divisor check, only
b+ 7 = 28 and b+ 7 = 56 give b > 9, so no others.

<Parallel >
<Path >One might consider that $ b + 7 $ not only divides 56 but

also that it must be such that $ 17_b $ and $ 97_b $ are
valid base -$b$ numbers , which requires $ b > 7 $ (since
digits 9 and 7 are used). However , since $ b > 9 $ is given ,
this is already satisfied , and the divisor condition is the
key.</Path >

<Path >Use the fact that for $ b + 7 $ to divide $ 9b + 7 $, the
remainder must be zero , so we can solve $ 9b + 7 = k(b + 7)
$ for integer $ k $, but it’s simpler to compute the
remainder directly as above.</Path >

</Parallel >
<Summary >
The parallel block explored alternative strategies for solving

$ b + 7 $ divides $ 9b + 7 $, including finding divisors ,
considering base validity , and solving equations , but
ultimately confirmed that only $ b = 21 $ and $ b = 49 $
satisfy the condition for $ b > 9 $.

</Summary >

Now, sum the valid bases: 21 + 49 = 70. Final Answer: 70

Figure 6: A qualitative case study demonstrates late-stage verification through parallel thinking.
Table 4: Ablation Study on Training Approach: Comparison of different training configurations.

Training Configuration AIME25 AIME24 AMC23 MATH Avg.
Effect of Training Stages
Parallel-R1-Seen 19.2 19.4 70.5 86.7 48.9

- w/o RL on GSM8K 17.9 19.0 65.0 84.5 46.6
Parallel-R1-Unseen (S1) 17.7 18.3 69.7 82.6 47.1

+ with RL on GSM8K 14.4 12.9 52.3 74.4 38.5

D More Ablations

D.1 Ablation on Training Approach

We further investigate the role of two-stage RL in our training pipeline. One natural question is
whether learning on GSM8K, which is a relatively simple math dataset, truly benefits from the RL,
given that the structural parallel reasoning format (e.g., the correct use of <Parallel>, <Path>, and
<Summary> tokens) can be directly acquired through SFT [Yang et al., 2025b].
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Algorithm 1 Parallel Thinking Format Check
Input: tokens – list of tokens from the parallel-thinking trace;

tag_pairs – set of valid (opening, closing) tag pairs, e.g. {(<Path>...</Path>), . . . }
Output: format_valid – boolean indicating whether the trace is well-formed

1: S ← ∅
2: format_valid ← true
3: for all t in tokens do
4: if t is an opening tag then
5: push t onto S
6: else if t is a closing tag then
7: if S is empty then
8: format_valid ← false
9: break

10: end if
11: top_tag ← Top(S)
12: if (top_tag , t) ∈ tag_pairs then
13: pop S
14: else
15: format_valid ← false
16: break
17: end if
18: end if
19: end for
20: if format_valid and S ̸= ∅ then
21: format_valid ← false
22: end if
23: return format_valid

Table 5: Ablation Study on Parallel Thinking Prompt.
Training Configuration AIME25 AIME24 AMC23 MATH Avg.
Effect of Parallel Thinking Prompt
Parallel-R1-Seen 19.2 19.4 70.5 86.7 48.9

- w/o Parallel Thinking Prompt 20.4 16.5 66.7 84.8 47.1

Table 4 presents the ablation results. For the Parallel-Seen variant, keeping the Cold Start SFT
but removing stage one RL training on GSM8K leads to a consistent performance drop (–2.3% on
average). This indicates that learning format through SFT alone is insufficient. Without stage one RL,
the model enters stage two training on general math without having acquired the ability to trigger or
use parallel thinking adaptively. As a result, RL training must simultaneously learn both adaptive
parallel thinking behavior and mathematical reasoning ability, which is harder to optimize.

Interestingly, the Structure variant exhibits the opposite trend: adding stage one RL on GSM8K
severely hurts performance (–8.6% on average). We hypothesize that this is because the structured
attention mask learned on easy math tasks (GSM8K) does not transfer well to the distribution shift of
harder math problems, causing overfitting to superficial patterns, which is consistent with findings
in [Yang et al., 2025c]. This contrast highlights a key insight: while stage one RL is crucial for the
causal variant to bootstrap adaptive parallel thinking, structural variants require a different training
recipe and reward schedule to generalize effectively.

D.2 Ablation on Parallel Thinking Prompt

We also conduct an ablation study on the effect of our parallel thinking prompt. As shown in Table 5,
removing the prompt leads to a performance degradation of up to 1.8% on average. It indicates that
providing more detailed instructions during training helps the model better understand the reasoning
process, rather than merely memorizing the output patterns.
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