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Abstract

A Top Two sampling rule for bandit identification is a method which selects the
next arm to sample from among two candidate arms, a leader and a challenger. Due
to their simplicity and good empirical performance, they have received increased
attention in recent years. However, for fixed-confidence best arm identification,
theoretical guarantees for Top Two methods have only been obtained in the asymp-
totic regime, when the error level vanishes. In this paper, we derive the first
non-asymptotic upper bound on the expected sample complexity of a Top Two
algorithm, which holds for any error level. Our analysis highlights sufficient prop-
erties for a regret minimization algorithm to be used as leader. These properties
are satisfied by the UCB algorithm, and our proposed UCB-based Top Two algo-
rithm simultaneously enjoys non-asymptotic guarantees and competitive empirical
performance.

1 Introduction

Faced with a collection of items (“arms”) with unknown probability distributions, a question that
arises in many applications is to find the distribution with the largest mean, which is referred to as
the best arm. Different approaches have been considered depending on the data collection process.
Sequential hypothesis testing [10, 37] encompasses situations where there is no control on the
collected samples. Experimental design [7, 35] aims at choosing the data collection scheme a priori.
In the multi-armed bandit [4, 20] and the ranking and selection [18] literature, an algorithm chooses
sequentially the distribution from which it will collect an additional sample based on past data.

In order to have theoretical guarantees for this identification problem, one should adopt a statistical
model on the underlying distributions. While parametric models are reasonable for applications such
as A/B testing [28], they are unrealistic in other fields such as agriculture [21]. Despite the restricted
scope of its applications, studying the identification task for Gaussian distributions is a natural first
step. Hopefully the insights gained will then be generalized to wider classes of distributions.

In the fixed confidence identification problem, an algorithm aims at identifying the best arm with
an error of at most δ ∈ (0, 1) while using as few samples as possible. Since each sample has a cost,
those algorithms should provide an upper bound on the expected number of samples used by the
algorithm before stopping. For those guarantees to be useful in practice, they should hold for any δ,
which is referred to as the non-asymptotic (or moderate) regime. In contrast, the asymptotic regime
considers vanishing error level, i.e. δ → 0. For Gaussian distributions, Top Two algorithms [36, 39]
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have only been studied in the asymptotic regime. We show the first non-asymptotic guaranty for a
Top Two algorithm holding for any instance with a unique best arm.

1.1 Setting and related work

A Gaussian bandit problem is described by K arms whose probability distributions belongs to the set
D of Gaussian distributions with known variance σ2. By rescaling, we assume σ2

i = 1 for all i ∈ [K].
Since an element of D is uniquely characterized by its mean, the vector µ ∈ RK refers to a K-arms
Gaussian bandit. Let △K ⊆ RK be the (K − 1)-dimensional simplex.

A best arm identification (BAI) algorithm aims at identifying an arm with highest mean parameter,
i.e. an arm belonging to the set i⋆(µ) = argmaxi∈[K] µi. At each time n ∈ N, the algorithm (1)
chooses an arm In based on previous observations, (2) observes a sample Xn,In ∼ N (µIn , 1), and
(3) decides whether it should stop and return an arm ı̂n or continue sampling. We consider the fixed
confidence identification setting, in which the probability of error of an algorithm is required to be
less than a given δ ∈ (0, 1) on all instances µ. The sample complexity of an algorithm corresponds to
its stopping time τδ , which counts the number of rounds before termination. An algorithm is said to
be δ-correct on DK if Pµ (τδ < +∞, ı̂τδ /∈ i⋆(µ)) ≤ δ for all µ ∈ DK [14]. We aim at designing
δ-correct algorithms minimizing E[τδ].
As done in all the literature on fixed-confidence BAI, we assume that there is a unique best arm and
we denote it by i⋆(µ) or i⋆ when µ is clear from the context. To ensure δ-correctness on DK , an
algorithm has to be able to distinguish the unknown µ from any instance having a different best arm,
hence it needs to estimates the gaps between arms. Lemma 1.1 gives a lower bound on the expected
sample complexity which is known to be tight in the asymptotic regime, i.e. when δ goes to zero.
Lemma 1.1 ([17]). An algorithm which is δ-correct on all problems in DK satisfies that for all
µ ∈ RK , Eµ[τδ] ≥ T ⋆(µ) log(1/(2.4δ)) where T ⋆(µ) = minβ∈(0,1) T

⋆
β (µ) and, for all β ∈ (0, 1),

T ⋆β (µ)
−1 := max

w∈△K :wi⋆(µ)=β
min
i ̸=i⋆(µ)

(µi⋆(µ) − µi)
2

2 (1/β + 1/wi)
.

When considering the sub-class of algorithms allocating a fraction β of their sample to the best arm,
we obtain a lower bound as in Lemma 1.1 with T ⋆β (µ) instead of T ⋆(µ). An algorithm is said to be
asymptotically optimal (resp. β-optimal) if its sample complexity matches that lower bound asymp-
totically, that is if lim supδ→0 Eµ[τδ]/ log(1/δ) ≤ T ⋆(µ) (resp. T ⋆β (µ)). [38] showed the worst-case
inequality T ⋆1/2(µ) ≤ 2T ⋆(µ) for any single-parameter exponential families. Therefore, the expected
sample complexity of an asymptotically β-optimal algorithm with β = 1/2 is at worst twice higher
than that of any asymptotically optimal algorithm. Leveraging the symmetry of Gaussian distribu-
tions, a tighter worst-case inequality can be derived (Lemma C.6). The allocations w⋆(µ) and w⋆β(µ)
realizing T ⋆(µ) and T ⋆β (µ) are known to be unique, and satisfy mini∈[K] min{w⋆(µ)i, w⋆β(µ)i} > 0.
[6] showed that 2 ≤ w⋆(µ)−1

i⋆ ≤
√
K − 1 + 1 for Gaussian distributions (Lemma C.4).

Related work The first BAI algorithms were introduced and studied under the assumption that the
observation have bounded support, with a known upper bound [15, 24, 16, 19]. The sample complexity
bounds proved for these algorithms scale as the sum of squared inverse gap, i.e. H(µ) := 2∆−2

min +∑
i ̸=i⋆ 2(µi⋆ − µi)

−2 where ∆min := mini ̸=i⋆(µi⋆ − µi), which satisfies H(µ) ≤ T ⋆(µ) ≤ 2H(µ)
[17]. Following their work, a rich literature designed asymptotically optimal algorithms in the
fixed-confidence setting for parametric distributions, such as single-parameter exponential families,
and non-parametric distributions such as bounded ones. Those algorithms build on two main ideas.
The Tracking approach computes at each round the optimal allocation for the empirical estimator, and
then tracks it [17]. To achieve lower computational cost, Game-based algorithms [12] view T ⋆(µ)−1

as a min-max game between the learner and the nature, and design saddle-point algorithms to solve it
sequentially.

Top Two algorithms arose as an identification strategy based on the Thompson Sampling algorithm
for regret minimization [41]: [38] introduced Top Two Probability Sampling (TTPS) and Top Two
Thompson Sampling (TTTS). Adopting a Bayesian viewpoint, Russo studied the convergence rate of
the posterior probability that i⋆ is not the best arm, under some conditions on the prior. For Gaussian
bandits, other Bayesian Top Two algorithms with frequentist components have been shown to be
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asymptotically β-optimal: Top Two Expected Improvement (TTEI, [36]) and Top Two Transportation
Cost (T3C, [39]). [21] introduces fully frequentist Top Two algorithms. Their analysis proves
asymptotic β-optimality for several Top Two algorithms and distribution classes, beyond Gaussian.
[34] provides guarantees for single-parameter exponential families, at the price of adding forced
exploration. [44] proposes an algorithm to tackle the top-k identification problem and introduces
information-directed selection (IDS) to choose β in an adaptive manner, which differs from the one
proposed in [33]. In addition to their success in the fixed-confidence setting, Top Two algorithms
have also been studied for fixed-budget problems [2], in which guarantees on the error probability
should be given after T samples. While existing Top Two sampling rules differ by how they choose
the leader and the challenger, they all sample the leader with probability β. By design, Top Two
algorithms with a fixed β can reach β-optimality at best, and cannot be optimal on all instances µ.

Shortcomings of the asymptotic regime While the literature provides a detailed understanding
of the asymptotic regime, many interesting questions are unanswered in the non-asymptotic regime.
Recent works [9, 40, 32, 31] have shown that the sample complexity is affected by strong moderate
confidence terms (independent of δ). The analysis of [21] applies to their β-EB-TC algorithm whose
empirical stopping times is order of magnitude larger than its competitors for δ = 0.01. Since the
proof of asymptotic β-optimality hides design flaws, non-asymptotic guarantees should be derived to
understand which Top Two algorithms will perform well in practice for any reasonable choice of δ.

1.2 Contributions

Our main contribution is to propose the first non-asymptotic analysis of Top Two algorithms. We
identify sufficient properties of the leader (seen as a regret-minimization algorithm) for it to hold.
This solves two open problems: obtaining an upper bound which (1) is non-asymptotic (Theorem 2.4
holds for any δ) and (2) holds for all instances having a unique best arm (i.e. sub-optimal arms can
have the same mean, which was not allowed in the analyzes of existing Top Two algorithms). As a
consequence, we propose the TTUCB (Top Two UCB) algorithm which builds on the UCB algorithm.

By using tracking instead of sampling to choose between the leader and the challenger, TTUCB is the
first Top Two algorithm which is asymptotically β-optimal (Theorem 2.3) and has non-asymptotic
guarantees (Theorem 2.4). Our experiments reveal that TTUCB performs on par with existing Top
Two algorithms, which are only proven to be asymptotically β-optimal, even for large sets of arms.
Numerically, we show that considering adaptive proportions compared to a fixed β = 1/2 yields a
significant speed-up on hard instances, and to a moderate improvement on random instances.

2 UCB-based Top Two algorithm

We propose a fully deterministic Top Two algorithm based on UCB [5], named TTUCB and detailed
in Algorithm 1. We prove a non-asymptotic upper bound on the expected sample complexity holding
for any instance having a unique best arm.

Stopping and recommendation rules The σ-algebra Fn := σ({It, Xt,It}t∈[n−1]) encompasses all
the information available to the agent before time n. Let Nn,i :=

∑
t∈[n−1] 1 (It = i) be the number

of pulls of arm i before time n, and its empirical mean by µn,i := 1
Nn,i

∑
t∈[n−1]Xt,It1 (It = i).

The algorithm stops as soon as the generalized likelihood ratio exceeds a threshold c(n− 1, δ), i.e.

min
i̸=ı̂n

µn,̂ın − µn,i√
1/Nn,̂ın + 1/Nn,i

≥
√
2c(n− 1, δ) , (1)

where we recommend ı̂n = argmaxi∈[K] µn,i at time n. Lemma 2.1 provides an explicit threshold
ensuring δ-correctness, which relies on concentration inequalities derived in [27].

Lemma 2.1. Let CG defined in (16) s.t. CG(x) ≈ x+ log(x). Given any sampling rule, taking

c(n, δ) = 2CG(log((K − 1)/δ)/2) + 4 log(4 + log(n/2)) (2)

in the stopping rule (1) ensures δ-correct for Gaussian distributions.
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Algorithm 1 TTUCB
Input: (β, δ) ∈ (0, 1)2, threshold c : N× (0, 1) → R+ and function g : N → R+.
Pull once each arm i ∈ [K];
for n > K do

Set ı̂n = argmaxi∈[K] µn,i;
If mini ̸=ı̂n

µn,ı̂n−µn,i√
1/Nn,ı̂n+1/Nn,i

≥
√
2c(n− 1, δ) then return ı̂n, else;

Set BUCB
n = argmaxi∈[K]

{
µn,i +

√
g(n)
Nn,i

}
and CTC

n = argmini ̸=BUCB
n

(µn,BUCB
n

−µn,i)+√
1/Nn,BUCB

n
+1/Nn,i

;

Observe Xn,In by pulling In = BUCB
n if NBUCB

n

n,BUCB
n

≤ βLn+1,BUCB
n

, else In = CTC
n ;

end for

Sampling rule We initialize by sampling each arms once. At time n > K, a Top Two sampling
rule defines a leader Bn ∈ [K] and a challenger Cn ̸= Bn, and chooses In = Bn or In = Cn based
on a fixed allocation β. In prior work this choice was done at random, which means that the leader
was sampled with probability β. We replace randomization by tracking, and show similar theoretical
and numerical results (see Figure 4 in Appendix G.2). For fixed β, we recommend to use β = 1/2
without prior knowledge on the unknown mean parameters (see Section 3.4 for adaptive proportions).
This recommendation is supported theoretically by the fact that w⋆(µ)i⋆ ≤ 1/2 (Lemma C.4) and
that T ⋆1/2(µ)/T

⋆(µ) is significantly smaller than 2 for most instances (Lemma C.6 and Figure 2).

Let Ln,i :=
∑
t∈[n−1] 1 (Bt = i) be the number of time arm i was the leader, and N i

n,j :=∑
t∈[n−1] 1 ((Bt, It) = (i, j)) be the number of pulls of arm j at rounds in which i was the leader.

We use K independent tracking procedures. A tracking procedure is a deterministic method to
convert a sequence of allocations over arms into a sequence of arms, which ensures that the empirical
proportions are close to the averaged allocation over arms. For each leader, we track the allocation
(β, 1− β) between the leader and the challenger. Formally, we set In = Bn if NBn

n,Bn
≤ βLn+1,Bn ,

else In = Cn. Using Theorem 6 in [13] for each tracking procedure yields Lemma 2.2.
Lemma 2.2. For all n > K and all i ∈ [K], we have −1/2 ≤ N i

n,i − βLn,i ≤ 1.

Using tracking over randomization is motivated by practical and theoretical reasons. First, in some
specific applications, the practitioner might be only willing to use a deterministic algorithm. Second,
in the analysis, it is easier to control deterministic counts since it removes the need for martingales
arguments to bound the deviations of the samples. Therefore, tracking simplifies the non-asymptotic
analysis. Third, Lemma 2.2 shows that the speed of convergence is at least O(1/n) for tracking,
while we would obtain a speed of O(1/

√
n) for randomization.

At time n, the UCB leader is defined as

BUCB
n = argmax

i∈[K]

{µn,i +
√
g(n)/Nn,i} , (3)

where
√
g(n)/Nn,i is a bonus coping for uncertainty. Let α > 1 and s > 1 be two concentration

parameters. The choice of g(n) should ensure that we have an upper confidence bound on µi holding
with high probability: with probability 1−Kn−s, for all t ∈ [n1/α, n] and all arms i ∈ [K], µi ∈
[µt,i±

√
g(t)/Nt,i]. For Gaussian observations, a function g which is sufficient for the purpose of our

proof can be obtained by a union bound over time, giving gu(n) = 2α(1 + s) log n. We can improve
on gu with mixtures of martingales, yielding gm(n) =W−1 (2sα log(n) + 2 log(2 + α log n) + 2)
with W−1(x) = −W−1(−e−x) for all x ≥ 1, where W−1 is the negative branch of the Lambert W
function, and W−1(x) ≈ x + log(x). A UCB leader with g0(n) = 0 recovers the Empirical Best
(EB) leader [21]. Choosing g is central for empirical performance and non-asymptotic guarantees, but
not for asymptotic ones. The lowest g will yield better empirical performance since larger g means
more conservative confidence bounds. In our experiments where α = s = 1.2, we will consider gm
since gm(n) ≤ gu(n) for n ≥ 50 .

Given a leader Bn, the TC challenger is defined as

CTC
n = argmin

i̸=Bn

(µn,Bn − µn,i)+√
1/Nn,Bn + 1/Nn,i

, (4)
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where x+ = max{x, 0}. [39] introduced the TC challenger as a computationally efficient approxi-
mation of the challenger in TTTS [38], which uses re-sampling till an unlikely event occurs. Both
T3C and TTTS use the TS leader which takes the best arm of a vector of realization drawn from a
sampler, e.g. θi ∼ N (µn,i, 1/Nn,i) for Gaussian distributions with unit variance.

Computational cost Computing the stopping rule (1) and the UCB leader (3) can be done in O(K).
At time n where Bn coincides with ı̂n, computing the TC challenger (4) is done as a by-product of
the computation of the stopping rule, without additional cost. When Bn ̸= ı̂n, we draw at random an
arm with larger empirical mean. The per-round computational and memory cost of TTUCB is O(K).

2.1 Sample complexity upper bound

Leveraging the unified analysis of Top Two algorithms proposed by [21], we obtain the asymptotic
β-optimality of TTUCB (Theorem 2.3). After showing the required properties for the UCB leader, we
proved that tracking Top Two algorithms have similar properties as their sampling-based counterparts.
Theorem 2.3. Let (δ, β) ∈ (0, 1)2, s > 1 and α > 1. Using the threshold (2) in (1) and gu (or gm)
in (3), the TTUCB algorithm is δ-correct and asymptotically β-optimal for all µ ∈ RK such that
mini ̸=j |µi − µj | > 0, i.e. it satisfies lim supδ→0 Eµ[τδ]/ log(1/δ) ≤ T ⋆β (µ).

Theorem 2.3 and guarantees for other Top Two algorithms hold only for arms having distinct means.
Moreover, an asymptotic result provides no guarantees on the performance in moderate regime of δ.
We address those two limitations.

Non-asymptotic upper bound Theorem 2.4 gives an upper bound on the expected sample com-
plexity holding for any δ and any instance having a unique best arm. It is a direct corollary of a more
general result holding for any β ∈ (0, 1), s > 1 and α > 1 (Theorem D.4).
Theorem 2.4. Let δ ∈ (0, 1). Using the threshold (2) in (1) and gu in (3) with s = α = 1.2, the
TTUCB algorithm with β = 1/2 satisfies that, for all µ ∈ RK such that |i⋆(µ)| = 1,

Eµ[τδ] ≤ inf
w0∈[0,(K−1)−1]

max
{
T0(δ, w0), C

1.2
µ , C0(w0)

6, (2/ε)1.2
}
+ 12K ,

where Cµ = h1 (26H(µ)), C0(w0) = 2/(εaµ(w0)) + 1 with ε ∈ (0, 1],

T0(δ, w0) = sup{n | n− 1 ≤ 2T ⋆1/2(µ)(1 + ε)2(1− w0)
−dµ(w0)(

√
c(n− 1, δ) +

√
4 log n)2} ,

with aµ(w0) = (1 − w0)
dµ(w0) max{mini ̸=i⋆(µ) w

⋆
1/2(µ)i, w0/2} and dµ(w0) = |{i ̸= i⋆(µ) |

w⋆1/2(µ)i < w0/2}|. The function h1(x) := xW−1

(
log(x) + 2+2K

x

)
is positive, increasing for

x ≥ 2 + 2K, and satisfies h1(x) ≈ x(log x+ log log x).

The TTUCB sampling rule using gm in (3) satisfies a similar upper bound (Corollary D.5). Since
Theorem 2.4 holds for any instance having a unique best arm, we corroborate the intuition that
assuming mini ̸=j |µi − µj | > 0 is an artifact of the existing proof to obtain asymptotic β-optimality.

The upper bound on Eµ[τδ] involves several terms. The δ-dependent term is T0(δ). In the asymptotic
regime, we can show that lim supδ→0 T0(δ)/ log(1/δ) ≤ 2T ⋆1/2(µ) by taking w0 = 0 and letting
ε go to zero. While there is (sub-optimal) factor 2 in T0(δ), Theorem 2.3 shows that TTUCB is
asymptotically 1/2-optimal. This factor is a price we paid to obtain more explicit non-asymptotic
terms, and removing it would require more sophisticated arguments in order to control the convergence
of the empirical proportions Nn/(n− 1) towards w⋆1/2(µ).

In the regime where H(µ) → +∞, the upper bound is dominated by the δ-independent term C1.2
µ

(when α = 1.2) with satisfies Cµ = O(H(µ) logH(µ)). Compared to the best known upper and
lower bounds in this regime (see discussion below), our non-asymptotic term has a sub-optimal
scaling in O((H(µ) logH(µ))α) with α > 1. While taking α ≈ 1 would mitigate this sub-optimality,
it would yield a larger dependency inC0(w0)

α/(α−1). Empirically, Figures 1(b) and 5 (Appendix G.2)
hints that the empirical performance of TTUCB has a better scaling with H(µ) than H(µ)α.

For instances such that mini̸=i⋆ w
⋆
1/2(µ)i is arbitrarily small, taking w0 = 0 yields an arbitrarily

large C0(0). By clipping with w0/2, we circumvent this pitfall and ensure that C0(w0) = O(K/ε).
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Table 1: Upper bound on the sample complexity τδ in probability (§) or in expectation (†). The
notation O displays the dominating term when δ → 0 for the asymptotic regime, and when H(µ) →
+∞ (or ∆i → 0) for the finite-confidence one. The notation Õ hides polylogarithmic factors. (*)
Upper bound on Eµ[τδ1 (E)] where P[E∁] ≤ γ. (**) The asymptotic upper bound holds for instances
having all distinct means, while the non-asymptotic one doesn’t require this assumption.

Algorithm Asymptotic behavior Finite-confidence behavior

LUCB1† [24] O (H(µ) log(1/δ)) O (H(µ) logH(µ))
Exp-Gap§ [25] O (H(µ) log(1/δ)) O(

∑
i̸=i⋆ ∆

−2
i log log∆−1

i )

lil’ UCB§ [19] O (H(µ) log(1/δ)) O(
∑
i̸=i⋆ ∆

−2
i log log∆−1

i )

DKM† [12] T ⋆(µ) log(1/δ) + Õ(
√
log(1/δ)) Õ

(
KT ⋆(µ)2

)
Peace§ [26] O (T ⋆(µ) log(1/δ)) O (H(µ) log(K/∆min))
FWS† [42] T ⋆(µ) log(1/δ) +O(log log(1/δ)) O

(
eKH(µ)19/2

)
EBS† [6]* T ⋆(µ) log(1/δ) + o(1) O

(
KH(µ)4/w2

min

)
TTUCB†** T ⋆β (µ) log(1/δ) +O(log log(1/δ)) O ((H(µ) logH(µ))

α
) with α > 1

Since it yields a larger T0(δ), we are trading-off asymptotic terms for improved non-asymptotic ones.
We illustrate this with two archetypal instances. For the “1-sparse” instance, in which µ1 > 0 and
µi = 0 for all i ̸= 1, we have by symmetry that 2w⋆1/2(µ)i = 1/(K − 1) for all i ̸= 1. Therefore,
we have C0(w0) = O(K/ε) since dµ(w0) = 0 for all w0 ∈ [0, 1/(K − 1)]. The “almost dense”
instance is such that µ1 = 1, µK = 0 and µi = 1 − γ for all i /∈ {1,K}. By symmetry, there
exists a function h : [0, 1) → [0, (K − 1)−1) with limγ→0 h(γ) = 0, such that 2w⋆1/2(µ)K = h(γ)

and 2w⋆1/2(µ)i = (1− h(γ))/(K − 2) for all i /∈ {1,K}. While limγ→0 C0(0) = +∞, we obtain
limγ→0 C0(w0) = O(K/ε) by taking w0 = (1− h(γ))/(K − 2) since dµ(w0) = 1.

Comparison with existing upper bounds Table 1 summarizes the asymptotic and non-asymptotic
scalings of the upper bound on the sample complexity of existing BAI algorithms. Among the class
of asymptotically (β-)optimal algorithms, very few of them also enjoy non-asymptotic guarantees,
e.g. the analyses of Track-and-Stop and Top Two algorithms are asymptotic. The gamification
approach of [12] is the first attempt to provide both. Their non-asymptotic upper bound on Eµ[τδ]
involves an implicit time T1(δ) which scales with KT ⋆(µ)2 and is only valid for log(1/δ) ≳
KT ⋆(µ) (see Lemma 2, with constants in Appendix D.7). Let T ⋆δ := T ⋆(µ) log(1/δ). As a
first order approximation, they obtain T1(δ) ≈ T ⋆δ + Θ

(√
T ⋆δ log T ⋆δ

)
, and we obtain T0(δ) ≈

Θ(T ⋆δ + log T ⋆δ ) (Lemma D.13). [42] were the first to obtain an upper bound on Eµ[τδ] of the form
Θ(T ⋆δ + log log(1/δ)). While they improved the second-order δ-dependent term, the δ-independent
term scales with eKH(µ)19/2 (see their Theorem 2 for ε−1 ≳ T ⋆(µ), with constants given by
Appendix N). The algorithm proposed by [6] has a non-asymptotic upper bound on Eµ[τδ1 (E)] of the
form (1+ε)T ⋆δ +f(µ, δ) which is valid for log(1/δ) ≳ w−2

minK/∆min, where E is such that Pµ(E∁) ≤
γ. Since f(µ, δ) =δ→0 o(1), they obtain a better δ-dependency. However, f(µ, δ) is arbitrarily large
when wmin := mini∈[K] w

⋆(µ)i is arbitrarily small since it scales with KH(µ)4/w2
min. Therefore,

they suffer from the pitfall which we avoided by clipping. In light of Table 1, TTUCB enjoys the best
scaling when H(µ) → +∞ in the class of asymptotically (β-)optimal BAI algorithms.

The LUCB1 algorithm [24] has a structure similar to a Top Two algorithm, with the difference that
LUCB samples both the leader and the challenger instead of choosing one. As LUCB1 satisfies
Eµ[τδ] ≤ 292H(µ) log(H(µ)/δ) + 16, it enjoys better scaling when H(µ) → +∞ than TTUCB.
Since the empirical allocation of LUCB1 is not converging towards w⋆1/2(µ), it is not asymptotically
1/2-optimal. The Peace algorithm [26] has a non-asymptotic upper bound on τδ of the form O((T ⋆δ +
γ⋆(µ)) log(K/∆min)) holding with probability 1− δ. The term γ⋆(µ) is a Gaussian-width which
originates from concentration on the suprema of Gaussian processes and satisfies γ⋆(µ) = Ω(H(µ)).

Another class of BAI algorithms focus on the dependency in the gaps ∆i := µi⋆ −µi, and derive non-
asymptotic upper bound on τδ holding with high probability. [25, 19, 8, 9] gives δ-PAC algorithms
with an upper bound of the form O(H(µ) log(1/δ) +

∑
i ̸=i⋆ ∆

−2
i log log∆−1

i ), and [19] shows that
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for two arms the dependency ∆−2 log log∆−1 is optimal when ∆ → 0. While those algorithms
obtain the best scaling when H(µ) → +∞, they are not asymptotically (β-)optimal.

3 Non-asymptotic analysis

3.1 Proof sketch of Theorem 2.4

Existing analyses of Top Two algorithms are asymptotic in nature and requires too much control on
the empirical means and proportions to yield any meaningful information in the finite-confidence
regime. Therefore, we adopt a different approach which ressembles the non-asymptotic analysis of
[12]. We first define concentration events to control the deviations of the random variables used in the
UCB leader and the TC challenger. For all n > K, let En :=

⋂
i∈[K]

⋂
t∈[n5/6,n](E1

t,i ∩ E2
t,i) where

E1
t,i := {

√
Nt,i|µt,i − µi| <

√
6 log t} and E2

t,i := { (µt,i
⋆ − µt,i)− (µi⋆ − µi)√
1/Nt,i⋆ + 1/Nt,i

> −
√
8 log t} .

Using Lemmas D.8 and E.6, the proof boils down to constructing a time T (δ) after which En ⊂
{τδ ≤ n} for n > T (δ) since it would yield that Eµ[τδ] ≤ T (δ) + 12K.

Let n > K such that En ∩ {n < τδ} holds true, and t ∈ [n5/6, n] such that BUCB
t = i⋆. Using that

t ≤ n < τδ , under
⋂
i ̸=i⋆ E2

t,i, the stopping condition yields that√
2c(n− 1, δ) ≥ ((µi⋆ − µCTC

t
)(1/N i⋆

t,i⋆ + 1/N i⋆

t,CTC
t
)−1/2 −

√
8 log n)+ .

Let w⋆1/2 be the unique element of w⋆1/2(µ). Lemma 3.1 links the empirical proportions N i⋆

t,i/(t− 1)

to w⋆1/2,i for i ∈ {i⋆, CTC
t }. It is the key technical challenge of our non-asymptotic proof strategy.

Lemma 3.1. Let ε ∈ (0, 1]. There exist Tµ > 0 such that for all n > Tµ such that En ∩ {n < τδ}
holds true, there exists t ∈ [n5/6, n] with BUCB

t = i⋆, which satisfies

(n− 1)(1/N i⋆

t,i⋆ + 1/N i⋆

t,CTC
t
) ≤ (1 + ε)2(2 + 1/w⋆1/2,CTC

t
)/β .

Before proving Lemma 3.1, we conclude the proof of Theorem 2.4. Let ε, Tµ and t as in Lemma 3.1
and T (δ) := sup{n | n − 1 ≤ T ⋆1/2(µ)(1 + ε)2(

√
c(n− 1, δ) +

√
4 log n)2/β}. For all n >

max{Tµ, T (1)}, we have
√
c(n− 1, δ) +

√
4 log n ≥

√
β(n− 1)T ⋆1/2(µ)

−1(1 + ε)−2. Therefore,

we have proved that En ∩ {n < τδ} = ∅ for all n > max{Tµ, T (δ)}. This concludes the proof.

Provided that Bt = i⋆, the above only used the stopping condition and the TC challenger, and no
other properties of the leader. Lemma 3.2 shows that BUCB

t = i⋆, except for a sublinear number
of times. Section 3.3 exhibits sufficient conditions on a regret minimization algorithm to obtain a
non-asymptotic upper bound.
Lemma 3.2. Under the event

⋂
k∈[K]

⋂
t∈[n5/6,n] E1

t,k, we have Ln,i⋆ ≥ n−1−24H(µ) log n−2K.

Proof sketch of Lemma 3.1 The key technical challenge is to link N i⋆

t,CTC
t
/(n− 1) with w⋆

1/2,CTC
t

.
We adopt the approach used to analyze of APT [30]: consider an arm being over-sampled and study
the last time this arm was pulled. By the pigeonhole principle, at time n,

∃k1 ̸= i⋆, s.t. N i⋆

n,k1 ≥ 2(Ln,i⋆ −N i⋆

n,i⋆)w
⋆
1/2,k1

. (5)

Let t1 be the last time at which BUCB
t = i⋆ and CTC

t = k1, hence N i⋆

t1,k1
≥ N i⋆

n,k1
− 1. Using

Lemmas 2.2 and 3.2, we show that N i⋆

t1,k1
⪆ w⋆1/2,k1(n − 1), hence t1 ≥ n5/6 for n large enough

(see Appendix D.2). Then, we need to link N i⋆

t1,i⋆
to (n− 1)/2. When w⋆1/2,k1 is small, (5) can be

true at t1 = n5/6, hence there is no hope to show that t1 = n− o(n). To circumvent this problem,
we link N i⋆

t1,i⋆
to N i⋆

t1,k1
thanks to Lemma 2.2, and use that

n− 1

N i⋆
t1,i⋆

+
n− 1

N i⋆
t1,k1

≤

(
2 +

n− 1

N i⋆
t1,k1

)(
N i⋆

t1,k1

N i⋆
t1,i⋆

+ 1

)
≤ 2(1 + ε)2(2 + 1/w⋆1/2,k1) ,
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for n > Tµ(w−) with Tµ(w−) ≤ max{C1.2
µ , (2/(εw−) + 1)6, (2/ε)1.2} (Lemmas D.10 and D.11),

where w− = mini ̸=i⋆ w
⋆
1/2,i > 0 lower bounds w⋆1/2,k1 . This concludes the proof for w0 = 0.

The (sub-optimal) multiplicative factor 2 in T0(δ) comes from the inequality (6). To remove it, we
need to control the deviation between the empirical proportion of arm i and w⋆1/2,i for all i ∈ [K].
Nevertheless, TTUCB is asymptotically 1/2-optimal (Theorem 2.3).

Refined analysis For w0 ∈ (0, (K − 1)−1], we clip mini ̸=i⋆ w
⋆
1/2,i by w0/2 (see Appendix D).

Our method can be used to analyze other algorithms, and it improves existing results on APT.

3.2 Beyond Gaussian distributions

Theorems 2.3 and 2.4 hold for sub-Gaussian r.v. thanks to direct adaptations of concentration results
(Lemmas 2.1, E.2 and E.5). The situation is akin to the regret bound of UCB: it holds for any
sub-Gaussian, but it is close to optimality in a distribution-dependent sense only for Gaussians.
However, if the focus is on asymptotically β-optimal algorithms, then it is challenging to express the
characteristic time T ⋆(µ) for the non-parametric class of sub-Gaussian distributions.

The TTUCB algorithm can also be defined for more general distributions such as single-parameter
exponential families or bounded distributions. It is only a matter of adapting the definition of the UCB
leader and the TC challenger. For bounded distributions, the UCB leader was studied in [1] and the
TC challenger was analyzed in [21]. Leveraging their unified analysis of Top Two algorithms with our
tracking-based results, we can show asymptotic β-optimality of TTUCB for bounded distributions
and single-parameter exponential families with sub-exponential tails. We believe that non-asymptotic
guaranties could be obtained for more general distributions, but it will come at the price of more
technical arguments and less explicit non-asymptotic terms.

3.3 Generic regret minimizing leader

Our non-asymptotic analysis highlights that any regret minimization algorithm that selects the arm i⋆

except for a sublinear number of times (Property 1) can be used as leader with the TC challenger.

Property 1. There exists (Ẽn)n with
∑
n Pµ(Ẽ∁

n) < +∞ and a function h with h(n) = O(nγ) for
some γ ∈ (0, 1) such that under event Ẽn, Ln,i⋆ ≥ n− 1− h(n).

For asymptotic guarantees, the sufficient properties on the leader from [21] are weaker since they are
even satisfied by the greedy choice Bn = ı̂n. While Top Two algorithms were introduced by [38] to
adapt Thompson Sampling to BAI, we have shown that other regret minimization algorithms can be
used: the Top Two method is a generic wrapper to convert any regret minimization algorithm into a
best arm identification strategy.

The regret of an algorithm at time n, R̄n =
∑
i ̸=i⋆ ∆iNn,i, is almost always studied through its

expectation E[R̄n]. This is however not sufficient for our application. We need to prove that with high
probability, Nn,i is small for all arm i ̸= i⋆. Such guarantees are known for UCB [3] and ETC [29],
but are yet unknown for Thompson Sampling. We cannot in general obtain a good enough bound on
Nn,i from a bound on E[R̄n]. However, we can if we have high probability bounds on R̄n. Suppose
that a regret minimization algorithm Alg1 satisfies Property 2 and is independent of the horizon n.

Property 2. There exists s > 1, γ ∈ (0, 1), (En,δ)(n,δ) with
∑
n Pµ[E∁

n,n−s ] < +∞ and a function h
with h(n, n−s) = O(nγ) such that under event En,δ , R̄n ≤ h(n, δ).

Let Alg2 be the algorithm Alg1 used in a Top Two procedure, but which uses only the observations
obtained at times n such that In = Bn and discards the rest. Let Ẽn = En,n−s and ∆min =

mini ̸=i⋆ ∆i. Then, under Ẽn, Alg2 satisfies
∑
i ̸=i⋆ N

i
n,i ≤ h(n, n−s)/∆min and Lemma 2.2 yields

N i⋆

n,i⋆ ≥ β(n − 1) − h(n, n−s)/∆min − K/2. Therefore, Property 1 holds for Ẽn and h(n) =

(h(n, n−s)/∆min +K/2 + 1)/β. Given a specific algorithm, a finer analysis could avoid discarding
information by using Alg1 with every observations.
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3.4 Adaptive proportions

Given a fixed allocation β, any Top Two algorithm can at best be asymptotically β-optimal. Since the
optimal allocation β⋆ ∈ argminβ∈(0,1) T

⋆
β (µ) is unknown, it should be learned from the observations

by a Top Two algorithm using an adaptive proportion βn at time n. Recently, [44] proposes IDS
to choose βn in an adaptive manner. For BAI with Gaussian observations, IDS yields βn =
Nn,Cn

/(Nn,Bn
+Nn,Cn

). Let β̄in := 1
Ln,i

∑
t∈[n−1] βt1 (Bt = i) be the average proportion when

arm i was the leader before time n. Tracking with IDS requires to use β̄Bn
n+1 instead of β. Using the

analysis of [44], it is reasonable to believe that one could obtain asymptotic optimality of TTUCB
with IDS. However it is not clear how to adapt the non-asymptotic analysis since it heavily relies on β
being fixed and bounded away from {0, 1}. Experiments with IDS are available in Appendix G.2.1.

4 Experiments

In the moderate regime (δ = 0.1), we assess the empirical performance of TTUCB with bonus
gm and concentration parameters s = α = 1.2. As benchmarks, we compare our algorithm with
three sampling-based Top Two algorithms: TTTS, T3C and β-EB-TCI. In addition, we consider
Track-and-Stop (TaS) [17], FWS [42], DKM [12], LUCB [24] and uniform sampling. At time n, the
LUCB algorithm computes a leader and a challenger, then sample them both (see Appendix G.1). To
provide a clear comparison with Top Two algorithms, we define a new β-LUCB algorithm which
sample the leader with probability β, else sample the challenger. At the exception of LUCB and
β-LUCB which have their own stopping rule, all algorithms uses the stopping rule (1) with the
heuristic threshold c(n, δ) = log((1 + log n)/δ). Even though this choice is not sufficient to prove
δ-correctness, it yields an empirical error which is several orders of magnitude lower than δ. Top
Two algorithms and β-LUCB use β = 1/2. To allow for a fair numerical comparison, LUCB and
β-LUCB use

√
2c(n− 1, δ)/Nn,i as bonus, which is too tight to yield valid confidence intervals.

Supplementary experiments are available in Appendix G.

Random instances We assess the performance on 5000 random Gaussian instances with K = 10
such that µ1 = 0.6 and µi ∼ U([0.2, 0.5]) for all i ̸= 1. Numerically, we observe w⋆(µ)i⋆ ≈
1/3± 0.02 (mean ± std). In Figure 1(a), we see that TTUCB performs on par with existing Top Two
algorithms, and slightly outperforms TaS and FWS. Our algorithm achieves significantly better result
than DKM, LUCB, 1/2-LUCB and uniform sampling. The CPU running time is reported in Table 4,
and the observed empirical errors before stopping is displayed in Figure 3 (Appendix G.2).

Larger sets of arms We evaluate the impact of larger number of arms. The “1-sparse” scenario of
[20] sets µ1 = 1/4 and µi = 0 for all i ̸= 1, i.e. H(µ) = 32(K − 1) (see Appendix G.2 for other
instances). We consider algorithms with low computational cost. In Figure 1(b), all algorithms have
the same linear scaling in K (i.e. in H(µ)). Faced with an increase in the number of arms, the TS
leader used in T3C appears to be more robust than the UCB leader in TTUCB. This is a common
feature of UCB algorithms which have to overcome the bonus of sub-optimal arms.

Figure 1: Empirical stopping time on (a) random instances (K = 10) and (b) “1-Sparse” instances.
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5 Conclusion

In this paper, we have shown the first non-asymptotic upper bound on the expected sample complexity
of a Top Two algorithm, which holds for any error level and for any instance having a unique best
arm. Furthermore, we have demonstrated that the TTUCB algorithm achieves competitive empirical
performance compared to other algorithms, including Top Two methods.

While our guarantees hold for a fixed proportion β allocated to the leader, [44] recently introduced
IDS to define an adaptive proportion βn at time n and show asymptotic optimality for Gaussian
distributions. Deriving guarantees for IDS for single-parameter exponential families is a challenging
open problem. Finally, Top Two algorithms are a promising method to tackle complex settings. While
heuristics exist for some structured bandits such as Top-k, it would be interesting to efficiently adapt
Top Two methods to deal with sophisticated structure, e.g. linear bandits.
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A Outline

The appendices are organized as follows:

• Appendix B gathers notation used in this work.

• In Appendix C, we study the link between T ⋆(µ) and T ⋆β (µ) for Gaussian distributions.

• The detailed analysis of our non-asymptotic upper bound (Theorem 2.4), sketched in
Section 3, is detailed in Appendix D. We also give a non-asymptotic upper bound on the
TTUCB using gm in (3) (Corollary D.5), and on uniform sampling (Theorem D.6).

• We show the asymptotic optimality of our algorithm (Theorem 2.3) in Appendix F.

• Appendix E gathers concentration results used by the stopping rule (Lemma 2.1) and the
sampling rule.

• Implementation details and supplementary experiments are detailed in Appendix G.

Table 2: Notation for the setting.

Notation Type Description

K N Number of arms
µi R Mean of arm i ∈ [K]
µ RK Vector of means, µ := (µi)i∈[K]

i⋆ RK → [K] Best arm operator, i⋆(µ) = argmaxi∈[K] µi
T ⋆(µ), T ⋆β (µ) R⋆+ Asymptotic (β-)characteristic time

w⋆(µ), w⋆β(µ) = {(w⋆β,i)i∈[K]} △K Asymptotic (β-)optimal allocation

B Notation

We recall some commonly used notation: the set of integers [n] := {1, · · · , n}, the complement X∁

and interior X̊ of a set X , Landau’s notation o, O, Ω and Θ, the (K − 1)-dimensional probability
simplex △K :=

{
w ∈ RK+ | w ≥ 0,

∑
i∈[K] wi = 1

}
. While Table 2 gathers problem-specific

notation, Table 3 groups notation for the algorithms. We emphasize that N i
n,i is the number of times

where we pulled arm i as a leader before time n.

Table 3: Notation for algorithms.

Notation Type Description

Bn [K] Leader at time n
Cn [K] Challenger at time n
In [K] Arm sampled at time n
β (0, 1) Proportion parameter

Xn,In R Sample observed at the end of time n, i.e. Xn,In ∼ N (µIn , 1)
Fn History before time n, i.e. Fn := σ(I1, X1,I1 , · · · , In, Xn,In)
ı̂n [K] Arm recommended before time n, i.e. ı̂n ∈ argmaxi∈[K] µn,i
τδ N Sample complexity (stopping time of the algorithm)
ı̂ [K] Arm recommended by the algorithm

c(n, δ) R⋆+ Stopping threshold function
Nn,i N Number of pulls of arm i before time n, Nn,i :=

∑
t∈[n−1] 1 (It = i)

µn,i I Empirical mean of arm i before time n, µn,i := 1
Nn,i

∑
t∈[n−1]Xt,It1 (It = i)

Ln,i N Counts of Bt = i before time n, Ln,i :=
∑
t∈[n−1] 1 (Bt = i)

N i
n,j N Counts of (Bt, It) = (i, j) before time n, N i

n,j :=
∑
t∈[n−1] 1 ((Bt, It) = (i, j))
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C Characteristic times

Let µ ∈ DK such that i⋆(µ) = {i⋆}. Let β ∈ (0, 1) and w⋆β be the unique allocation β-optimal
allocation satisfying w⋆β,i > 0 for all i ∈ [K] (Lemma C.2), i.e. w⋆β(µ) = {w⋆β} where

w⋆β(µ) := argmax
w∈△K :wi⋆=β

min
i ̸=i⋆

(µi⋆ − µi)
2

2(1/β + 1/wi)
= argmax
w∈△K :wi⋆=β

min
i ̸=i⋆

µi⋆ − µi√
1/β + 1/wi

.

We restate without proof two fundamental results on the characteristic time and the associated
allocation, which were first shown in [38]. Lemma C.1 gives an upper bound on T ⋆β (µ)/T

⋆(µ) and
Lemma C.2 shows that the (β-)optimal allocation is unique with strictly positive values. [38] shows
that these two results hold for any single-parameter exponential families. [21] extended their proof
for the non-parametric family of bounded distributions. Moreover, they argue that these results should
hold for more general distributions provided some regularity assumptions are satisfied.
Lemma C.1 ([38]). T ⋆1/2(µ) ≤ 2T ⋆(µ) and with β⋆ = w⋆i⋆(µ),

T ⋆β (µ)

T ⋆(µ)
≤ max

{
β⋆

β
,
1− β⋆

1− β

}
.

Lemma C.2 ([38]). If i⋆(µ) is a singleton and β ∈ (0, 1), then w⋆(µ) and w⋆β(µ) are singletons, i.e.
the optimal allocations are unique, and w⋆(µ)i > 0 and w⋆β(µ)i > 0 for all i ∈ [K].

Gaussian distributions Since Lemma C.1 is a worst-case inequality holding for general distribu-
tions, we expect that tighter inequality can be achieved for Gaussian distributions by leveraging their
symmetry. This intuition is fueled by recent results of [6]. Using a rewriting of the optimization prob-
lem underlying T ⋆(µ) (Lemma C.3), they provide a better understanding of characteristic times and
their optimal allocations (Lemma C.4). In particular, for Gaussian distributions, Lemma C.4 shows
that the optimal allocation of arm i⋆ is never above 1/2 and is larger than 1/(

√
K − 1 + 1) ≥ 1/K.

Lemma C.3 (Proposition 8 in [6]). Let µ ∈ RK be a K-arms Gaussian bandits and r(µ) be the
solution of ψµ(r) = 0, where

∀r ∈ (1/min
i ̸=i⋆

(µi⋆ − µi)
2,+∞), ψµ(r) =

∑
i ̸=i⋆

1

(r(µi⋆ − µi)2 − 1)
2 − 1 ,

and ψµ is convex and decreasing. Then,

T ⋆(µ) =
2r(µ)

1 +
∑
i ̸=i⋆

1
r(µ)(µi⋆−µi)2−1

.

Lemma C.4 (Proposition 10 in [6]). Let µ ∈ RK be a K-arms Gaussian bandits. For K = 2,
w⋆(µ) = (0.5, 0.5) and T ⋆(µ) = 8(µ1 − µ2)

2 .

For K ≥ 3, we have
1/(

√
K − 1 + 1) ≤ w⋆(µ)i⋆ ≤ 1/2 ,

and

max

{
8

mini ̸=i⋆(µi⋆ − µi)2
, 4

1 +
√
K − 1

∆2

}
≤ T ⋆(µ) ≤ 2

(1 +
√
K − 1)2

mini ̸=i⋆(µi⋆ − µi)2
,

where ∆2 = 1
K−1

∑
i ̸=i⋆(µi⋆ − µi)

2. In particular, the equalities w⋆(µ)i⋆ = 1/(
√
K − 1 + 1) and

T ⋆(µ) = 2(1+
√
K−1)2

mini̸=i⋆ (µi⋆−µi)2
are reached if and only if µi = maxi ̸=i⋆ µi for all i ̸= i⋆.

By inspecting the proof of Proposition 8 in [6], we obtain directly the following rewriting of T ⋆β (µ).

Lemma C.5. Let µ ∈ RK be a K-arms Gaussian bandits and rβ(µ) be the solution of φµ,β(r) = 0,
where

∀r ∈ (1/min
i ̸=i⋆

(µi⋆ − µi)
2,+∞), φµ,β(r) =

∑
i̸=i⋆

1

r(µi⋆ − µi)2 − 1
− 1− β

β
,

and φµ,β is convex and decreasing. Then,

T ⋆β (µ) =
2rβ(µ)

β
.
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Figure 2: Ratio of characteristic times Ω(x) = T ⋆1/2(µ)/T
⋆(µ) for K = 3 (left) and K = 4 (right).

The dashed blue line is r2 = 6/(1 +
√
2)2 (left), and the blue point is r3 = 8/(1 +

√
3)2 (right).

Proof. Using the proof of Proposition 8 in [6], we obtain directly that

2T ⋆β (µ)
−1 = Cβ(µ)

where Cβ(µ) is the solution of Φµ(C) = 0 where

Φµ(C) =
∑
i̸=i⋆

β

β(µi⋆ − µi)2/C − 1
− (1− β) .

The idea behind the above result is that at the equilibrium, i.e. at w⋆, all the transportation costs
are equal to C. Then, the implicit equation defining C is obtained by using the constraints that∑
i ̸=i⋆ w

⋆
i = 1− β. To conclude, we simply use r = β/C.

Since it is the sum ofK−1 convex and decreasing functions, φµ,β is also convex and decreasing.

Lemma C.6 aims at improving the worst-case inequality between T ⋆1/2(µ) and T ⋆(µ) in the
Gaussian setting. For K = 2, those two quantities are equal. For K ≥ 3, we showed that
maxµ:|i⋆(µ)|=1 T

⋆
1/2(µ)/T

⋆(µ) is at least rK , which is achieved when all sub-optimal arms have the
same mean. As the gradient of the ratio is the null vector for those instances, we conjecture this is
the maximum, i.e. T ⋆1/2(µ) ≤ rKT

⋆(µ). Our conjecture is supported by numerical simulations for
K ≥ 3. In Figure 2, we plot the ratio of characteristic times Ω(x) = T ⋆1/2(µ)/T

⋆(µ) for K ∈ {3, 4}.
We observed that our conjecture is validated empirically, and that T ⋆1/2(µ)/T

⋆(µ) is often close to 1.

Lemma C.6. For K = 2, we have T ⋆1/2(µ) = T ⋆(µ). For K ≥ 3, let rK = 2K/(1 +
√
K − 1)2.

Then, for all µ such that i⋆(µ) is unique, we have
T⋆
1/2(µ)

T⋆(µ) = Ω(x) where xj =
µi⋆−µj

µi⋆−µj⋆
≥ 1 for all

j /∈ {i⋆, j⋆} with j⋆ ∈ argminj ̸=i⋆ µi⋆ − µj . In other words,
T⋆
1/2(µ)

T⋆(µ) is independent from µi⋆ and
minj ̸=i⋆ µi⋆ − µj . Moreover, we have

Ω(1K−2) = rK and ∇xΩ(1K−2) = 0K−2 .

Proof. Using Lemma C.4, we have T ⋆1/2(µ) = T ⋆(µ) directly for K = 2.

For K ≥ 3, we want to upper bound T ⋆1/2(µ)/T
⋆(µ). If we denote by ∆min(µ) = mini ̸=i⋆(µi⋆ −

µi)
2, it is easy to see that T ⋆1/2(µ)/T

⋆(µ) = T ⋆1/2(µ̃)/T
⋆(µ̃) when ∆min(µ) = ∆min(µ̃). Likewise,

this ratio is invariant by translation of all means by a same quantity. Therefore, we consider without
restriction an instance µ such that ∆min(µ) = 1 and with

µ1 = 0 > µ2 = −x2 ≥ · · · ≥ µK = −xK ,

where x2 = 1 and xi ≥ 1 for all i ≥ 3.

First, we can rewrite

T ⋆1/2(x)
−1 =

1

4
max

q∈△K−1

min
i≥2

x2i
1 + 1/qi

≥ 1

4
max

q∈△K−1

min
i≥2

1

1 + 1/qi
=

1

4K
,

15



where the inequality is an equality if and only xi = 1 for all i ≥ 2. Using Lemma C.4, we know that

T ⋆(x) = 2(1 +
√
K − 1)2

if and only xi = 1 for all i ≥ 2. Therefore, we have exhibited an instance such that

T ⋆1/2(µ)

T ⋆(µ)
=

2K

(1 +
√
K − 1)2

.

Applying Lemma C.5 for β = 1/2, we obtain T ⋆1/2(x) = 4C(x) where C(x) is the implicit solution
of the equation

φ(x,C(x)) = 0 where φ(x,C) =
1

C − 1
+
∑
i≥3

1

Cx2i − 1
− 1 .

Using Lemma C.3, we know that

T ⋆(x) =
2r(x)

1 + 1
r(x)−1 +

∑
i≥3

1
r(x)x2

i−1

where r(x) is the implicit solution of the equation

ψ(x, r(x)) = 0 where ψ(x, r) =
1

(r − 1)2
+
∑
i≥3

1

(rx2i − 1)2
− 1 .

Therefore, we obtain that

Ω(x) =
1

2

T ⋆1/2(x)

T ⋆(x)
=

C(x)

r(x)− 1
+
∑
i≥3

C(x)

r(x)(r(x)x2i − 1)
,

and our goal is to show that the above quantity is maximum if and only xi = 1 for all i ≥ 2. One
way of doing this is by computing the gradient and showing it is negative, which would imply that
the function is decreasing. Let j ≥ 3. Using the implicit differentiation theorem, we obtain

∂C

∂xj
(x) = −

∂φ
∂xj

(x,C(x))

∂φ
∂C (x,C(x))

= −
2C(x)xj

(C(x)x2
j−1)2

1
(C(x)−1)2 +

∑
i≥3

x2
i

(C(x)x2
i−1)2

and
∂C

∂xj
(1K−2) = −2C(1K−2)

K − 1
,

and

∂r

∂xj
(x) = −

∂ψ
∂xj

(x, r(x))

∂ψ
∂r (x, r(x))

= −
2r(x)xj

(r(x)x2
j−1)3

1
(r(x)−1)3 +

∑
i≥3

x2
i

(r(x)x2
i−1)3

and
∂r

∂xj
(1K−2) = −2r(1K−2)

K − 1
.

Direct computations yield that

∂

∂xj

(
C(x)

r(x)− 1

)
=

∂C
∂xj

(x)(r(x)− 1)− C(x) ∂r∂xj
(x)

(r(x)− 1)2
and

∂

∂xj

(
C(x)

r(x)− 1

)
x=1K−2

=
1

K − 1

2C(1K−2)

(r(1K−2)− 1)2
,

and

∂

∂xj

(
C(x)

r(x)(r(x)x2j − 1)

)
=

∂C
∂xj

(x)r(x)(r(x)x2j − 1)− C(x) ∂r∂xj
(x)
(
2r(x)x2j − 1

)
− 2C(x)r(x)2xj(

r(x)(r(x)x2j − 1)
)2

∂

∂xj

(
C(x)

r(x)(r(x)x2j − 1)

)
x=1K−2

=

(
1

K − 1
− 1

)
2C(1K−2)

(r(1K−2)− 1)2
,

and, for i ≥ 3 s.t. i ̸= j,

∂

∂xj

(
C(x)

r(x)(r(x)x2i − 1)

)
=

∂C
∂xj

(x)r(x)(r(x)x2i − 1)− C(x) ∂r∂xj
(x)
(
2r(x)x2i − 1

)
(r(x)(r(x)x2i − 1))

2

∂

∂xj

(
C(x)

r(x)(r(x)x2i − 1)

)
x=1K−2

=
1

K − 1

2C(1K−2)

(r(1K−2)− 1)2
.
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Then, plugging everything together, we obtained that

∂Ω

∂xj
(1K−2) =

2C(1K−2)

(r(1K−2)− 1)2

 1

K − 1
+

1

K − 1
− 1 +

∑
i≥3,i̸=j

1

K − 1

 = 0 .

Therefore, we have shown that ∇Ω(1K−2) = 0K−2.

D Non-asymptotic analysis

In Appendix D.1, we state and prove one key result for each one of the three main components of
the TTUCB sampling rule: the UCB leader (Lemma D.1), the TC challenger (Lemma D.2) and
the tracking (Lemma D.3). The proof of Theorem 2.4 is detailed in Appendix D.2, which uses
the stopping rule (1) and a proof method from [30]. It is a direct consequence of a more general
result (Theorem D.4). In Appendix D.3, we prove a non-asymptotic upper bound for the TTUCB
when using gm instead of gu (Corollary D.5). We compare our results with uniform sampling in
Appendix D.4 (Theorem D.6). Other technicalities are gathered in Appendix D.5.

D.1 Key properties

Before delving in the proof of Theorem D.4 itself, we present the key properties of each component
of the TTUCB sampling rule under a some concentration event.

Let α > 1 and s > 1. Let (En)n>K be the sequence of concentration events defined as En :=
E1,n ∩ E2,n for all n > K where E1,n and E2,n are defined in (17) and (19) as

E1,n :=

{
∀k ∈ [K],∀t ∈ [n1/α, n], |µt,k − µk| <

√
gu(t)

Nt,k

}
,

E2,n :=

{
∀k ̸= i⋆,∀t ∈ [n1/α, n], (µt,i⋆ − µt,k)− (µi⋆ − µk) > −

√
2α(2 + s) log(t)

(
1

Nt,i⋆
+

1

Nt,k

)}
,

with gu(n) = 2α(1 + s) log n. In Lemma E.6, it is shown that
∑
n>K P(E∁

n) ≤ (2K − 1)ζ(s).

UCB leader Lemma D.1 shows that the UCB leader is different from i⋆ for only a sublinear number
of times under a certain concentration event. It is slightly more general than Lemma 3.2 presented in
Section 2, which follows from H1(µ) ≤ H1(µ) + 2∆−2

min = H(µ).

Lemma D.1. Let (E1,n)n and gu as in Lemma E.2. Let H1(µ) =
∑
i ̸=i⋆(µ)

2
(µi⋆(µ)−µi)2

. For all
n > K, under the event E1,n,

∀t ∈ [n1/α, n], Lt,i⋆ ≥ t− 1− 2H(µ)gu(t)/β −K/β , (6)

Let (E3,n)n and gm as in Lemma E.3. Under the event E3,n, (6) holds by using gm instead of gu.

Proof. Suppose that at time t ∈ [n1/α, n], the UCB leader is different from i⋆, i.e. Bt = k ̸= i⋆.
Using the event E1,n and the definition of Bt yields

µi⋆ ≤ µt,i⋆ +

√
gu(t)

Nt,i⋆
≤ µt,k +

√
gu(t)

Nt,k
≤ µk +

√
4gu(t)

Nt,k
.

We get that if t ≥ n1/α, then Nt,k ≤ 4gu(t)
(µi⋆−µk)2

. Therefore, we obtain the following upper bound on
the number of times the leader is different from i⋆ up to time t

t−1−Lt,i⋆ =
∑
k ̸=i⋆

Lt,k ≤ 1

β

∑
k ̸=i⋆

Nk
t,k+

K − 1

2β
≤ 1

β

∑
k ̸=i⋆

Nt,k+
K − 1

2β
≤
∑
k ̸=i⋆

4gu(t)

(µi⋆ − µk)2β
+
K − 1

2β
,

where we used Lemma D.3 for the second inequality and Nk
t,k ≤ Nt,k for the third. This concludes

the proof for gu. The same reasoning can be applied for gm.
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TC challenger Lemma D.2 shows a lower bound on the “transportation” costs used by the TC
challenger provided a certain concentration holds. This lower bound depends only on the empirical
counts when the best arm is the leader.
Lemma D.2. For all n > K, under the event E2,n, for all t ∈ [n1/α, n] such that Bt = i⋆,

∀k ̸= i⋆,
µt,Bt − µt,k√

1/Nt,Bt + 1/Nt,k
≥ µi⋆ − µk√

1/N i⋆
t,i⋆ + 1/N i⋆

t,k

−
√
2α(2 + s) log n .

Proof. Under E2,n, using Bt = i⋆ yields

µt,Bt
− µt,k√

1/Nt,Bt
+ 1/Nt,k

≥ µi⋆ − µk√
1/Nt,i⋆ + 1/Nt,k

−
√
2α(2 + s) log t ≥ µi⋆ − µk√

1/N i⋆
t,i⋆ + 1/N i⋆

t,k

−
√
2α(2 + s) log n ,

where the second inequality uses that Nt,k ≥ N i⋆

t,k for all k ̸= i⋆.

Tracking Lemma D.3 shows the key property satisfied by the K independent tracking procedures
used by the TTUCB sampling rule. It is slightly more general than Lemma 2.2 presented in Section 2.
It is a simple corollary of Theorem 6 in [13].
Lemma D.3. For all n > K and i ∈ [K], we have −1/2 ≤ N i

n,i − βLn,i ≤ 1 and for all k ̸= i,

N i
n,i ≥

β

1− β
N i
n,k −

1

2

1

1− β
.

Proof. We can rewrite the tracking condition NBn

n,Bn
≤ βLn+1,Bn as

NBn

n,Bn
− βLn+1,Bn

≤ (Ln+1,Bn
−NBn

n,Bn
)− (1− β)Ln+1,Bn

.

For all k ∈ [K], this corresponds to a two-arms C-Tracking between the leader k and the challengers
with wn = (β, 1 − β) for all n such that Bn = k. The leader’s pulling count is NBn

n,Bn
and

the challengers’ pulling count is Ln+1,Bn − NBn

n,Bn
. We recall that C-Tracking was defined as

In = argmink∈[K]Nn,k −
∑
t∈[n] wt,k.

Theorem 6 in [13] yields for all n > K, − 1
2 ≤ NBn

n,Bn
− βLn,Bn

≤ 1. The K parallel tracking
procedures are independent since they are considering counts partitioned on the considered leader.
Therefore, the above results holds for all i ∈ [K]. This concludes the first part of the proof.

Direct manipulations yield the second part of the result, namely

N i
n,k ≤ Ln,i −N i

n,i ≤ (1− β)Ln,i +
1

2
and N i

n,i ≥ −1

2
+ Ln,iβ ≥ β

1− β
(N i

n,k −
1

2
)− 1

2
.

The choice of K independent tracking procedures was made for two reasons. First, independent
procedures are simpler to analyze for theoretical purpose. Second, independent procedures yields
better empirical performance since it avoids over-sampling a sub-optimal arm when it is mistakenly
chosen as leader. To understand the second argument, let’s look at another design with one tracking
procedure. Namely we set In = Bn if Nn,Bn

≤ βn, else In = Cn. When Bn ̸= i⋆, then it will
(almost always) take In = Bn since Nn,Bn

is lower than βn. On the other hand, when Bn ̸= i⋆ with
K independent tracking procedures, both NBn

n,Bn
and Ln,Bn

are small, hence it is less systematic.

D.2 Proof of Theorem 2.4

Theorem 2.4 is a direct corollary of Theorem D.4, which holds for any β ∈ (0, 1), s > 1 and α > 1.
Theorem D.4. Let (δ, β) ∈ (0, 1)2, s > 1 and α > 1. Using the threshold (2) in (1) and gu in (3),
the TTUCB algorithm satisfies that, for all µ ∈ RK such that |i⋆(µ)| = 1,

Eµ[τδ] ≤ max
{
T0(δ), C

α
µ , C

α
α−1

0 , Cα1

}
+ C2 ,
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where

T0(δ) = sup

{
n > K | n− 1 ≤ T ⋆β (µ)

(1 + ε)2

β(1− w0)dµ(w0)
(
√
c(n− 1, δ) +

√
α(2 + s) log n)2

}
,

Cµ = h1
(
4α2(1 + s)H(µ)/β

)
, C0 =

2

εaµ(w0)
+ 1 , C1 = 1/(βε) , C2 = (2K − 1)ζ(s) + 1 ,

aµ(w0) = (1− w0)
dµ(w0) max{ min

i ̸=i⋆(µ)
w⋆β(µ)i, (1− β)w0} , dµ(w0) = |{i ∈ [K] \ {i⋆(µ)} | w⋆β(µ)i < (1− β)w0}| ,

with ε ∈ (0, 1], w0 ∈ [0, 1/(K − 1)] and ζ is the Riemann ζ function. For all x > 0, the

function h1(x) := xW−1

(
log(x) + 2+K/β

x

)
is positive, increasing for x ≥ 2 +K/β, and satisfies

h1(x) ≈ x(log x+ log log x).

Let n > K such that En holds true and the algorithm has not stop yet, i.e. En ∩ {n < τδ}. Let
t ∈ [n1/α, n] such that Bt = i⋆. Let c(n, δ) as in (2), which satisfies that n 7→ c(n, δ) is increasing.
Using the stopping rule (1) and t ≤ n < τδ , we obtain√
2c(n− 1, δ) ≥

√
2c(t− 1, δ) ≥ min

i̸=ı̂t

µt,̂ıt − µt,i√
1/Nt,̂ıt + 1/Nt,i

≥ min
i ̸=Bt

(µt,Bt
− µt,i)+√

1/Nt,Bt
+ 1/Nt,i

=
(µt,Bt

− µt,Ct
)+√

1/Nt,Bt
+ 1/Nt,Ct

,

The last inequality is an equality when Bt = ı̂t, and trivially true when Bt ̸= ı̂t since a positive term
is higher than zero (already null when taking i = ıt). Using Lemma D.2, we obtain

µt,Bt
− µt,Ct√

1/Nt,Bt
+ 1/Nt,Ct

≥ µi⋆ − µCt√
1/N i⋆

t,i⋆ + 1/N i⋆
t,Ct

−
√
2α(2 + s) log n

≥

√
1/β + 1/w⋆β,Ct

1/N i⋆
t,i⋆ + 1/N i⋆

t,Ct

min
i ̸=i⋆

µi⋆ − µi√
1/β + 1/w⋆β,i

−
√

2α(2 + s) log n

≥

√
1/β + 1/w⋆β,Ct

1/N i⋆
t,i⋆ + 1/N i⋆

t,Ct

√
2T ⋆β (µ)

−1 −
√

2α(2 + s) log n ,

where the second inequality is obtained by artificially making appear 1/β + 1/w⋆β,Ct
and taking the

minimum of i ̸= i⋆. The last inequality simply uses the definition of wi
⋆

β .

While combining Lemma D.1 and Lemma D.3 links N i⋆

t,i⋆/(t− 1) with β, we need another argument
to compare the empirical allocation N i⋆

t,Ct
/(t − 1) of the sub-optimal arm Ct with its β-optimal

allocation w⋆β,Ct
. Before delving into this key argument, we conclude the proof under an assumption

that will be shown to hold later: there exists D0 > 0 and Tµ > 0 such that for all n > Tµ, there
exists a well chosen t ∈ [n1/α, n] with Bt = i⋆, which satisfies

1/N i⋆

t,i⋆ + 1/N i⋆

t,Ct
≤ D0

n− 1

(
1/β + 1/w⋆β,Ct

)
. (7)

Let’s define

T (δ,D0) := sup

{
n > K | n− 1 ≤ T ⋆β (µ)D0

(√
c(n− 1, δ) +

√
α(2 + s) log n

)2}
.

For all n > max{Tµ, T (1, D0)}, the lower bound on µt,Bt−µt,Ct√
1/Nt,Bt+1/Nt,Ct

is positive, hence we can

use that it is upper bounded by
√

2c(n− 1, δ). Putting everything together, we have shown that

∀n > max{Tµ, T (1, D0)}, n− 1 ≤ T ⋆β (µ)D0

(√
c(n− 1, δ) +

√
α(2 + s) log n

)2
.

Therefore, we have En ∩ {n < τδ} = ∅ (i.e. En ⊂ {τδ ≤ n}) for all n ≥
max{T (δ,D0), T (1, D0), Tµ} + 1. Using that δ → T (δ,D0) is an decreasing function (since
CG is increasing), we obtain that T (δ,D0) = max{T (δ,D0), T (1, D0)}.
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Combining Lemmas D.8 and E.6 yields

Eµ[τδ] ≤ max{T (δ,D0), Tµ}+ 1 +
∑
n≥1

Pµ(E∁
n) ≤ max{T (δ,D0), Tµ}+ 1 + (2K − 1)ζ(s) .

At this stage, the proof of Theorem D.4 boils down to exhibiting D0 > 0 and Tµ > 0 such that:
for all n > Tµ, there exists a well chosen t ∈ [n1/α, n] with Bt = i⋆ and such that (7) holds. As
mentioned above, the crux of the problem is to relate N i⋆

t,Ct
/(t − 1) and w⋆β,Ct

. To do so, we will
build on the idea behind the proof for APT from [30]: consider an arm being over-sampled and study
the last time this arm was pulled.

By the pigeonhole principle, at time n, there is an index k1 ̸= i⋆ such that (5) holds, i.e.

N i⋆

n,k1 ≥
w⋆β,k1
1− β

(Ln,i⋆ −N i⋆

n,i⋆) ,

and we take such k1. Let t1 := sup {t < n | (Bt, Ct) = (i⋆, k1)} be the last time at which i⋆ was
the leader and k1 was the challenger. If It1 = Bt1 then N i⋆

t1,k1
= N i⋆

n,k1
, else N i⋆

t1,k1
= N i⋆

n,k1
− 1. In

both cases, we have N i⋆

t1,k1
≥ N i⋆

n,k1
− 1. Let f1 as in (14). Combined the above with Lemma D.9,

we obtain

N i⋆

t1,k1 ≥ N i⋆

n,k1 − 1 ≥
w⋆β,k1
1− β

(Ln,i⋆ −N i⋆

n,i⋆)− 1 ≥ w⋆β,k1(n− 1)− f1(n) .

Let w− > 0 be a lower bound on w⋆β,k1 , for example consider w− = mini ̸=i⋆ w
⋆
β,i. Let

C0(w−) = sup

{
n ≥ 1 | n− 1 <

1

w−

(
n1/α + f1(n)

)}
. (8)

Since t1 − 1 ≥ N i⋆

t1,k1
≥ w⋆β,k1(n − 1) − f1(n), we obtain that t1 ≥ n1/α for all n > N0(w−).

For instances µ such that w⋆β,k1 is small, the equation (5) can be satisfied at the very beginning,
hence t1 might be sublinear in n. Therefore, while combining Lemma D.1 and Lemma D.3 yields
N i⋆

t1,i⋆
⪆ β(t1 − 1), it is not possible to obtain N i⋆

t1,i⋆
⪆ β(n− 1). Due to the missing link between

t1 and n, we use the following inequality

1/N i⋆

t1,i⋆ + 1/N i⋆

t1,k1 ≤ 1

n− 1

(
1/β +

n− 1

N i⋆
t1,k1

)(
N i⋆

t1,k1

N i⋆
t1,i⋆

+ 1

)
,

which is a suboptimal step which artificially introduces 1/β, and is responsible for the multiplicative
factor 1/β in Theorem D.4. Improving on this suboptimal step is an interesting question, whose
answer still eludes us. One idea would be to leverage the information of the sampled arm at time t
since we have N i⋆

t,i⋆ ≤ βLt+1,i⋆ when i⋆ = Bt = It, else N i⋆

t,i⋆ ≥ βLt+1,i⋆ .

Let ε ∈ (0, 1]. It remains to control both terms. First, we obtain

1/β +
n− 1

N i⋆
t1,k1

≤ 1/β +
1

w⋆β,k1 − f1(n)/(n− 1)
≤ (1 + ε)

(
1/β + 1/w⋆β,k1

)
,

for all n > C1(w−). The last inequality is obtained by definition of

C1(w−) = sup

{
n ≥ 1 | n− 1 <

f1(n)

w−

(
1 +

1

ε

)}
, (9)

which ensures that, for all n > C1(w−), the last condition of the equivalence

w⋆β,k1 − f1(n)/(n− 1) ≥ (1 + ε)−1w⋆β,k1 ⇐⇒ n− 1 ≥ f1(n)

w⋆β,k1

(
1 +

1

ε

)
is satisfied since w⋆β,k1 ≥ w− and n > C1(w−). Second, using Lemma D.3 with N i⋆

t1,k1
≥

w⋆β,k1(n− 1)− f1(n), we obtain

N i⋆

t1,k1

N i⋆
t1,i⋆

+ 1 ≤

 β

1− β
− 1

2(1− β)
(
w⋆β,k1(n− 1)− f1(n)

)
−1

+ 1 ≤ (1 + ε)/β ,
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for all n > C2(w−). The last inequality is obtained by definition of

C2(w−) := sup

{
n ∈ N⋆ | n− 1 <

1

w−

(
f1(n) +

1− β + ε

2βε

)}
, (10)

which ensures that, for all n > C2(w−), the last condition of the equivalence β

1− β
− 1

2(1− β)
(
w⋆β,k1(n− 1)− f1(n)

)
−1

+ 1 ≤ (1 + ε)/β

⇐⇒ 1

w⋆β,k1(n− 1)− f1(n)
≤ 2βε

1− β + ε
⇐⇒ n− 1 ≥ 1

w⋆β,k1

(
f1(n) +

1− β + ε

2βε

)
is satisfied since w⋆β,k1 ≥ w− and n > C2(w−). By comparison between (8) and (10), we notice that

max {C0(w−), C2(w−)} ≤ max

{
C0(w−),

(
1− β + ε

2βε

)α}
Putting everything together, we have shown that taking D0 = (1 + ε)2/β, we have for all n >
max{K,C0(w−), C1(w−), C2(w−)}, there exists t1 ∈ [n1/α, n] with Bt1 = i⋆ and such that (7)
holds. Let h1 defined in (15). Since ε ≤ 1, using Lemmas D.10 and D.11 with the above yields

max{C0(w−), C1(w−), C2(w−)} ≤ max

{
h1
(
4α2(1 + s)H(µ)

)
,

(
2

εw−
+ 1

)1/(α−1)

,
1

βε

}α
.

Using w− = mini ̸=i⋆ w
⋆
β,i yields the first part of Theorem D.4, i.e. the special case of w0 = 0.

Refined non-asymptotic upper bound When considering large K or instances with unbalanced
β-optimal allocation, mini ̸=i⋆ w

⋆
β,i can become arbitrarily small. Therefore, the dependency in the

inverse of mini ̸=i⋆ w
⋆
β,i is undesired, and we would like to clip it with a value of our choosing which

is away from zero.

Let w0 ∈ (0, 1/(K − 1)] be an allocation threshold and dµ(w0) := |{i ∈ [K] \ {i⋆} | w⋆β,i <

(1− β)w0}| be the number of arms having a β-optimal allocation strictly smaller than (1− β)w0.
As discussed above, for instances µ such that w⋆β,k1 (defined above) is small, the equation (5) can be
satisfied at the very beginning for a small empirical allocation N i⋆

n,k1
. To provide a more meaningful

result, one needs to have a sub-optimal arm k1 such that either:

• Case 1: w⋆β,k1 is not too small, i.e. w⋆β,k1 ≥ (1− β)w0.

• Case 2: w⋆β,k1 is too small but N i⋆

n,k1
is large enough, i.e. w⋆β,k1 < (1 − β)w0 and

N i⋆

n,k1
≥ w0(Ln,i⋆ −N i⋆

n,i⋆).

In case 1, we can conduct the same manipulations as above simply by using w− = max{(1 −
β)w0,mini ̸=i⋆ w

⋆
β,i} instead of w− = mini ̸=i⋆ w

⋆
β,i, since it is a lower bound for w⋆β,k1 .

In case 2, the above proof can also be applied by conducting the same algebraic manipulations with
(1 − β)w0 instead of w⋆β,k1 , and using w− = (1 − β)w0 = max{(1 − β)w0,mini̸=i⋆ w

⋆
β,i}. To

slightly detail the argument, we can show similarly that N i⋆

t1,k1
≥ (1− β)w0(n− 1)− f1(n), where

f1 as in (14) since we have (1− β)w0 < 1− β. Then, for all n > C1((1− β)w0),

1/β +
n− 1

N i⋆
t1,k1

≤ (1 + ε)

(
1/β +

1

(1− β)w0

)
≤ (1 + ε)

(
1/β + 1/w⋆β,k1

)
.

The problematic situation happens when we are neither in case 1 nor in case 2:

• Case 3: both w⋆β,k1 and N i⋆

n,k1
are too small, i.e. w⋆β,k1 < (1 − β)w0 and N i⋆

n,k1
<

w0(Ln,i⋆ −N i⋆

n,i⋆).
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In case 3 it is not possible to conclude the proof with the arm k1 without paying the price of an
inverse of mini ̸=i⋆ w

⋆
β,i. To overcome this price, we need to find another arm k such that either case

1 or case 2 happens. Since N i⋆

n,k1
and w⋆β,k1 are small, we will ignore arm k1 and use the pigeonhole

principle on all arm i ∈ [K] \ {i⋆, k1}. As in (5), we obtain that there exists k2 such that

N i⋆

n,k2 ≥
w⋆β,k2

1− β − w⋆β,k1
(Ln,i⋆ −N i⋆

n,i⋆ −N i⋆

n,k1) ≥
(1− w0)w

⋆
β,k2

1− β
(Ln,i⋆ −N i⋆

n,i⋆) ,

where the last inequality is obtained by using w⋆β,k1 > 0 and N i⋆

n,k1
< w0(Ln,i⋆ − N i⋆

n,i⋆). Based
on k2 the same dichotomy happens: either we can conclude the proof when we are in case 1 or
2 or we cannot since we are in case 3. If case 3 occurs also for k2, i.e. w⋆β,k2 < (1 − β)w0 and
N i⋆

n,k2
< w0(Ln,i⋆ −N i⋆

n,i⋆ −N i⋆

n,k1
), we should also ignore it since it is non informative.

The main idea is then to peel off arms that are not informative, till we find an informative one. By
induction, we construct a sequence (ka)a∈[d] of such arms, where kd is the first arm for which either
case 1 or case 2 holds. This means that for all a ∈ [d− 1], we have w⋆β,ka < (1− β)w0 and

N i⋆

n,ka < w0(Ln,i⋆ −N i⋆

n,i⋆ −
∑

b∈[a−1]

N i⋆

n,kb
) .

The construction, which rely on the pigeonhole principle for i ∈ [K] \
(
{i⋆} ∪ {ka}a∈[d−1]

)
, yields

that kd satisfies

N i⋆

n,kd
≥

w⋆β,kd
1− β −

∑
a∈[d−1] w

⋆
β,ka

(Ln,i⋆ −N i⋆

n,i⋆ −
∑

a∈[d−1]

N i⋆

n,ka) ≥
(1− w0)

d−1w⋆β,kd
1− β

(Ln,i⋆ −N i⋆

n,i⋆) ,

where the last inequality is obtained since
∑
a∈[d−1] w

⋆
β,ka

> 0 and by a simple recurrence on the
arms {ka}a∈[d−1]. Since the arm kd satisfies case 1 or case 2, we can conclude similarly as above.
Let td := sup {t < n | (Bt, Ct) = (i⋆, kd)}.

When w⋆β,kd ≥ (1 − β)w0, the above proof can also be applied by conducting the same algebraic
manipulations with (1−w0)

d−1w⋆β,kd , and usingw− = (1−w0)
d−1 max{(1−β)w0,mini ̸=i⋆ w

⋆
β,i}.

In more details, we can show that N i⋆

td,kd
≥ (1− w0)

d−1w⋆β,kd(n− 1)− f1(n), where f1 as in (14)
since we have (1− w0)

d−1w⋆β,kd < 1− β. Then, for all n > C1(w−),

1/β +
n− 1

N i⋆
td,kd

≤ (1 + ε)

(
1/β +

1

(1− w0)d−1w⋆β,kd

)
≤ 1 + ε

(1− w0)d−1

(
1/β + 1/w⋆β,kd

)
.

This allow to conclude the result with D0 = (1+ε)2

β(1−w0)d−1 , hence paying a multiplicative factor of
1/(1− w0)

d−1.

When w⋆β,kd < (1 − β)w0 and N i⋆

n,ka
≥ w0(Ln,i⋆ − N i⋆

n,i⋆ −
∑
a∈[d−1]N

i⋆

n,ka
), we conclude

similarly by manipulating (1 − w0)
d−1(1 − β)w0, and using w− = (1 − w0)

d−1(1 − β)w0 =
(1−w0)

d−1 max{(1−β)w0,mini̸=i⋆ w
⋆
β,i}. First, we haveN i⋆

td,kd
≥ (1−w0)

d−1w0(n−1)−f1(n),
where f1 as in (14) since we have (1− β)(1− w0)

d−1w0 < 1− β. Then, for all n > C1(w−),

1/β +
n− 1

N i⋆
td,kd

≤ (1 + ε)

(
1/β +

1

(1− w0)d−1(1− β)w0

)
≤ 1 + ε

(1− w0)d−1

(
1/β + 1/w⋆β,kd

)
.

This allow to conclude the result with D0 = (1+ε)2

β(1−w0)d−1 .

To remove the dependency in the random variable d, we consider the worst case scenario where
{ka}a∈[d−1] = {i ∈ [K] \ {i⋆} | w⋆β,i < (1− β)w0}, i.e. d− 1 ≤ dµ(w0). In words, it means that
we had to enumerate over all arms with small allocation, such that case 2 didn’t hold, before finding
an arm with large allocation, i.e. satisfying case 1.

In all the cases considered above, the parameters always satisfied w− ≥ (1− w0)
dµ(w0) max{(1−

β)w0,mini ̸=i⋆ w
⋆
β,i} and D0 ≤ (1+ε)2

β(1−w0)
dµ(w0) . This yields the second part of Theorem D.4, i.e. for

w0 ∈ (0, 1/(K − 1)].
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D.3 Tighter UCB leader

While Theorem 2.3 holds for the TTUCB sampling rule using gm and gu, Theorem D.4 is formulated
solely for gu. Experiments highlight that using gu leads to worse performances than when using gm.
This is not surprising since gm is smaller than gu.

It is direct to see that the proof of Theorem D.4 also holds for gm up to additional technicalities which
we detail below. As the obtained non-asymptotic upper bound is less explicit, we chose not to include
it in Theorem 2.3.

Let α > 1 and s > 1. Let (Ẽn)n be the sequence of concentration events defined as Ẽn := E3,n∩E2,n
for all n > K where E3,n is defined in (18) as

E3,n :=

{
∀k ∈ [K],∀t ∈ [n1/α, n], |µt,k − µk| <

√
gm(t)

Nt,k

}
,

gm(n) :=W−1 (2sα log(n) + 2 log(2 + α log n) + 2) ,

where W−1(x) = −W−1(−e−x) for all x ≥ 1, with W−1 is the negative branch of the Lambert W
function.

Let n > K such that Ẽn holds true and the algorithm has not stop yet, i.e. Ẽn ∩ {n < τδ}. Using the
second part of Lemma D.1, the vast majority of the proof is unchanged. Modifying the definition of
f1 in (14) of Lemma D.9 to account for gm, we define f2(n) := 2H(µ)gm(n)/β +K/β + 2 for all
n > K.

In light of the proofs of the technical Lemmas D.10 and D.11, we can define

C̃µ = sup {x ∈ N⋆ | x < f2(x
α)} ,

and obtain directly Corollary D.5 with the same proof as in Appendix D.2.
Corollary D.5. Let (δ, β) ∈ (0, 1)2, ε ∈ (0, 1], s > 1, α > 1, w0 ∈ [0, 1/(K − 1)]. Combining the
stopping rule (1) with threshold (2) and the TTUCB sampling rule using gu in (3) yields a δ-correct
algorithm such that, for all µ ∈ RK with |i⋆(µ)| = 1,

Eµ[τδ] ≤ max
{
T0(δ), C̃

α
µ , C

α
α−1

0 , Cα1

}
+ C2 ,

where T0(δ), C0, C1 and C2 are defined in Theorem 2.3, and

C̃µ := sup {x ∈ N⋆ | x < 2H(µ)gm(xα)/β +K/β + 2} . (11)

Explicit upper bound Since gm is itself a non-standard function (like logarithm), it is not straight-
forward to obtain an explicit upper bound on (11). For gu, it was done in Lemma D.10 by using
Lemma D.7.

Using Lemma D.7, we obtain that

x ≥ 2H(µ)gm(xα)/β +K/β + 2

⇐⇒ x− c0
cµ

− log

(
x− c0
cµ

)
≥ 2sα2 log(x) + 2 log(2 + α2 log x) + 2

⇐= y − log(y) ≥ 1

sα2 + 1/2

(
log(2 + α2 log x) +

c0
2cµ

)
+

sα2

sα2 + 1/2
log cµ + c1

⇐⇒ x ≥ h2(cµ, x) ,

where we used y = x
cµ(2sα2+1) , c1 = log(2sα2 + 1) + 1

sα2+1/2 , cµ = 2H(µ), c0 = K/β + 2 and
define

h2(z, x) := z(2sα2 + 1)W−1

(
1

sα2 + 1/2

(
sα2 log z +

c0
2z

+ log(2 + α2 log x)
)
+ c1

)
. (12)

For both equivalences above, we used that we are interested in larger values of x, hence we
used that x−c0

cµ
≥ 1, x

cµ(2sα2+1) ≥ 1, 2sα2 log(x) + 2 log(2 + α2 log x) + 2 ≥ 1 and
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1
sα2+1/2

(
sα2 log cµ + c0

2cµ
+ log(2 + α2 log x)

)
+ c1 ≥ 1. Since those conditions are implied

by x ≥ h2(cµ, x), those conditions are neither restrictive nor informative.

Therefore, we have shown that C̃µ defined in (11) satisfies

C̃µ ≤ sup {x ∈ N⋆ | x < h2 (2H(µ), x)} ,

where h2(z, x) is defined in (12) is such that h2(z, x) ≈x 2z log(2 + α2 log x) and h2(z, x) ≈z
2sα2z log z.

D.4 Uniform sampling

While the shortcomings of uniform sampling are well known for general bandit instances, it is also
clear that uniform sampling perform well for highly symmetric instances µ such that w⋆(µ) ≈ 1K/K.
Therefore, we derive a non-asymptotic upper bound for uniform sampling (Theorem D.6), which
allow a clear comparison with Theorem D.4 (and Corollary D.5).
Theorem D.6. Let δ ∈ (0, 1). Combining the stopping rule (1) with threshold (2) and the uniform
sampling rule yields a δ-correct algorithm such that, for all µ ∈ RK with |i⋆(µ)| = 1,

Eµ[τδ] ≤ max

{
T1(δ), h3

(
8αK(1 + s)

mini̸=i⋆(µi⋆ − µi)2

)}
+ 1 + (2K − 1)ζ(s) , (13)

where h3(x) = xW−1(log(x)) for all x ≥ e and h3(x) = x for all x ∈ (0, e) and

T1(δ) = sup

{
n > K | n− 1 ≤ 4K

mini ̸=i⋆(µi⋆ − µi)2

(√
c(n− 1, δ) +

√
α(2 + s) log n

)2}
.

Proof. Let n > K such that En holds true and the algorithm has not stop yet, i.e. En ∩{n < τδ}. Let
t := sup

{
t ∈ [n1/α, n] | (t− 1)/K ∈ N, ı̂t = i⋆

}
. Using the stopping rule (1) and t ≤ n < τδ,

we obtain√
2c(n− 1, δ) ≥

√
2c(t− 1, δ) ≥ min

i ̸=ı̂t

µt,̂ıt − µt,i√
1/Nt,̂ıt + 1/Nt,i

=
µt,̂ıt − µt,kt√

1/Nt,̂ıt + 1/Nt,kt
,

where kt = argmini ̸=ı̂t
µt,ı̂t−µt,i√

1/Nt,ı̂t+1/Nt,i

. Since we sample uniformly, for all time t such that

(t− 1)/K ∈ N, we have Nt,i = (t− 1)/K for all i ∈ [K]. Combining the above with Lemma D.2,
we obtain√

2c(n− 1, δ) +
√
2α(2 + s) log n ≥ µi⋆ − µkt√

1/N i⋆
t,i⋆ + 1/N i⋆

t,kt

≥
√
t− 1

2K
min
i ̸=i⋆

(µi⋆ − µi) ,

where the last inequality is obtained by taking the minimum over i ∈ [K]. To conclude the proof, we
simply have to link t with n. More precisely, we will show that n − t ≤ K − 1 and ı̂t = i⋆ for n
large enough. By concentration, we have

µi −
√
Kgu(t)

t− 1
= µi −

√
gu(t)

Nt,i
≤ µt,i ≤ µi +

√
gu(t)

Nt,i
= µi +

√
Kgu(t)

t− 1
.

Therefore, we have µt,i⋆ > maxi ̸=i⋆ µt,i, i.e. ı̂t = i⋆, for all t > N3 where

N3 := sup

{
n ∈ N | n− 1 ≤ 4Kgu(n)

mini ̸=i⋆(µi⋆ − µi)2

}
,

which means that we have at worse n−t ≤ K−1. For n ≥ N3+K, we obtain t ≥ n−(K−1) > N3.

Let cµ = 8αK(1+s)
mini̸=i⋆ (µi⋆−µi)2

and x = n/cµ. Assume that cµ ≥ e. Using the definition of gu and
Lemma D.7, direct manipulations yields

n >
4Kgu(n)

mini̸=i⋆(µi⋆ − µi)2
⇐⇒ x− log(x) > log(cµ) ⇐⇒ x > W−1(log(cµ)) ,
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where the last inequality uses that log(cµ) ≥ 1 and x ≥ 1, which is not restrictive (or informative)
since it is implied by x > W−1(log(cµ)). When cµ < e, which means that the problem is easy, we
have directly that x− log(x) > 1 > log(cµ) for x > 1. Therefore, the condition becomes x > 1, i.e.
n ≥ cµ. Defining h3(x) = xW−1(log(x)) for all x ≥ e and h3(x) = x for all x ∈ (0, e), we have

N3 ≤ h3

(
8αK(1 + s)

mini ̸=i⋆(µi⋆ − µi)2

)
.

Using a similar argument as the one in Appendix D.2 which rely on D.8 and the definition of T1(δ),
we can conclude the proof.

The structure of the non-asymptotic upper bound of uniform sampling in (13) is similar to the one for
the TTUCB sampling rule in Theorem D.4. Therefore, we can compare the dominating terms for
both the asymptotic and the non-asymptotic regime.

First, we look at the asymptotic dominant term, namely we compare T0(δ) and T1(δ). Taking w =
1K/K instead of w⋆(µ) in the definition of T ⋆(µ), it is direct to see that T ⋆(µ) ≤ 4K

mini̸=i⋆ (µi⋆−µi)2
.

Using Lemma C.1, we have T ⋆β (µ) ≤ T ⋆(µ)max
{
β⋆

β ,
1−β⋆

1−β

}
where β⋆ = w⋆i⋆(µ). Therefore, while

we can’t say that T ⋆β (µ)
(1+ε)2

β(1−w0)
dµ(w0) ≤ 4K

mini̸=i⋆ (µi⋆−µi)2
for all instances µ, empirical evidences

suggest that the gap is significant for reasonable instances. It is even possible to design instances
where the gap between both notion of complexity explodes.

Second, we examine the dominating δ-independent term. Using Lemma D.7, we obtain by concavity
that for all x > e

0 < h1(x)− h3(x) ≤ 2W
′
−1(log(x)) = 2

(
1− 1

W−1(log(x))

)−1

,

which yields that limx→+∞ h1(x)−h3(x) ≤ 2. While those two functions diverges when x→ +∞,
their difference remains bounded by a finite quantity. Therefore, h1 and h3 are qualitatively similar. It
is direct to see that 2

mini̸=i⋆ (µi⋆−µi)2
< H(µ) ≤ 2K

mini̸=i⋆ (µi⋆−µi)2
Therefore, while we can’t say that

αH(µ) ≤ 2K
mini̸=i⋆ (µi⋆−µi)2

for all instances µ, the gap can become significant for some instances.

D.5 Technicalities

Lemma D.7 gathers properties on the function W−1 which we used in this work.

Lemma D.7 ([22]). Let W−1(x) = −W−1(−e−x) for all x ≥ 1, where W−1 is the negative branch
of the Lambert W function. The function W−1 is increasing on (1,+∞) and strictly concave on

(1,+∞). In particular, W
′
−1(x) =

(
1− 1

W−1(x)

)−1

for all x > 1. Then, for all y ≥ 1 and x ≥ 1,

W−1(y) ≤ x ⇐⇒ y ≤ x− log(x) .

Moreover, for all x > 1,

x+ log(x) ≤W−1(x) ≤ x+ log(x) + min

{
1

2
,

1√
x

}
.

Lemma D.8 is a standard result to upper bound the expected sample complexity of an algorithm.
Lemma D.8. Let (En)n>K be a sequence of events and T (δ) > K be such that for n ≥ T (δ),
En ⊂ {τδ ≤ n}. Then, Eµ[τδ] ≤ T (δ) +

∑
n>K Pµ(E∁

n).

Proof.

Eµ[τδ] =
∑
n

Pµ(τδ > n) ≤
∑

n<T (δ)

Pµ(τδ > n) +
∑

n≥T (δ)

Pµ(E∁
n) ≤ T (δ) +

∑
n>K

Pµ(E∁
n) .
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Technical results Lemma D.9 shows that a linear lower bound on the number of samples allocated
to the challenger, i.e. Ln,i⋆ −N i⋆

n,i⋆ ⪆ (1− β)(n− 1).

Lemma D.9. Let w ∈ (0, 1− β) and (E1,n)n as in (17). For all n ∈ N⋆, under E1,n,
w

1− β

(
Ln,i⋆ −N i⋆

n,i⋆

)
− 1 ≥ (n− 1)w − f1(n) ,

where
f1(n) = 2H(µ)gu(n)/β +K/β + 2 . (14)

Proof. Using Lemma D.3, we obtain that, under E1,n,
w

1− β

(
Ln,i⋆ −N i⋆

n,i⋆

)
− 1 = wLn,i⋆ − w

1− β
− 1 ≥ w(n− 1)− 2H(µ)gu(n)/β −K/β − 2 .

where the last inequality uses Lemma D.1 for t = n and w ∈ (0, 1− β).

Lemma D.10 gives an explicit upper bound on the constant C0(w−) defined implicitly in Ap-
pendix D.2.
Lemma D.10. Let w− > 0 and C0(w−) as in (8). Then, we have

C0(w−) ≤ max

{
h1
(
4α2(1 + s)H(µ)/β

)
,

(
2

w−
+ 1

)1/(α−1)
}α

.

where h1 : R⋆+ → R⋆+ is an increasing function for x ≥ 2 +K/β defined as

h1(x) := xW−1

(
log(x) +

2 +K/β

x

)
. (15)

Proof. Using the definition of gu and Lemma D.7, direct manipulations yields

n1/α ≥ f1(n) ⇐⇒ n1/α ≥ cµ log(n
1/α) + 2 +K/β ⇐⇒ x− log(x) ≥ dµ ⇐⇒ x ≥W−1 (dµ) ,

where x = n1/α/cµ, dµ = log(cµ) + (2 + K/β)/cµ and cµ = 4α2(1 + s)H(µ)/β. For the last
equivalence we used that we are only interested in x ≥ 1 (small values are not relevant for upper
bounds). Since W−1 (dµ) ≥ 1, this condition is neither restrictive nor informative as we obtain the
final condition x ≥W−1 (dµ). Moreover, we can show

dµ ≥ 1 ⇐⇒ cµ(log(cµ)− 1) ≥ −(2 +K/β) ⇐= cµ(log(cµ)− 1) ≥ −1 ,

where the last part is true since 2+K/β ≥ 1 and minx∈R x(log(x)−1) = −1 by direct computations.
Therefore, for all n ≥ h1(cµ)

α, we have

n− 1 ≥ 1

w−

(
n1/α + f1(n)

)
⇐= n− 1 ≥ 2

w−
n1/α ⇐= n ≥

(
2

w−
+ 1

)α/(α−1)

.

Given the definition of C0(w−) as in (8), this concludes the proof.

Since x → W−1(x) is a positive and increasing function, i.e. W−1(x) > 0 and W
′
−1(x) > 0, a

sufficient condition for h1 to be increasing is to have f : x→ log(x) + 2+K/β
x increasing since

h′1(x) =W−1(f(x))+xf
′(x)W

′
−1(f(x)) > 0 ⇐= W−1(f(x)) > 0andf ′(x)W

′
−1(f(x)) ≥ 0 .

Since f ′(x) = 1
x − 2+K/β

x2 , we have that h1 is increasing for x ≥ 2 +K/β.

Lemma D.11 gives an explicit upper bound on the constant C1(w−) defined implicitly in Ap-
pendix D.2.
Lemma D.11. Let w− > 0 and C1(w−) as in (9). Then, we have

C1(w−) ≤ max

{
h1
(
4α2(1 + s)H(µ)/β

)
,

(
1 + 1/ε

w−
+ 1

)1/(α−1)
}α

.
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Proof. Using manipulations conducted in Lemma D.10, we obtain that, for all n ≥
h1
(
4α2(1 + s)H(µ)/β

)α
,

n− 1 ≥ f1(n)

w−

(
1 +

1

ε

)
⇐= n− 1 ≥ 1 + 1/ε

w−
n1/α ⇐= n ≥

(
1 + 1/ε

w−
+ 1

)α/(α−1)

.

Given the definition of C1(w−) as in (9), this concludes the proof.

Lemma D.12 gives an asymptotic upper bound for times that are defined implicitly. For example, it
can be used with T0(δ) and T1(δ) defined in Theorem D.4 and Theorem D.6.

Lemma D.12. Let C > 0, D > 0, c(n, δ) as in (2) and

T (δ) := sup

{
n ∈ N⋆ | n− 1 ≤ C

(√
c(n− 1, δ) +

√
D log n

)2}
.

Then, we have lim supδ→0
T (δ,C)
log(1/δ) ≤ C.

Proof. Let γ > 0. Direct manipulations yield that

n− 1 ≤ C
(√

c(n− 1, δ) +
√
D log n

)2
⇐⇒

(√
n− 1−

√
CD log n

)2
− 4 log

(
4 + log

n

2

)
≤ 2CCG

(
1

2
log

(
K − 1

δ

))
⇐= n ≤ 2C

1 + γ
CG
(
1

2
log

(
K − 1

δ

))
for n > Nγ

where Nγ = sup
{
n ∈ N⋆ |

(√
n− 1−

√
CD log n

)2 − 4 log
(
4 + log n

2

)
> (1 + γ)n

}
. There-

fore, we have

T (δ, C) ≤ Nγ + 1 +
2C

1 + γ
CG
(
1

2
log

(
K − 1

δ

))
.

Using that CG(x) ≈ x+ log(x) (Lemma E.1), we obtain directly that, for all γ > 0,

lim sup
δ→0

T (δ, C)

log(1/δ)
≤ C

1 + γ
,

which yields the result by letting γ go to zero.

Lemma D.13 gives a non-asymptotic upper bound for times that are defined implicitly. For example,
when considering the idealized choice c(n, δ) = log(1/δ), it can be used as a first order approximation
of T0(δ) and T1(δ) defined in Theorem D.4 and Theorem D.6.

Lemma D.13. Let C > 0, D > 0 and T (δ) := sup {n ∈ N⋆ | n− 1 ≤ C log(1/δ) +D log n}.
Then, we have

T (δ) < DW−1

(
C

D
log(1/δ) + 1/D + logD

)
for log(1/δ) ≥ D−D log(D)−1

C , else T (δ) < D.

Proof. Direct manipulations yield that

n− 1 ≥ C log(1/δ) +D log n ⇐⇒ y − log y ≥ C

D
log(1/δ) + cD ⇐⇒ n ≥ DW−1

(
C

D
log(1/δ) + cD

)
where y = n/D and cD = 1/D+logD. For the last equivalence, we used that CD log(1/δ)+cD ≥ 1

if and only if log(1/δ) ≥ D
C (1− cD) =

D−D log(D)−1
C . When C

D log(1/δ) + cD < 1, which means
that the δ parameter is large, we have directly that y − log y ≥ 1 > C

D log(1/δ) + cD for y ≥ 1.
Therefore, the condition becomes n ≥ D.
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E Concentration

The proof of Lemma 2.1 is given in Appendix E.1. In Appendix E.2, we show concentration results
for the UCB leader (both with gu and gm) and the TC challenger.

E.1 Proof of Lemma 2.1

Proving δ-correctness of a GLR stopping rule is done by leveraging concentration results. In particular,
we build upon Theorem 9 of [27], which is restated below.
Lemma E.1. Consider Gaussian bandits with means µ ∈ RK and unit variance. Let S ⊆ [K] and
x > 0.

Pµ

[
∃n ∈ N,

∑
k∈S

Nn,k
2

(µn,k − µk)
2 >

∑
k∈S

2 log (4 + log (Nn,k)) + |S|CG
(
x

|S|

)]
≤ e−x

where CG is defined in [27] by CG(x) = minλ∈]1/2,1]
gG(λ)+x

λ and

gG(λ) = 2λ− 2λ log(4λ) + log ζ(2λ)− 1

2
log(1− λ) , (16)

where ζ is the Riemann ζ function and CG(x) ≈ x+ log(x).

Since ı̂n = i⋆(µn), standard manipulations yield that for all k ̸= ı̂n

(µn,̂ın − µn,k)
2

1
Nn,ı̂n

+ 1
Nn,k

= inf
u∈R

(
Nn,̂ın(µn,̂ın − u)2 +Nn,k(µn,k − u)2

)
= inf
y≥x

(
Nn,̂ın(µn,̂ın − x)2 +Nn,k(µn,k − y)2

)
.

Let i⋆ = i⋆(µ). Using the stopping rule (1) and the above manipulations, we obtain
Pµ (τδ < +∞, ı̂τδ ̸= i⋆)

≤ Pµ
(
∃n ∈ N, ∃i ̸= i⋆, i = i⋆(µn), min

k ̸=i
inf
y≥x

(
Nn,i(µn,i − x)2 +Nn,k(µn,k − y)2

)
≥ 2c(n− 1, δ)

)
≤ Pµ

(
∃n ∈ N, ∃i ̸= i⋆, i = i⋆(µn),

Nn,i
2

(µn,i − µi)
2 +

Nn,i⋆

2
(µn,i⋆ − µi⋆)

2 ≥ c(n− 1, δ)

)
≤
∑
i ̸=i⋆

Pµ
(
∃n ∈ N,

Nn,i
2

(µn,i − µi)
2 +

Nn,i⋆

2
(µn,i⋆ − µi⋆)

2 ≥ c(n− 1, δ)

)
where the second inequality is obtained with (k, x, y) = (i⋆, µi, µi⋆), and the third by union bound.
By concavity of x 7→ log(4 + log(x)) and Nn,i⋆ +Nn,i ≤

∑
k∈[K]Nn,k = n− 1, we obtain

∀i ̸= i⋆, log(4 + logNn,i⋆) + log(4 + logNn,i) ≤ 2 log(4 + log((n− 1)/2))

Combining the above with Lemma E.1 for all i ̸= i⋆, we obtain Pµ (τδ < +∞, ı̂ = i⋆) ≤∑
i ̸=i⋆

δ
K−1 = δ.

E.2 Sampling rule

In Lemmas E.2 and E.3, we prove that the UCB leader using gu and gm is truly an upper confidence
bounds for the unknown mean parameters, when a certain concentration event occurs. Then, when
another concentration event occurs, we show a lower bound on the “transportation” costs used by
the TC challenger in Lemma E.5. Lemma E.6 upper bounds the probability of not being in the
intersection of the two above sequence of concentration events.

UCB Leader Lemma E.2 proves that the bonus gu is sufficient to have upper confidence bounds on
the unknown mean µ for Gaussian observations. The proof uses a simple union bound argument over
the time.
Lemma E.2. Let α > 1 and s > 1. For all n > K, let gu(n) = 2α(1 + s) log(n) and

E1,n :=

{
∀k ∈ [K],∀t ∈ [n1/α, n], |µt,k − µk| <

√
gu(t)

Nt,k

}
. (17)

Then, for all n > K, P(E∁
1,n) ≤ Kn−s.
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Proof. Let (Xs)s∈[n] be Gaussian observations from one distribution with unit variance. By union
bound over [K] and using that n ≤ tα, we obtain

P

(
∃k ∈ [K],∃t ∈ [n1/α, n], |µt,k − µk| ≥

√
2α(1 + s) log(t)

Nt,k

)

≤
∑
k∈[K]

P

(
∃t ∈ [n1/α, n], |µt,k − µk| ≥

√
2(1 + s) log(n)

Nt,k

)

≤
∑
k∈[K]

P

∃m ∈ [n],

∣∣∣∣∣∣ 1m
∑
s∈[m]

Xs

∣∣∣∣∣∣ ≥
√

2(1 + s) log(n)

m


≤
∑
k∈[K]

∑
m∈[n]

P

∣∣∣∣∣∣ 1m
∑
s∈[m]

Xs

∣∣∣∣∣∣ ≥
√

2(1 + s) log(n)

m


≤
∑
k∈[K]

∑
m∈[n]

n−(1+s) = Kn−s ,

where we used that µt,k − µk = 1
Nt,k

∑t
s=1 1 (Is = k)Xs,k and concentration results for Gaussian

observations.

Lemma E.3 proves that the bonus gm is sufficient to have upper confidence bounds on the unknown
mean µ for Gaussian observations. The proof uses a more sophisticated argument based on mixture
of martingales.

Lemma E.3. Let α > 1 and s > 1. For all x ≥ 1, let W−1(x) = −W−1(−e−x) where
W−1 is the negative branch of the Lambert W function. For all n > K, let gm(n) =
W−1 (2sα log(n) + 2 log(2 + α log n) + 2) and

E3,n :=

{
∀k ∈ [K],∀t ∈ [n1/α, n], |µt,k − µk| <

√
gm(t)

Nt,k

}
. (18)

Then, for all n > K, P(E∁
3,n) ≤ Kn−s.

Proof. Let (Xs)s∈[t] the observations from a standard normal distributions and denote St =∑
s∈[t]Xs. To derived concentration result, we use peeling.

Let η > 0 and D = ⌈ log(n)
log(1+η)⌉. For all i ∈ [D], let γi > 0 and Ni = (1 + η)i−1. For all i ∈ [D], we

define the family of priors fNi,γi(x) =
√

γiNi

2π exp
(
−x2γiNi

2

)
with weights wi = 1

D and process

M(t) =
∑
i∈[D]

wi

∫
fNi,γi(x) exp

(
xSt −

1

2
x2t

)
dx ,

which satisfies M(0) = 1. It is direct to see that M(t) = exp
(
xSt − 1

2x
2t
)

is a non-negative
martingale. By Tonelli’s theorem, then M(t) is also a non-negative martingale of unit initial value.

Let i ∈ [D] and consider t ∈ [Ni, Ni+1). For all x,

fNi,γ(x) ≥
√
Ni
t
ft,γi(x) ≥

1√
1 + η

ft,γi(x)

Direct computations shows that∫
ft,γi(x) exp

(
xSt −

1

2
x2t

)
dx =

1√
1 + γ−1

i

exp

(
S2
t

2(1 + γi)t

)
.
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Minoring M(t) by one of the positive term of its sum, we obtain

M(t) ≥ 1

D

1√
(1 + γ−1

i )(1 + η)
exp

(
S2
t

2(1 + γi)t

)
,

Using Ville’s maximal inequality, we have that with probability greater than 1 − δ, logM(t) ≤
log (1/δ). Therefore, with probability greater than 1− δ, for all i ∈ [D] and t ∈ [Ni, Ni+1),

S2
t

t
≤ (1 + γi)

(
2 log (1/δ) + 2 logD + log(1 + γ−1

i ) + log(1 + η)
)
.

Since this upper bound is independent of t, we can optimize it and choose γi as in Lemma E.4 for all
i ∈ [D].

Lemma E.4 (Lemma A.3 in [11]). For a, b ≥ 1, the minimal value of f(η) = (1+η)(a+log(b+ 1
η ))

is attained at η⋆ such that f(η⋆) ≤ 1− b+W−1(a+ b). If b = 1, then there is equality.

Therefore, with probability greater than 1− δ, for all i ∈ [D] and t ∈ [Ni, Ni+1),

S2
t

t
≤W−1 (1 + 2 log (1/δ) + 2 logD + log(1 + η))

≤W−1 (1 + 2 log (1/δ) + 2 log (log(1 + η) + log n)− 2 log log(1 + η) + log(1 + η))

=W−1 (2 log (1/δ) + 2 log (2 + log n) + 3− 2 log 2)

The second inequality is obtained since D ≤ 1+ logn
log(1+η) . The last equality is obtained for the choice

η⋆ = e2 − 1, which minimizes η 7→ log(1 + η)− 2 log(log(1 + η)). Since [n] ⊆
⋃
i∈[D][Ni, Ni+1)

and Nt,k(µt,k − µk) =
∑
s∈[Nt,k]

Xs,k (unit-variance), this yields

P

(
∃t ≤ n,

∣∣∣∣∣1t
t∑

s=1

Xs

∣∣∣∣∣ ≥
√

1

t
W−1 (2 log(1/δ) + 2 log(2 + log(n)) + 3− 2 log 2)

)
≤ δ .

Since 3− 2 log 2 ≤ 2 and W−1 is increasing, taking δ = n−s and restricting to m ∈ [n1/α, n] yields

P
(
∃m ∈ [n1/α, n],

√
Nm,k |µm,k − µk| ≥

√
W−1 (2s log(n) + 2 log(2 + log(n)) + 2)

)
≤ n−s .

Using n ≤ mα and doing a union bound over arms yield the result.

TC challenger Lemma E.5 lower bounds the difference between the empirical gap and the unknown
gap.

Lemma E.5. Let α > 1 and s > 1. For all n > K, let

E2,n :=

{
∀k ̸= i⋆,∀t ∈ [n1/α, n], (µt,i⋆ − µt,k)− (µi⋆ − µk) > −

√
2α(2 + s) log(t)

(
1

Nt,i⋆
+

1

Nt,k

)}
.

(19)
Then, for all n > K, P(E∁

2,n) ≤ (K − 1)n−s.

Proof. Let (Xs)s∈[n] and (Ys)s∈[n] be Gaussian observations from two distributions with unit vari-
ance. Then 1

m1

∑m1

i=1Xi − 1
m2

∑m2

i=1 Yi is Gaussian with variance 1
m1

+ 1
m2

. By union bound and
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using that n ≤ tα, we obtain

P

(
∃k ̸= i⋆,∃t ∈ [n1/α, n],

(µt,i⋆ − µt,k)− (µi⋆ − µk)√
1/Nt,i⋆ + 1/Nt,k

≤ −
√
2α(2 + s) log(t)

)

≤
∑
k ̸=i⋆

P

(
∃t ∈ [n1/α, n],

(µt,i⋆ − µt,k)− (µi⋆ − µk)√
1/Nt,i⋆ + 1/Nt,k

≤ −
√
2(2 + s) log(n)

)

≤
∑
k ̸=i⋆

P

(
∃(m1,m2) ∈ [n]2,

1
m1

∑m1

i=1Xi − 1
m2

∑m2

i=1 Yi√
1/m1 + 1/m2

≤ −
√
2(2 + s) log(n)

)

≤
∑
k ̸=i⋆

∑
(m1,m2)∈[n]2

P

(
1

m1

m1∑
i=1

Xi −
1

m2

m2∑
i=1

Yi ≤ −
√
2(2 + s) log(n) (1/m1 + 1/m2)

)

≤
∑
k ̸=i⋆

∑
(m1,m2)∈[n]2

n−(2+s) = (K − 1)n−s ,

where we used that (µt,i⋆ − µi⋆) − (µt,k − µk) = 1
Nt,i⋆

∑t
s=1 1 (Is = i⋆)Xs,i⋆ −

1
Nt,k

∑t
s=1 1 (Is = k)Xs,k and concentration results for Gaussian observations.

Using a mixture of martingale arguments, we could improve on Lemma E.5 similarly as gu improved
on gm. This will impact second order terms of our non-asymptotic theoretical guarantees, at the price
of less explicit non-asymptotic terms.

Concentration event Lemma E.6 upper bounds the summed probabilities of the complementary
events.
Lemma E.6. Let ζ be the Riemann ζ function. Let (E1,n)n>K , (E2,n)n>K and (E3,n)n>K as
in (17), (19) and (18). For all n > K, let En = E1,n ∩ E2,n and Ẽn = E3,n ∩ E2,n. Then,

max

{∑
n>K

P(E∁
n),
∑
n>K

P(Ẽ∁
n)

}
≤ (2K − 1)ζ(s) .

Proof. Using Lemmas E.2 and E.5, direct union bound yields∑
n∈N⋆

P(E∁
n) ≤

∑
n∈N⋆

P(E∁
1,n) + P(E∁

2,n) ≤
∑
n∈N⋆

(2K − 1)n−s = (2K − 1)ζ(s) .

The same proof trivially holds for Ẽn by using Lemmas E.3 and E.5.

F Asymptotic analysis

Based solely on Theorem D.4, it is not possible to obtain asymptotic β-optimality due to the
multiplicative factor 1/β. Building on the unified analysis proposed in [21], we prove Theorem 2.3.

Our main technical contribution for this proof lies in the use of tracking instead of sampling. Given
that the cumulative probability of being sampled is the expectation of the random empirical counts,
it is not surprising that tracking-based Top Two algorithms enjoy the same theoretical guarantees
as their sampling counterpart. As we will see, the analysis to obtain similar result is even simpler
(Lemmas F.6, F.8 and F.10). Apart from this technical subtlety, the proof of Theorem 2.3 boils down
to showing that the UCB leader satisfies the two sufficient properties highlighted by previous work
(Lemmas F.4 and F.7).

Using the fact that x→
√
2x is increasing, it is direct to see that the TC challenger (4) coincides with

the definition used by [39, 21], i.e.

CTC
n = argmin

i ̸=Bn

(µn,Bn − µn,i)+√
1/Nn,Bn + 1/Nn,i

= argmin
i ̸=Bn

1 (µn,Bn > µn,i)
(µn,Bn − µn,i)

2

2(1/Nn,Bn
+ 1/Nn,i)

.
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F.1 Proof of Theorem 2.3

Let µ ∈ DK such that mini ̸=j |µi − µj | > 0, and let i⋆ = i⋆(µ) be the unique best arm. Let
β ∈ (0, 1) and w⋆β be the unique allocation β-optimal allocation satisfying w⋆β,i > 0 for all i ∈ [K]

(Lemma C.2), i.e. w⋆β(µ) = {w⋆β} where

w⋆β(µ) := argmax
w∈△K :wi⋆=β

min
i ̸=i⋆

(µi⋆ − µi)
2

2(1/β + 1/wi)
= argmax
w∈△K :wi⋆=β

min
i ̸=i⋆

µi⋆ − µi√
1/β + 1/wi

.

Let ε > 0. Following [36, 39, 21], we aim at upper bounding the expectation of the convergence
time T εβ , which is a random variable quantifies the number of samples required for the empirical
allocations Nn/(n− 1) to be ε-close to w⋆β :

T εβ := inf

{
T ≥ 1 | ∀n ≥ T,

∥∥∥∥ Nn
n− 1

− w⋆β

∥∥∥∥
∞

≤ ε

}
. (20)

Lemma F.1 shows that a sufficient condition for asymptotic β-optimality is to show Eµ[T εβ ] < +∞
for all ε small enough.
Lemma F.1. Let (δ, β) ∈ (0, 1)2. Assume that there exists ε1(µ) > 0 such that for all ε ∈ (0, ε1(µ)],
Eµ[T εβ ] < +∞. Combining the stopping rule (1) with threshold as in (2) yields an algorithm such
that, for all µ ∈ RK with |i⋆(µ)| = 1,

lim sup
δ→0

Eµ[τδ]
log (1/δ)

≤ T ⋆β (µ) .

Proof. While the first result in the spirit of Lemma F.1 was derived by [36] for Gaussian distributions,
a proof holding for more general distributions is given by Theorem 2 in [21]. The sole criterion on
the stopping threshold is to be asymptotically tight (Definition F.2).

Definition F.2. A threshold c : N × (0, 1] → R+ is said to be asymptotically tight if there exists
α ∈ [0, 1), δ0 ∈ (0, 1], functions f, T̄ : (0, 1] → R+ and C independent of δ satisfying: (1) for all
δ ∈ (0, δ0] and n ≥ T̄ (δ), then c(n, δ) ≤ f(δ) + Cnα, (2) lim supδ→0 f(δ)/ log(1/δ) ≤ 1 and (3)
lim supδ→0 T̄ (δ)/ log(1/δ) = 0.

Since CG defined in (16) satisfies CG ≈ x+ log(x), it is direct to see that

c(n, δ) = 2CG
(
1

2
log

(
K − 1

δ

))
+ 4 log

(
4 + log

n

2

)
is asymptotically tight, e.g. by taking (α, δ0, C) = (1/2, 1, 4), f(δ) = 2CG

(
1
2 log

(
K−1
δ

))
and

T̄ (δ) = 1. This concludes the proof.

Throughout the proof, we will use a concentration result of the empirical mean (Lemma F.3) Since
this is a standard result for Gaussian observations (see Lemma 5 of [36]), we omit the proof.
Lemma F.3. There exists a sub-Gaussian random variable Wµ such that almost surely, for all
i ∈ [K] and all n such that Nn,i ≥ 1,

|µn,i − µi| ≤Wµ

√
log(e+Nn,i)

Nn,i
.

In particular, any random variable which is polynomial in Wµ has a finite expectation.

Sufficient exploration To upper bound the expected convergence time, as prior work we first
establish sufficient exploration. Given an arbitrary threshold L ∈ R∗

+, we define the sampled enough
set and its arms with highest mean (when not empty) as

SLn := {i ∈ [K] | Nn,i ≥ L} and I⋆n := argmax
i∈SL

n

µi . (21)
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Since mini ̸=j |µi − µj | > 0, I⋆n is a singleton. We define the highly and the mildly under-sampled
sets

ULn := {i ∈ [K] | Nn,i <
√
L} and V Ln := {i ∈ [K] | Nn,i < L3/4} . (22)

[21] identifies the properties that the leader and the challenger should satisfy to ensure sufficient
exploration. Lemma F.4 show that the desired property for the UCB leader defined in (3) with bonus
gu(n) = 2α(1 + s) log n or

gm(n) =W−1 (2sα log(n) + 2 log(2 + α log n) + 2) .

Lemma F.4. There exists L0 with Eµ[(L0)
α] < +∞ for all α > 0 such that if L ≥ L0, for all

n (at most polynomial in L) such that SLn ̸= ∅, BUCB
n ∈ SLn implies BUCB

n ∈ I⋆n and BUCB
n ∈

argmaxi∈SL
n
µn,i.

Proof. Let ε > 0 and ∆min = mini ̸=j |µi − µj |. Let g denote either gu or gm. Let L ≥ L0, where
L0 will be specified later, and n (at most polynomial in L) such that SLn ̸= ∅. Then, there exists a
polynomial function P such that n ≤ P (L). By considering arms that are sampled more than L, we
can show that for all k ∈ SLn \ I⋆n,

µn,k +

√
g(n)

Nn,k
≤ µk +Wµ

√
log(e+Nn,k)

1 +Nn,k
+

√
g(P (L))

L
≤ µk +Wµ

√
log(e+ L)

1 + L
+

√
g(P (L))

L
≤ µk + 2ε ,

where the last inequality is obtained for L ≥ L0 with

L0 = 1 + sup

{
L ∈ N⋆ |Wµ

√
log(e+ L)

1 + L
> ε,

√
g(P (L))

L
> ε

}
.

Since W−1(x) ≈ x+ log(x), both gu and gm have a logarithmic behavior, hence g(P (L)) =L→+∞
o(L). Since L0 is polynomial in Wµ, Lemma F.3 yields Eµ[(L0)

α] < +∞ for all α > 0.

Moreover, for all k ∈ I⋆n,

µn,k +

√
g(n)

Nn,k
≥ µk −Wµ

√
log(e+Nn,k)

1 +Nn,k
≥ µk −Wµ

√
log(e+ L)

1 + L
≥ µk − ε .

Assume that BUCB
n ∈ SLn and that BUCB

n /∈ I⋆n. Since BUCB
n = argmaxk∈[K]

{
µn,k +

√
g(n)
Nn,k

}
,

taking ε < ∆min/3 in the above yields a direct contradiction.

We can use the proof of [21] to obtain Lemma F.5. While their result accounts for the randomization
of the sampling procedure, the argument is direct for tracking since it removes the need for a
concentration argument.
Lemma F.5 (Lemma 19 in [21]). Let J ⋆

n = argmax
i∈V L

n
µi. There exists L1 with Eµ[L1] < +∞

such that if L ≥ L1, for all n (at most polynomial in L) such that ULn ̸= ∅, BUCB
n /∈ V Ln implies

CTC
n ∈ V Ln ∪

(
J ⋆
n \

{
BUCB
n

})
.

Lemma F.6 proves sufficient exploration for the TTUCB sampling rule. It builds on the same
reasoning than the one used in the proofs introduced by [39], and generalized by [21].
Lemma F.6. Assume minj ̸=i |µi − µj | > 0. Under the TTUCB sampling rule, there exist N0 with
Eµ[N0] < +∞ such that for all n ≥ N0 and all i ∈ [K], Nn,i ≥

√
n/K.

Proof. Let L0 and L1 as in Lemmas F.4 and F.5. Therefore, for L ≥ L2 := max{L1, L
4/3
0 }, for all

n such that ULn ̸= ∅, BUCB
n ∈ V Ln or CTC

n ∈ V Ln since |J ⋆
n | = 1 is implied by minj ̸=i |µi − µj | > 0.

We have Eµ[L2] < +∞. There exists a deterministic L4 such that for all L ≥ L4, ⌊L⌋ ≥ KL3/4.
Let L ≥ max{L2, L4}.

Suppose towards contradiction that UL⌊KL⌋ is not empty. Then, for any 1 ≤ t ≤ ⌊KL⌋, ULt and
V Lt are non empty as well. Using the pigeonhole principle, there exists some i ∈ [K] such that
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N⌊L⌋,i ≥ L3/4. Thus, we have
∣∣∣V L⌊L⌋∣∣∣ ≤ K − 1. Our goal is to show that

∣∣∣V L⌊2L⌋∣∣∣ ≤ K − 2. A

sufficient condition is that one arm in V L⌊L⌋ is pulled at least L3/4 times between ⌊L⌋ and ⌊2L⌋ − 1.

Case 1. Suppose there exists i ∈ V L⌊L⌋ such thatL⌊2L⌋,i−L⌊L⌋,i ≥ L3/4

β +3/(2β). Using Lemma D.3,
we obtain

N i
⌊2L⌋,i −N i

⌊L⌋,i ≥ β(L⌊2L⌋,i − L⌊L⌋,i)− 3/2 ≥ L3/4 ,

hence i is sampled L3/4 times between ⌊L⌋ and ⌊2L⌋ − 1.

Case 2. Suppose that, for all i ∈ V L⌊L⌋, L⌊2L⌋,i − L⌊L⌋,i <
L3/4

β + 3/(2β). Then,∑
i/∈V L

⌊L⌋

(L⌊2L⌋,i − L⌊L⌋,i) ≥ (⌊2L⌋ − ⌊L⌋)−K

(
L3/4

β
+ 3/(2β)

)
Using Lemma D.3, we obtain∣∣∣∣∣∣∣

∑
i/∈V L

⌊L⌋

(N i
⌊2L⌋,i −N i

⌊L⌋,i)− β
∑
i/∈V L

⌊L⌋

(L⌊2L⌋,i − L⌊L⌋,i)

∣∣∣∣∣∣∣ ≤ 3(K − 1)/2 .

Combining all the above, we obtain∑
i/∈V L

⌊L⌋

(L⌊2L⌋,i − L⌊L⌋,i)−
∑
i/∈V L

⌊L⌋

(N i
⌊2L⌋,i −N i

⌊L⌋,i)

≥ (1− β)
∑
i/∈V L

⌊L⌋

(L⌊2L⌋,i − L⌊L⌋,i)− 3(K − 1)/2

≥ (1− β)

(
(⌊2L⌋ − ⌊L⌋)−K

(
L3/4

β
+ 3/(2β)

))
− 3(K − 1)/2 ≥ KL3/4 ,

where the last inequality is obtained for L ≥ L5 with

L5 = sup

{
L ∈ N | (1− β)

(
(⌊2L⌋ − ⌊L⌋)−K

(
L3/4

β
+ 3/(2β)

))
− 3(K − 1)/2 < KL3/4

}
.

The l.h.s. summation is exactly the number of times where an arm i ∈ V L⌊L⌋ was leader but wasn’t
sampled, hence

⌊2L⌋−1∑
t=⌊L⌋

1
(
BUCB
t ∈ V L⌊L⌋, It = CTC

t

)
≥ KL3/4

For any ⌊L⌋ ≤ t ≤ ⌊2L⌋ − 1, ULt is non-empty, hence we have BUCB
t ∈ V L⌊L⌋ ⊆ V Lt implies

CTC
t ∈ V Lt ⊆ V L⌊L⌋. Therefore, we have shown that

⌊2L⌋−1∑
t=⌊L⌋

1
(
It ∈ V L⌊L⌋

)
≥

⌊2L⌋−1∑
t=⌊L⌋

1
(
BUCB
t ∈ V L⌊L⌋, It = CTC

t

)
≥ KL3/4 .

Therefore, there is at least one arm in V L⌊L⌋ that is sampled L3/4 times between ⌊L⌋ and ⌊2L⌋ − 1.

In summary, we have shown
∣∣∣V L⌊2L⌋∣∣∣ ≤ K − 2. By induction, for any 1 ≤ k ≤ K, we have∣∣∣V L⌊kL⌋∣∣∣ ≤ K − k, and finally UL⌊KL⌋ = ∅ for all L ≥ L3. This concludes the proof.

Convergence towards β-optimal allocation Provided sufficient exploration holds (Lemma F.6),
[21] identifies the properties that the leader and the challenger should satisfy to obtain convergence
towards the β-optimal allocation w⋆β . Lemma F.7 show that the desired property for the UCB leader
defined in (3) with bonus gu(n) = 2α(1 + s) log n or

gm(n) =W−1 (2sα log(n) + 2 log(2 + α log n) + 2) .
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Lemma F.7. There exists N1 with Eµ[N1] < +∞ such that for all n ≥ N1, BUCB
n = i⋆(µ).

Proof. Let ∆ = mini ̸=i⋆ |µi⋆ − µi|. Let g denote either gu or gm. Let N0 as in Lemma F.6. For all
n ≥ N2 (to be specified later), we obtain for all k ̸= i⋆,

µn,k +

√
g(n)

Nn,k
≤ µk +Wµ

√
log(e+Nn,k)

1 +Nn,k
+K1/4

√
g(n)√
n

≤ µk +Wµ

√
log(e+

√
n
K )

1 +
√

n
K

+K1/4

√
g(n)√
n

≤ µk + 2ε ,

where the last inequality is obtained for n ≥ N1 where

N1 = 1 + sup

{
n ∈ N⋆ |Wµ

√
log(e+

√
n
K )

1 +
√

n
K

> ε, K1/4

√
g(n)√
n
> ε

}
.

Since W−1(x) ≈ x + log(x), both gu and gm have a logarithmic behavior, hence g(n) =n→+∞
o(
√
n). Since N1 is polynomial in Wµ, Lemma F.3 yields Eµ[(N1)

α] < +∞ for all α > 0.

Moreover

µn,i⋆ +

√
g(n)

Nn,i⋆
≥ µi⋆ −Wµ

√
log(e+Nn,i⋆)

1 +Nn,i⋆
≥ µi⋆ −Wµ

√
log(e+

√
n
K )

1 +
√

n
K

≥ µi⋆ − ε .

Therefore, taking ε < ∆/3, yields the result that BUCB
n = i⋆.

Combining Lemma F.7 with tracking properties (Lemma D.3), we obtain convergence towards the
β-optimal allocation for the best arm (Lemma F.8).

Lemma F.8. Let ε > 0. Under the TTUCB sampling rule, there exists N2 with Eµ[N2] < +∞ such
that for all n ≥ N2, ∣∣∣∣Nn,i⋆(µ)n− 1

− β

∣∣∣∣ ≤ ε .

Proof. Let N0 as in Lemma F.6 and C1 as in Lemma F.7. For all n ≥ max{N1, N0}, we have
Bn = i⋆. Let M ≥ max{N1, N0}. Then, we have Ln,i⋆ ≥ n−M and

∑
k ̸=i⋆ N

k
n,i⋆ ≤M − 1 for

all n ≥M + 1. Using Lemma D.3, we have∣∣∣∣Nn,i⋆n− 1
− β

∣∣∣∣ ≤ |N i⋆

n,i⋆ − βLn,i⋆ |
n− 1

+ β

∣∣∣∣Ln,i⋆n− 1
− 1

∣∣∣∣+ 1

n− 1

∑
k ̸=i⋆

Nk
n,i⋆ ≤ 1

2(n− 1)
+ β

2(M − 1)

n− 1
.

Taking N2 = max{N1, N0,
1/2+2β(M−1)

ε + 1} yields the result.

We can use the proof of [21] to obtain Lemma F.9. While their result accounts for the randomization
of the sampling procedure, the argument is direct for tracking since it removes the need for a
concentration argument.

Lemma F.9 (Lemma 20 in [21]). Let ε > 0. Under the TTUCB sampling rule, there exists N3 with
Eµ[N3] < +∞ such that for all n ≥ N3 and all i ̸= i⋆(µ),

Nn,i
n− 1

≥ w⋆β,i + ε =⇒ CTC
n ̸= i .

Combining Lemma F.9 with tracking properties (Lemma D.3), we obtain convergence towards the
β-optimal allocation for all arms (Lemma F.10).

Lemma F.10. Let ε > 0. Under the TTUCB sampling rule, there exists N4 with Eµ[N4] < +∞ such
that for all n ≥ N4,

∀i ∈ [K],

∣∣∣∣ Nn,in− 1
− w⋆β,i

∣∣∣∣ ≤ ε .
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Proof. Let N0, C1, N2 and N3 as in Lemmas F.6, F.7, F.8 and F.9. For all n ≥
max{N0, N1, N2, N3}, we have BUCB

n = i⋆,
∣∣∣Nn,i⋆

n−1 − β
∣∣∣ ≤ ε and for all i ̸= i⋆,

Nn−1,i

n− 1
≥ w⋆β,i + ε =⇒ CTC

n ̸= i .

Let M ≥ max{N0, N1, N2, N3} and n ≥ N5 = max{M−1
ε + 1,M}. Let tn−1,i(ε) =

max
{
t ≤ n | Nt,i

n−1 ≤ w⋆β,i + ε
}

. Since Nt,i

n−1 ≤ Nt,i

t−1 for t ≤ n, we have

Nn,i
n− 1

≤ M − 1

n− 1
+

1

n− 1

n∑
t=M

1
(
BUCB
t = i⋆, CTC

t = i, It = i
)

≤ ε+
1

n− 1

n∑
t=M

1

(
Nt,i
n− 1

≤ w⋆β,i + ε

)
1
(
BUCB
t = i⋆, CTC

t = i, It = i
)

≤ ε+
Ntn−1,i(ε),i

n− 1
≤ w⋆β,i + 2ε .

As a similar upper bound is shown in the proof of Lemma F.8, we obtain Nn,i

n−1 ≤ w⋆β,i + 2ε for all

i ∈ [K] and all n ≥ N4 := max{N0, N1, N2, N3, N5}. Since Nn,i

n−1 and w⋆β,i sum to 1, we obtain for
all n ≥ N4 and all i ∈ [K],

Nn,i
n− 1

= 1−
∑
k ̸=i

Nn,k
n− 1

≥ 1−
∑
k ̸=i

(
w⋆β,k + 2ε

)
= w⋆β,i − 2(K − 1)ε .

Therefore, for all n ≥ N4 and all i ∈ [K],
∣∣∣Nn,i

n−1 − w⋆β,i

∣∣∣ ≤ 2(K − 1)ε . Since Eµ[N4] < +∞ and
we showed the result for all ε, this concludes the proof.

Lemma F.11 shows that Eµ[T εβ ] < +∞, it is a direct consequence of Lemma F.10.

Lemma F.11. Let ε > 0 and T εβ as in (20). Under the TTUCB sampling rule, we have Eµ[T εβ ] < +∞.

Theorem 2.3 is a direct consequence of Lemma F.1 and Lemma F.11.

G Implementation details and additional experiments

The implementations details and supplementary experiments are detailed in Appendix G.1 and
Appendix G.2.

G.1 Implementation details

Top Two sampling rules Existing Top Two algorithms are based on a sampling procedure to
choose between the leader Bn and the challenger Cn, namely sample Bn with probability β, else
sample Cn. The difference lies in the choice of the leader and the challenger themselves.

TTTS [38] uses a TS (Thompson Sampling) leader and a RS (Re-Sampling) challenger based on a sam-
pler Πn. For Gaussian bandits, the sampler Πn is the posterior distribution×i∈[K]

N (µn,i, 1/Nn,i)

given the improper prior Π1 = (N (0,+∞))K . The TS leader is BTS
n ∈ argmaxi∈[K] θi where

θ ∼ Πn. The RS challenger samples vector of realizations θ ∈ Πn until Bn /∈ argmaxi∈[K] θi, then
it is defined as CRS

n argmaxi∈[K] θi for this specific vector of realization. When the posterior Πn
and the leader Bn have almost converged towards the Dirac distribution on µ and the best arm i⋆(µ)
respectively, the event Bn /∈ argmaxi∈[K] θi becomes very rare. The experiments in [21] reveals
that computing the RS challenger can require more than millions of re-sampling steps. Therefore, the
RS challenger can become computationally intractable even for Gaussian distribution where sampling
from Πn can be done more efficiently.
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T3C [39] combines the TS leader and the TC challenger. β-EB-TCI [21] combines the EB leader
with the TCI challenger defined as

CTCI
n = argmin

i ̸=Bn

1 (µn,Bn > µn,i)
(µn,Bn

− µn,i)
2

2(1/Nn,Bn + 1/Nn,i)
+ log(Nn,i) .

Since the TC and TCI challenger can re-use computations from the stopping rule, those two chal-
lengers have no additional computational cost which makes it very attractive for larger sets of
arms.

Each tracking procedure has a computational and memory cost in O(1), hence total cost of O(K)
for the K independent procedures. Each UCB index has a computational and memory cost in O(1),
hence total cost of O(K) to compute BUCB

n as in (3). Each TC index (or stopping rule index) has
a computational and memory cost in O(1), hence total cost of O(K) to compute CTC

n as in (4).
Therefore, the per-round computational and memory cost of TTUCB is in O(K).

Other sampling rules At each time n, Track-and-Stop (TaS) [17] computes the optimal allocation
for the current empirical mean, wn = w⋆(µn). Given wn ∈ △K , it uses a tracking procedure to
obtain an arm In to sample. On top of this tracking a forced exploration is used to enforce convergence
towards the optimal allocation for the true unknown parameters. The optimization problem defining
w⋆(µ) can be rewritten as solving an equation ψµ(r) = 0, where

∀r ∈ (1/min
i ̸=i⋆

(µi⋆ − µi)
2,+∞), ψµ(r) =

∑
i ̸=i⋆

1

(r(µi⋆ − µi)2 − 1)
2 − 1

The function ψµ is decreasing, and satisfies limr→+∞ ψµ(r) = −1 and
limy→1/mini̸=i⋆ (µi⋆−µi)2 Fµ(y) = +∞. For the practical implementation of the optimal al-
location, we use the approach of [17] and perform binary searches to compute the unique solution of
ψµ(r) = 0. A faster implementation based on Newton’s iterates was proposed by [6] after proving
that ψµ is convex. While this improvement holds only for Gaussian distributions, the binary searches
can be used for more general distributions.

DKM [12] view T ⋆(µ)−1 as a min-max game between the learner and the nature, and design saddle-
point algorithms to solve it sequentially. At each time n, a learner outputs an allocation wn, which is
used by the nature to compute the worst alternative mean parameter λn. Then, the learner is updated
based on optimistic gains based on λn.

FWS [42] alternates between forced exploration and Frank-Wolfe (FW) updates.

LUCB [24] samples and stops based on upper/lower confidence indices for a bonus function g. For
Gaussian distributions, it rewrites for all i ∈ [K] as

Un,i = µn,i +

√
2c(n− 1, δ)

Nn,i
and Ln,i = µn,i −

√
2c(n− 1, δ)

Nn,i
.

At each time n, it samples ı̂n and argmaxi ̸=ı̂n Un,i and stops when Ln,̂ın ≥ maxi ̸=ı̂n Un,i. The
β-LUCB algorithm samples ı̂n with probability β, else it samples argmaxi ̸=ı̂n Un,i. The stopping
time is the same as for LUCB.

Adaptive proportions [44] propose IDS, whcih is an update mechanism for β based on the
optimality conditions for the problem underlying T ⋆(µ). For Gaussian with known homoscedastic
variance, IDS can be written as

βn =
Nn,BndKL(µn,Bn , un(Bn, Cn))

Nn,Bn
dKL(µn,Bn

, un(Bn, Cn)) +Nn,Cn
dKL(µn,Cn

, un(Bn, Cn))
=

Nn,Cn

Nn,Bn
+Nn,Cn

,

where the second equality is obtained by direct computations which uses that

un(i, j) = inf
x∈R

[Nn,idKL(µn,i, x) +Nn,jdKL(µn,j , x)] =
Nn,iµn,i +Nn,jµn,j

Nn,i +Nn,j
.
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Reproducibility Our code is implemented in Julia 1.7.2, and the plots are generated with the
StatsPlots.jl package. Other dependencies are listed in the Readme.md. The Readme.md file
also provides detailed julia instructions to reproduce our experiments, as well as a script.sh to run
them all at once. The general structure of the code (and some functions) is taken from the tidnabbil
library.1

Table 4: CPU running time in seconds on random Gaussian instances (K = 10).

TTUCB EB-TCI T3C TTTS TaS FWS DKM LUCB Uniform

Average 0.14 0.10 0.06 0.82 78.38 7.10 0.40 0.06 0.14
Std 0.11 0.30 0.05 0.65 50.34 9.6 0.30 0.09 0.10

Figure 3: Empirical errors at time n < τδ on random Gaussian instances (K = 10).

G.2 Supplementary experiments

Running time The CPU running time corresponding to the experiment displayed in Figure 1(a) are
reported in Table 4. They match our discussion on computational cost detailed in Appendix G.1. The
slowest algorithm is TaS, followed closely by FWS and TTTS. All remaining algorithms have similar
computational cost: TTUCB, β-EB-TCI, T3C, LUCB and uniform sampling. It is slightly higher for
DKM.

We emphasize that this is a coarse empirical comparison of the CPU running time in order to
grasp the different orders of magnitude. More efficient implementation could (and should) be used
by practitioners. As an example, the computational cost of TaS can be improved for Gaussian
distributions by using the algorithm from [6] based on Newton’s iterates. However, we doubt that the
faster implementation of TaS will match the computational cost of DKM or FWS.

Empirical errors before stopping At the exception of LUCB, all the considered algorithms are
anytime algorithms (see [23] for a definition) since they are not using δ in their sampling rule. While
all those algorithms are δ-correct, none enjoy theoretical guarantees on the probability of error
before stopping, i.e. upper bounds on Pµ(̂ın ̸= i⋆(µ)) for n < τδ. In Figure 3, we display their
averaged empirical errors at time n < τδ ( i.e. 1 (̂ın ̸= i⋆)) corresponding to the experiment displayed
in Figure 1(a), with their associated Wilson Score Intervals [43]. To avoid an unfair comparison
between algorithms having different stopping time, we restrict our plots to the median of the observed
empirical stopping time. Therefore, even the fastest algorithm will average its empirical errors on at
least 2500 instances.

Based on Figure 3, we see that uniform sampling and DKM perform the worst in terms of empirical
error. At all times, the smallest empirical errors are achieved by β-EB-TCI, TTTS and LUCB. While
TTUCB is at first as bad as FWS, its empirical error tends to match the one of the best algorithms for
larger time. For TaS and T3C, the trend is reversed.

1This library was created by [12], see https://bitbucket.org/wmkoolen/tidnabbil. No license were available on
the repository, but we obtained the authorization from the authors.
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Figure 4: Empirical stopping time on random Gaussian instances (K = 10): tracking (T-) versus
sampling (S-).

Tracking versus sampling The TTUCB sampling rule uses tracking instead of sampling. Since
both approaches aim at doing the same with either a deterministic or a randomized approach, it is
interesting to assess whether they lead to different empirical performance. Therefore, we compare
both approaches for four Top Two sampling rules. Figure 4 reveals that the algorithmic choice of
tracking or sampling has a negligible impact on the empirical stopping time.

In light of this experiment, the choice of tracking or sampling is mostly a question of theoretical
analysis. Since the analysis of a randomized sampling requires to control of the randomness of the
allocation, we choose a deterministic tracking for analytical simplicity. Moreover, this choice is
natural when both the leader and challenger are deterministic.

Figure 5: Influence of the dimension K on the average empirical stopping time (± standard deviation)
for the Gaussian benchmark (a) “α = 0.3” and (b) “α = 0.6”.

Larger sets of arms In addition to the results presented in Section 4, we also evaluate the perfor-
mance of our algorithm on the two other benchmarks used in [20]. The “α = 0.3” scenarios consider

µi = 1−
(
i−1
K−1

)α
for all i ∈ [K], with hardness H(µ) ≈ 3K. The “α = 0.6” scenarios consider

µi = 1−
(
i−1
K−1

)α
for all i ∈ [K], with hardness H(µ) ≈ 12K1.2. The observations from Figure 5

are consistent with the ones in Figure 1(b). Overall, T3C performs the best for larger sets of arms.

G.2.1 Adaptive proportions

The ratio T ⋆1/2(µ)/T
⋆(µ) seems to reach its highest value rK = 2K/(1 +

√
K − 1)2 for “equal

means” instances (Lemma C.6), i.e. µi = µi⋆ − ∆ for all i ̸= i⋆ with ∆ > 0. To best observe
differences between Top Two algorithms with β = 1/2 and their adaptive version, we consider such
instances with K = 35 (rK ≈ 3/2). Figure 6 reveals that adaptive proportions yield better empirical
performance, with an empirical speed-up close to rK ≈ 3/2. We also compare them with three
asymptotically optimal BAI algorithms (TaS, FWS and DKM). Even on those hard instances, Top
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Figure 6: Empirical stopping time on “equal means” instances (K,µi⋆ ,∆) = (35, 0, 0.5) for (top)
δ = 0.1 and (bottom) δ ∈ {0.01, 0.001}: constant β = 1/2 and adaptive (A-).

Two algorithms with fixed β = 1/2 are outperforming the asymptotically optimal algorithms for all
the values δ ∈ {0.1, 0.01, 0.001}. While being only 1/2 asymptotically optimal, Top Two algorithms
(with fixed β = 1/2) can obtain significantly better empirical performances compared to existing
asymptotically optimal in the finite-confidence regime. The gap between the empirical performance
of the adaptive and the fixed β Top Two algorithms is increasing with δ decreasing. Interestingly,
TTUCB appears to be slightly more robust to decreasing confidence δ compared to other Top Two
algorithms.

We also compare Top Two algorithms using a fixed proportion β = 1/2 with their adaptive counterpart
using βn = Nn,Cn/(Nn,Bn +Nn,Cn) at time n on random instances.

Figure 7: Empirical stopping time on random Gaussian instances (K = 10): constant β = 1/2 and
adaptive (A-).

Experiments are conducted on 5000 random Gaussian instances with K = 10 such that µ1 = 0.6
and µi ∼ U([0.2, 0.5]) for all i ̸= 1. Figure 7 shows that their performances are highly similar, with
a slim advantage for adaptive algorithms. For instances with multiple close competitors, the same
phenomenon appears (see Figure 8 below). This is expected as T ⋆1/2(µ)/T

⋆(µ) is close to one when
sub-optimal arms have significantly distinct means (see Figure 2).
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Figure 8: Empirical stopping time on random Gaussian instances (K = 10) with multiple close
competitors.

Then, we assess the performance on 5000 random Gaussian instances with K = 10 such that
µ1 = 0.6 and µi = µ1 − ∆i for i ̸= 1 where ∆i = 1

20

(
995
1000 + ui

100

)
for all i ∈ {2, 3, 4, 5, 6}

and ∆i =
1
10

(
995
1000 + ui

100

)
for all i ∈ {7, 8, 9, 10} with ui ∼ U([0, 1]). Numerically, we observe

w⋆(µ)i⋆ ≈ 0.28276± 0.0003 (mean ± std). Both plots in Figure 8 show the same phenomena than
the ones observed in Figures 1(b) and 7.
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