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Abstract

Within a single sniff, the mammalian olfactory system can decode the identity and
concentration of odorants wafted on turbulent plumes of air. Yet, it must do so
given access only to the noisy, dimensionally-reduced representation of the odor
world provided by olfactory receptor neurons. As a result, the olfactory system
must solve a compressed sensing problem, relying on the fact that only a handful
of the millions of possible odorants are present in a given scene. Inspired by this
principle, past works have proposed normative compressed sensing models for
olfactory decoding. However, these models have not captured the unique anatomy
and physiology of the olfactory bulb, nor have they shown that sensing can be
achieved within the 100-millisecond timescale of a single sniff. Here, we propose
a rate-based Poisson compressed sensing circuit model for the olfactory bulb. This
model maps onto the neuron classes of the olfactory bulb, and recapitulates salient
features of their connectivity and physiology. For circuit sizes comparable to the
human olfactory bulb, we show that this model can accurately detect tens of odors
within the timescale of a single sniff. We also show that this model can perform
Bayesian posterior sampling for accurate uncertainty estimation. Fast inference
is possible only if the geometry of the neural code is chosen to match receptor
properties, yielding a distributed neural code that is not axis-aligned to individual
odor identities. Our results illustrate how normative modeling can help us map
function onto specific neural circuits to generate new hypotheses.

1 Introduction

Sensory systems allow organisms to detect physical signals in their environments, enabling them to
maximize fitness by acting adaptively. This experience of the physical environment, also known as the
Umwelt, depends on the sensors and sensory organs of each organism [1, 2]. Throughout evolution,
organisms have developed specialized sensory mechanisms to extract specific information about the
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physical world. In vision and audition—the most studied sensory modalities in neuroscience—stimuli
are characterized by intuitive metrics such as orientation or frequency, which have been shown to
map onto neural representations from the earliest stages of the sensory systems [3—5]. One can
continuously vary the orientation of an object or the pitch of a tone and quantify resulting changes
in perception and neural representations. From a computational point of view, this structure in the
representations can be viewed as optimizing the information transfer in the network [6—16].

In contrast, the geometric structure of the olfactory world is far less clear: How can one ‘rotate’ a
smell? Despite significant effort, attempts to find such structure in olfactory stimuli and link that
geometry to maps in olfactory areas have succeeded only in identifying coarse principles for high-
level organization, far from the precision of orientation columns or tonotopy in visual and auditory
cortices [17—-19]. In the absence of geometric intuitions, the principles of compressed sensing (CS)
have emerged as an alternative paradigm for understanding olfactory coding [20—-27]. This framework
provides a partial answer to the question of how an organism could identify which of millions of
possible odorants are present given the activity of only a few hundred receptor types [28—33]. However,
existing CS circuit models do not admit convincing biologically-plausible implementations that can
perform fast inference at scale. Indeed, many proposals assume that the presence of each odorant
is represented by a single, specialized neuron, which is inconsistent with the distributed odor coding
observed in vivo [22, 34-36]. This axis-aligned coding does not leverage the geometric structure of
the sensory space, which can be defined even in the absence of interpretable dimensions [37—41].

In this paper, we propose a Poisson CS model for the mammalian olfactory bulb. Our primary
contributions are as follows:

* We derive a normative CS circuit model which can be mapped onto the circuits of the bulb (§3).
Importantly, this mapping goes beyond basic counting of cell types; it includes detailed biological
features like symmetric coupling and state-dependent inhibition (§4).

* We show that this model enables fast, accurate inference of odor identity in a biologically reasonable
regime where tens of odorants are present in a given scene (§5). This fast inference is enabled by
considering the geometry of the olfactory receptor code. This consideration leads to distributed
odor coding, resolving a major tension between previous CS circuit models and neural data.

* We extend our circuit model to allow Bayesian inference of uncertainty in odor concentrations (§6).

In total, our results demonstrate the importance of considering representational geometry when trying
to understand neural coding in the olfactory bulb (OB). Importantly, we show that it is the geometry
in the space defined by the receptor affinity (or OSN activation) that controls the speed of inference.
This view is distinct from previous geometric theories of olfaction, which have focused on the space
of odorants [42, 43]. We propose that thinking in terms of the geometry of OSN coding will allow for
deeper understanding of early olfactory processing.

2 Related work and review of the olfactory sensing problem

We begin with a review of the principles of olfactory coding, and of previous CS models for olfactory
circuits. The structural logic of early olfactory processing is broadly conserved across the animal
kingdom (Fig. 1A) [44—47], and this distinctive circuit structure is thought to play a key role in
the computational function of the olfactory bulb [48—50]. In mammals, volatile odorants are first
detected by olfactory receptor (ORs) proteins expressed on the surface of olfactory sensory neurons
(OSNs). Each OSN expresses only a single OR type; in humans there are around 300 distinct ORs, in
mice around 1000 [45]. Importantly, most ORs have broad affinity profiles, and the OSN code for
odor identity is combinatorial [51]. In contrast to the immune system’s highly adaptable chemical
recognition capabilities arising from somatic recombination [52], ORs are hard coded into the genome
as single genes [53], and therefore can only change over evolutionary timescales [54, 55]. Some
adaptation of expression levels across the receptors is possible [56], but the chemical affinity of the
receptor array is fixed. OSNs expressing the same OR then converge onto the same glomerulus,
synapsing onto the principal projection cells of the olfactory bulb (OB), the mitral and tufted cells.
These in turn send signals to olfactory cortical areas. The OB contains several types of inhibitory
interneurons, whose computational role remains to be clarified [49]. Importantly, the excitatory mitral
and tufted cells are not reciprocally connected across glomeruli. Instead, they are connected through
a network of inhibitory granule cells, the most numerous cell type in the OB [57].
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Figure 1: Circuit architecture of the mammalian olfactory bulb. A. Outline of the anatomy of OB
circuits. B. Fit of the responses of 228 OSN glomerular responses to a panel of 32 odorants. (Gray
line, response of single glomeruli, Blue line, Fitted average response.) See Appendix F for details of
how these data were collected. C. Affinity matrix generated from the data-driven model ensemble.
For illustrative purposes, we use only 30 receptors and 100 odorants; in simulations we use 300
receptors to roughly match humans [45], and 1000 or more odorants.

In our model, we will focus on a particular task: odor component identification within a single
sniff [58, 59]. This computational problem differs from many experimental tasks focusing on
discrimination between two odorants [60], which underlie most scientific work on rodent olfactory
decision making [60—62]. Here, the goal is to identify the components of a complex olfactory scene
[63—-66]. Importantly, the limits of human performance in this setting remain to our knowledge
unknown [67, 68]. To render the problem more tractable, we will make a number of simplifications
of the anatomy and physiology of the OB. We will not distinguish between mitral and tufted
cells, the two classes of projection neurons. Recent works have shed some light on the distinct
computational roles of these cell types; these distinctions are likely to become important when
considering richer environmental dynamics than we do here [69, 70]. We will also ignore the fact
that odorant concentrations can vary over many orders of magnitude, and OSN responses to large
changes in concentration are strongly nonlinear. Here, we will focus on concentration changes of one
or two orders of magnitude. Within such ranges, the responses of OB neurons are well characterized
by linear models [71].

On the theoretical side, it is widely recognized that the tremendous compression of dimensionality
inherent in the transformation from odorant molecules to receptor activity means that the olfactory
decoding problem is analogous to the one faced in compressed sensing (CS) [21-27, 72-74]. Classical
CS theory shows that sparse high-dimensional signals can be recovered from a small number of
random projections [28-33]. Inspired by these results, previous works have used the principles of CS
to build circuit models for olfactory coding [21-27, 72—74]. However, these model circuits do not map
cleanly onto the neural circuits of the OB and the olfactory cortical areas, particularly because they
often assume each granule cell encodes exactly one odorant. Moreover, these works usually assume a
Gaussian noise model for OSNs, which is biologically unrealistic (but see [21, 22]). Instead, OSN
activity is better captured by a Poisson noise model [75, 76]. Some theoretical guarantees for Poisson
CS are known, but the situation is less well-understood than in the Gaussian case [32, 33, 77, 78].

3 A neural circuit architecture for Poisson compressed sensing

We now derive a normative, rate-based neural circuit model that performs Poisson CS, which in
subsequent sections we will map onto the circuitry of the OB. The design of this model will follow
general biological principles, without initially drawing on specific knowledge of the OB. With the
goal of sensing within a single sniff in mind, the circuit’s objective is to rapidly infer the odorant
concentrations ¢ € R'}°** underlying a single, static sample of OSN activity s € R’°%N. For
simplicity, we model the mean activity of OSNs as a linear function of the concentration, with a
receptor affinity matrix A € R’[OS¥*"d°r and a baseline rate ro € R}°N. As motivated above,



we use a Poisson noise model for OSN activity given the underlying concentration signal c, and
correspondingly a Gamma prior over concentrations with shape o € R'}°°" and scale A € R} 3

s |c ~ Poisson(rg + Ac), c ~ Gamma(a, A). (1

Given this likelihood and prior, we construct a neural circuit to compute the maximum a posteriori
(MAP) estimate of the concentration c using gradient ascent on the log-posterior probability. Here,
we sketch the derivation, deferring some details to Appendix B. Our starting point is the gradient
ascent equation

¢(t) = Velogp(c|s) =AT[s@ (ro + Ac) — 1]+ (¢ — 1) @ ¢ — A, )

where @ denotes elementwise division and ¢(t) = dc/dt. Here, the estimate c is formally constrained
to R’}°?°"; in numerical simulations we will sometimes ignore this constraint. Circuit algorithms of
this form were studied in previous work by Grabska-Barwiniska et al. [21].

However, in this most basic setup there is a one-to-one mapping between neurons and odorants,
which is at variance with our knowledge of biological olfaction (§2). To distribute the code, we
instead use a projected setup where the firing rates g € R™= of the neurons are mapped to the
concentration estimate ¢ through a matrix I' € R"edor*"s: ¢(t) = I'g(t). Even if I" is non-square—
in particular, if ng > Nodor—s0 long as T'TT is positive-definite and the rates follow the dynamics
7.&(t) = (AT) " [s @ (ro + AT'g) — 1] + I'T[(a — 1) © (I'g) — A] for some time constant 7, the
concentration estimates will still converge to the MAP. This corresponds to preconditioned gradient
ascent [39, 79]. Again, we formally require the constraint that ¢ € Rf_"d“, which translates into a

constraint on g. Most simply, we may take g € Rig and choose I' to be positivity-preserving.

These dynamics include two divisive non-linearities, which can be challenging to implement in
biophysical models of single neurons [80]. Using the approach proposed by Chalk et al. [81], we
can linearize the inference by introducing two additional cell types that have as their fixed points the
elementwise divisions s @ (rp + AT'g) and (o — 1) © (T'g). Concretely, we introduce cell types with
rates p € R™0sN and z € R"™eder such that their fixed-point rates for fixed g are p* = s (ro+ AT'g)
and z* = (a — 1) @ (T'g), respectively. This yields the coupled circuit dynamics

c(t) =Tg(t), 7&(t) = (AT) (p—1)+T7(z - ),
Top(t) =s—p© (ro + ATl'g), z(t) =a—1—-2z0c, 3)

for cell-type-specific time constants 7,, 75, and 7,, where © denotes elementwise multiplication.
In the limit 7;,, 7, < 7, this circuit will recover the MAP gradient ascent. If 7, and 7, are not
infinitely fast relative to 7., we expect these dynamics to approximate the desired dynamics [81]
(see Appendix C for a preliminary analysis of the linear stability of the MAP fixed-point). We will
test the accuracy of this approximation for biologically-reasonable time constants using numerical
experiments. Moreover, p should formally be constrained to R:L_" , such that the non-negativity of the
target ratio is respected. Finally, we note that in the special case o« = 1 in which the Gamma prior
reduces to an exponential prior, the introduction of the cell type z is no longer required.

4 Biological interpretation and predictions of the circuit model

We now argue that the normative model derived in the preceding section can be mapped onto the
circuitry of the OB. In particular, though the model was derived based only on general biological
principles, its specific features are biologically implementable based on the detailed anatomy and
physiology of the OB. In terms of the levels of understanding of neural circuits proposed by David
Marr, this is an example of how normative modeling can bridge the gap between algorithmic and
mechanistic understanding [82, 83].

As foreshadowed by our notation, we interpret the cell type g as the granule cells of the OB, and the
cell type p as the mitral cells, which are projection neurons. Provided that the elements of the matrix
AT are non-negative, this interpretation is justified at the coarsest level by the signs with which the
two cell types appear in the dynamics: the p neurons excite the g neurons, which in turn inhibit the
p neurons. Finally, we interpret the cell type z as representing a form of cortical feedback. In the
remainder of this section, we will justify this mapping in detail.

3See Appendix A for a detailed description of our notational conventions.
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Figure 2: State-dependent inhibition of mitral cells. A. Upon stimulation, mitral cells exhibit
a transient burst of activity followed by relaxation to a plateau. Darker color indicates stronger
stimulation. B. In the circuit for Poisson CS we propose (blue line), the inhibition due to the
activation of a second mitral cell (M Cg) is gated by the activity of the cell we are recording from
(MCy), as observed experimentally by Arevian et al. [95] in their Fig. 2D. This state-dependent
gating does not occur in a circuit derived from a Gaussian noise model ( line). Rates are
normalized to the maximal stimulation of the principal cell. Dashed line indicates the unity line. C.
Strength of inhibition as a function of time and of stimulation intensity; c.f. [95] Fig. 3B.

4.1 Circuit anatomy: weight transport, dendro-dendritic coupling, and cortical feedback

The first salient feature of the dynamics (3) is that the cell types g and p do not make direct lateral
connections amongst themselves. Rather, they connect only indirectly through the neurons of the
opposing cell type, matching the connectivity structure of mitral and granule cells (Fig. 1 A). Moreover,
the synaptic weights AT of the connections from g to p neurons mirror exactly the weights (AT) T
of the connections from p to g neurons. Naively, this creates a weight transport problem of the
form that renders backpropagation biologically implausible: how should the exact transpose of a
matrix be copied to another synapse [84—86]? However, in the unique case of the OB this does not
pose a substantial obstacle, as the mitral and granule cells are coupled by dendro-dendritic synapses,
meaning that bi-directional connectivity occurs at a single physical locus (Fig. 1) [49, 57, 87].

This interpretation accounts for the interactions between the cell types g and p in the dynamics (3),
but what about the cell type z? These cells give direct excitatory input to the granule cells g with
weights T'T, and represent the concentration-dependent contribution to the log-prior gradient. We
can therefore interpret these cells as representing feedback from olfactory cortical areas to the OB,
which arrives at the granule cells [88-90]. Though our model can thus flexibly incorporate cortical
feedback, for our subsequent simulations we will focus on the simple case in which the prior is static
and has a = 1, in which case it reduces to an exponential and feedback is not explicitly required.

Given this mapping of the cell types of our model to the cell types of the bulb, we will henceforth
choose the membrane time constants to match experiment, taking 7, = 20 ms [91] and 7, = 30 ms
[92]. This matching of timescales is required for our comparison of model inference timescales to the
timescale of a single sniff to be meaningful.

4.2 Choosing the affinity matrix

In theories of Poisson CS, the optimal sensing matrix A is one that has columns that are in some
precise sense as orthogonal as possible, so that it acts as an approximate isometry [27-33]. However,
biologically, the olfactory system is not free to choose optimal sensors. Rather, the affinity profiles of
each receptor are dictated by biophysics and by evolutionary history [53, 54, 93]. To build a more
realistic model for OSN sensing, we therefore turn to biological data. Using two-photon calcium
imaging, we recorded the responses of 228 mouse OSNs glomeruli to 32 odorants (see Appendix F
for details; these data were previously published in [94]). In Fig. 1B, we show that the distribution
of responses is well-fit by a Gamma distribution with shape 0.37 and scale 0.36 (Appendix F). We
then define our ensemble of sensing matrices A by drawing their elements as independently and
identically distributed Gamma(0.37, 0.36) random variables. An example matrix drawn from this
ensemble is shown in Fig. 1C.



4.3 Divisive predictive coding by mitral cells

In our model (3), odorant concentration estimates are decoded from granule cell activity. This feature
is shared with previous Gaussian CS models of olfactory coding [20, 24, 25]. Our model, however,
matches biology more closely than these previous works because it allows for a distributed code
rather than assuming that each granule cell codes for a single odorant.

What, then, is the functional role of the mitral cells in our model? We can interpret their dynamics as
implementing a form of predictive coding, in which they are trying to cancel their input by the current
prediction. Because the mitral cell activity converges to the ratio of their input to the prediction, this a
divisive form of predictive coding [81]. In contrast, a Gaussian noise model gives a subtractive form
of predictive coding in which the activity converges to the difference between input and prediction
(Appendix D) [15]. In Fig. 2A, we show example timecourses of model mitral cell activity following
the onset of a stimulus. Consistent with experimentally-measured responses [96, 97], a sharp transient
response at the onset of stimulation is followed by decay to a low level of tonic activity (Fig. 2A).

4.4 State-dependent inhibition of mitral cells

A salient feature of our circuit model is that the inhibition from the granule cells onto a mitral cell is
gated by the activity of the mitral cell itself (3). This state-dependent inhibition is reminiscent of in
vitro experiments showing that granule cell mediated inhibition is activity dependent [95]. In these
experiments, Arevian et al. measured the activity of a primary mitral cell (M C'4) while increasing its
level of stimulation under two conditions. In the first condition, no other cells in the circuit are being
stimulated. In the second condition, they also activate another mitral cell (M C'g). The activation
of the second mitral cell leads to the activation of granule cells connected to both mitral cells and
a reduction in the firing evoked by stimulation of the primary cell alone. Strikingly, these authors
showed that this inhibition is dependent on the activity of the primary cell [95].

Here, we show that our proposed circuit reproduces these observations of state-dependent inhibition,
and that they do not arise in a similarly-constructed circuit for a Gaussian noise model. To model
Arevian et al. [95]’s in vitro experiments, we simulated a reduced circuit with 2 mitral cells and
10 granule cells. We stimulated M C'4 with an input s4 € [1 : 400] while toggling on or off the
stimulation s = 80 of the second mitral cell M Cpg. As observed experimentally, when M C'p is
activated, the inhibition of the primary mitral cell M C 4 is state dependent (Fig. 2B). To show that this
effect arises from our Poisson circuit, we build a similar inference circuit with a Gaussian noise model
(Appendix D). Under similar conditions, the inhibition in the Gaussian circuit is independent of the
activity of the primary mitral cell M C 4 (Fig. 2B). Furthermore, the dynamics of the relative inhibition
qualitatively recapitulate those observed experimentally, with sustained inhibition throughout the
stimulation period at the stimulation level of M C'4 leading to maximal inhibition and inhibition
followed by relaxation for stronger stimulation levels of M C 4 (Fig. 2C and see [95] Fig. 3b).

5 Geometry, speed, and capacity

We have argued that the model introduced in §3 could be implemented biologically, but can it
perform at scale? Concretely, can a circuit of this architecture with neuron counts comparable to
the human OB correctly identify which among a large set of odorants are present in a given scene?
This is precisely the question of the capacity of the CS algorithm [98, 99]. In Fig. 3A, we present
our algorithm with scenes composed of varying numbers of randomly-selected odorants out of a
panel of 1000, which for simplicity we take to be at the same concentration. We first ask how many
odorants can be reliably detected within a single sniff, i.e., 200 ms. To convert MAP concentration
estimates into presence estimates, we simply binarize the estimated concentrations based on whether
they are larger than half of the true odorant concentration. The ability of the one-to-one code to
successfully detect odorants falls off rapidly, with the detection fraction falling below one-half even
if only a handful of odorants are present (Fig. 3A).*

The limited capacity of the one-to-one code can be overcome by distributing the code in a way that
takes into account the geometry of the sensing problem. Here, the information geometry of the

*We remark that, with a one-to-one code, our model is identical to that proposed by Grabska-Barwiriska et al.
[21] except for the introduction of the granule cells.
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Figure 3: Fast detection of many odorants. A. Fraction of odorants correctly detected within 100 ms
(left), 200 ms (center), and 1 s (right) after odorant onset as a function of the number of odorants
present, for models with one-to-one, naively distributed, and geometry-aware codes. Here, we
consider a repertoire of 1000 possible odorants. B. Heatmap with overlaid smoothed contours of
correct detection fraction as a function of number of present odorants and time window for models
with one-to-one (left), naively distributed (center), and geometry-aware (right) codes. As in A, a
repertoire of 1000 possible odorants is used. C. Threshold number of odorants for which half can
be correctly detected as a function of total repertoire size within 100 ms (/eft), 200 ms (center), and
1 s (right) after odorant onset. See also Supp. Figs. G.1 and G.2 for versions of panels A and B
with varying repertoire sizes, from which the capacities shown here are derived. See Appendix G for
details of our numerical methods. Shaded patches show +1.96 SEM over realizations throughout.

problem is governed by the sensing matrix A, which introduces correlations in the input signals
to mitral cells because the off-diagonal components of AT A are non-negligible. To counteract
these detrimental correlations, we can choose a readout matrix I' such that TTT ~ (ATA)* up
to constants of proportionality, where we must take a pseudoinverse because A T A is highly rank-
deficient (see Appendix G for details). Geometrically, this corresponds an approximation of natural
gradient descent, in which we use the Gauss-Newton matrix instead of the Fisher information matrix
because the latter is state-dependent for Poisson likelihoods [37—40]. As a control, we also consider a
naively distributed code with TT' " ~ I,,_, . Distributing the code, even without accounting for the
geometry of inference, markedly improves the single-sniff capacity to around 10-20, and taking into
account the geometry produces a further improvement (Fig. 3A).

To gain a more granular view of how tuned geometry enables faster inference, in Fig. 3B we test the
three models’ detection capabilities at sub-sniff resolution. We can see that at long times—around
a second after odorant onset—the naively distributed and geometry-aware codes achieve similar
capacities of around 50-60 odorants. However, the geometry-aware code reaches this detection
capacity within a single sniff, whereas the naively distributed code requires the full second of



processing time. The detection capacity of the one-to-one code reaches only around 20 odorants after
1 second, and even then does not appear to have reached its asymptote. These results illustrate two
important conceptual points: First, when the strength of individual synapses is bounded, distributed
coding can speed up dynamics by increasing the effective total input to a given neuron. Second, given
a sensing matrix that induces strong correlations, geometry-aware distributed coding can accelerate
inference by counteracting that detrimental coupling.

These tests show show that our model can reliably detect tens of odorants from a panel of thousands
of possible odorants, but do not probe how the model’s capacity scales to larger odor spaces. While
the true dimensionality of odor space remains unknown [100, 101], there may be orders of magnitude
more than thousands of possible odorants. As an upper bound, there are on the order of millions of
known volatile compounds that are plausibly odorous [102]. Thus, it is important to determine how
our model scales to more realistically-sized odor spaces. From the literature on compressed sensing
performance bounds, we expect the threshold sparsity to decay slowly—roughly logarithmically—
with increasing noqgor [28—33]. As a first step, in Supp. Figs. G.1 and G.2, we reproduce Fig. 3A-B
for between 500 and 8000 possible odorants, showing that performance does indeed drop off slowly
with increasing odor space dimension. To get a more precise estimate of how performance scales
with repertoirse size, in Fig. 3C we plot the threshold number of odorants for which half can be
reliably detected as a function of the repertoire size, showing that for the geometry-aware code it
decays only a bit faster than logarithmically. Our ability to simulate larger systems was limited by
computational resources. This limitation is present in previous works, and the repertoires tested here
are comparable to—or substantially larger than—those used in past studies [21, 22, 24, 26, 72].

6 Fast sampling for uncertainty estimation

Thus far, we have focused on a circuit that performs MAP estimation of odorant concentrations.
However, to successfully navigate a dynamic, noisy world, animals must estimate sensory uncertainty
at the timescale of perception [38, 103—107]. Fortunately, our circuit model can be easily extended
to perform Langevin sampling of the full posterior distribution, allowing for uncertainty estimation
while maintaining its attractive structural features. In Appendix B, we provide a detailed derivation
of a model that implements Langevin sampling through the granule cells for a Poisson likelihood and
Gamma prior. This yields a circuit that is identical to the MAP estimation circuit introduced in §3 up
to the addition of Gaussian noise to the granule cell dynamics:

c(t) = T'g(t) 78(t) = (AT) (P~ 1) + T (2~ A) +£(1)
Pp(t) =s—p©® (ro + Al'g) ,zt)=a—1-2z0c. (€))

Here, £(t) is a vector of n, independent zero-mean Gaussian noise processes with covariance
E[&;(t)&;: (t')] = 2740,,-0(t —t'), and once again the rates g and p should in principle be constrained
to be non-negative. In this case, the readout matrix I' both preconditions the effective gradient force
and shapes the structure of the effective noise I'¢, allowing us to mold the geometry of the sampling
manifold [37, 40]. By using a projected readout, we maintain the independence of the noise processes
for different neurons. This both allows us to have many independent samplers—if ng > nogor—and
is important for biological realism if we interpret the sampling noise as resulting from fluctuations in
membrane potential due to synaptic noise [108].

As a test of how this sampling circuit performs, we consider a simple setup in which one set of
odorants appears at a low concentration, and then a second set of odorants appear at a higher
concentration while the low odorants are still present. This setup tests both the circuit’s ability to
converge rapidly enough to give accurate posterior samples within a single sniff, and its ability to
correctly infer odorant concentrations even in the presence of distractors [63, 66]. In Fig. 4, we
show that circuits with one-to-one or naively distributed codes do not give accurate estimates of the
concentration mean within 200 ms, while tuning the geometry to match the receptor affinities enables
fast convergence. All three circuits overestimate the posterior variance at short times, consistent with
what one would expect for unadjusted Langevin samplers [109], but the geometry-aware model’s
estimate decays most rapidly towards the target. Therefore, when the synaptic weights are tuned, our
circuit model can enable fast, robust estimation of concentration statistics, even in the presence of
distractors.
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Figure 4: Fast uncertainty estimation using Langevin sampling of the posterior. Here, we use a simple
concentration estimation task in which 5 randomly-selected ‘low’ odorants out of a panel of 1000
appear at concentration 10 at time O s, and then a further 5 randomly-selected ‘high’ odorants appear
at concentration 40 at time 1 s. A. Smoothed timeseries of instantaneous concentration estimates for
low, high, and background odorants, for models with one-to-one (top), naively distributed (middle),
and geometry-aware (bottom) codes. Background odorant estimates are shown as mean =+ standard
deviation over odorants. Dashed lines show true concentrations over time. B. Cumulative estimates
of concentration mean for low (fop) and high (bottom) odorants after the onset of the low odorants for
one-to-one, naively distributed, and geometry-aware codes. Black lines indicate baseline estimates
of the posterior mean. Thick colored lines indicate means over odorants. C. As in B, but for the
estimated variance. D. As in B, but after the onset of high odorants. E. As in C, but after the onset of
high odorants. See Appendix G for details of our numerical methods, and for individual-odor traces.

7 Discussion

In this paper, we have derived a novel, minimal rate model for fast Bayesian inference in early
olfaction. Unlike previously-proposed algorithms for CS in olfaction, this model has a clear mapping
onto the circuits of the mammalian OB. We showed that this model successfully performs odorant
identification across a biologically-relevant range of scene sparsities and circuit sizes. This model
therefore exemplifies how normative approaches can blur the lines between algorithmic and mecha-
nistic understanding of neural circuits [82, 83]. We now conclude by discussing possible avenues for
future inquiry, as well as some of the limitations of our work.

One limitation of our simulations is that we have chosen to distribute the neural code randomly, and
have allowed for negative entries in the mitral-granule synaptic weight matrix AT (see methods in
Appendix G). These features are not entirely biologically satisfactory. However, our model only
captures the mitral cells and granule cells, overlooking a number of other inhibitory cell types that
could contribute to solving this problem, e.g., through feedforward inhibition onto mitral cells or
lateral inhibition across granule cells [48, 49]. Fundamentally, negative values in the geometry-aware
decoding matrix I" arise as although the affinity matrix is positive, its inverse will contain negative
elements. A biologically-plausible realization of the geometry-aware code through the introduction of
additional cell types could be achieved by decomposing the inverse into several components, yielding
sparse, consistently-signed connectivity [110]. As a first step, in Supp. Fig. G.4 we show that similar
performance to Fig. 4 can be achieved using a sparse non-negative randomly distributed code. As a
result, one objective for future work will be to develop better models for the decoding matrix I" that
result in more realistic connectivity.

Though our model captures two of the interesting features of the anatomy and physiology of the
OB—symmetric dendrodendritic coupling and state-dependent inhibition of mitral cells—there are



many biological details which we have not addressed. First, our linear model for OSN mean firing
neglects receptor antagonism, gain control, and other nonlinear effects [94, 111, 112], which are
known to affect the performance of Gaussian CS models for olfaction [26, 113]. Second, our models
are rate-based, while neurons in the OB spike. In spiking implementations of sampling networks,
the noise is not uncorrelated across neurons, complicating their biological interpretation [38, 114].
Constructing models that capture these richly nonlinear effects will be an important objective for
future work. A first step towards such a nonlinear model would be to build a spiking network
that approximates the rate-based models considered here, which could be accomplished using the
efficient balanced network formalism for distributed spiking networks [38]. Another step would
be to add a Hill function nonlinearity to the OSN model to approximate competitive binding, as
studied for Gaussian compressed sensing by Qin et al. [26]. One challenge in constructing models
that incorporate additional nonlinearity is that the simple linear strategy for distributing the code
used here may no longer be directly applicable. In Appendix E, we illustrate this obstacle for the
relatively simple case of a model with the same linear OSNs and Poisson likelihood but an L instead
of Gamma prior, building on recent work on circuits for Gaussian CS with L priors [115].

A closely related point is that we model the weights of the synapses between mitral and granule
cells as fixed, and do not consider synaptic plasticity. In particular, we assume that they are tuned to
the statistics of the receptor affinities without specifying a mechanism by which this tuning could
take place. In biology, receptor abundances and other OSN properties display activity-dependent
adaptation over long timescales, meaning that the optimal tuning is unlikely to be static [56, 116].
Some past works have sought to incorporate plasticity of the mitral-granule cell synapses into
decoding models [24, 117], tying into a larger body of research on how plasticity can enable flexible
feature extraction in olfaction [118, 119]. This learning should lead to measurable changes in the
population response to odorant panels, which our model predicts should be linked in a precise way to
account for receptor-induced correlations in the responses to the most frequently present odorants.
Experimentally characterizing and carefully modeling these changes in responses across timescales
will be an interesting avenue for future work [120]. Experimental techniques to probe these ideas at
the neural and behavioral level have recently been proposed [121, 122] which allow more precise
control of stimulus and subjective geometry.

Though the circuit model derived in §3 incorporates a general Gamma prior represented by cortical
feedback, our simulations focus on the special case in which the prior reduces to an exponential, in
which the feedback neurons are not needed. Future work will therefore be required to carefully probe
the effect of incorporating a Gamma prior with non-unit shape and to dissect the structure of the
resulting modeled cortical feedback. More generally, it will be interesting to extend our framework to
incorporate data-adaptive priors. Importantly, the stimuli used in this paper constitute an extremely
impoverished model for the richness of the true odor world; we do not account for its rich dynamical
structure and co-occurence statistics. Adaptive priors as encoded by cortical feedback would allow
circuits to leverage this structure, enabling faster and more accurate inference [88-90, 123, 124].

We conclude by noting that our work provides an example of how distributed coding can lead to
faster inference than axis-aligned disentangled coding. In recent years, the question of when axis-
aligned coding is optimal has attracted significant attention in machine learning and neuroscience
[125-135]. Much of this work focuses on the question of when axis-aligned codes are optimal for
energy efficiency or for generalization, whereas here we focus on the question of which code yields
the fastest inference dynamics. These ideas are one example of the broader question of how agents
and algorithms should leverage the rich geometry of the natural world to enable fast, robust learning
and inference [136]. We believe that investigating how task demands and biological constraints affect
the optimal representational geometry for that task is a promising avenue for illuminating neural
information processing in brains and machines [41, 136, 137].
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A Notational conventions

In this Appendix, we define the notational conventions used throughout the paper. We write R’} =
{x €R":xq,...,2, > 0} for the non-negative reals, and N = {0, 1, ...} for the natural numbers.
For a vector A € R}, we write

x ~ Poisson(\) (A1)
if the probability mass function of x € N" is

J

' e N, (A.2)

>
S8

p(x) = H mj

For scalars o > 0 and A > 0, we write that a vector x € R”} is distributed as

x ~ Gamma(a, ) (A.3)
if its probability density function is
n xq—l
=[] 2—e"". A4
p(x) H T(a)© (A4)
Jj=1
Similarly, for vectors ax, A € R, we write
x ~ Gamma(a, A) (A5)
if
n xajfl
J — AT
= 3T, A.6
p(x) g ) (A.6)

For vectors x,y € R, we write x ® y for their Hadamard (elementwise) product

(xOy)i = ziy; (A7)
and x @ y for their elementwise ratio
Xg
(x0y)i = y— (A.8)

B Detailed derivation of circuit model

In this Appendix, we give a detailed derivation of the circuit models introduced in Sections 3 and
6 of the main text. Here, we focus on the setting of the sampling circuit; the circuit algorithm to
compute the MAP introduced in Section 3 of the main text can be recovered at each step by dropping
the additive noise terms from the dynamics.

We recall that our goal is to sample the posterior p(c | s) over concentrations ¢ given OSN activity s,
for a Poisson likelihood

s |c ~ Poisson(rg + Ac) (B.1)
and a Gamma prior
¢ ~ Gamma(a, A). (B.2)

Here, we use the conventions of Appendix A for Poisson and Gamma random vectors. Discarding
normalization constants that do not depend on c, the density of the posterior is then

p(cs) o< p(s|c)p(c) (B.3)
NOSN Modor

oc | [ (xo + Ac)yre=moradn | | TT ¢t e | (B.4)
k=1 j=1

S1



We will sample from this distribution using Langevin dynamics, without explicitly constraining the
concentration estimate to be non-negative [21, 22]. This corresponds to the stochastic dynamics

¢(t) = Vclogp(cls) +n(t), (B.5)

where 1(t) is an nyqo,-dimensional zero-mean Gaussian noise process with E[n;(¢)n, ()] =
20;j:0(t —t"). The gradient of the log-posterior is

al()gp(cls’):n§v<sk_1>,4k-+aj_l—x (B.6)
de; = \(ro+Ac) Ty " |

or, in vector notation,
Velogp(c|s) =AT[s@ (ro+Ac) — 1]+ (a—1)@c— A (B.7)
The Langevin dynamics then become
¢t)=AT[s@(rg+Ac) — 1]+ (a—1)@c— A+ n(t). (B.8)

This is closely related to the Langevin sampling algorithm introduced in equation (3.9) of Grabska-
Barwinska et al. [21], but here we are not separately inferring odor concentration and odor presence.
We note that, for a; > 1, the term (o — 1) © c gives a force that diverges for small ¢;.

However, in this setup single neurons encode single odors. We instead want to allow for a distributed
code, where the population of neurons responsible for sampling may not directly encode single odors.
To distribute the code, we follow previous work by Masset et al. [38] in using the “complete recipe”
for stochastic gradient MCMC [37]. From the “complete recipe”, we know that the dynamics

7.¢(t) =TT "V logp(c|s) + L&), (B.9)

for a (expectantly named) time constant 7, > 0 and any (potentially non-square) matrix I' ¢
R7edor X7 guch that I'T' T is positive-definite, will have as their stationary distribution the posterior
p(c|s). here, we have replaced the noqo,-dimensional noise process 7(t) with an n,-dimensional
noise process &(t) with zero mean and covariance

E[gj (t)gj/(t/)] = 2Tg5jj/(5(t — tl). (BlO)
Then, we can write the concentration estimate as
c(t) =Tg(t) (B.11)

where the activity of the neurons g € R"s follows the dynamics

758(t) =T Vclogp(g|s) + &(t). (B.12)
c=I'g

Using the gradient of the log-posterior computed above, we then have
r&(t) = (AT) [s 0 (ro + ATg) ~ 1] + TT[(@ ~ 1) (Tg)] ~T A+ £(1).  (B.13)

These dynamics include two divisive non-linearities, which can be complex to implement in biophysi-
cal models of single neurons [80]. Using the approach proposed in Chalk et al. [81], we can linearize
the inference by introducing two additional cell types that have as their fixed points the elementwise
divisions s @ (ro + AI'g) and (o — 1) @ (I'g). We then introduce a population p of nogn neurons,
with dynamics

Top(t) =s—p © (ro + ATl'g), (B.14)
such that the fixed point is
p*=s0 (ro+ AT'g). (B.15)
We finally introduce a third population z of n,q,, neurons, with dynamics
7,z(t) =a—1—-2z0 (I'g), (B.16)
such that the fixed point is
z"=(a—1)0 (T'g). (B.17)
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To be more precise, the cell types p and z compute the desired elementwise divisions in the pseudo-
steady-state regime 7, 7, J. 0.

Putting everything together, this gives the circuit dynamics

c(t) =T'g(?) (B.18)
78(t) = (AT) " (p— 1) + T " (z — A) + £(1) (B.19)
P(t) =s —p O (ro + Al'g) (B.20)
,72(t)=a—1—-2z0c, (B.21)

where we recall that the covariance of the zero-mean Gaussian noise process &(t) is
B[ ()& ()] = 270;5:6(t = t'). (B.22)

We note that the two constant terms in the dynamics of g can be grouped into an overall leak term
~TT(AT1+ ). As detailed in the main text, we interpret p as M/T cells, g as granule cells, and z
as cortical feedback.

C Stability of the MAP fixed point

In this Appendix, we aim to get some understanding for how the introduction of the cell type p to
represent the elementwise division affects the inference, particularly when 7, is comparable to 7.
For simplicity, we specialize to the case of an exponential prior (i.e., we set & = 1), in which case
the general circuit (3) simplifies to

c(t) =Tg(t)
7&(t) = (AT) " (p—1) —T'A (C.1)
P(t) =s —p © (ro + Al'g).
C.1 Analysis of a two-cell circuit

To build intuition, we first consider a circuit with nyqor = nosn = ng = 1:

c(t) =g(t)
Tg% =ay(p—1)— A (C.2)
Tp% = s —p(ro + ayg).
In this case, it is useful to non-dimensionalize the system. Re-scale time as
=9 (C3)
Tg

T=—, (C.4)
Tg
o= 2 (C.5)
y
Py (C.6)
a
5= (C.7)
ary
Then, the dynamics are
dg ~
—=p—-1-A CS8
iy (C.3)
_d - -
Td—lg =§—p(fo+9)- (C.9
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These dynamics have a single fixed point at

S

. = = — T C.10
B=1s (C.10)
pe =1+ (C.11)
Linearizing about this fixed point, we have
d (dg dg
— =M C.12
i (54) =1 (5 e
for
1 0 T
M= — 5 o1a |- C.13
7 (—(1+>\) —a —i—)\)_ls) (C13)

The eigenvalues of M are easily computed as

—544/52 —47(1+ )3
AL (M) = . (C.14)

B 27(1+ )

For any positive 7 and non-negative A\, we have

—5+Re/52 —47(1+ \)3
Re Ay (M) = (C.15)

27(1+ A
—5E4/82 —4F(1+ N3 5
. ~( ) 52 —4F(1+N)? >0
- 27(1+ ) (C.16)
_§ .
_— otherwise,
27(1 4+ \)

hence it is easy to see that the real parts of both of these eigenvalues are strictly negative so long as
§ > 0, meaning that the system is stable. If § = 0—which should be exceedingly rare if the OSNs

have a baseline rate—then
[1+ A
=+ Jf , (C.17)
5=0 g

and there can be oscillations. Therefore, a linear stability analysis suggests that the MAP fixed point
of this two-cell circuit should be stable even for large 7 in the presence of a non-zero input, though
we expect the relaxation timescales to grow as 7 becomes larger.

AL (M)

C.2 Analysis of the full circuit

We now consider the full MAP circuit
c(t) =Tg(t)
7.8(t) = (AT)"(p—1) —-T A (C.18)
HP(t) =s —p © (ro + Al'g).
We assume that nosn < Nodor < Ng and that AT is of full row rank, i.e., it has rank nosn. We

recall that g € R:L_g and p € R:L_g. Therefore, the dynamics of g span only an n,4.,-dimensional
subspace, and, in particular, the p-dependent term affects only an nogn-dimensional subspace.

We start by observing that the dynamics of p depend on g only through
q=ATlg. (C.19)
Importantly, if AT is positivity-preserving, then q € R’}°~. Then, we have the closed dynamics
= (ATTTAT)(p—1)— ATT'X
HP=5—PpO(ro+q)
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for (q,p) € Ri"OSN. The fixed point of this system is of course determined by the conditions
d(q,p)/dt = 0, which gives

(ATTTAT)(p* —1) = ATT "X (C.21)
P O(ro+q")=s (C.22)

subject to the non-negativity constraints. By our assumptions on the rank of AT, the symmetric
matrix ATT T AT is positive-definite and thus can be inverted to solve the first condition for p*:

p* =1+ (ATTTAT)'ATT T (C.23)

For the second condition to be satisfied, we can see that the elements of p* must be strictly positive
at the fixed point, which gives a self-consistency condition on A, T", and A. Assuming that this holds,
we then have

q"=s0p” —ro, (C.24)
which again gives a self-consistency condition as non-negativity is required.

Assuming these conditions hold, we can then linearize the dynamics about the fixed point. For
convenience, we non-dimensionalize time through

i- bt (C.25)
Tg
and
F=l (C.26)
Tg
which yields the linearized dynamics
d (6q dq
dt (510) (610 (€27)
for
B 0 (ATTTAT)
M = (—%_1 diag(p*) —7~!diag(ro +q*) (C.28)
_ 0 (ATTTAT)
- (—%_1 diag(p*) -7 'diag(sop*)/" (C.29)

Using the fact that the diagonal matrices diag(p*) and diag(s @ p*) commute, the characteristic
polynomial of M is

_ TAT
det(M — donosy) = det( lnosy (ATT A7) ) (C.30)

7 diag(p*) 7' diag(s @ p*) + plnoex
= det[p?L, oo + p7 ' diag(s @ p*) + 7 H(ATT T AT) diag(p*)]. (C.31)

One case that is particularly easy to solve is when the symmetric positive-definite matrix ATT T AT
is in fact diagonal, with positive diagonal entries a;. Then, we have

NOSN 5 S ajp*
det(M — pIonoey) = ] [#°+ ﬁff“ +-=* (C.32)
j=1
meaning that the eigenvalues of M are
1 ’ i
. . a.p
e = |—=L g (2] —aBB (C.33)
2 TD; TD; T

which under the given assumptions always have strictly positive real part for non-negative inputs.
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Now, more generally, assume that M is diagonalizable, and let m be a un-normalized eigenvector of
M with eigenvalue p. Then, writing
u
m = (v) (C.34)

for u, v € C"osN_ the eigenvector condition

Mm = pm (C.35)
implies that u and v satisfy

1
—(ATTTAT)v = pu (C.36)

Tg

Lo L «

—— diag(p*)u — — diag(s @ p*)v = uv. (C.37)

Tp Tp

Assuming that y is non-zero, we can solve the first equation for u and then substitute the result into
the second to obtain a quadratic eigenproblem for 1 and v:

1
v+ p— diag(s @ p*)v + diag(p*)(ATTTAT)v = 0. (C.38)

D TpTg
We will not attempt to solve this eigenproblem, but will instead attempt to extract information about
possible values of p for a fixed v. Suppose (without loss of generality given the assumption that it is
nonzero, as otherwise we may divide by its norm) that v is a unit vector.Then, acting with v from
the left, we have

2+ %u + prTg —0. (C.39)
where we define the coefficients
a = vidiag(s © p*)v (C.40)
and
b=v'diag(p*)(ATT"AT)v. (C.41)
So long as s and p* are positive, a is real and positive. Let
A= (ATTTAT) AT A (C.42)
such that
p*=1+A (C.43)

By assumption, the elements of X are strictly greater than —1. Then,

Re(b) = vi diag(p*)(ATTTAT) + (ATTTAT) diag(p*)v

5 (C44)
iag(A\)(ATTTAT) + (ATTTAT) diag(A
— vi(ATTTA v + v diag(A)( ) J; ( JdiagN) 0 o 4s)
while
di “Y(ATTTAT) — (ATTTA ) di *
Im(b) = v iag(p”)( >2‘( ) diag(p”) (C.46)
2
ool X TATY _ TATY dino( X
:delag()\)(AIT A ‘(AIT A )dlag(/\)v (CA7)
24
Then, solving the quadratic equation for i, we have
_ Va2 — 47
:i atva 4’7’[)’ (C.48)
o 2
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for

F=1p (C.49)
Tg
This gives
1
Re(y) = —% + 5 Re V/a? — 47b (C.50)
p p
_ a1 V(a2 — 47 Re(b))? + 1672 Im(b)2 + a2 — 47 Re(b). C.51)

2, 27 2
If Im(b) = 0, then we are in the same situation as we were for the two-neuron circuit, and the fixed
point is thus stable.

More generally, for the system to be stable we want to have

. \/ /(@ — 5 Re())? + 1672 Tm(B)? + a? — 47 Re(b)

5 . (C.52)
For either sign of a? — 47 Re(b), one can show that this holds provided that
Re(b) > 0 (C.53)
and
V7| Im(b)| < ar/Re(b). (C.54)

This amounts to a combined condition on the effective prior strength X and the relative time constants.
Therefore, for sufficiently small A, we have stability for a broad range of 7.

How can we go from stability of the (g, p) circuit to stability of the full circuit? Heuristically, this
follows by decomposing the dynamics of g in terms of the different subspaces. We will not attempt
to do this rigorously, as our goal is only to get a rough sense of how the system should behave.
By the fact that their dimensions are strictly ordered, we know that span(I'") O span[(AT)"].
We can first exclude components outside span(T'T), as they will be unchanged by the dynamics
and do not affect the concentration estimate. Recalling the non-negativity constraint, components
in span(T' ") \ span[(AT') "] will decay linearly to zero. Then, the components in span[(AT) "]
should be controllable using the argument for the (q, p) space. Giving a fully rigorous analysis of
the conditions under which the MAP fixed point is stable will be an interesting avenue for future
investigation.

D Derivation for the Gaussian circuit model

To compare the result of the state dependent inhibition due to estimating the MAP for a Poisson noise
model with the fixed inhibition resulting from Gaussian noise we build an alternative circuit model.
This circuit still shares the separation into two cell types, but the granule cells g converge on the
solution for a Gaussian noise model.

Our starting point is an isotropic Gaussian likelihood

s|c~N(ro+ Ac,0?T,.) (D.1)
variance o2, and an exponential prior
c ~ Exp(A). (D.2)
Gradient ascent on the resulting log-posterior over c leads to the dynamics:
) 1
é(t) = EAT[S — (ro + Ac)] — A, (D.3)

Distributing the code such that c¢(¢) = I'g and splitting the inference as we did in the Poisson case
gives the circuit dynamics

c(t) = T'g(t)
Te8(t) = é(AF)Tp —T7x (D.4)

7P(t) = —p +s — (ro + Al'g).
Unlike in the Poisson case, the inhibition onto the projection cells (mitral cells) is not gated by their
activity, leading to the fixed offset shown in Fig. 2B.
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E Extending the sampling circuit to incorporate an L, prior

In this Appendix, we consider the possibility of extending our circuit model to incorporate an L
spike-and-slab prior

plei) = we ™ + (1 - @)d(es), (E.1)
where w is the probability that the odor is present and )\ is the rate of the exponential prior on
concentrations given that the odor is present. To sample from the resulting posterior using Langevin
dynamics, we will follow the approach of Fang et al. [115], who developed a Langevin algorithm to
perform sparse coding with this prior given a Gaussian likelihood. This approach only works in the
sampling setting; it cannot be applied to MAP estimation because the Dirac mass at ¢; = 0 means
that the MAP estimate will always vanish.

In this approach, we define an auxiliary variable u that is mapped to concentration estimates c via
element-wise soft thresholding:

c = f(u), (E.2)
where
0 u < Ug
= E.3
f(u) {u—uo U > Ug (E.3)
is the soft-thresholding function for threshold
1
uy = DY log w. (E.4)
We then posit the following Langevin dynamics for u, given an observation s:
() = | Velogp(sle)| @ 0(ul - w) ~ Asigatw + () (E5)
c=f(lul)

with no constraint on the sign of u, where n(¢) is a white Gaussian noise process. Here, all
nonlinearities are applied element-wise, and uy = ug1l is a vector with all elements equal to the
threshold ug. Fang et al. [115] argue that the stationary distribution induced on ¢ = f(u) by these
dynamics should be the desired posterior with L prior.

Using the Poisson likelihood gradient as computed before, we have
u(t) = {AT[s 2 (ro + Af([u])) — 1]} © O(Ju|] — ug) — Asign(u) + n(t) (E.6)

At this stage, we can see that the soft thresholding has picked out a preferred basis. If we apply the
complete recipe in a way analogous to what we did in Appendix B by writing

u=rg, (E.7)
we will have

78(t) =TT |[{AT[s@ (ro + Af(|Tg|)) — 1]} © O(|T'g| — ug) — Asign(T'g) | +£(t), (E8)

where £(t) is a zero-mean Gaussian noise process with covariance

E[gj(t)gj/(t/)] = 2Tg($jj/(s(t - t/). (E9)
Here, we cannot simply regroup terms; if we introduce an additional cell type p as before to compute
the division we will have a sort of effective weight matrix

> TwiAjrO(|ux| — uo) (E.10)
k

for the p-to-g connections, and an entirely different coupling A f(|T'g|) for the g-to-p connections.
Concretely, introducing p as before, we have the system

c(t) = f(ITg(®)]) (E.11)
rbl0) = I [[A7(p 1] 0 ©(10e| ~ w) ~ Asign(Dy) [ di-+() 12
p(t) =s—p O [ro + Af(|Tg|)]. (E.13)

This issue illustrates the limitations of the simple, linear approach to distributing the neural code used
in Appendix B. In particular, the nonlinearity in some sense picks out a preferred basis, meaning that
we can no longer perform a simple linear change of coordinates to distribute the code.
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F Experimental details and affinity matrix fitting

Here we briefly describe the experimental procedures used to collect the data used to fit the parameters
of the affinity matrix A in Fig. 1. The full experimental methods are described in the paper that
first presented the data, Zak et al. [94]. All the experiments were performed in accordance with the
guidelines set by the National Institutes of Health and approved by the Institutional Animal Care and
Use Committee at Harvard University.

F.1 In vivo recordings from mouse OB

Adult (> 8 weeks) OMP-GCaMP3 mice of both sexes were used in this study. A craniotomy was
performed to provide optical access to olfactory sensory neuron axon terminals in both olfactory
bulbs. A custom-built two-photon microscope was used for in vivo imaging. Images were acquired
at 16-bit resolution and 4-8 frames/s. The pixel size was 0.6 um and the fields of view were
720 x 720 pm. Monomolecular odorants (Allyl butyrate, Ethyl valerate, Methyl tiglate, and Isobutyl
propionate) were used as stimuli and delivered by a 16-channel olfactometer controlled by custom-
written software in LabView. For the odorant concentration series, the initial odorant concentration
was between 0.08% — 80%(v/v) in mineral oil and further diluted 16 times with air. The relative
odorant concentrations were measured by a photoionization detector, then normalized to the largest
detected signal for each odorant. For all experiments, the airflow to the animal was held constant
at 100mL/min, and odorants were injected into a carrier stream. Each odorant concentration was
delivered 2—6 times in pseudorandom order.

Images were processed using both custom and available MATLAB scripts. Motion artifact compen-
sation and denoising were done using NoRMcorre [138]. The AF'/F signal was calculated by finding
the peak signal following odorant onset and averaging with the two adjacent points. To account for
changes in respiration and anesthesia depth, correlated variability was corrected for [139]. Thresholds
for classifying responding ROIs were determined from a noise distribution of blank (no odorant)
trials from which three standard deviations were used for responses.

F.2 Gamma distribution fitting

In order to fit the affinity matrix A to the experimentally recorded data, we normalized the response
of each glomerulus to its maximum response across the panel of 32 odorants. We then vectorized
the resulting matrix and fitted a Gamma distribution using the gamfit function in MATLAB. As
mentioned in the main text, this resulted in a Gamma(0.37,0.36) distribution.

G Numerical methods and supplemental figures

All numerical simulations were performed using MATLAB 9.13 (R2022b, The MathWorks, Natick,
MA, USA) either on desktop workstations (CPU: Intel i9-9900K or Xeon W-2145, 64GB RAM)
or on the Harvard University FASRC Cannon HPC cluster (https://www.rc.fas.harvard.edu).
Our simulations were not computationally intensive, and required around that 6000 CPU-hours of
total compute time.

G.1 State-dependent inhibition simulations

For the simulations to highlight the signatures of state-dependent inhibition of the Poisson network
and compare its behavior with the experimental observation by Arevian et al. [95] we use a reduced
network with nposy = 2 and ny = 10. We chose this reduced circuit both to reduce computational
costs and to match the experimental parameters of the in-vitro experiment. The other parameters of
the simulation where as follows: 7, = 0.02, 7, = 0.03, ro = 10, A = 2, dt = le~*. The simulation
ran for 600 ms, stimulation was applied starting at ¢4+ = 100 ms and ended at t.,,4 = 500 ms.
We stimulated the principal mitral cell M C' 4 with 80 equally spaced values in s4 € [1,400]. When
the second mitral cell was active, its stimulation was set at sg = 80. The entries of the I' matrix were
sampled from a normal distribution on which we applied a mask such that only 25% of its entries
were non-zero. We sampled 32 *pairs’ of cells by resampling the I" matrix for each ’pair’ of cells.
The simulation for the Gaussian circuit used the same parameters except the dynamics followed those
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from equation D.4. For plotting purposes, we normalized the range of firing in Figure 2B to the
maximum firing rate for each circuit model.

G.2 Capacity simulations

In our capacity simulations, we use nogn = 300 and noqo, = 500, 1000, or 2000. We take the
odor stimulus to be a rectangular pulse, with varying numbers of randomly-selected odors appearing
at concentration ¢; = 40. As elsewhere, we take 7, = 20 ms [91] and 7, = 30 ms [92] to match
experiment. We set the baseline rate to be 7y = 1 and the prior mean to be A = 1; based on some
experimentation our results appear relatively insensitive to small variations in these choices. We
integrate the MAP circuit dynamics (3) using the forward Euler method with timestep At = 10~%s.
To determine which odors the model estimates as being present at a given timepoint, we simply check
which concentration estimates exceed 20 at that time.

As discussed in the main text, we consider three variants of the MAP circuit, defined by different
choices of the matrix I':

* For the one-to-one code, we let ng = nodor, and simply set I' = I /N (A;j).

* For the naively distributed code, we let ng = 5nodor, and choose I' as follows: We sample

a random matrix Q € R"odorX"s with QQT = I,,_, by drawing a Gaussian matrix and
orthogonalizing its rows. Then, we define I' = Q/N{|(AQ);;}.

* For the geometry-aware code, we let ng = 5ngdor, and choose I' as follows: We sample
a random matrix Q € R"edor "z with QQT = I,, ,. by drawing a Gaussian matrix and
orthogonalizing its rows. Then, we compute an approximate inverse square root of the
low-rank matrix ATA as B = (AT A + al,,_, )~ '/? for a small positive regularizing
constant a. In our simulations, we set a = 0.5; we find empirically that our results are not
substantially sensitive to small variations in a. Finally, we let I' = BQ/N{|(ABQ),;|}.

Modor

where NN is a normalization function defined as

D
N(A) = max(A) - Cg
with C' = 50 identified as a reasonable choice. Our normalization convention for I' is motivated by
the idea that, in biology, the strength of individual synapses should be bounded. Moreover, changing
the overall scale of the synaptic weights in our model corresponds to changing the effective time
constant of the dynamics, which can produce a trivial speedup.
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Figure G.1: A. Fraction of odors correctly detected within 100 ms (left), 200 ms (center), and 1 s
(right) after odor onset as a function of the number of odors present, with nyqo, = 500 possible
odors, for models with one-to-one, naively distributed, and geometry-aware codes. B. As in A, but
for neqor = 1000. This matches Fig. 3B. C, D, E. As in A, but for nyq,, = 2000, 4000, or 8000
possible odorants, respectively. Shaded patches show £1.96 SEM over realizations throughout.
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Figure G.2: A. Heatmap with overlaid smoothed contours of the fraction of odors correctly detected as
a function of number of present odors and time window out of a panel of ny,qor = 500 possible odors
for models with one-to-one (left), naively distributed (center), and geometry-aware (right) codes. B.
As in A, but for nyqor = 1000. This matches Fig. 3B. C, D, E. As in A, but for nyq., = 2000, 4000,
or 8000 possible odorants, respectively.
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G.3 Sampling simulations

In our sampling simulations, we use nosn = 300, nodor = 500 or 1000, and ng = 5no4or. Here,
the odor stimulus was composed of two rectangular pulses: At time ¢}, = 0 s, five “low” odors
appear at concentration 10, and remain present at that concentration until time ¢ = 2 s. Then, at time
thigh = 1 s, five “high” odors appear at concentration 40, and remain present until time ¢, = 2's. As
in our capacity simulations, we take 7, = 20 ms [91] and 7, = 30 ms [92] to match experiment, and
we set the baseline rate to be 7y = 1 and the prior mean to be A = 1. As for our capacity results, our
results appear relatively insensitive to small variations in these choices. We integrate the sampling
circuit dynamics (4) using the forward Euler-Maruyama method with timestep At = 1075 s.

As in our capacity simulations, in Fig. 4 we choose I" as follows:

* For the one-to-one code, we let ng = nodor, and simply set I' = I / max(A;;).
* For the naively distributed code, we let ng = 5no4or, and choose I' as follows: We sample
a random matrix Q € R"edor X" with QQT = I,,_, . by drawing a Gaussian matrix and

orthogonalizing its rows. Then, we define I' = Q/ max{|(AQ);;|}.

TModor

* For the geometry-aware code, we let ng = 5ngdor, and choose I' as follows: We sample
a random matrix Q € R"edor "z with QQT = I,, .. by drawing a Gaussian matrix and
orthogonalizing its rows. Then, we compute an approximate inverse square root of the
low-rank matrix ATA as B = (ATA + aI,,_,. )~ '/? for a small positive regularizing
constant a. In our simulations, we set a = 0.5; we find empirically that our results are not
substantially sensitive to small variations in a. Finally, we let I' = BQ/ max{|(ABQ);;|}.

In Fig. 4A, we smooth the concentration estimate timeseries using a 100 ms moving average. In Fig.
4B-C, we show cumulative estimates of the mean and variance. Concretely, given a concentration
timeseries ¢;(t), we estimate the mean and variance as

uj(ﬂ:% > ) G.1)

tiow St<tiow+T

and

0]2.(7)_§ Yo G0 p(n)? G2)

tiow St<tiow+T

respectively, where we assume 7 and ¢ are integer multiples of At. In Fig. 4D-E, we do the same
except for times after ¢y,;.1,. In both cases, baselines were obtained by running the naive sampling
algorithm for 108 steps with a burn-in period of 107 steps. In Supp. Fig. G.3, we reproduce Fig. 4
showing estimates for individual odorants as well as the mean across odorants.

In Supp. Fig. G.4, we show a preliminary experiment with an alternative, mostly non-negative choice
for I'. This gives the following three models:

* For the one-to-one code, we let ng = Nodor, and simply set T' =1,/ max(A;;).

* For the naively distributed code, we let ng = 5nodor, and choose I' as follows: We sample
a sparse, non-negative random matrix Q € R™eder*"s with entries that are non-zero with
density 0.15, and the non-zero entries are drawn uniformly on [0,1]. Then, we define
I = Q/max{|(AQ)i;|}-

* For the geometry-aware code, we let ng = 5nodor, and choose I' as follows:We sample
a sparse, non-negative random matrix Q € R™eder*"= with entries that are non-zero with
density 0.15, and the non-zero entries are drawn uniformly on [0, 1]. Then, we compute an
approximate inverse square root of the low-rank matrix AT A as B = (AT A+al,_, )~ '/?
for a small positive regularizing constant a. In our simulations, we set a = 0.5; we find

empirically that our results are not substantially sensitive to small variations in a. Finally,
we let ' = BQ/ max{|(ABQ);;|}.

This yields a naively distributed synaptic weight matrix AT that is entirely non-negative, while

the geometry-aware weight matrix has a small number of negative elements due to the fact that the
inverse of a non-negative matrix need not be non-negative. We see that the behavior of this circuit is
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Figure G.3: Fast uncertainty estimation using Langevin sampling of the posterior, showing estimates
for individual odorants. Here, we use a simple concentration estimation task in which 5 randomly-
selected ‘low’ odorants out of a panel of 1000 appear at concentration 10 at time O s, and then a
further 5 randomly-selected ‘high’ odorants appear at concentration 40 at time 1 s. A. Smoothed
timeseries of instantaneous concentration estimates for low, high, and background odorants, for
models with one-to-one (fop), naively distributed (middle), and geometry-aware (bottom) codes.
Background odorant estimates are shown as mean = standard deviation over odorants. Dashed lines
show true concentrations over time. B. Cumulative estimates of concentration mean for low (fop) and
high (bottom) odorants after the onset of the low odorants for one-to-one, naively distributed, and
geometry-aware codes. Black lines indicate baseline estimates of the posterior mean. Thick colored
lines indicate means over odorants, while thin lines show traces for individual odorants. C. As in B,
but for the estimated variance. D. As in B, but after the onset of high odorants. E. As in C, but after
the onset of high odorants. See Appendix G for details of our numerical methods.

similar to that observed in Fig. 4. As mentioned in the Discussion, an important topic for future work
will be to devise a method to choose I" that yields a fully non-negative, sparse synaptic weight matrix
AT

H Code and data availability

All code and data required to reproduce the figures presented is available under an MIT License at
https://github.com/Pehlevan-Group/olfaction-geometry/.
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Figure G.4: Langevin sampling of the posterior using sparse non-negative distributed codes. Here,
we use a simple concentration estimation task in which 5 randomly-selected ‘low’ odors out of a
panel of 500 appear at concentration 10 at time O s, and then a further 5 randomly-selected ‘high’
odors appear at concentration 40 at time 1 s. This figure replicates Fig. 4, except that the code is
distributed using a sparse non-negative random matrix rather than an orthogonal matrix. Smoothed
timeseries of instantaneous concentration estimates for low, high, and background odors, for models
with one-to-one (fop), naively distributed (middle), and geometry-aware (bottom) codes. Background
odor estimates are shown as mean =+ standard deviation over odors. Dashed lines show true odor
concentrations over time. B. Cumulative estimates of odor concentration mean for low (fop) and high
(bottom) odors after the onset of the low odors for one-to-one, naively distributed, and geometry-
aware codes. Black lines indicate baseline estimates of the posterior mean. Thick lines indicate
means over odors, and thin lines individual odors. C. As in B, but for the estimated variance. D. As
in B, but after the onset of high odors. E. As in C, but after the onset of high odors. See Appendix G
for details of our numerical methods.
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