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ABSTRACT

Neural Stochastic Differential Equations (Neural SDEs) have emerged as powerful
mesh-free generative models for continuous stochastic processes, with critical ap-
plications in fields such as finance, physics, and biology. Previous state-of-the-art
methods have relied on adversarial training, such as GANs, or on minimizing dis-
tance measures between processes using signature kernels. However, GANs suf-
fer from issues like instability, mode collapse, and the need for specialized train-
ing techniques, while signature kernel-based methods require solving linear PDEs
and backpropagating gradients through the solver, whose computational complex-
ity scales quadratically with the discretization steps. In this paper, we identify a
novel class of strictly proper scoring rules for comparing continuous Markov pro-
cesses. This theoretical finding naturally leads to a novel approach called Finite
Dimensional Matching (FDM) for training Neural SDEs. Our method leverages
the Markov property of SDEs to provide a computationally efficient training ob-
jective. This scoring rule allows us to bypass the computational overhead asso-
ciated with signature kernels and reduces the training complexity from O(D?) to
O(D) per epoch, where D represents the number of discretization steps of the
process. We demonstrate that FDM achieves superior performance, consistently
outperforming existing methods in terms of both computational efficiency and
generative quality.

1 INTRODUCTION

Stochastic differential equations (SDEs) are a modeling framework used to describe systems in-
fluenced by random forces, with applications spanning finance, physics, biology, and engineering.
They incorporate stochastic terms to allow the modeling of complex systems under uncertainties.

A neural stochastic differential equation (Neural SDE) (Kidger et al.,|[2021; |Issa et al.|[2023; Tzen &
Raginskyl, 2019} Jia & Benson, 2019} |Hodgkinson et al., [2021}; [Li et al., [2020; Morrill et al., [2020)
is an SDE where neural networks parameterize the drift and diffusion terms. This model acts as
a mesh-free generative model for time-series data and has shown a significant impact in financial
applications (Arribas et al., 2021} |Gierjatowicz et al., |2020; |Choudhary et al.| [2023; [Hoglund et al.,
2023).

Training Neural SDEs typically involves minimizing a distance measure between the distribution of
generated paths and the distribution of observed data paths. State-of-the-art performance has been
achieved using signature kernels to define a distance measure on path space (Issa et al., [2023). Al-
though effective, this approach requires solving a linear partial differential equation (PDE) whose
computational complexity scales quadratically with the discretization step, which becomes imprac-
tical for long time series. An alternative is training these models adversarially as Generative Adver-
sarial Networks (GANs) (Kidger et al., 2021). However, GAN-based training can be fraught with
issues such as instability, mode collapse, and the need for specialized techniques.

In this paper, we present a theoretical result that extends scoring rules for comparing distributions
in finite-dimensional spaces to those for continuous Markov processes. This extension forms the
basis of a novel algorithm, Finite Dimensional Matching (FDM), designed for training generative
models of stochastic processes. FDM exploits the Markovian nature of SDEs by leveraging the
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two-time joint distributions of the process, providing an efficient training objective that bypasses
the complexities of signature kernels. Notably, FDM reduces the computational complexity from
O(D?) to O(D) per training step, where D represents the number of discretization steps.

The key contributions of this paper are as follows:

* Our main theorem shows that scoring rules to compare continuous Markov processes can
be easily built upon scoring rules on finite-dimensional space.

e Our main theorem suggests an efficient training method, FDM, for neural SDE.
* QOur experiments show that FDM outperforms prior methods on multiple benchmarks.

The rest of the paper is organized as follows: Section 2 provides a review of the relevant literature.
In Section 3, we present preliminary results that lay the foundation for our main contributions. Sec-
tion 4 introduces our main theorem, which extends scoring rules for finite dimensions to continuous
Markov processes and leads to the development of our novel Finite Dimensional Matching (FDM)
algorithm. Section 5 details the experimental setup and results, demonstrating the superiority of
FDM in terms of both computational efficiency and generative performance across several bench-
mark datasets. Finally, Section 6 concludes the paper by summarizing the contributions, limitations,
and directions for future research.

2 RELATED WORK

We begin by reviewing prior applications of scoring rules in generative modeling followed by an
exploration of the literature on training neural SDEs.

2.1 SCORING RULES

Scoring rules offer a method to measure discrepancies between distributions (Gneiting & Raftery,
2007) and are especially appealing for generative modeling and have been employed in training
various generative models (Bouchacourt et al., [2016; |Gritsenko et al.| 20205 [Pacchiardi et al., [2024;
Pacchiardi & Dutta, 2022 Issa et al., [2023; | Bonnier & Oberhauser, [2024). Notably, Pacchiardi et al.
(2024) apply scoring rules to discrete Markov chains, although their extension to continuous-time
processes has not yet been explored. [Issa et al.| (2023) and |[Bonnier & Oberhauser| (2024) construct
scoring rules for continuous processes by utilizing signature kernels.

2.2 NEURAL SDEs

Several methods have been proposed for training Neural SDEs as generative models, each differing
in how they define the divergence or distance between distributions on pathspace. In Table [T we
compare different methods for training Neural SDEs, highlighting their divergence measures and the
corresponding discriminator or training objectives. Our approach, Finite Dimensional Matching
(FDM), introduces a novel scoring rule specifically designed for continuous Markov processes.

Table 1: Methods for training neural SDEs. SigKer stands for signature kernel (Issa et al.| [2023),
TruncSig is for truncated signature (Bonnier & Oberhauser, 2024), SDE-GAN is proposed by
Kidger et al.|(2021), and Latent SDE is proposed by |Li et al.| (2020).

Methods Divergence or distance Discriminator or training objective
Latent SDE KL-divergence Monte-Carlo simulation of free energy
SDE-GAN 1-Wasserstein distance Optimizing discriminator nets
SigKer Signature kernel score Solving Goursat PDEs
TruncSig Truncated signature kernel score  Truncated approximation of signature
FDM (Ours) A novel class of scoring rule Standard ERM of the expected scores
dedicated to continuous Markov
processes

One method to train neural SDE is the latent SDE model introduced by [Li et al.|(2020), which trains
a Neural SDE using variational inference principles (Opper, 2019). In this framework, training in-
volves optimizing the free energy (Opper, [2019) that includes the Kullback-Leibler (KL) divergence



Under review as a conference paper at ICLR 2025

between the original SDE and an auxiliary SDE. These two SDEs share the same diffusion term
but have different drift terms. The KL divergence between their laws can be computed using Gir-
sanov’s change of measure theorem. However, the performance of latent SDEs is generally inferior
to SDE-GANSs due to lower model capacity(Kidger et al., 2021} |Issa et al.|[2023).

A prominent method is the SDE-GAN introduced by |Kidger et al.[(2021), which employs adversarial
training to fit a Neural SDE, as in Wasserstein-GANSs (Arjovsky et al., 2017)). This approach relies
on the 1-Wasserstein distance, with the discriminator parameterized by neural controlled differential
equations (Kidger et al., 2020; Morrill et al.,[2021)). However, SDE-GANSs are notoriously difficult
to train due to their high sensitivity to hyperparameters. Another major challenge is the need for
a Lipschitz discriminator, which requires techniques like weight clipping and gradient penalties to
enforce this constraint (Kidger, |2022). Adversarial training for time-series generative models has
also been explored in the context of discrete data (Ni et al.l|2022; Yoon et al.,[2019).

Another key contribution to training Neural SDEs is the signature kernel method (Issa et al., 2023
Bonnier & Oberhauser} 2024), which minimizes a distance measure based on signature kernels (Lee
& Oberhauser, 2023)) of paths. However, evaluation of the signature kernel solving Goursat partial
differential equations (PDEs) and backpropagating gradients through the PDE solvers (Salvi et al.,
2021} Issa et al., 2023)). The computational complexity of solving Goursat PDEs scales quadratically
with the number of discretization steps, which can be prohibitive for long time series data. Bonnier
& Oberhauser| (2024) approximates the signature kernel as inner products of truncated signature
transforms, called truncated signature. However, the scoring rule based on truncated signature is not
strictly proper and its memory complexity is of O(d") where d is the number of features and N is
the truncation size.

3 PRELIMINARIES

In this section, we set up the notations and introduce the following preliminary concepts: neural
SDEs, Markov processes, and scoring rules.

3.1 BACKGROUND AND NOTATIONS

Let {2, F,P} be a probability space where 2, F, P denote the sample space, sigma-algebra, and
probability measure, respectively. For a random variable &, the function Pe = Po¢~? is the induced
measure on its range space. In particular, for a random process X, Px denotes its law. We use the
superscript | for the transposition of a matrix or vector.

3.2 NEURAL SDE

Let B : [0,T] x Q — Rdnoise be a Brownian motion on R%eise where d,,pisc € N. We define a
neural SDE as in|Issa et al.| (2023)) and [Kidger et al.| (2021):

Zo = £&%a), dZ, = b (t, Z,)dt + o (t, Z,)dW,, X? = A°Z, + v’
where a is sampled from a d;,;4;4;-dimensional standard Gaussian distribution,
€0 Rbimitiat 5 R= 10 1 [0, 7] x R% — R, 0¥ 1 [0, 7] x R%: — R*noise

along with A% ¢ R%*d: p? ¢ R, are functions parameterized by neural networks, and
dinitial, dz, d. € N. We assume additionally that ;% and o are Lipschitz continuous in both argu-
ments and £%(a) has finite second-order momentum. These conditions ensure that the SDE for Z;
has a unique strong solution. Suppose Y; is the data process, we’d like to train the neural networks
60 on data sampled from Py so that Pxs matches Py.

3.3 MARKOV PROCESS

We say a continuous process X; with filtration {F;} is Markov if X, is independent of F; for all
u > t given X (Kallenberg, 2021). For an SDE of the form dX; = u(t, X;) dt+ o (¢, X;) d By, with
the filtration generated by the Brownian motion B;, X; is Markov as long as the SDE has a unique
strong solution (Theorem 9.1,|Mao| (2007)).
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3.4 SCORING RULES

Given a measurable space (€, Fy) and wg € g, a scoring rule (Gneiting & Raftery, 2007) s(P, wo)
maps a probability measure P on Qg and a sample wy to R. The expected score is defined as

S(P,Q) = Eg[s(P,wo)] fQ s(P,wp) dQ(wp), where P is the predictive distribution and @ is
the true distribution. The scoring rule s is said to be proper if the expected score satisfies S(P, Q) <
S(Q, Q). Itis strictly proper if S(P,Q) = S(Q, Q) <= P = Q. For example, let k : R? x R¢ —
R be the RBF kernel defined as k(z,y) = exp (—y[lz — y||*) , where v > 0 is a parameter that
determines the width of the kernel, then s(P, z) = %EZZ/NPIC(Z, 7"y —Ezpk(Z, z) is a strictly
proper scoring rule for distribution on R¢ (Gneiting & Raftery, [2007).

Let P? be a distribution controlled by a generative model 6, and let () be the true distribution
accessed through data. Given a strictly proper scoring rule s, sufficient model capacity of 6, and
suffcient data points from @, P? can be trained by maximizing S(P?, Q) over 6, leading to P? =
(). While many scoring rules for finite-dimensional spaces have been proposed, we lack strictly
proper scoring rules for random processes that can be evaluated efficiently. In our main claim,
we show that a strictly proper scoring rule for a two-time joint distribution, i.e., the distributions
{(Xt,, X4,),Vt1,ta € [0,T]}, for a random process X, can be converted into a strictly proper
scoring rule for continuous Markov processes.

4  FINITE DIMENSIONAL MATCHING

In this section, we present our main theorem, which converts a scoring rule for a two-time joint
distribution into a scoring rule for a Markov process. Specifically, if we have a scoring rule for
Qo = R29, then Theorem [2| allows us to convert it into a scoring rule for Markov processes X, Y :
[0,T] — R%, where d € Nand T € R.

4.1 SCORING RULE FOR MARKOV PROCESS

In this section, we present our main theorem which shows that a strictly proper scoring rule for
the two-time joint distributions can be converted to a scoring rule for two Markov processes. Let
continuous Markov processes X, Y on [0, T'] take values in a Polish space £ endowed with its Borel
o-algebra. Let s be any strictly proper scoring rule defined on € x £. Let S(P, Q) = Eq[s(P,w)] <
00,V measures P, on £ x £. We define the scoring rule § for continuous Markov processes as
following:

Definition 1. E(Px,y) = E(tl,tz)NU([O,T]Q)S(P(th,Xt2)7 (ytl,th)), where P(Xt17Xt2) is the joint
marginal distributions at times t1,ts of X, and U ([0, T)?) is the uniform distribution on [0, T)?.

Let S(Px,Py) = Eyp, [3(Px,y)]. Now we present our main claim, with its proofs deferred to
the appendix.

Theorem 2. If s is a strictly proper scoring rule for distributions on £ x £, § is a strictly proper
scoring rule for E-valued continuous Markov processes on [0,T] where T € Rsq. That is, for
any E-valued continuous Markov processes X,Y with laws Px, Py, respectively, S(Px,Py) <
S(Py, Py ) with equality achieved only if Px = Py-.

In the appendix, we present a more generalized version of Theorem [2] that does not require the
timestamps ¢; and ¢ to be sampled from U ([0, T]?) in the definition of 5. Nonetheless, to maintain
clarity and simplicity, we focus our discussion on the uniform sampling case in the main paper.

Suppose X% is a Markov process parameterized by neural net parameters ¢ with sufficient capacity.
Therefore, maximizing S(Pxe,Py) = Eyp, [§(Pxe,Y)], which can be achieved by maximizing
the corresponding empirical average, will result in Pxo = Py-.

We present a concrete example on the application of Theorem Consider continuous Markov
processes X, Y on [0, 7] taking values in R%. Let k : R2¢ x R?? — R be the RBF kernel, recall
that s(P,2) = LEz 7 pk(Z,Z') — Ezpk(Z, z) is a strictly proper scoring rule for distribution
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on R4 (Gneiting & Raftery, [2007). By Theorem

_ 1
S(PX’ y) = E(tlth)NU([O,TP) §EX,X’k([Xt1 ) Xt2]> [Xél ) ng]) - EXk([th ) th]’ [yt1 ) ytz])
_ (M
is strictly proper, where [, -] is the concatenation of two vectors. S(Pxo,Py) = Eyp, [§(Pxes,Y)]
can be estimated through empirical average and optimized efficiently.

4.2 FDM ALGORITHM

We consider an expected score S(Pyo,Py) = Ey.p, [5(Pxo,Y)], which can be estimated using
an empirical average S. For example, an unbiased estimator of S for 5 defined in g]) can be con-
structed using batches of generated paths Bx = {x?}2 | and data paths By = {y'}Z ;. For each i,
independently sample two timestamps ¢; and t. The empirical estimator is then given by:

B B
1 S o 1 S o
S(Bx,By) = m Zk ([aﬁjﬁf;;]a Wya?i;_]) T B2 sz’ ([xijan;;L [ygjvyig_]) :
i#j i=1 j=1
Note that the above estimator S only requires each data path to be (potentially irregularly) observed

at two distinct timestamps, and we can observe the 2*’s at any timestamps since they are generated
by the neural SDE model. Alternative empirical objectives are provided in the appendix.

In Algorithm[T] we present the concrete finite dimensional matching (FDM) algorithm derived from
Theorem [2to train a neural SDE X,

Algorithm 1: Finite Dimensional Matching (FDM)

Input: Neural SDE X, data paths {y’ : i € [N]}, strictly proper scoring rule s , batch size B
repeat
Generate a batch of simulated paths Bx = {z" : i € [B]} using the neural SDE model ;
Randomly sample a batch of data paths By C {y* : i € [N]} with |By| = B ;
Compute the empirical estimate S(Bx, By ) of S(Pys,Py);

Maximize S with respect to # using an optimizer of the user’s choice;
until stopping criterion is met;

5 THEORETICAL PROPERTIES

In this section, we investigate the sample complexity and sensitivity of the proposed scoring rules s.
All proofs are deffered to the appendix.

5.1 SAMPLE COMPLEXITY

We show that the sample complexity of the estimator S (Bx, By) retains the classical sample com-
plexity of a kernel-based scoring rule s (Gretton et al., 2012). Let k be a kernel associated with a
Reproducing Kernel Hilbert Space (RKHS) and s(P, z) = éEZz/Npk(Z, 7"y —Ez.pk(Z,z) be
a strictly proper scoring rule. Recall that 5(Px,y) = E(tl,tz)mU([O,T]Q)S(]P)(th X, (yt,,yt,)) and

S(Px,Py) =Eyp, [5(Px,y)]
Theorem 3. Let k(-,-) satisfy 0 < k(-,-) < K and the batch size B > 2. For any € > 0:

. . 8 Be?
P (|S —E[S]| > 5) < 2exp (—47[(2> .

Equivalently, with probability at least 1 — 6, the deviation of S from its expected value S(Px,Py)
is bounded as:
471n(2/9)

G - S < )
| S(Bx,By) — S(Px,Py)| < K <5

S exhibits a sample complexity analogous to the classical sample complexity of kernel-based scoring
rules s (Gretton et al.| [2012). In Section B]of the Appendix, we extend this analysis to an alternative
estimator where all sample paths are evaluated at n shared timestamps.
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5.2  SENSITIVITY

Let X be an Ito diffusion on RY, ie., dX; = pu(t, X;)dt + o(t, X;)dB;. The following theorem
shows how perturbations in i and o affect the value of the scoring rule 5(Px,y).

Theorem 4. Let X satisfy dX; = p(t, X¢)dt + o(t, X¢)dB; on RY  Let X satisfy dX, =
[L(ta Xt)dt+5(ta Xt)dBt onR* where Vt, T, ||M(tv x) o ﬂ’(ta Z) ”2 < 6#’ U(ta JJ) - 5—(tv Z) HQ < do,
and 6, 0, are constants. Assume the scoring rule s(P, z) is Lipschitz in terms of distribution P with

respect to the Wasserstein-2 distance. Assume both X and X have unique strong solutions and share
the same initial conditons, then

15(Px,y) —5(Pg,y)| < LsC(0u + 65),

where L is the Lipschitz constant of s, the constant C' depends on Lipschitz constants of p and o.

If we allow different sampling distributions of ¢1, 5 than uniform as in the generalized main theorem
Theorem [7]in the appendix, C' may also depend on the sampling distribution of ¢, ¢5. This result
provides a theoretical guarantee that small changes in the dynamics of the process result in changes
to the scoring rule that are linear with respect to J,, 4 ¢, ensuring robustness and predictability in
the scoring rule’s behavior under perturbations.

6 EXPERIMENTS

E]We evaluate our method, FDM, by comparing it to three existing methods for training neural SDEs:
the signature kernel method (SigKer, [Issa et al.| (2023))), the truncated signature method (TruncSig,
Bonnier & Oberhauser (2024)), and SDE-GAN (Kidger et al., [2021). Our experiments are con-
ducted across five real-world datasets: energy prices, bonds, metal prices, U.S. stock indices, and
exchange rates, as well as one synthetic dataset, the Rough Bergomi modeﬂ The real-world datasets
are historical price data for variety of financial instruments. The rough Bergomi model is a widely
used stochastic volatility model and has been extensively described in [Issa et al.| (2023). For all
datasets, we model all features jointly with a single multi-dimensional neural SDE.

Consistent with |Issa et al.| (2023, we use the Kolmogorov-Smirnov (KS) test to assess the marginal
distributions for each dimension. Specifically, we compare a batch of generated paths against an
unseen batch from the real data distribution and calculate the KS scores and the chance of rejecting
the null hypothesis, which states that the two distributions are identical. This process is repeated
for all the test batches and we report the averaged KS scores and the chance of rejecting the null
hypothesis across all the batches.

For all experiments, we use fully connected neural networks to parameterize the drift and diffusion
terms, with hyperparameters and preprocessings suggested in |Issa et al.|(2023)). We choose s to be
s(P,z) = 3Ez 71.pk(Z,Z') —Ez.pk(Z, z) where k is the rbf kernel with unit kernel bandwidth.
In particular, following |Issa et al.| (2023)), we let our method and TruncSig train for 10000 steps,
while SDE-GAN trains for 5000 steps and SigKer for 4000 steps, to normalize the training time.
Despite the differences in training steps, our method remains the fastest in terms of wall-clock time.
All models are trained and evaluated on a single NVIDIA H100 GPU.

For our experiments, we first follow [Issa et al.| (2023) to train and evaluate the models on three
datasets with 64 timestamps using random train-test splits: metal prices, stock indices, and exchange
rates, with results reported in Tables [2| 3] and @] respectively. For the bonds and energy price
datasets, we held out the latest 20% of the data as test data and evaluated the models by running
the KS test on the generated sequences and unseen future sequences, as reported in Tables [6] and
[6l Additionally, for the exchange rates dataset, we trained and tested the models using sequences
with 256 and 1024 timestamps, reporting KS test results in Tables [/| and [§| and training time in
Table [I1] in the appendix. For the synthetic rough Bergomi model, we generated sequences with
64 timestamps across both 16 and 32 dimensions, with results reported in Tables E] and [E], where

code available at https://anonymous.4open.science/r/Efficient-Training—of-
Neural-SDEs-by-Matching-Finite-Dimensional-Distributions-E12B

“All real-world datasets are obtained from https://www.dukascopy.com/swiss/english/
marketwatch/historical/
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we report the average KS scores and the chance of rejecting the null hypothesis across different
dimensions. We also compare the computational efficiency of the models in terms of training time
for different dimensions of the Rough Bergomi model, with detailed results summarized in Table[I2]
in the appendix. We highlight the best-performing model across all tables.

We include qualitative studies in Figure[I] which compare the dynamics of joint distributions of real
and generated data points for the metal price dataset. We compare the sample paths of the metal price
dataset in Figure 2]and[3] Due to space constraints, we provide further qualitative studies comparing
pairwise joint distributions and sample paths, along with tables comparing computational efficiency,
in section [G]in the appendix. Our results demonstrate that our method outperforms competitors in
an overwhelming majority of cases in terms of KS test results, qualitative results, and computational
efficiency.

Table 2: Average KS test scores (lower is better) and chance of rejecting the null hypothesis (%)
at 5%-significance level on marginals (lower is better) of metal prices, trained on paths evenly
sampled at 64 timestamps.

Dim Model t=6 t=19 t=32 t=44 t=57

SigKer 137,148 137,144 136, 14.6 .133,12.7 131,115
TruncSig .231,97.5 .250,98.8 .270,99.5 .287,99.6 .309,99.7

SILVER  ¢DE.GAN  365.997 .536.100. .624.100. .675.100. .711. 100.
FDM 112,570 .111.5.80 .110.5.50 .112.6.10 .111.6.20
SigKer 129,108 132, 117 134 130 132,123 128, 10.5
coLp TruncSig 196,778 218937 245987 269.993 .285.99.6

SDE-GAN .239,90.7 .380,99.9 .476,100. .555,100. .627,100.
FDM .118,8.50 .116,7.90 .114,6.60 .114,6.20 .113, 6.60

Table 3: Average KS test scores and chance of rejecting the null hypothesis (%) at 5%-significance
level on marginals of U.S. stock indices, trained on paths evenly sampled at 64 timestamps. "DOL-
LAR”, "USA30”, "USAS500”, "USATECH”, and "USSC2000” stand for US Dollar Index, USA 30
Index, USA 500 Index, USA 100 Technical Index, and US Small Cap 2000, respectively.

Dim Model t=6 t=19 t=32 t=44 t=57

SigKer .164,40.2  .178,56.4 .183,62.6 .186,66.3 .186,66.5
TruncSig .223,95.1 .252,99.0 .275,99.4 .294,99.7 .312,99.7

DOLLAR SDE-GAN .189,65.5 .232,91.4 .263,97.6 .289,99.0 .304,99.2
FDM J21,7.50 .130,11.3 .133,129 .135,13.8 .137,15.9

SigKer .168,44.8 .204,86.2 .220,949 219,946 .215,93.1

USA30 TruncSig .118,6.20 .129,8.30 .146,20.4 .160,35.1 .181,62.6
SDE-GAN .233,87.2 .349,99.7 .443,100. .526,100. .595, 100.

FDM 142,219 .128,13.1  .125,109 .124,9.80 .121,7.50

SigKer 217,932 .226,96.2 225,958 217,937 .211,90.5

USA500 TruncSig .234,97.8 .257,99.1 .276,99.3 .285,99.4 .292,99.7
SDE-GAN .231,90.2 .329,99.5 .409,99.9 .483,100. .550, 100.

FDM 115,580 .116,5.50 .119,5.90 .118,6.30 .119,6.50

SigKer 197,804 217,932 221,945 .216,93.0 .211,89.8

USATECH TruncSig .197,79.7 227,965 247,989 .264,993 .276,99.5
SDE-GAN 469, 100. .756,100. .894,100. .953,100. .982,100.

FDM J121,8.60 .118,6.80 .118,6.50 .118,7.20 .119,7.30

SigKer 168,449 .202,83.6 .221,949 .218,93.8 .214,92.6

USSC2000 TruncSig .121,6.60 .137,11.9 .162,36.5 .185,67.2 .211,90.4

SDE-GAN .168,46.1 .253,93.1 .378,99.9 .517,100. .644,100.
FDM .140,20.2 128,127 .122,9.40 .124,8.90 .122,6.80
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Table 4: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals for different currency pairs (EUR/USD and USD/JPY), trained on
paths evenly sampled at 64 timestamps.

Dim Model t=6 t=19 t=32 t=44 t=57

SigKer 122,830 .139,19.1 .140,19.9 .134,15.9 .130, 14.0
TruncSig .221,94.8 272,994 .304,99.6 .322,99.7 .343,99.9

EUR/USD  qnp GAN 170,459 200,789 .198.80.1 219,883 .292.99.0
FDM 129,137 .112.6.60 .110.5.80 .112.6.60 .113.6.50
SigKer  .114,4.60 124,800 128,108 127,113 .126, 12.1
Uspypy | TruncSig 206,863 247,989 279,993 301,997 322,999

SDE-GAN .143,19.7 .165,40.5 .179,56.5 .185,62.2 .192,69.0
FDM 120,104 .111,5.50 .109,5.00 .110,5.70 .109,5.40

Table 5: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals of energy prices, trained on paths evenly sampled at 64 timestamps.
We reserve the latest 20% data as test dataset and measure how well the model predicts into future.
"BRENT”, "DIESEL”, ”GAS”, and "LIGHT” stand for U.S. Brent Crude Oil, Gas oil, Natural Gas,
and U.S. Light Crude Oil, respectively.

Dim Model t=6 t=19 t=32 t=44 t=57

SigKer .145,21.8  .145,22.1  .142,199 .140,18.3 .130,13.1
TruncSig  .210,88.7 .223,94.8 .234,97.1 .254,98.8 .270,99.4

BRENT  ¢E.GAN  493.100. .883.100. .984.100. .998.100. 1.00.100.
FDM (ours) .129.14.1 .129.13.8 .136.17.6 .135.17.0 .134.162

SigKer 141,176 155,297 .158,32.5 .158,32.6 .160,354

DEspl  TruneSig 181618 206,867 223,949 234,975 262.99.0
SDE-GAN  .169.449 233,803 .319.994 .422.100. .523.100.

FDM (ours) .124.113 .117.7.60 .117.8.50 .122.9.90 .120.9.70

SigKer 178,563 190,699 .185,61.5 .180,56.7 168,442

Gas  TruncSig 275996 313,997 338,998 370,999 383,999
SDE-GAN 263,989 273.992 .281.994 394.99.9 565 100.

FDM (ours) .116.6.40 .123.101 .130.152 .134.193 .135.20.2

SigKer 161,359 156,314 146,236 .138,17.4 .124,9.70

Lgrr  TruncSig 247,988 266,994 279,994 298,996 315,998

SDE-GAN  .199,81.4 .218,89.7 .370,99.6 .580,100. .761, 100.
FDM (ours) .125,11.5 .127,12.9 .138,18.9 .140,20.8 .145,24.0

7 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

Our main theorem demonstrates that any strictly proper scoring rule for comparing distributions on
finite dimensions can be extended to strictly proper scoring rules for comparing the laws of con-
tinuous Markov processes. This theorem naturally leads to the FDM algorithm for training neural
SDEs. We empirically show that FDM outperforms current state-of-the-art methods for training
neural SDEs, both in terms of generative quality and computational efficiency.

However, the applicability of our main theorem is currently constrained by the assumptions of con-
tinuity and the Markov property. Although this lies beyond the scope of Neural SDEs, we provide
a straightforward extension of the main theorem to Cadlag Markov processes in the appendix. This
extension broadens the applicability of FDM to a wider range of models, including jump processes.
Furthermore, an intriguing direction for future work would be to relax the Markov assumptions, for
instance, by incorporating hidden Markov models.
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Table 6: Average KS test scores and chance of rejecting the null hypothesis (%) at 5%-significance

level on marginals of bonds, trained on paths evenly sampled at 64 timestamps. We reserve the

most latest 20% data as test dataset and measure how well the model predicts into future. "BUND”,

"UKGILT”, and "USTBOND” stand for Euro Bund, UK Long Gilt, and US T-BOND, respectively.
Dim Model t=6 t=19 t=32 t=44 t=57

SigKer 137,17.0  .156,30.6 .169,459 .179,59.0 .178,58.1
TruncSig .216,91.7 .252,99.0 .286,99.5 .311,99.9 .331,99.9

BUND  GpE.GAN 291.98.9 .442.100. .546.100. .618.100. .695.100.
FDM  .111.6.30 .112.540 .123.7.70 .132.12.8 .130.12.5

SigKer  .113,7.40 114,580 .122,820 .127,109 .128 116

UkGiy  TruncSig 164,400 211,899 256,990 286,996 311,997
SDE-GAN 283.97.6 .671.100. .949.100. .993.100. .997.100.

FDM 129,130 .112.630 .108.4.90 .109.520 .108.5.20

SigKer 134,153 131,108 142,183 .146,21.7 .150,259

USTEOND TruncSig 253,990 274,996 312,998 337,999 358, 100,

SDE-GAN .462,100. .867,100. .974,100. .999,100. 1.00, 100.
FDM 128,123  .120,8.80 .113,5.70 .113,5.70 .111,5.10

Table 7: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals for different currency pairs (EUR/USD and USD/JPY), trained on
paths evenly sampled at 256 timestamps.

Dim Model t=25 t="76 t =128 t=179 t =230

SigKer .535,100. .535,100. .536,100. .546,100. .540, 100.
TruncSig .137,18.9 .184,67.1 .252,99.6 .290,100. .318, 100.

EUR/USD  gnp GAN  134.21.6 411.100. .569.100. .548.100. .338.99.9
FDM 136,230 .112.5.70 .123.12.7 132178 .141.26.6
SigKer  535,100. 534, 100. 535, 100. 538, 100. 541, 100.
Uspypy | TruncSig 114.7.10 152,283 199,828 232,979 242,992

SDE-GAN .201,72.6 .334,99.9 .407,100. .405,100. .338,100.
FDM 124,13.8  .112,6.30 .118,6.90 .122,9.00 .115,6.20

Table 8: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals for different currency pairs (EUR/USD and USD/JPY), trained on
paths evenly sampled at 1024 timestamps. A thread limit error is encountered during the training of
the SigKer (Issa et al., 2023), which relies on a dedicated parallel PDE solver.

Dim Model t =102 t =307 t =512 t="1716 t =921

SigKer - - - - -
TruncSig .476,100. .718,100. .993,100. .996,100. .887, 100.

EUR/USD g GAN 280984 818,100, .963.100. .846.100. .805. 100.
FDM 117111 .117.9.00 .138.25.1 .153.36.2 .191.66.5
SigKer - - - - -

Uspypy | TruncSig 766,100 .743,100. 670,100 998, 100. 1.00, 100.

SDE-GAN .528,100. .291,100. .389,100. .530,100. .655,100.
FDM 138,209 124,143 .150,32.1 .199,74.9 .260,97.9

Table 9: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals across all dimensions, trained on paths evenly sampled at 64 times-

tamps from a 16-dimension rough Bergomi model.
Model t=26 t=19 t =32 t =44 t =257

SigKer J112,6.60 .118,7.80 .124,10.8 .132,16.3 .144,25.5
TruncSig 450, 100. .458,100. .462,100. .461,100. .460, 100.
SDE-GAN .308,99.8 .374,99.4 .393,99.5 .406,99.6 .430,99.7
FDM 113,720 .116,7.80 .119,8.80 .124,11.8 .131,15.8
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Table 10: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals across all dimensions, trained on paths evenly sampled at 64 times-
tamps from a 32-dimension rough Bergomi model. TruncSig runs out of GPU memory.

Model t=6 t=19 t=32 t=44 t=57
SigKer 120,111 .137,18.5 .149,26.5 .157,353 .168,45.2
TruncSig - - - - -
SDE-GAN .284,99.8 .288,99.7 .298,99.8 .311,99.9 .326, 100.
FDM A117,9.10 .119,10.2 122,114 .124,13.0 .128, 154
0 o o o P 4 r 4 j
) o Ped l4 4 4 ﬁ
o 154 o4 " 4 " 4 g
) o o " 4 " 4 &’

Figure 1: Blue points are real samples and orange points are generated by neural SDEs. The dy-
namics of the joint distribution of gold and silver prices in the metal price data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is the silver price and the vertical axis is the gold price.
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Figure 2: Sample paths for silver prices from the metal dataset. Blue lines represent real samples,
while red lines represent those generated by neural SDEs. From left to right, the plots correspond
to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The horizontal axis
represents time, and the vertical axis represents silver prices.

P P P

Figure 3: Sample paths for gold prices from the metal dataset. Blue lines represent real samples,
while red lines represent those generated by neural SDEs. From left to right, the plots correspond
to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The horizontal axis
represents time, and the vertical axis represents gold prices.
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A PROOF OF THEOREM 2]

Suppose random processes X, Y on 7 take values in a Polish space £ endowed with its Borel o-
algebra .A let their transition kernels be 1) ,(X,, B) = P(X, € B|X,) and p) ,(Y,,B) =
P(Y, € B|Y,) for u,v € T. For convenience, we use the kernel operations introduced in Chapter 3
of [Kallenberg| (2021). Let By, By € Aand t,u,v € T, recall that 11\, ® p; , is given by

(50 15, By ¢ Ba) = [ (o) [, dea) L o1, 2)

We need the following lemma to prove the main claim.

Lemma 5. Let T be an index set. Let X,Y be E-valued Markov processes on T. Then X Ly
= Vit €T, (X¢,, Xy1,) < (Y3, Ysi,), where L stands for equal in distribution.

Proof. The = direction is straightforward; we prove the other direction. Fix t; < t5 € T'. Since
S'is Borel, Theorem 8.5 of [Kallenberg|(2021) implies that the conditional distribution ,uff 1(20) =

ufhtz(z, ) for almost all z under Py, . By Proposition 11.2 of |Kallenberg (2021), for any t, <
ty - <t,inT,

_ X X

HDXt()vth’“':th - PXﬁo ® Hig,ty Q- ® Mty ity
Y Y

= PYio @ figpy @ @ gy 4,

=Py, Yiy s Yip s

i (Xig, Xors oo s Xe,) 2 (Yiy, Yays- .., Y, ). Then X £ Y as their finite-dimensional distribu-

n n

tions agree. O

Recall that {2, F, P} is a probability space where 2, F, P denote the sample space, sigma-algebra,
and probability measure, respectively. Random processes X,Y on 7 = [0, T take values in a Polish
space & endowed with its Borel o-algebra A. For a random variable &, the function P¢ = Po !
is the induced measure on its range space. In particular, for a random process X, Px denotes its
law. Let s be any strictly proper scoring rule defined on € x € and S(P, Q) = Eg[s(P,w)] < o0,V
measures P, Q on £ x £ equipped with o-algebra A @ A.

Here we present a more general version of Theorem [2] where ¢; and ¢, do not need to be uniformly
sampled from 7. Let u be the Lebesgue measure on 72. Let v be a measure that is equivalent
to p. That is, there exists the function A : 72 — R such that A(t1,ts) > 0 p-a.e. and v(A) =
/ 4 A(t1,t2)dp for any measurable set A. We define the scoring rule 5, for continuous Markov
processes with respect to the sampling measure v:

Definition 6. 5,(Px,y) = E¢, 0,)s(Pix,, x,,) (U, Yt2))s where Pix, x, ) is the joint
marginal distributions at times t1,t2 of X.

Let S, (Px,Py) = E,~p, [5,(Px,y)]. We present a generalized version of the main statement:

Theorem 7. If s is a strictly proper scoring rule for distributions on £ X &, 5, is a strictly proper
scoring rule for E-valued continuous Markov processes on [0,T] where T € Rso. That is, for
any E-valued continuous Markov processes X,Y with laws Px, Py, respectively, S, (Px,Py) <
S, (Py , Py ) with equality achieved only if Px = Py-.

3S is Borel isomorphic to a Borel set in [0,1]. A Polish space with its Borel o-algebra is Borel [p14,
Kallenberg]

14



Under review as a conference paper at ICLR 2025

Proof for Theorem[7]

S, (Px,Py) = /]E(tl,tg)NVS(P(th,th)v(yt1>yt2)) Py (dy)

= E(tl,tg)wu/s(P(th,Xt2)v (Y1, 912)) Py (dy) 2)
= E(tlth)NV /S(P(Xt1,Xt2)7 (yt1>yt2)) P(Ytl-,ytz)(d(yhvyh» 3)
=E(t)t,)S(Px,, x,,), P(vi, ¥iy)) 4
<Ew i) S Py, 1y Py, 1ay)) )]
= /]E(tl,t2)~V8(P(Ytl Yiy)s (ytl ) ytz)) ]P(Ytl ,Yi,) (d(yt1 ) ytz)) (6)
— [t immrs(Pory i (1)) Py () ™
= SV(PY7 ]PY)7

We apply Fubini’s theorem for the (2) and use the substitution rule (Lemma 1.24,Kallenberg|(2021))
(3). @) and (3) follow from the definition of S and the properness of the scoring rule s, respectively.
Fubini’s theorem and the substitution rule (Lemma 1.24, Kallenberg| (2021)) are used again for the

(@) and (7), respectively.
We then show strictness. Let S, (Px,Py) = S, (Py, Py ). Then
Bt 12)m S (Pxe, X0 Poviy v2y)) = B o) S(Bivs, 32,00 Py, v2y)
= By 1)1, 02)S(Px,, x0) Pvi, viy) = Bty ) on A1, 82) S Py, vy ) Povs, vay))-

o d
So S(P(x,, x:,):Pvi, viy) = S(Pv,, vi):P(vi, vay)) H-a.e.. This implies (Xy,, Xp,) =

(Yy,,Y:,) p-a.e.. Next, we show that this statement can be extended to all (t1, t2).

Without loss of generality, let (ug,uy) € [0,7]% and ug < wuj. We can inductively se-

o ’ wo+u / wotuh g
lect wy,uz, ..., Up,... and uj,ub, ... ,u), ... such that u; € (ug, 52|, u) € [Z52,up),

Uns1 € (uo, 2]l € [";;“z’,ué), and (X, , Xy ) 4 (Yu,, Yy )Vn. This is possible

because (ug, “054e] x [%, u,) has positive measure. Recall that X and Y are continuous pro-
cesses. (X, , Xy, ) converges to (Xy,, Xy ) and (Yy,,, Yy, ) converges to (Yy,, Y, ) almost surely
as u, — wuo and u,, — ug. Recall that £ x & is also Polish. Then the convergence also holds in

distribution and (X, Xy ) 4 (Yuy, Yoy) (Lemma 5.2 and 5.7, Kallenberg| (2021)).

By Lemma x2y. O
Theorem 2]is a straightforward result of Theorem 7}

Proof for Theorem 2} Theorem P2]is a direct consequence of Theorem [7]by letting v = . O

B PROOF OF SAMPLE COMPLEXITY

We’ll use McDiarmid’s inequality, due to McDiarmid| (1989).

Theorem 8. Let X1, X5, ..., X, be independent random variables taking values in a set X. Let
f: X™ = R be a function satisfying the bounded differences condition: for each i € {1,...,m},
sup |f($1, e ,xm) — f(.’El, ey Li—1, J};, Lid1ye-- ,.Ijm)| S Ai,
Il’mal’m@;

where A; > 0 are constants. Then, for all € > 0,

P(f(X1,..., X) — E[f(X1,..., X)]| > €) < 2exp (_2’72151&2) .
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We state and prove the sample complexity results with a general sampling meausre . Theorem [3]
follows by letting v = p

Theorem 9. Let S(Bx, By ) be the empirical estimator defined as:

S(Bx, By) = 2B(B—1) Zk(ajt’xt xtj j> sz('rt’xt ytjvyy])

=1 j=1
where:
» 2%, yJ are independently sampled from Px and Py, respectively,
. t],t] are independently sampled timestamp pairs, v is a measure equivalent to the
Lebesgue measure i on T2
* k(-,-) is a kernel function satisfying 0 < k(-,-) < K.
* B>2.
For any € > 0,

. N 8B¢?

Equivalently, with probability at least 1 — 0, the deviation of S from its expected value S(Pxo,Py)
is bounded as:
N _ 47In(2/0
| S(Bx,By) — S(Pxo,Py)| < K %.

Proof. We will apply McDiarmid’s inequality to the estimator S. Recall that v is a measure equiva-
lent to the Lebesgue measure y on 7 2. First, we verify the conditions of the inequality.

The estimator S depends on the independent variables:

» x' € Bx: These are the generated paths. Changing a single x* while keeping other vari-

ables fixed changes S’by at most (22]313(—3121§ + K <3 5B K4 K 5= %.

» yJ € By: These are the data paths. Changing a single 3/ while keeping other variables
fixed changes .S by at most %.

* 1,1 ~ v: These are the timestamps sampled from the measure . Changing a single ¢; or

: : 3 3K
t; while keeping other variables fixed changes .S by at most 5

Define the bounded differences:

3K fori=1,...,2B,

2B
A;=1< 5K fori=2B+1,...,3B,
%’ fori =3B +1,...,4B.

The sum of the squared bounded differences is:
3K 5K K\?  47K?
2 _ — =
ZA 23( ) +B(2B> +B(B> IR
By McDiarmid’s inequality, for any € > 0:

A ) 922 8B¢e?
IP(|S—E[S]| za) szexp< i A2> = 2exp (‘47K2)'

16
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We analyze the sample complexity for a different estimator where all sample paths are observed at
n shared timestamps.

Theorem 10. Ler S be the empirical estimator defined as:

m 1 m m

S = Tllz; m Z k ([l‘iwﬂfiﬂv [ﬂfimxi’,,]) -} sz ([xa.ﬁi;]y [yfpyfg,]) )

= i,j=1 i=1 j=1
' i i
where:
o 2%, yJ are independently sampled from Px and Py, respectively,
* t,,t.. ~ v are independently sampled timestamp pairs, v is a measure equivalent to the
Lebesgue measure i on
* k(-,-) is a kernel function satisfying 0 < k(-,-) < K.
e m>2.
Foranye > 0,

P <|§ —E[S]| > 6) < 2exp ( smne? ) .

~ K2(29n + 18m)

where E[S] = S,/(Px,]Py) = EY~]P’Y [gl,(PX,Y)]

Proof. We will apply McDiarmid’s inequality to the estimator S. First, we verify the conditions of
the inequality.

The estimator S depends on the independent variables:

* Generated paths x‘: Changing a single x* while keeping other variables fixed changes S by
Cm-DK | K o 3K | K _ 5K
m

at most 2m(m—1) m — 2m -

2m”

* Data I}?ths y7: Changing a single 3/ while keeping other variables fixed changes S by at
most .

* Timestamp pairs (¢,,t.) ~ v: Changing a single timestamp ¢, or ¢, while keeping other
variables fixed changes .S by at most %

Define the bounded differences:

5K o
o, fori=1,...,m,
A; = %, fori=m-+1,...,2m,

3K fori=2m+1,...,2m+ 2n.

The sum of the squared bounded differences is:

QTgnAf =m (Zi)z +m (5)2 +2n <3;§)2
Simplifying each term:

27§"A2_25K2 K?  9K? :K2<29+ 9>.

CT 4m m 2n 4m ' 2n

i=1

By McDiarmid’s inequality, for any € > 0:

. . 2e? 8mne?
- >e) < = e —
P (|S E[S]| > s) < 2exp ( St Af) 2 exp ( K2(29n 1 18m)>

i=1

17
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Equivalently, with probability at least 1 — §:
<K (29n + 18m) In 2 .
8mn 0

The sample complexity bound established in Theorem [I0]demonstrates that the generalization error
of the kernel-based scoring rule 5 is influenced not only by the number of sample paths m, as is the
case for traditional scoring rules where the complexity depends on m through 1/4/m, but also by
the sampling frequency n of the timestamp pairs.

|8~ E[S]

O

C PROOF OF SENSITIVITY

We first prove the following lemma to bound the difference process A, = X; — X.

Lemma 11. Let X satisfy dX; = p(t, X¢)dt + o(t, X¢)dBy on R? for t € [0,T). Let X satisfy
dX; = fi(t, X;)dt + &(t, X¢)dB; on RY for t € [0,T) where Vt,z, |u(t, z) — ft,z)|l, < 4

lo(t,z) —a(t,x)||y, < o, and 6,, 0, are constants. Assume X and X share the same initial

conditons. Assume both X and X have unique strong solutions so p and o are Lipschitz with
constant L,, and L, respectively. Then Vt € [0,T],

3C
=t

Bl < (25 +1) 6+ 1 E
where D = max(1, L) and C' = 2L, + L2.
Proof. Apply Ito’s lemma,
A = 2( 80 e, X0) e, X0 Y + o, X0) = 0, Xo)| |t
+2( A o(t, X0) - 5(t, 1) )dBy

Hence,

t t
E|l A = 2E [ [ {(Bentsx) = it %0))ds + [ ots.x) ~ (s, %)
0 0
Using the Lipsthitz property of 1 and the bounded difference between p and £,
(B, s, Xo) = s, X)) < Il (s, Xo) = als, Xo) + als, Xo) = fils, X.)

< 18l (|5 X0) = s, Z)|| + s, ) = s, X))
< 1Al (Ll Aslly +6,) ©)

Apply the plus-minus trick again, we have

~ 2
o5, X0) = (5, X)|| < (Lol Al +60)° (10)

Substitute () and back to equation (8) and apply Cauchy-Schwarz on E[|A||,,

t
BIA < [ L+ LBIAS + 26+ L0 JEI A, + 82ds
0

t
< / (2L, + L2)EI| A + 206, + Lodo)\/E A2 + 62ds
0

18
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Let f(t) = E|A/|2,C = 2L, + L2 and D = max(1, L,). Then,
t
FO < [ CF)+ 2D, + 5,/ F) + 82ds
0

Recall the inequality, Ve > 0,a € R, a/f(s) < ;—i + 5f(s). Lete = C, we have,

t 2 2 t 2
ft) < / gf(s) 20t 0e) 62ds = g/ f(s)ds + D7 (0, + 8,)°t.
0 2 C 2 Jo c
Apply Gronwall’s inequality,
2D? sct
Bl = 1) < (20 +1) 6+ )1

Now we’re ready to prove Theorem 4]

Proof of Theoremd] We again work with the general scoring rule 5, defined in Definition [6] where
the sampling measure v can be any measure equivalent to the Lesbegue measure fi.

Recall that the scoring rule is Lipshtiz with constant L, with respect to the Wasserstein-2 distance
Wa, so Vz, and measures P, P', |s(P, z) — s(P’,z)| < LsWy(P, P’).

Hence, for any realization y,
5, (P(X,)) = 5, (P(X,9))| = [Euvams 5P, x000:0) = 5P s, 5,009)] |

S Etl,tgwu

s(Px,, . X1 ¥) = 5(P%,, %) y)‘

< LKy, tymn [Wz (P(th,xtQ), P(;ztly)ztz))}

Let I'(+, -) be the couplings of two measures. Then,

2
W (]P’(th X Pz, ,XQ))
2

= inf E'yH[thath] - [Xtqu] (11)
. B 2
'YGF(]P)(XHxth)’P(ththz)
. " 2 \ 2
= lnf E'y th - th + HXt2 - Xt2
’YEF(P(thvth)’P(an,th) ’ ’
2 2
<E[Ay[lz +E[JAs [l
2D? 3Ct 3Ct
< (c + 1) (6 +00)*(tre 2 +tae 2, (12)

where (TT) follows the definition of W2, (12)) follows Lemma|[T1] and C, D are defined in Lemma

Finally,

5, (P(X,9)) = 5 (P(X,9)| £ Loy tans [ W2 (Pxy x00: P, 50 )|

‘ 3Cty 2D?2
< LBy, tymr {\/7516302 +tae J 1+ 7(5;4 +ds)

The proof is then concluded by renaming the constants. [
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D EXTENSION TO CADLAG MARKOV PROCESS

We show that the proof can be extended to Cadlag Markov processes, where the paths ¢t — X, are
right-continuous with left limits everywhere, with probability one. Although this extension goes
beyond the scope of neural SDEs, such processes encompass a wide range of applications. Consider
Cadlag Markov processes X,Y on 7’ = [0,T) that take values in a Polish space £ endowed with
its Borel o-algebra A. Let s be any strictly proper scoring rule defined on £ x &, and let S(P, Q) =
Eq[s(P,w)] < oo for all measures P, Q on & x £ equipped with o-algebra A @ A.

We generalize Theorem (/] to Cadlag Markov processes. Let u denote the Lebesgue measure on
T’ x T, and let v be a measure equivalent to u. We define 5, as in Deﬁnition@ Let S, (Px,Py) =
Ey~py [5,(Px,y)]. The main statement is presented below in its Cadlag form:

Theorem 12. If s is a strictly proper scoring rule for distributions on € x &, 5, is a strictly proper
scoring rule for E-valued Cadlag Markov processes on [0,T) where T' € R~. That is, for any &-
valued Cadlag Markov processes X, Y with laws Px, Py, respectively, S, (Px,Py) < S, (Py,Py)
with equality achieved only if Px = Py-.

Proof. Following the proof of theorem [7} we can show that (X, , Xt,) 4 (Y, , Yi,) p-a.e.. We
show that this statement can be extended to all (¢1,t2) € T’ x T using the right continuity.

Without loss of generality, let (ug,uy) € [0,7)? and ug < uf. We can inductively select

o l uoFug l /
U, Uz, ..oy Un, ... and wf,ub, ... u), ... such that u; € (ug, 5], v} € [uf,T), uny1 €

y Yno
(uo, L2240 ], uh € [ug, W), and (Xy,, Xu) < (Yu,, Yur )Vn. This is possible because

(uo, L0542 X [ug, W) has positive measure. Recall that X and Y are Cadlag processes.
(Xu,, Xur,) converges to (Xy,, Xy ) and (Yy,, Yy, ) converges to (Yy,,Y,,) almost surely as

u, — ugp and u,, — uf. Recall that £ x & is also Polish. Then the convergence also holds in
distribution and (X4, Xy ) 4 (Y, Yuy) (Lemma 5.2 and 5.7, |Kallenberg| (2021)). O

E COMPUTATIONAL EFFICIENCY

In this section, we clarify and explain the reduction in computational complexity achieved by our
proposed method.

The O(D?) complexity arises from the previous state-of-the-art Neural SDE training method pro-
posed in|Issa et al.| (2023)), which involves solving a partial differential equation (PDE):

S t
f(s,t)y=1 Jr/o /o £ (u,v){dxy, dy, )1 dvdu,

as shown in Equation (2) of their paper. Backpropagation through the PDE solver introduces signif-
icant computational cost.

To approximate the double integral numerically, a rectangular rule with D discretization steps is
typically employed:

T T D D
/ / f(u, v){dz,, dy,)1dvdu ~ Z Z J(ug, vj){dy,, dy,; ) AulAv,
0 J0 i=1 j=1
where Au = T/D, Av = T/D, and u; = iAu, v; = jAvfori,j = 1,...,D. This double sum
results in O(D?) complexity.
Furthermore, their method involves a double sum over the batch size B in the objective function

(Equation (4) in their paper). Our B corresponds to their m, and the double integral appears in their
ks;q term. Consequently, their overall complexity is O(D?B?).

Our proposed method reduces the complexity from O(D?) to O(D), or from O(D?B?) to O(DB?)
when considering the batch size. This improvement is achieved because our approach eliminates the
need to solve the PDE with the double integral, avoiding the computationally expensive operations
required by the previous method.
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F ALTERNATIVE EMPIRICAL OBJECTIVES

Empirical Objective: Multiple Observations Concatenated. An unbiased estimator can be con-
structed using batches of generated paths By = {2} 2 | and data paths By = {y*}2 |, where each
path is observed at more than two timestamps. Suppose for each ¢, we select multiple (potentially

irregular) observations at timestamps ¢}, ¢2, ..., t)¥ where N itself can be random or a tuning param-
eter. We concatenate these multiple observatlons to form vectors [z? tl ,xt EITRES tN] The empirical
estimator is then given by:
$1(Bx,8y) =355 Zk(xfl,..., ziv), [xgl_,...,ng])
- J J

2751

ZZk(xtl,...7

=1 j=1

~], [ytu,yfjv])

J

Empirical Objective: Adjacent Timestamps as IID Samples. Alternatively, we consider every
pair of adjacent timestamps as independent and identically distributed (i.i.d.) samples. Suppose
each data path is observed at timestamps ¢} < t? < ... < tZM . For each pair of adjacent times-
tamps (77, t;"“), we treat the (potentially irregular) observations as i.i.d. samples. The empirical
estimator is then:

M-1
SQ(BXaBY) :2B(M B Z Zk (xtm m+1] [xi””xjﬂv%—l])
m:l i#£]
-1 B

M
_m Z Z Z k ( mtm’mf””rl] [ytm’y m+1]) .

=11i=1 j=1

Note that both estimators only require each data path to be observed at multiple timestamps, which
can be irregular and path-dependent. All three empirical objectives, including the one presented in
the main paper, perform similarly well in our preliminary experiments.

G ADDITIONAL EXPERIMENTAL RESULTS

We evaluate the computational efficiency of the models by comparing their training times across
different numbers of timestamps for the exchange rates dataset, with the detailed results presented
in Table[T1] Additionally, we assess the training times for various dimensions of the Rough Bergomi
model, with the corresponding results summarized in Table

Table 11: Training time of different methods on forex data with different lengths in terms of hours.
SDE-GAN hits the max wall times of 20 hours while the training progress is nearly 25%.

Method 64 Timestamps 256 Timestamps 1024 Timestamps
Signature Kernel 0.66 7.80 thread limit error
Truncated Signature 0.31 1.34 5.61
SDE-GAN 0.64 4.21 > 80
FDM 0.27 1.21 543

Table 12: Training time of Rough Bergomi model with different data dimensions in terms of hours.

Method 16 Dim 32 Dim
SDE-GAN 1.41 1.58
FDM 0.40 0.54
Signature Kernel 4.11 6.74

Truncated Signature 6.86 GPU out of RAM
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We present additional qualitative results showing the pairwise joint dynamics generated by models
trained on different datasets. Results for the metal price dataset are shown in Figure [ Results for

the U.S. stock indices dataset are presented in Figures [5] [6] [7} [8] [0} [10] [T1] [12] [13] and [T4] Results

for the exchange rates data are presented in Figure [T3] Results for the energy price data are shown
in Figures [18] [19] [20] and 21] Finally, results for the bonds data are presented in Figures 22]
and

N\
Signature Kernel

=)
Truncated Signature

Z
.
.
S\
\

Z
%
N
\
\

Silver

Figure 4: Blue points are real samples and orange points are generated by neural SDEs. The dy-
namics of the joint distribution of gold and silver prices in the metal price data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is the silver price and the vertical axis is the gold price.

We present additional qualitative results comparing real and generated sample paths. Results for the
exchange rates data are presented in Figures[25and [26] Similarly, Figures 27] through [31] show the
sample paths for five features from the stock indices dataset: "DOLLAR,” "USA30,” "USAS500,”
“USATECH,” and "USSC2000". Finally, Figures 32) and [33] depict the sample paths for silver and
gold prices from the metal dataset. These plots demonstrate the ability of neural SDEs to capture
dynamics across diverse datasets.
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Figure 5: Blue points are real samples and orange points are generated by neural SDEs. The dynam-

121; ics of the joint distribution of Dollar and USA30 in the U.S. stock indices data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
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Figure 7: Blue points are real samples and orange points are generated by neural SDEs. The dynam-
ics of the joint distribution of Dollar and USATECH in the U.S. stock indices data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal axis
is Dollar (US Dollar Index) and the vertical axis is USATECH (USA 100 Technical Index).
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Figure 8: Blue points are real samples and orange points are generated by neural SDEs. The dynam-
ics of the joint distribution of Dollar and USSC2000 in the U.S. stock indices data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal axis
is Dollar (US Dollar Index) and the vertical axis is USSC2000 (US Small Cap 2000).
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Figure 9: Blue points are real samples and orange points are generated by neural SDEs. The dynam-
ics of the joint distribution of USA30 and USAS500 in the U.S. stock indices data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is USA30 (USA 30 Index) and the vertical axis is USA500 (USA 500 Index).
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Figure 10: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of USA30 and USATECH in the U.S. stock indices data. Each
row of plots corresponds to a method and each row corresponds to a timestamp. For each plot, the
horizontal axis is USA30 (USA 30 Index) and the vertical axis is USATECH (USA 100 Technical
Index).
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Figure 11: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of USA30 and USSC2000 in the U.S. stock indices data. Each
row of plots corresponds to a method and each row corresponds to a timestamp. For each plot, the
horizontal axis is USA30 (USA 30 Index) and the vertical axis is USSC2000 (US Small Cap 2000).
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Figure 12: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of USA500 and USATECH in the U.S. stock indices data. Each
row of plots corresponds to a method and each row corresponds to a timestamp. For each plot, the
horizontal axis is USA500 (USA 500 Index) and the vertical axis is USATECH (USA 100 Technical
Index).
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USSC2000

Figure 13: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of USA500 and USSC2000 in the U.S. stock indices data. Each
row of plots corresponds to a method and each row corresponds to a timestamp. For each plot,
the horizontal axis is USA500 (USA 500 Index) and the vertical axis is USSC2000 (US Small Cap

2000).

USSC2000

Figure 14: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of USATECH and USSC2000 in the U.S. stock indices data. Each
row of plots corresponds to a method and each row corresponds to a timestamp. For each plot, the
horizontal axis is USATECH (USA 100 Technical Index) and the vertical axis is USSC2000 (US
Small Cap 2000).
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Figure 17: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of BRENT and GAS in energy data. Each row of plots corresponds
to a method and each row corresponds to a timestamp. For each plot, the horizontal axis is BRENT
(U.S. Brent Crude Oil) and the vertical axis is GAS (Natural Gas).
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Figure 18: Blue points are real samples and orange points are generated by neural SDEs. The dy-
namics of the joint distribution of BRENT and LIGHT in energy data. Each row of plots corresponds
to a method and each row corresponds to a timestamp. For each plot, the horizontal axis is BRENT
(U.S. Brent Crude Oil) and the vertical axis is LIGHT (U.S. Light Crude Oil).
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Figure 23: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of BUND and USTBOND in bunds data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is BUND (Euro Bund) and the vertical axis is USTBOND (US T-BOND).
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Figure 24: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of UKGILT and USTBOND in bunds data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is UKGILT (UK Long Gilt) and the vertical axis is USTBOND (US T-BOND).
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Figure 25: Sample paths for EUR/USD exchange rates from the exchange rate dataset. Blue lines
represent real samples, while red lines represent those generated by neural SDEs. From left to right,
the plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively.
The horizontal axis represents time, and the vertical axis represents the EUR/USD exchange rate.

Figure 26: Sample paths for USD/JPY exchange rates from the exchange rate dataset. Blue lines
represent real samples, while red lines represent those generated by neural SDEs. From left to right,
the plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively.
The horizontal axis represents time, and the vertical axis represents the USD/JPY exchange rate.

Figure 27: Sample paths for ’DOLLAR” index from the stock indices dataset. Blue lines represent
real samples, while red lines represent those generated by neural SDEs. From left to right, the
plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The
horizontal axis represents time, and the vertical axis represents the "lDOLLAR” index value.
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Figure 28: Sample paths for "USA30” index from the stock indices dataset. Blue lines represent
real samples, while red lines represent those generated by neural SDEs. From left to right, the
plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The
horizontal axis represents time, and the vertical axis represents the "USA30” index value.
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Figure 29: Sample paths for "USAS500” index from the stock indices dataset. Blue lines represent
real samples, while red lines represent those generated by neural SDEs. From left to right, the
plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The
horizontal axis represents time, and the vertical axis represents the "USAS500” index value.

Figure 30: Sample paths for "USATECH” index from the stock indices dataset. Blue lines represent
real samples, while red lines represent those generated by neural SDEs. From left to right, the
plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The
horizontal axis represents time, and the vertical axis represents the "USATECH” index value.
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Figure 31: Sample paths for "USSC2000” index from the stock indices dataset. Blue lines represent
real samples, while red lines represent those generated by neural SDEs. From left to right, the
plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The
horizontal axis represents time, and the vertical axis represents the "USSC2000” index value.
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Figure 32: Sample paths for silver prices from the metal dataset. Blue lines represent real samples,
while red lines represent those generated by neural SDEs. From left to right, the plots correspond
to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The horizontal axis
represents time, and the vertical axis represents silver prices.
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Figure 33: Sample paths for gold prices from the metal dataset. Blue lines represent real samples,
while red lines represent those generated by neural SDEs. From left to right, the plots correspond
to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The horizontal axis
represents time, and the vertical axis represents gold prices.
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