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ABSTRACT

Neural Stochastic Differential Equations (Neural SDEs) have emerged as powerful
mesh-free generative models for continuous stochastic processes, with critical ap-
plications in fields such as finance, physics, and biology. Previous state-of-the-art
methods have relied on adversarial training, such as GANs, or on minimizing dis-
tance measures between processes using signature kernels. However, GANs suf-
fer from issues like instability, mode collapse, and the need for specialized train-
ing techniques, while signature kernel-based methods require solving linear PDEs
and backpropagating gradients through the solver, whose computational complex-
ity scales quadratically with the discretization steps. In this paper, we identify a
novel class of strictly proper scoring rules for comparing continuous Markov pro-
cesses. This theoretical finding naturally leads to a novel approach called Finite
Dimensional Matching (FDM) for training Neural SDEs. Our method leverages
the Markov property of SDEs to provide a computationally efficient training ob-
jective. This scoring rule allows us to bypass the computational overhead asso-
ciated with signature kernels and reduces the training complexity from O(D2) to
O(D) per epoch, where D represents the number of discretization steps of the
process. We demonstrate that FDM achieves superior performance, consistently
outperforming existing methods in terms of both computational efficiency and
generative quality.

1 INTRODUCTION

Stochastic differential equations (SDEs) are a modeling framework used to describe systems in-
fluenced by random forces, with applications spanning finance, physics, biology, and engineering.
They incorporate stochastic terms to allow the modeling of complex systems under uncertainties.

A neural stochastic differential equation (Neural SDE) (Kidger et al., 2021; Issa et al., 2023; Tzen &
Raginsky, 2019; Jia & Benson, 2019; Hodgkinson et al., 2021; Li et al., 2020; Morrill et al., 2020)
is an SDE where neural networks parameterize the drift and diffusion terms. This model acts as
a mesh-free generative model for time-series data and has shown a significant impact in financial
applications (Arribas et al., 2021; Gierjatowicz et al., 2020; Choudhary et al., 2023; Hoglund et al.,
2023).

Training Neural SDEs typically involves minimizing a distance measure between the distribution of
generated paths and the distribution of observed data paths. State-of-the-art performance has been
achieved using signature kernels to define a distance measure on path space (Issa et al., 2023). Al-
though effective, this approach requires solving a linear partial differential equation (PDE) whose
computational complexity scales quadratically with the discretization step, which becomes imprac-
tical for long time series. An alternative is training these models adversarially as Generative Adver-
sarial Networks (GANs) (Kidger et al., 2021). However, GAN-based training can be fraught with
issues such as instability, mode collapse, and the need for specialized techniques.

In this paper, we present a theoretical result that extends scoring rules for comparing distributions
in finite-dimensional spaces to those for continuous Markov processes. This extension forms the
basis of a novel algorithm, Finite Dimensional Matching (FDM), designed for training generative
models of stochastic processes. FDM exploits the Markovian nature of SDEs by leveraging the
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two-time joint distributions of the process, providing an efficient training objective that bypasses
the complexities of signature kernels. Notably, FDM reduces the computational complexity from
O(D2) to O(D) per training step, where D represents the number of discretization steps.

The key contributions of this paper are as follows:

• Our main theorem shows that scoring rules to compare continuous Markov processes can
be easily built upon scoring rules on finite-dimensional space.

• Our main theorem suggests an efficient training method, FDM, for neural SDE.
• Our experiments show that FDM outperforms prior methods on multiple benchmarks.

The rest of the paper is organized as follows: Section 2 provides a review of the relevant literature.
In Section 3, we present preliminary results that lay the foundation for our main contributions. Sec-
tion 4 introduces our main theorem, which extends scoring rules for finite dimensions to continuous
Markov processes and leads to the development of our novel Finite Dimensional Matching (FDM)
algorithm. Section 5 details the experimental setup and results, demonstrating the superiority of
FDM in terms of both computational efficiency and generative performance across several bench-
mark datasets. Finally, Section 6 concludes the paper by summarizing the contributions, limitations,
and directions for future research.

2 RELATED WORK

We begin by reviewing prior applications of scoring rules in generative modeling followed by an
exploration of the literature on training neural SDEs.

2.1 SCORING RULES

Scoring rules offer a method to measure discrepancies between distributions (Gneiting & Raftery,
2007) and are especially appealing for generative modeling and have been employed in training
various generative models (Bouchacourt et al., 2016; Gritsenko et al., 2020; Pacchiardi et al., 2024;
Pacchiardi & Dutta, 2022; Issa et al., 2023; Bonnier & Oberhauser, 2024). Notably, Pacchiardi et al.
(2024) apply scoring rules to discrete Markov chains, although their extension to continuous-time
processes has not yet been explored. Issa et al. (2023) and Bonnier & Oberhauser (2024) construct
scoring rules for continuous processes by utilizing signature kernels.

2.2 NEURAL SDES

Several methods have been proposed for training Neural SDEs as generative models, each differing
in how they define the divergence or distance between distributions on pathspace. In Table 1, we
compare different methods for training Neural SDEs, highlighting their divergence measures and the
corresponding discriminator or training objectives. Our approach, Finite Dimensional Matching
(FDM), introduces a novel scoring rule specifically designed for continuous Markov processes.

Table 1: Methods for training neural SDEs. SigKer stands for signature kernel (Issa et al., 2023),
TruncSig is for truncated signature (Bonnier & Oberhauser, 2024), SDE-GAN is proposed by
Kidger et al. (2021), and Latent SDE is proposed by Li et al. (2020).

Methods Divergence or distance Discriminator or training objective
Latent SDE KL-divergence Monte-Carlo simulation of free energy
SDE-GAN 1-Wasserstein distance Optimizing discriminator nets
SigKer Signature kernel score Solving Goursat PDEs
TruncSig Truncated signature kernel score Truncated approximation of signature
FDM (Ours) A novel class of scoring rule

dedicated to continuous Markov
processes

Standard ERM of the expected scores

One method to train neural SDE is the latent SDE model introduced by Li et al. (2020), which trains
a Neural SDE using variational inference principles (Opper, 2019). In this framework, training in-
volves optimizing the free energy (Opper, 2019) that includes the Kullback-Leibler (KL) divergence
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between the original SDE and an auxiliary SDE. These two SDEs share the same diffusion term
but have different drift terms. The KL divergence between their laws can be computed using Gir-
sanov’s change of measure theorem. However, the performance of latent SDEs is generally inferior
to SDE-GANs due to lower model capacity(Kidger et al., 2021; Issa et al., 2023).

A prominent method is the SDE-GAN introduced by Kidger et al. (2021), which employs adversarial
training to fit a Neural SDE, as in Wasserstein-GANs (Arjovsky et al., 2017). This approach relies
on the 1-Wasserstein distance, with the discriminator parameterized by neural controlled differential
equations (Kidger et al., 2020; Morrill et al., 2021). However, SDE-GANs are notoriously difficult
to train due to their high sensitivity to hyperparameters. Another major challenge is the need for
a Lipschitz discriminator, which requires techniques like weight clipping and gradient penalties to
enforce this constraint (Kidger, 2022). Adversarial training for time-series generative models has
also been explored in the context of discrete data (Ni et al., 2022; Yoon et al., 2019).

Another key contribution to training Neural SDEs is the signature kernel method (Issa et al., 2023;
Bonnier & Oberhauser, 2024), which minimizes a distance measure based on signature kernels (Lee
& Oberhauser, 2023) of paths. However, evaluation of the signature kernel solving Goursat partial
differential equations (PDEs) and backpropagating gradients through the PDE solvers (Salvi et al.,
2021; Issa et al., 2023). The computational complexity of solving Goursat PDEs scales quadratically
with the number of discretization steps, which can be prohibitive for long time series data. Bonnier
& Oberhauser (2024) approximates the signature kernel as inner products of truncated signature
transforms, called truncated signature. However, the scoring rule based on truncated signature is not
strictly proper and its memory complexity is of O(dN ) where d is the number of features and N is
the truncation size.

3 PRELIMINARIES

In this section, we set up the notations and introduce the following preliminary concepts: neural
SDEs, Markov processes, and scoring rules.

3.1 BACKGROUND AND NOTATIONS

Let {Ω,F ,P} be a probability space where Ω,F ,P denote the sample space, sigma-algebra, and
probability measure, respectively. For a random variable ξ, the function Pξ = P◦ ξ−1 is the induced
measure on its range space. In particular, for a random process X , PX denotes its law. We use the
superscript ⊤ for the transposition of a matrix or vector.

3.2 NEURAL SDE

Let B : [0, T ] × Ω → Rdnoise be a Brownian motion on Rdnoise , where dnoise ∈ N. We define a
neural SDE as in Issa et al. (2023) and Kidger et al. (2021):

Z0 = ξθ(a), dZt = µθ(t, Zt)dt+ σθ(t, Zt)dWt, X
θ
t = AθZt + bθ

where a is sampled from a dinitial-dimensional standard Gaussian distribution,

ξθ : Rdinitial → Rdz , µθ : [0, T ]× Rdz → Rdz , σθ : [0, T ]× Rdz → Rdz×dnoise

along with Aθ ∈ Rdx×dz , bθ ∈ Rdx , are functions parameterized by neural networks, and
dinitial, dx, dz ∈ N. We assume additionally that µθ and σθ are Lipschitz continuous in both argu-
ments and ξθ(a) has finite second-order momentum. These conditions ensure that the SDE for Zt

has a unique strong solution. Suppose Yt is the data process, we’d like to train the neural networks
θ on data sampled from PY so that PXθ matches PY .

3.3 MARKOV PROCESS

We say a continuous process Xt with filtration {Ft} is Markov if Xu is independent of Ft for all
u ≥ t given Xt(Kallenberg, 2021). For an SDE of the form dXt = µ(t,Xt) dt+σ(t,Xt) dBt, with
the filtration generated by the Brownian motion Bt, Xt is Markov as long as the SDE has a unique
strong solution (Theorem 9.1, Mao (2007)).

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3.4 SCORING RULES

Given a measurable space (Ω0,F0) and ω0 ∈ Ω0, a scoring rule (Gneiting & Raftery, 2007) s(P, ω0)
maps a probability measure P on Ω0 and a sample ω0 to R. The expected score is defined as
S(P,Q) = EQ[s(P, ω0)] =

∫
Ω0

s(P, ω0) dQ(ω0), where P is the predictive distribution and Q is
the true distribution. The scoring rule s is said to be proper if the expected score satisfies S(P,Q) ≤
S(Q,Q). It is strictly proper if S(P,Q) = S(Q,Q) ⇐⇒ P = Q. For example, let k : Rd×Rd →
R be the RBF kernel defined as k(x, y) = exp

(
−γ∥x− y∥2

)
, where γ > 0 is a parameter that

determines the width of the kernel, then s(P, z) = 1
2EZ,Z′∼P k(Z,Z

′) − EZ∼P k(Z, z) is a strictly
proper scoring rule for distribution on Rd (Gneiting & Raftery, 2007).

Let P θ be a distribution controlled by a generative model θ, and let Q be the true distribution
accessed through data. Given a strictly proper scoring rule s, sufficient model capacity of θ, and
suffcient data points from Q, P θ can be trained by maximizing S(P θ, Q) over θ, leading to P θ =
Q. While many scoring rules for finite-dimensional spaces have been proposed, we lack strictly
proper scoring rules for random processes that can be evaluated efficiently. In our main claim,
we show that a strictly proper scoring rule for a two-time joint distribution, i.e., the distributions
{(Xt1 , Xt2),∀t1, t2 ∈ [0, T ]}, for a random process X , can be converted into a strictly proper
scoring rule for continuous Markov processes.

4 FINITE DIMENSIONAL MATCHING

In this section, we present our main theorem, which converts a scoring rule for a two-time joint
distribution into a scoring rule for a Markov process. Specifically, if we have a scoring rule for
Ω0 = R2d, then Theorem 2 allows us to convert it into a scoring rule for Markov processes X,Y :
[0, T ] → Rd, where d ∈ N and T ∈ R>0.

4.1 SCORING RULE FOR MARKOV PROCESS

In this section, we present our main theorem which shows that a strictly proper scoring rule for
the two-time joint distributions can be converted to a scoring rule for two Markov processes. Let
continuous Markov processes X,Y on [0, T ] take values in a Polish space E endowed with its Borel
σ-algebra. Let s be any strictly proper scoring rule defined on E ×E . Let S(P,Q) = EQ[s(P, ω)] <
∞,∀ measures P,Q on E × E . We define the scoring rule s̄ for continuous Markov processes as
following:

Definition 1. s̄(PX , y) = E(t1,t2)∼U([0,T ]2)s(P(Xt1
,Xt2

), (yt1 , yt2)), where P(Xt1
,Xt2

) is the joint
marginal distributions at times t1, t2 of X , and U([0, T ]2) is the uniform distribution on [0, T ]2.

Let S̄(PX ,PY ) = Ey∼PY
[s̄(PX , y)]. Now we present our main claim, with its proofs deferred to

the appendix.

Theorem 2. If s is a strictly proper scoring rule for distributions on E × E , s̄ is a strictly proper
scoring rule for E-valued continuous Markov processes on [0, T ] where T ∈ R>0. That is, for
any E-valued continuous Markov processes X,Y with laws PX ,PY , respectively, S̄(PX ,PY ) ≤
S̄(PY ,PY ) with equality achieved only if PX = PY .

In the appendix, we present a more generalized version of Theorem 2 that does not require the
timestamps t1 and t2 to be sampled from U([0, T ]2) in the definition of s̄. Nonetheless, to maintain
clarity and simplicity, we focus our discussion on the uniform sampling case in the main paper.

Suppose Xθ is a Markov process parameterized by neural net parameters θ with sufficient capacity.
Therefore, maximizing S̄(PXθ ,PY ) = EY∼PY

[s̄(PXθ , Y )], which can be achieved by maximizing
the corresponding empirical average, will result in PXθ = PY .

We present a concrete example on the application of Theorem 2. Consider continuous Markov
processes X,Y on [0, T ] taking values in Rd. Let k : R2d × R2d → R be the RBF kernel, recall
that s(P, z) = 1

2EZ,Z′∼P k(Z,Z
′) − EZ∼P k(Z, z) is a strictly proper scoring rule for distribution

4
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on R2d (Gneiting & Raftery, 2007). By Theorem 2,

s̄(PX , y) = E(t1,t2)∼U([0,T ]2)

[
1

2
EX,X′k([Xt1 , Xt2 ], [X

′
t1 , X

′
t2 ])− EXk([Xt1 , Xt2 ], [yt1 , yt2 ])

]
(1)

is strictly proper, where [·, ·] is the concatenation of two vectors. S̄(PXθ ,PY ) = EY∼PY
[s̄(PXθ , Y )]

can be estimated through empirical average and optimized efficiently.

4.2 FDM ALGORITHM

We consider an expected score S̄(PXθ ,PY ) = EY∼PY
[s̄(PXθ , Y )], which can be estimated using

an empirical average Ŝ. For example, an unbiased estimator of S̄ for s̄ defined in (1) can be con-
structed using batches of generated paths BX = {xi}Bi=1 and data paths BY = {yi}Bi=1. For each i,
independently sample two timestamps ti and t′i. The empirical estimator is then given by:

Ŝ(BX ,BY ) =
1

2B(B − 1)

∑
i̸=j

k
(
[xi

tj , x
i
t′j
], [xj

tj , x
j
t′j
]
)
− 1

B2

B∑
i=1

B∑
j=1

k
(
[xi

tj , x
i
t′j
], [yjtj , y

j
t′j
]
)
.

Note that the above estimator Ŝ only requires each data path to be (potentially irregularly) observed
at two distinct timestamps, and we can observe the xi’s at any timestamps since they are generated
by the neural SDE model. Alternative empirical objectives are provided in the appendix.

In Algorithm 1, we present the concrete finite dimensional matching (FDM) algorithm derived from
Theorem 2 to train a neural SDE Xθ.

Algorithm 1: Finite Dimensional Matching (FDM)

Input: Neural SDE Xθ, data paths {yi : i ∈ [N ]}, strictly proper scoring rule s , batch size B
1 repeat
2 Generate a batch of simulated paths BX = {xi : i ∈ [B]} using the neural SDE model θ;
3 Randomly sample a batch of data paths BY ⊂ {yi : i ∈ [N ]} with |BY | = B ;
4 Compute the empirical estimate Ŝ(BX ,BY ) of S̄(PXθ ,PY );
5 Maximize Ŝ with respect to θ using an optimizer of the user’s choice;
6 until stopping criterion is met;

5 THEORETICAL PROPERTIES

In this section, we investigate the sample complexity and sensitivity of the proposed scoring rules s̄.
All proofs are deffered to the appendix.

5.1 SAMPLE COMPLEXITY

We show that the sample complexity of the estimator Ŝ(BX ,BY ) retains the classical sample com-
plexity of a kernel-based scoring rule s (Gretton et al., 2012). Let k be a kernel associated with a
Reproducing Kernel Hilbert Space (RKHS) and s(P, z) = 1

2EZ,Z′∼P k(Z,Z
′) − EZ∼P k(Z, z) be

a strictly proper scoring rule. Recall that s̄(PX , y) = E(t1,t2)∼U([0,T ]2)s(P(Xt1 ,Xt2 )
, (yt1 , yt2)) and

S̄(PX ,PY ) = Ey∼PY
[s̄(PX , y)].

Theorem 3. Let k(·, ·) satisfy 0 ≤ k(·, ·) ≤ K and the batch size B ≥ 2. For any ε > 0:

P
(
|Ŝ − E[Ŝ]| ≥ ε

)
≤ 2 exp

(
− 8Bε2

47K2

)
.

Equivalently, with probability at least 1 − δ, the deviation of Ŝ from its expected value S̄(PX ,PY )
is bounded as: ∣∣ Ŝ(BX ,BY )− S̄(PX ,PY )

∣∣ ≤ K

√
47 ln(2/δ)

8B
.

Ŝ exhibits a sample complexity analogous to the classical sample complexity of kernel-based scoring
rules s (Gretton et al., 2012). In Section B of the Appendix, we extend this analysis to an alternative
estimator where all sample paths are evaluated at n shared timestamps.
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5.2 SENSITIVITY

Let X be an Itô diffusion on Rd, i.e., dXt = µ(t,Xt)dt + σ(t,Xt)dBt. The following theorem
shows how perturbations in µ and σ affect the value of the scoring rule s̄(PX , y).

Theorem 4. Let X satisfy dXt = µ(t,Xt)dt + σ(t,Xt)dBt on Rd. Let X̃ satisfy dX̃t =

µ̃(t, X̃t)dt+σ̃(t, X̃t)dBt on Rd where ∀t, x, ∥µ(t, x)− µ̃(t, x)∥2 ≤ δµ, ∥σ(t, x)− σ̃(t, x)∥2 ≤ δσ ,
and δµ, δσ are constants. Assume the scoring rule s(P, z) is Lipschitz in terms of distribution P with
respect to the Wasserstein-2 distance. Assume both X and X̃ have unique strong solutions and share
the same initial conditons, then

|s̄(PX , y)− s̄(PX̃ , y)| ≤ LsC(δµ + δσ),

where Ls is the Lipschitz constant of s, the constant C depends on Lipschitz constants of µ and σ.

If we allow different sampling distributions of t1, t2 than uniform as in the generalized main theorem
Theorem 7 in the appendix, C may also depend on the sampling distribution of t1, t2. This result
provides a theoretical guarantee that small changes in the dynamics of the process result in changes
to the scoring rule that are linear with respect to δµ + δσ , ensuring robustness and predictability in
the scoring rule’s behavior under perturbations.

6 EXPERIMENTS

1We evaluate our method, FDM, by comparing it to three existing methods for training neural SDEs:
the signature kernel method (SigKer, Issa et al. (2023)), the truncated signature method (TruncSig,
Bonnier & Oberhauser (2024)), and SDE-GAN (Kidger et al., 2021). Our experiments are con-
ducted across five real-world datasets: energy prices, bonds, metal prices, U.S. stock indices, and
exchange rates, as well as one synthetic dataset, the Rough Bergomi model2. The real-world datasets
are historical price data for variety of financial instruments. The rough Bergomi model is a widely
used stochastic volatility model and has been extensively described in Issa et al. (2023). For all
datasets, we model all features jointly with a single multi-dimensional neural SDE.

Consistent with Issa et al. (2023), we use the Kolmogorov-Smirnov (KS) test to assess the marginal
distributions for each dimension. Specifically, we compare a batch of generated paths against an
unseen batch from the real data distribution and calculate the KS scores and the chance of rejecting
the null hypothesis, which states that the two distributions are identical. This process is repeated
for all the test batches and we report the averaged KS scores and the chance of rejecting the null
hypothesis across all the batches.

For all experiments, we use fully connected neural networks to parameterize the drift and diffusion
terms, with hyperparameters and preprocessings suggested in Issa et al. (2023). We choose s to be
s(P, z) = 1

2EZ,Z′∼P k(Z,Z
′)−EZ∼P k(Z, z) where k is the rbf kernel with unit kernel bandwidth.

In particular, following Issa et al. (2023), we let our method and TruncSig train for 10000 steps,
while SDE-GAN trains for 5000 steps and SigKer for 4000 steps, to normalize the training time.
Despite the differences in training steps, our method remains the fastest in terms of wall-clock time.
All models are trained and evaluated on a single NVIDIA H100 GPU.

For our experiments, we first follow Issa et al. (2023) to train and evaluate the models on three
datasets with 64 timestamps using random train-test splits: metal prices, stock indices, and exchange
rates, with results reported in Tables 2, 3, and 4, respectively. For the bonds and energy price
datasets, we held out the latest 20% of the data as test data and evaluated the models by running
the KS test on the generated sequences and unseen future sequences, as reported in Tables 6 and
6. Additionally, for the exchange rates dataset, we trained and tested the models using sequences
with 256 and 1024 timestamps, reporting KS test results in Tables 7 and 8, and training time in
Table 11 in the appendix. For the synthetic rough Bergomi model, we generated sequences with
64 timestamps across both 16 and 32 dimensions, with results reported in Tables 9 and 10, where

1code available at https://anonymous.4open.science/r/Efficient-Training-of-
Neural-SDEs-by-Matching-Finite-Dimensional-Distributions-E12B

2All real-world datasets are obtained from https://www.dukascopy.com/swiss/english/
marketwatch/historical/
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we report the average KS scores and the chance of rejecting the null hypothesis across different
dimensions. We also compare the computational efficiency of the models in terms of training time
for different dimensions of the Rough Bergomi model, with detailed results summarized in Table 12
in the appendix. We highlight the best-performing model across all tables.

We include qualitative studies in Figure 1, which compare the dynamics of joint distributions of real
and generated data points for the metal price dataset. We compare the sample paths of the metal price
dataset in Figure 2 and 3. Due to space constraints, we provide further qualitative studies comparing
pairwise joint distributions and sample paths, along with tables comparing computational efficiency,
in section G in the appendix. Our results demonstrate that our method outperforms competitors in
an overwhelming majority of cases in terms of KS test results, qualitative results, and computational
efficiency.

Table 2: Average KS test scores (lower is better) and chance of rejecting the null hypothesis (%)
at 5%-significance level on marginals (lower is better) of metal prices, trained on paths evenly
sampled at 64 timestamps.

Dim Model t=6 t=19 t=32 t=44 t=57

SILVER

SigKer .137, 14.8 .137, 14.4 .136, 14.6 .133, 12.7 .131, 11.5
TruncSig .231, 97.5 .250, 98.8 .270, 99.5 .287, 99.6 .309, 99.7

SDE-GAN .365, 99.7 .536, 100. .624, 100. .675, 100. .711, 100.
FDM .112, 5.70 .111, 5.80 .110, 5.50 .112, 6.10 .111, 6.20

GOLD

SigKer .129, 10.8 .132, 11.7 .134, 13.0 .132, 12.3 .128, 10.5
TruncSig .196, 77.8 .218, 93.7 .245, 98.7 .269, 99.3 .285, 99.6

SDE-GAN .239, 90.7 .380, 99.9 .476, 100. .555, 100. .627, 100.
FDM .118, 8.50 .116, 7.90 .114, 6.60 .114, 6.20 .113, 6.60

Table 3: Average KS test scores and chance of rejecting the null hypothesis (%) at 5%-significance
level on marginals of U.S. stock indices, trained on paths evenly sampled at 64 timestamps. ”DOL-
LAR”, ”USA30”, ”USA500”, ”USATECH”, and ”USSC2000” stand for US Dollar Index, USA 30
Index, USA 500 Index, USA 100 Technical Index, and US Small Cap 2000, respectively.

Dim Model t=6 t=19 t=32 t=44 t=57

DOLLAR

SigKer .164, 40.2 .178, 56.4 .183, 62.6 .186, 66.3 .186, 66.5
TruncSig .223, 95.1 .252, 99.0 .275, 99.4 .294, 99.7 .312, 99.7

SDE-GAN .189, 65.5 .232, 91.4 .263, 97.6 .289, 99.0 .304, 99.2
FDM .121, 7.50 .130, 11.3 .133, 12.9 .135, 13.8 .137, 15.9

USA30

SigKer .168, 44.8 .204, 86.2 .220, 94.9 .219, 94.6 .215, 93.1
TruncSig .118, 6.20 .129, 8.30 .146, 20.4 .160, 35.1 .181, 62.6

SDE-GAN .233, 87.2 .349, 99.7 .443, 100. .526, 100. .595, 100.
FDM .142, 21.9 .128, 13.1 .125, 10.9 .124, 9.80 .121, 7.50

USA500

SigKer .217, 93.2 .226, 96.2 .225, 95.8 .217, 93.7 .211, 90.5
TruncSig .234, 97.8 .257, 99.1 .276, 99.3 .285, 99.4 .292, 99.7

SDE-GAN .231, 90.2 .329, 99.5 .409, 99.9 .483, 100. .550, 100.
FDM .115, 5.80 .116, 5.50 .119, 5.90 .118, 6.30 .119, 6.50

USATECH

SigKer .197, 80.4 .217, 93.2 .221, 94.5 .216, 93.0 .211, 89.8
TruncSig .197, 79.7 .227, 96.5 .247, 98.9 .264, 99.3 .276, 99.5

SDE-GAN .469, 100. .756, 100. .894, 100. .953, 100. .982, 100.
FDM .121, 8.60 .118, 6.80 .118, 6.50 .118, 7.20 .119, 7.30

USSC2000

SigKer .168, 44.9 .202, 83.6 .221, 94.9 .218, 93.8 .214, 92.6
TruncSig .121, 6.60 .137, 11.9 .162, 36.5 .185, 67.2 .211, 90.4

SDE-GAN .168, 46.1 .253, 93.1 .378, 99.9 .517, 100. .644, 100.
FDM .140, 20.2 .128, 12.7 .122, 9.40 .124, 8.90 .122, 6.80
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Table 4: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals for different currency pairs (EUR/USD and USD/JPY), trained on
paths evenly sampled at 64 timestamps.

Dim Model t=6 t=19 t=32 t=44 t=57

EUR/USD

SigKer .122, 8.30 .139, 19.1 .140, 19.9 .134, 15.9 .130, 14.0
TruncSig .221, 94.8 .272, 99.4 .304, 99.6 .322, 99.7 .343, 99.9

SDE-GAN .170, 45.9 .200, 78.9 .198, 80.1 .219, 88.3 .292, 99.0
FDM .129, 13.7 .112, 6.60 .110, 5.80 .112, 6.60 .113, 6.50

USD/JPY

SigKer .114, 4.60 .124, 8.00 .128, 10.8 .127, 11.3 .126, 12.1
TruncSig .206, 86.3 .247, 98.9 .279, 99.3 .301, 99.7 .322, 99.9

SDE-GAN .143, 19.7 .165, 40.5 .179, 56.5 .185, 62.2 .192, 69.0
FDM .120, 10.4 .111, 5.50 .109, 5.00 .110, 5.70 .109, 5.40

Table 5: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals of energy prices, trained on paths evenly sampled at 64 timestamps.
We reserve the latest 20% data as test dataset and measure how well the model predicts into future.
”BRENT”, ”DIESEL”, ”GAS”, and ”LIGHT” stand for U.S. Brent Crude Oil, Gas oil, Natural Gas,
and U.S. Light Crude Oil, respectively.

Dim Model t=6 t=19 t=32 t=44 t=57

BRENT

SigKer .145, 21.8 .145, 22.1 .142, 19.9 .140, 18.3 .130, 13.1
TruncSig .210, 88.7 .223, 94.8 .234, 97.1 .254, 98.8 .270, 99.4

SDE-GAN .493, 100. .883, 100. .984, 100. .998, 100. 1.00, 100.
FDM (ours) .129, 14.1 .129, 13.8 .136, 17.6 .135, 17.0 .134, 16.2

DIESEL

SigKer .141, 17.6 .155, 29.7 .158, 32.5 .158, 32.6 .160, 35.4
TruncSig .181, 61.8 .206, 86.7 .223, 94.9 .234, 97.5 .262, 99.0

SDE-GAN .169, 44.9 .233, 89.3 .319, 99.4 .422, 100. .523, 100.
FDM (ours) .124, 11.3 .117, 7.60 .117, 8.50 .122, 9.90 .120, 9.70

GAS

SigKer .178, 56.3 .190, 69.9 .185, 61.5 .180, 56.7 .168, 44.2
TruncSig .275, 99.6 .313, 99.7 .338, 99.8 .370, 99.9 .383, 99.9

SDE-GAN .263, 98.9 .273, 99.2 .281, 99.4 .394, 99.9 .565, 100.
FDM (ours) .116, 6.40 .123, 10.1 .130, 15.2 .134, 19.3 .135, 20.2

LIGHT

SigKer .161, 35.9 .156, 31.4 .146, 23.6 .138, 17.4 .124, 9.70
TruncSig .247, 98.8 .266, 99.4 .279, 99.4 .298, 99.6 .315, 99.8

SDE-GAN .199, 81.4 .218, 89.7 .370, 99.6 .580, 100. .761, 100.
FDM (ours) .125, 11.5 .127, 12.9 .138, 18.9 .140, 20.8 .145, 24.0

7 CONCLUSION, LIMITATIONS, AND FUTURE WORKS

Our main theorem demonstrates that any strictly proper scoring rule for comparing distributions on
finite dimensions can be extended to strictly proper scoring rules for comparing the laws of con-
tinuous Markov processes. This theorem naturally leads to the FDM algorithm for training neural
SDEs. We empirically show that FDM outperforms current state-of-the-art methods for training
neural SDEs, both in terms of generative quality and computational efficiency.

However, the applicability of our main theorem is currently constrained by the assumptions of con-
tinuity and the Markov property. Although this lies beyond the scope of Neural SDEs, we provide
a straightforward extension of the main theorem to Càdlàg Markov processes in the appendix. This
extension broadens the applicability of FDM to a wider range of models, including jump processes.
Furthermore, an intriguing direction for future work would be to relax the Markov assumptions, for
instance, by incorporating hidden Markov models.
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Table 6: Average KS test scores and chance of rejecting the null hypothesis (%) at 5%-significance
level on marginals of bonds, trained on paths evenly sampled at 64 timestamps. We reserve the
most latest 20% data as test dataset and measure how well the model predicts into future. ”BUND”,
”UKGILT”, and ”USTBOND” stand for Euro Bund, UK Long Gilt, and US T-BOND, respectively.

Dim Model t=6 t=19 t=32 t=44 t=57

BUND

SigKer .137, 17.0 .156, 30.6 .169, 45.9 .179, 59.0 .178, 58.1
TruncSig .216, 91.7 .252, 99.0 .286, 99.5 .311, 99.9 .331, 99.9

SDE-GAN .291, 98.9 .442, 100. .546, 100. .618, 100. .695, 100.
FDM .111, 6.30 .112, 5.40 .123, 7.70 .132, 12.8 .130, 12.5

UKGILT

SigKer .113, 7.40 .114, 5.80 .122, 8.20 .127, 10.9 .128, 11.6
TruncSig .164, 40.0 .211, 89.9 .256, 99.0 .286, 99.6 .311, 99.7

SDE-GAN .283, 97.6 .671, 100. .949, 100. .993, 100. .997, 100.
FDM .129, 13.0 .112, 6.30 .108, 4.90 .109, 5.20 .108, 5.20

USTBOND

SigKer .134, 15.3 .131, 10.8 .142, 18.3 .146, 21.7 .150, 25.9
TruncSig .253, 99.0 .274, 99.6 .312, 99.8 .337, 99.9 .358, 100.

SDE-GAN .462, 100. .867, 100. .974, 100. .999, 100. 1.00, 100.
FDM .128, 12.3 .120, 8.80 .113, 5.70 .113, 5.70 .111, 5.10

Table 7: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals for different currency pairs (EUR/USD and USD/JPY), trained on
paths evenly sampled at 256 timestamps.

Dim Model t = 25 t = 76 t = 128 t = 179 t = 230

EUR/USD

SigKer .535, 100. .535, 100. .536, 100. .546, 100. .540, 100.
TruncSig .137, 18.9 .184, 67.1 .252, 99.6 .290, 100. .318, 100.

SDE-GAN .134, 21.6 .411, 100. .569, 100. .548, 100. .338, 99.9
FDM .136, 23.0 .112, 5.70 .123, 12.7 .132, 17.8 .141, 26.6

USD/JPY

SigKer .535, 100. .534, 100. .535, 100. .538, 100. .541, 100.
TruncSig .114, 7.10 .152, 28.3 .199, 82.8 .232, 97.9 .242, 99.2

SDE-GAN .201, 72.6 .334, 99.9 .407, 100. .405, 100. .338, 100.
FDM .124, 13.8 .112, 6.30 .118, 6.90 .122, 9.00 .115, 6.20

Table 8: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals for different currency pairs (EUR/USD and USD/JPY), trained on
paths evenly sampled at 1024 timestamps. A thread limit error is encountered during the training of
the SigKer (Issa et al., 2023), which relies on a dedicated parallel PDE solver.

Dim Model t = 102 t = 307 t = 512 t = 716 t = 921

EUR/USD

SigKer - - - - -
TruncSig .476, 100. .718, 100. .993, 100. .996, 100. .887, 100.

SDE-GAN .280, 98.4 .818, 100. .963, 100. .846, 100. .805, 100.
FDM .117, 11.1 .117, 9.00 .138, 25.1 .153, 36.2 .191, 66.5

USD/JPY

SigKer - - - - -
TruncSig .766, 100. .743, 100. .670, 100. .998, 100. 1.00, 100.

SDE-GAN .528, 100. .291, 100. .389, 100. .530, 100. .655, 100.
FDM .138, 20.9 .124, 14.3 .150, 32.1 .199, 74.9 .260, 97.9

Table 9: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals across all dimensions, trained on paths evenly sampled at 64 times-
tamps from a 16-dimension rough Bergomi model.

Model t = 6 t = 19 t = 32 t = 44 t = 57

SigKer .112, 6.60 .118, 7.80 .124, 10.8 .132, 16.3 .144, 25.5
TruncSig .450, 100. .458, 100. .462, 100. .461, 100. .460, 100.

SDE-GAN .308, 99.8 .374, 99.4 .393, 99.5 .406, 99.6 .430, 99.7
FDM .113, 7.20 .116, 7.80 .119, 8.80 .124, 11.8 .131, 15.8
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Table 10: Average KS test scores and the chance of rejecting the null hypothesis (%) at 5%-
significance level on marginals across all dimensions, trained on paths evenly sampled at 64 times-
tamps from a 32-dimension rough Bergomi model. TruncSig runs out of GPU memory.

Model t=6 t=19 t=32 t=44 t=57

SigKer .120, 11.1 .137, 18.5 .149, 26.5 .157, 35.3 .168, 45.2
TruncSig - - - - -

SDE-GAN .284, 99.8 .288, 99.7 .298, 99.8 .311, 99.9 .326, 100.
FDM .117, 9.10 .119, 10.2 .122, 11.4 .124, 13.0 .128, 15.4

Figure 1: Blue points are real samples and orange points are generated by neural SDEs. The dy-
namics of the joint distribution of gold and silver prices in the metal price data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is the silver price and the vertical axis is the gold price.

Figure 2: Sample paths for silver prices from the metal dataset. Blue lines represent real samples,
while red lines represent those generated by neural SDEs. From left to right, the plots correspond
to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The horizontal axis
represents time, and the vertical axis represents silver prices.

Figure 3: Sample paths for gold prices from the metal dataset. Blue lines represent real samples,
while red lines represent those generated by neural SDEs. From left to right, the plots correspond
to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The horizontal axis
represents time, and the vertical axis represents gold prices.
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A PROOF OF THEOREM 2

Suppose random processes X,Y on T take values in a Polish space E endowed with its Borel σ-
algebra A 3, let their transition kernels be µX

u,v(Xv, B) = P(Xv ∈ B|Xu) and µY
u,v(Yv, B) =

P(Yv ∈ B|Yu) for u, v ∈ T . For convenience, we use the kernel operations introduced in Chapter 3
of Kallenberg (2021). Let B1, B2 ∈ A and t, u, v ∈ T , recall that µX

t,u ⊗ µX
u,v is given by

(µX
t,u ⊗ µX

u,v)(x,B1 ×B2) =

∫
µX
t,u(x, dz1)

∫
µX
u,v(z1, dz2)1B1×B2

(z1, z2)

We need the following lemma to prove the main claim.

Lemma 5. Let T be an index set. Let X,Y be E-valued Markov processes on T . Then X
d
= Y

⇐⇒ ∀t1, t2 ∈ T , (Xt1 , Xt2)
d
= (Yt1 , Yt2), where d

= stands for equal in distribution.

Proof. The =⇒ direction is straightforward; we prove the other direction. Fix t1 ≤ t2 ∈ T . Since
S is Borel, Theorem 8.5 of Kallenberg (2021) implies that the conditional distribution µX

t1,t2(z, ·) =
µY
t1,t2(z, ·) for almost all z under PXt1

. By Proposition 11.2 of Kallenberg (2021), for any t0 ≤
t1 · · · ≤ tn in T ,

PXt0 ,Xt1 ,...,Xtn
= PXt0

⊗ µX
t0,t1 ⊗ · · · ⊗ µX

tn−1,tn

= PYt0
⊗ µY

t0,t1 ⊗ · · · ⊗ µY
tn−1,tn

= PYt0
,Yt1

,...,Ytn
,

i.e. (Xt0 , Xt1 , . . . , Xtn)
d
= (Yt0 , Yt1 , . . . , Ytn). Then X

d
= Y as their finite-dimensional distribu-

tions agree.

Recall that {Ω,F ,P} is a probability space where Ω,F ,P denote the sample space, sigma-algebra,
and probability measure, respectively. Random processes X,Y on T = [0, T ] take values in a Polish
space E endowed with its Borel σ-algebra A. For a random variable ξ, the function Pξ = P ◦ ξ−1

is the induced measure on its range space. In particular, for a random process X , PX denotes its
law. Let s be any strictly proper scoring rule defined on E × E and S(P,Q) = EQ[s(P, ω)] < ∞,∀
measures P,Q on E × E equipped with σ-algebra A⊗A.

Here we present a more general version of Theorem 2 where t1 and t2 do not need to be uniformly
sampled from T . Let µ be the Lebesgue measure on T 2. Let ν be a measure that is equivalent
to µ. That is, there exists the function λ : T 2 → R such that λ(t1, t2) > 0 µ-a.e. and ν(A) =∫
A
λ(t1, t2)dµ for any measurable set A. We define the scoring rule s̄ν for continuous Markov

processes with respect to the sampling measure ν:

Definition 6. s̄ν(PX , y) = E(t1,t2)∼νs(P(Xt1
,Xt2

), (yt1 , yt2)), where P(Xt1
,Xt2

) is the joint
marginal distributions at times t1, t2 of X .

Let S̄ν(PX ,PY ) = Ey∼PY
[s̄ν(PX , y)]. We present a generalized version of the main statement:

Theorem 7. If s is a strictly proper scoring rule for distributions on E × E , s̄ν is a strictly proper
scoring rule for E-valued continuous Markov processes on [0, T ] where T ∈ R>0. That is, for
any E-valued continuous Markov processes X,Y with laws PX ,PY , respectively, S̄ν(PX ,PY ) ≤
S̄ν(PY ,PY ) with equality achieved only if PX = PY .

3S is Borel isomorphic to a Borel set in [0, 1]. A Polish space with its Borel σ-algebra is Borel [p14,
Kallenberg]
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Proof for Theorem 7.

S̄ν(PX ,PY ) =

∫
E(t1,t2)∼νs(P(Xt1

,Xt2
), (yt1 , yt2)) PY (dy)

= E(t1,t2)∼ν

∫
s(P(Xt1 ,Xt2 )

, (yt1 , yt2)) PY (dy) (2)

= E(t1,t2)∼ν

∫
s(P(Xt1

,Xt2
), (yt1 , yt2)) P(Yt1

,Yt2
)(d(yt1 , yt2)) (3)

= E(t1,t2)∼νS(P(Xt1
,Xt2

),P(Yt1
,Yt2

)) (4)

≤ E(t1,t2)∼νS(P(Yt1
,Yt2

),P(Yt1
,Yt2

)) (5)

=

∫
E(t1,t2)∼νs(P(Yt1

,Yt2
), (yt1 , yt2)) P(Yt1

,Yt2
)(d(yt1 , yt2)) (6)

=

∫
E(t1,t2)∼νs(P(Yt1 ,Yt2 )

, (yt1 , yt2)) PY (dy) (7)

= S̄ν(PY ,PY ),

We apply Fubini’s theorem for the (2) and use the substitution rule (Lemma 1.24, Kallenberg (2021))
(3). (4) and (5) follow from the definition of S and the properness of the scoring rule s, respectively.
Fubini’s theorem and the substitution rule (Lemma 1.24, Kallenberg (2021)) are used again for the
(6) and (7), respectively.

We then show strictness. Let S̄ν(PX ,PY ) = S̄ν(PY ,PY ). Then
E(t1,t2)∼νS(P(Xt1

,Xt2
),P(Yt1

,Yt2
)) = E(t1,t2)∼νS(P(Yt1

,Yt2
),P(Yt1

,Yt2
))

⇐⇒ E(t1,t2)∼µλ(t1, t2)S(P(Xt1 ,Xt2 )
,P(Yt1 ,Yt2 )

) = E(t1,t2)∼µλ(t1, t2)S(P(Yt1 ,Yt2 )
,P(Yt1 ,Yt2 )

).

So S(P(Xt1
,Xt2

),P(Yt1
,Yt2

)) = S(P(Yt1
,Yt2

),P(Yt1
,Yt2

)) µ-a.e.. This implies (Xt1 , Xt2)
d
=

(Yt1 , Yt2) µ-a.e.. Next, we show that this statement can be extended to all (t1, t2).

Without loss of generality, let (u0, u
′
0) ∈ [0, T ]2 and u0 < u′

0. We can inductively se-
lect u1, u2, . . . , un, . . . and u′

1, u
′
2, . . . , u

′
n, . . . such that u1 ∈ (u0,

u0+u′
0

2 ], u′
1 ∈ [

u0+u′
0

2 , u′
0),

un+1 ∈ (u0,
u0+un

2 ], u′
n+1 ∈ [

u′
n+u′

0

2 , u′
0), and (Xun

, Xu′
n
)

d
= (Yun

, Yu′
n
)∀n. This is possible

because (u0,
u0+un

2 ]× [
u′
n+u′

0

2 , u′
0) has positive measure. Recall that X and Y are continuous pro-

cesses. (Xun , Xu′
n
) converges to (Xu0 , Xu′

0
) and (Yun

, Yu′
n
) converges to (Yu0

, Yu′
0
) almost surely

as un → u0 and u′
n → u′

0. Recall that E × E is also Polish. Then the convergence also holds in
distribution and (Xu0 , Xu′

0
)

d
= (Yu0 , Yu′

0
) (Lemma 5.2 and 5.7, Kallenberg (2021)).

By Lemma 5, X d
= Y .

Theorem 2 is a straightforward result of Theorem 7:

Proof for Theorem 2. Theorem 2 is a direct consequence of Theorem 7 by letting ν = µ.

B PROOF OF SAMPLE COMPLEXITY

We’ll use McDiarmid’s inequality, due to McDiarmid (1989).
Theorem 8. Let X1, X2, . . . , Xm be independent random variables taking values in a set X . Let
f : Xm → R be a function satisfying the bounded differences condition: for each i ∈ {1, . . . ,m},

sup
x1,...,xm,x′

i

|f(x1, . . . , xm)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xm)| ≤ ∆i,

where ∆i ≥ 0 are constants. Then, for all ε > 0,

P (|f(X1, . . . , Xm)− E[f(X1, . . . , Xm)]| ≥ ε) ≤ 2 exp

(
− 2ε2∑m

i=1 ∆
2
i

)
.
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We state and prove the sample complexity results with a general sampling meausre ν. Theorem 3
follows by letting ν = µ.

Theorem 9. Let Ŝ(BX ,BY ) be the empirical estimator defined as:

Ŝ(BX ,BY ) =
1

2B(B − 1)

∑
i̸=j

k
(
[xi

tj , x
i
t′j
], [xj

tj , x
j
t′j
]
)
− 1

B2

B∑
i=1

B∑
j=1

k
(
[xi

tj , x
i
t′j
], [yjtj , y

j
t′j
]
)
,

where:

• xi, yj are independently sampled from PX and PY , respectively,

• tj , t
′
j are independently sampled timestamp pairs, ν is a measure equivalent to the

Lebesgue measure µ on T 2

• k(·, ·) is a kernel function satisfying 0 ≤ k(·, ·) ≤ K.

• B ≥ 2.

For any ε > 0,

P
(
|Ŝ − E[Ŝ]| ≥ ε

)
≤ 2 exp

(
− 8Bε2

47K2

)
.

Equivalently, with probability at least 1− δ, the deviation of Ŝ from its expected value S̄(PXθ ,PY )
is bounded as: ∣∣ Ŝ(BX ,BY )− S̄(PXθ ,PY )

∣∣ ≤ K

√
47 ln(2/δ)

8B
.

Proof. We will apply McDiarmid’s inequality to the estimator Ŝ. Recall that ν is a measure equiva-
lent to the Lebesgue measure µ on T 2. First, we verify the conditions of the inequality.

The estimator Ŝ depends on the independent variables:

• xi ∈ BX : These are the generated paths. Changing a single xi while keeping other vari-
ables fixed changes Ŝ by at most (2B−1)K

2B(B−1) +
K
B ≤ 3K

2B + K
B = 5K

2B .

• yj ∈ BY : These are the data paths. Changing a single yj while keeping other variables
fixed changes Ŝ by at most K

B .

• tj , t
′
j ∼ ν: These are the timestamps sampled from the measure ν. Changing a single tj or

t′j while keeping other variables fixed changes Ŝ by at most 3K
2B .

Define the bounded differences:

∆i =


3K
2B , for i = 1, . . . , 2B,
5K
2B , for i = 2B + 1, . . . , 3B,
K
B , for i = 3B + 1, . . . , 4B.

The sum of the squared bounded differences is:

4B∑
i=1

∆2
i = 2B

(
3K

2B

)2

+B

(
5K

2B

)2

+B

(
K

B

)2

=
47K2

4B
.

By McDiarmid’s inequality, for any ε > 0:

P
(
|Ŝ − E[Ŝ]| ≥ ε

)
≤ 2 exp

(
− 2ε2∑4B

i=1 ∆
2
i

)
= 2 exp

(
− 8Bε2

47K2

)
.
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We analyze the sample complexity for a different estimator where all sample paths are observed at
n shared timestamps.

Theorem 10. Let Ŝ be the empirical estimator defined as:

Ŝ =
1

n

n∑
r=1

 1

2m(m− 1)

m∑
i,j=1

i ̸=j

k
(
[xi

tr , x
i
t′r
], [xj

tr , x
j
t′r
]
)
− 1

m2

m∑
i=1

m∑
j=1

k
(
[xi

tr , x
i
t′r
], [yjtr , y

j
t′r
]
) ,

where:

• xi, yj are independently sampled from PX and PY , respectively,

• tr, t
′
r ∼ ν are independently sampled timestamp pairs, ν is a measure equivalent to the

Lebesgue measure µ on T 2

• k(·, ·) is a kernel function satisfying 0 ≤ k(·, ·) ≤ K.

• m ≥ 2.

For any ε > 0,

P
(
|Ŝ − E[Ŝ]| ≥ ε

)
≤ 2 exp

(
− 8mnε2

K2(29n+ 18m)

)
.

where E[Ŝ] = S̄ν(PX ,PY ) = EY∼PY
[s̄ν(PX , Y )].

Proof. We will apply McDiarmid’s inequality to the estimator Ŝ. First, we verify the conditions of
the inequality.

The estimator Ŝ depends on the independent variables:

• Generated paths xi: Changing a single xi while keeping other variables fixed changes Ŝ by
at most (2m−1)K

2m(m−1) +
K
m ≤ 3K

2m + K
m = 5K

2m .

• Data paths yj : Changing a single yj while keeping other variables fixed changes Ŝ by at
most K

m .

• Timestamp pairs (tr, t
′
r) ∼ ν: Changing a single timestamp tr or t′r while keeping other

variables fixed changes Ŝ by at most 3K
2n .

Define the bounded differences:

∆i =


5K
2m , for i = 1, . . . ,m,
K
m , for i = m+ 1, . . . , 2m,
3K
2n , for i = 2m+ 1, . . . , 2m+ 2n.

The sum of the squared bounded differences is:
2m+2n∑
i=1

∆2
i = m

(
5K

2m

)2

+m

(
K

m

)2

+ 2n

(
3K

2n

)2

.

Simplifying each term:
2m+2n∑
i=1

∆2
i =

25K2

4m
+

K2

m
+

9K2

2n
= K2

(
29

4m
+

9

2n

)
.

By McDiarmid’s inequality, for any ε > 0:

P
(
|Ŝ − E[Ŝ]| ≥ ε

)
≤ 2 exp

(
− 2ε2∑2m+2n

i=1 ∆2
i

)
= 2 exp

(
− 8mnε2

K2(29n+ 18m)

)
.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Equivalently, with probability at least 1− δ:

∣∣ Ŝ − E[Ŝ]
∣∣ ≤ K

√
(29n+ 18m)

8mn
ln

(
2

δ

)
.

The sample complexity bound established in Theorem 10 demonstrates that the generalization error
of the kernel-based scoring rule s̄ is influenced not only by the number of sample paths m, as is the
case for traditional scoring rules where the complexity depends on m through 1/

√
m, but also by

the sampling frequency n of the timestamp pairs.

C PROOF OF SENSITIVITY

We first prove the following lemma to bound the difference process ∆t = Xt − X̃t.

Lemma 11. Let X satisfy dXt = µ(t,Xt)dt + σ(t,Xt)dBt on Rd for t ∈ [0, T ]. Let X̃ satisfy
dX̃t = µ̃(t, X̃t)dt + σ̃(t, X̃t)dBt on Rd for t ∈ [0, T ] where ∀t, x, ∥µ(t, x)− µ̃(t, x)∥2 ≤ δµ,
∥σ(t, x)− σ̃(t, x)∥2 ≤ δσ , and δµ, δσ are constants. Assume X and X̃ share the same initial
conditons. Assume both X and X̃ have unique strong solutions so µ and σ are Lipschitz with
constant Lµ and Lσ , respectively. Then ∀t ∈ [0, T ],

E∥∆t∥22 ≤
(
2D2

C
+ 1

)
(δµ + δσ)

2
te

3C
2 t,

where D = max(1, Lσ) and C = 2Lµ + L2
σ .

Proof. Apply Ito’s lemma,

d∥∆t∥22 = 2
〈
∆t, µ(t,Xt)− µ̃(t, X̃t)

〉
dt+

∥∥∥σ(t,Xt)− σ̃(t, X̃t)
∥∥∥2
2
dt

+ 2
〈
∆t, σ(t,Xt)− σ̃(t, X̃t)

〉
dBt

Hence,

E∥∆t∥22 = 2E
[∫ t

0

〈
∆s, µ(s,Xs)− µ̃(s, X̃s)

〉
ds+

∫ t

0

∥∥∥σ(s,Xs)− σ̃(s, X̃s)
∥∥∥2
2
ds

]
(8)

Using the Lipsthitz property of µ and the bounded difference between µ and µ̃,〈
∆s, µ(s,Xs)− µ̃(s, X̃s)

〉
≤ ∥∆s∥2

∥∥∥µ(s,Xs)− µ(s, X̃s) + µ(s, X̃s)− µ̃(s, X̃s)
∥∥∥
2

≤ ∥∆s∥2
(∥∥∥µ(s,Xs)− µ(s, X̃s)

∥∥∥
2
+
∥∥∥µ(s, X̃s)− µ̃(s, X̃s)

∥∥∥
2

)
≤ ∥∆s∥2(Lµ∥∆s∥2 + δµ) (9)

Apply the plus-minus trick again, we have∥∥∥σ(s,Xs)− σ̃(s, X̃s)
∥∥∥2
2
≤ (Lσ∥∆s∥2 + δσ)

2 (10)

Substitute (9) and (10) back to equation (8) and apply Cauchy-Schwarz on E∥∆t∥2,

E∥∆t∥22 ≤
∫ t

0

(2Lµ + L2
σ)E∥∆s∥22 + 2(δµ + Lσδσ)E∥∆s∥2 + δ2σds

≤
∫ t

0

(2Lµ + L2
σ)E∥∆s∥22 + 2(δµ + Lσδσ)

√
E∥∆s∥22 + δ2σds
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Let f(t) = E∥∆t∥22, C = 2Lµ + L2
σ and D = max(1, Lσ). Then,

f(t) ≤
∫ t

0

Cf(s) + 2D(δµ + δσ)
√
f(s) + δ2σds

Recall the inequality, ∀ϵ > 0, a ∈ R, a
√

f(s) ≤ a2

2ϵ + ϵ
2f(s). Let ϵ = C, we have,

f(t) ≤
∫ t

0

3C

2
f(s) +

2D2(δµ + δσ)
2

C
+ δ2σds =

3C

2

∫ t

0

f(s)ds+

(
2D2

C
+ 1

)
(δµ + δσ)

2
t.

Apply Gronwall’s inequality,

E∥∆t∥22 = f(t) ≤
(
2D2

C
+ 1

)
(δµ + δσ)

2
te

3Ct
2

Now we’re ready to prove Theorem 4.

Proof of Theorem 4. We again work with the general scoring rule s̄ν defined in Definition 6 where
the sampling measure ν can be any measure equivalent to the Lesbegue measure µ.

Recall that the scoring rule is Lipshtiz with constant Ls, with respect to the Wasserstein-2 distance
W2, so ∀z, and measures P, P ′, |s(P, z)− s(P ′, z)| ≤ LsW2(P, P

′).

Hence, for any realization y,∣∣∣s̄ν(P(X, y))− s̄ν(P(X̃, y))
∣∣∣ = ∣∣∣Et1,t2∼ν

[
s(P(Xt1

,Xt2
), y)− s(P(X̃t1

,X̃t2
), y)

]∣∣∣
≤ Et1,t2∼ν

∣∣∣s(P(Xt1
,Xt2

), y)− s(P(X̃t1
,X̃t2

), y)
∣∣∣

≤ LsEt1,t2∼ν

[
W2

(
P(Xt1

,Xt2
),P(X̃t1

,X̃t2
)

)]
Let Γ(·, ·) be the couplings of two measures. Then,

W 2
2

(
P(Xt1 ,Xt2 )

,P(X̃t1
,X̃t2

)

)
= inf

γ∈Γ
(
P(Xt1

,Xt2
),P(X̃t1

,X̃t2
)

)Eγ

∥∥∥[Xt1 , Xt2 ]− [X̃t1 , X̃t2 ]
∥∥∥2
2

(11)

= inf
γ∈Γ

(
P(Xt1

,Xt2
),P(X̃t1

,X̃t2
)

)Eγ

∥∥∥Xt1 − X̃t1

∥∥∥2
2
+
∥∥∥Xt2 − X̃t2

∥∥∥2
2

≤ E∥∆t1∥
2
2 + E∥∆t2∥

2
2

≤
(
2D2

C
+ 1

)
(δµ + δσ)

2
(t1e

3Ct1
2 + t2e

3Ct2
2 ), (12)

where (11) follows the definition of W2, (12) follows Lemma 11, and C, D are defined in Lemma
11.

Finally,∣∣∣s̄ν(P(X, y))− s̄ν(P(X̃, y))
∣∣∣ ≤ LsEt1,t2∼ν

[
W2

(
P(Xt1

,Xt2
),P(X̃t1 ,X̃t2 )

)]
≤ LsEt1,t2∼ν

[√
t1e

3Ct1
2 + t2e

3Ct2
2

]√
1 +

2D2

C
(δµ + δσ)

The proof is then concluded by renaming the constants.
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D EXTENSION TO CÀDLÀG MARKOV PROCESS

We show that the proof can be extended to Càdlàg Markov processes, where the paths t 7→ Xt are
right-continuous with left limits everywhere, with probability one. Although this extension goes
beyond the scope of neural SDEs, such processes encompass a wide range of applications. Consider
Càdlàg Markov processes X,Y on T ′ = [0, T ) that take values in a Polish space E endowed with
its Borel σ-algebra A. Let s be any strictly proper scoring rule defined on E × E , and let S(P,Q) =
EQ[s(P, ω)] < ∞ for all measures P,Q on E × E equipped with σ-algebra A⊗A.

We generalize Theorem 7 to Càdlàg Markov processes. Let µ denote the Lebesgue measure on
T ′×T ′, and let ν be a measure equivalent to µ. We define s̄ν as in Definition 6. Let S̄ν(PX ,PY ) =
Ey∼PY

[s̄ν(PX , y)]. The main statement is presented below in its Càdlàg form:
Theorem 12. If s is a strictly proper scoring rule for distributions on E × E , s̄ν is a strictly proper
scoring rule for E-valued Càdlàg Markov processes on [0, T ) where T ∈ R>0. That is, for any E-
valued Càdlàg Markov processes X,Y with laws PX ,PY , respectively, S̄ν(PX ,PY ) ≤ S̄ν(PY ,PY )
with equality achieved only if PX = PY .

Proof. Following the proof of theorem 7, we can show that (Xt1 , Xt2)
d
= (Yt1 , Yt2) µ-a.e.. We

show that this statement can be extended to all (t1, t2) ∈ T ′ × T ′ using the right continuity.

Without loss of generality, let (u0, u
′
0) ∈ [0, T )2 and u0 < u′

0. We can inductively select
u1, u2, . . . , un, . . . and u′

1, u
′
2, . . . , u

′
n, . . . such that u1 ∈ (u0,

u0+u′
0

2 ], u′
1 ∈ [u′

0, T ), un+1 ∈
(u0,

u0+un

2 ], u′
n+1 ∈ [u′

0,
u′
n+u′

0

2 ), and (Xun
, Xu′

n
)

d
= (Yun

, Yu′
n
)∀n. This is possible because

(u0,
u0+un

2 ] × [u′
0,

u′
n+u′

0

2 ) has positive measure. Recall that X and Y are Càdlàg processes.
(Xun

, Xu′
n
) converges to (Xu0

, Xu′
0
) and (Yun

, Yu′
n
) converges to (Yu0

, Yu′
0
) almost surely as

un → u0 and u′
n → u′

0. Recall that E × E is also Polish. Then the convergence also holds in
distribution and (Xu0 , Xu′

0
)

d
= (Yu0

, Yu′
0
) (Lemma 5.2 and 5.7, Kallenberg (2021)).

E COMPUTATIONAL EFFICIENCY

In this section, we clarify and explain the reduction in computational complexity achieved by our
proposed method.

The O(D2) complexity arises from the previous state-of-the-art Neural SDE training method pro-
posed in Issa et al. (2023), which involves solving a partial differential equation (PDE):

f(s, t) = 1 +

∫ s

0

∫ t

0

f(u, v)⟨dxu, dyv⟩1dvdu,

as shown in Equation (2) of their paper. Backpropagation through the PDE solver introduces signif-
icant computational cost.

To approximate the double integral numerically, a rectangular rule with D discretization steps is
typically employed:∫ T

0

∫ T

0

f(u, v)⟨dxu, dyv⟩1dvdu ≈
D∑
i=1

D∑
j=1

f(ui, vj)⟨dxui , dyvj ⟩∆u∆v,

where ∆u = T/D, ∆v = T/D, and ui = i∆u, vj = j∆v for i, j = 1, . . . , D. This double sum
results in O(D2) complexity.

Furthermore, their method involves a double sum over the batch size B in the objective function
(Equation (4) in their paper). Our B corresponds to their m, and the double integral appears in their
ksig term. Consequently, their overall complexity is O(D2B2).

Our proposed method reduces the complexity from O(D2) to O(D), or from O(D2B2) to O(DB2)
when considering the batch size. This improvement is achieved because our approach eliminates the
need to solve the PDE with the double integral, avoiding the computationally expensive operations
required by the previous method.
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F ALTERNATIVE EMPIRICAL OBJECTIVES

Empirical Objective: Multiple Observations Concatenated. An unbiased estimator can be con-
structed using batches of generated paths BX = {xi}Bi=1 and data paths BY = {yi}Bi=1, where each
path is observed at more than two timestamps. Suppose for each i, we select multiple (potentially
irregular) observations at timestamps t1i , t

2
i , . . . , t

N
i where N itself can be random or a tuning param-

eter. We concatenate these multiple observations to form vectors [xi
t1i
, xi

t2i
, . . . , xi

tNi
]. The empirical

estimator is then given by:

Ŝ1(BX ,BY ) =
1

2B(B − 1)

∑
i ̸=j

k
(
[xi

t1j
, . . . , xi

tNj
], [xj

t1j
, . . . , xj

tNj
]
)

− 1

B2

B∑
i=1

B∑
j=1

k
(
[xi

t1j
, . . . , xi

tNj
], [yj

t1j
, . . . , yj

tNj
]
)
.

Empirical Objective: Adjacent Timestamps as IID Samples. Alternatively, we consider every
pair of adjacent timestamps as independent and identically distributed (i.i.d.) samples. Suppose
each data path is observed at timestamps t1i < t2i < . . . < tMi . For each pair of adjacent times-
tamps (tmi , tm+1

i ), we treat the (potentially irregular) observations as i.i.d. samples. The empirical
estimator is then:

Ŝ2(BX ,BY ) =
1

2B(M − 1)(B − 1)

M−1∑
m=1

∑
i ̸=j

k

(
[xi

tmj
, xi

tm+1
j

], [xj
tmj

, xj

tm+1
j

]

)

− 1

B2(M − 1)

M−1∑
m=1

B∑
i=1

B∑
j=1

k

(
[xi

tmj
, xi

tm+1
j

], [yjtmj
, yj

tm+1
j

]

)
.

Note that both estimators only require each data path to be observed at multiple timestamps, which
can be irregular and path-dependent. All three empirical objectives, including the one presented in
the main paper, perform similarly well in our preliminary experiments.

G ADDITIONAL EXPERIMENTAL RESULTS

We evaluate the computational efficiency of the models by comparing their training times across
different numbers of timestamps for the exchange rates dataset, with the detailed results presented
in Table 11. Additionally, we assess the training times for various dimensions of the Rough Bergomi
model, with the corresponding results summarized in Table 12.

Table 11: Training time of different methods on forex data with different lengths in terms of hours.
SDE-GAN hits the max wall times of 20 hours while the training progress is nearly 25%.

Method 64 Timestamps 256 Timestamps 1024 Timestamps
Signature Kernel 0.66 7.80 thread limit error
Truncated Signature 0.31 1.34 5.61
SDE-GAN 0.64 4.21 > 80
FDM 0.27 1.21 5.43

Table 12: Training time of Rough Bergomi model with different data dimensions in terms of hours.
Method 16 Dim 32 Dim
SDE-GAN 1.41 1.58
FDM 0.40 0.54
Signature Kernel 4.11 6.74
Truncated Signature 6.86 GPU out of RAM

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We present additional qualitative results showing the pairwise joint dynamics generated by models
trained on different datasets. Results for the metal price dataset are shown in Figure 4. Results for
the U.S. stock indices dataset are presented in Figures 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14. Results
for the exchange rates data are presented in Figure 15. Results for the energy price data are shown
in Figures 16, 17, 18, 19, 20, and 21. Finally, results for the bonds data are presented in Figures 22,
23, and 24.

Figure 4: Blue points are real samples and orange points are generated by neural SDEs. The dy-
namics of the joint distribution of gold and silver prices in the metal price data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is the silver price and the vertical axis is the gold price.

We present additional qualitative results comparing real and generated sample paths. Results for the
exchange rates data are presented in Figures 25 and 26. Similarly, Figures 27 through 31 show the
sample paths for five features from the stock indices dataset: ”DOLLAR,” ”USA30,” ”USA500,”
”USATECH,” and ”USSC2000”. Finally, Figures 32 and 33 depict the sample paths for silver and
gold prices from the metal dataset. These plots demonstrate the ability of neural SDEs to capture
dynamics across diverse datasets.
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Figure 5: Blue points are real samples and orange points are generated by neural SDEs. The dynam-
ics of the joint distribution of Dollar and USA30 in the U.S. stock indices data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is Dollar (US Dollar Index) and the vertical axis is USA30 (USA 30 Index).

Figure 6: Blue points are real samples and orange points are generated by neural SDEs. The dynam-
ics of the joint distribution of Dollar and USA500 in the U.S. stock indices data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is Dollar (US Dollar Index) and the vertical axis is USA500 (USA 500 Index).
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Figure 7: Blue points are real samples and orange points are generated by neural SDEs. The dynam-
ics of the joint distribution of Dollar and USATECH in the U.S. stock indices data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal axis
is Dollar (US Dollar Index) and the vertical axis is USATECH (USA 100 Technical Index).

Figure 8: Blue points are real samples and orange points are generated by neural SDEs. The dynam-
ics of the joint distribution of Dollar and USSC2000 in the U.S. stock indices data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal axis
is Dollar (US Dollar Index) and the vertical axis is USSC2000 (US Small Cap 2000).
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Figure 9: Blue points are real samples and orange points are generated by neural SDEs. The dynam-
ics of the joint distribution of USA30 and USA500 in the U.S. stock indices data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is USA30 (USA 30 Index) and the vertical axis is USA500 (USA 500 Index).

Figure 10: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of USA30 and USATECH in the U.S. stock indices data. Each
row of plots corresponds to a method and each row corresponds to a timestamp. For each plot, the
horizontal axis is USA30 (USA 30 Index) and the vertical axis is USATECH (USA 100 Technical
Index).
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Figure 11: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of USA30 and USSC2000 in the U.S. stock indices data. Each
row of plots corresponds to a method and each row corresponds to a timestamp. For each plot, the
horizontal axis is USA30 (USA 30 Index) and the vertical axis is USSC2000 (US Small Cap 2000).

Figure 12: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of USA500 and USATECH in the U.S. stock indices data. Each
row of plots corresponds to a method and each row corresponds to a timestamp. For each plot, the
horizontal axis is USA500 (USA 500 Index) and the vertical axis is USATECH (USA 100 Technical
Index).
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Figure 13: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of USA500 and USSC2000 in the U.S. stock indices data. Each
row of plots corresponds to a method and each row corresponds to a timestamp. For each plot,
the horizontal axis is USA500 (USA 500 Index) and the vertical axis is USSC2000 (US Small Cap
2000).

Figure 14: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of USATECH and USSC2000 in the U.S. stock indices data. Each
row of plots corresponds to a method and each row corresponds to a timestamp. For each plot, the
horizontal axis is USATECH (USA 100 Technical Index) and the vertical axis is USSC2000 (US
Small Cap 2000).
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Figure 15: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of EUR/USD and USD/JPY in exchange rate data. Each row
of plots corresponds to a method and each row corresponds to a timestamp. For each plot, the
horizontal axis is EUR/USD and the vertical axis is USD/JPY.

Figure 16: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of BRENT and DIESEL in energy data. Each row of plots corre-
sponds to a method and each row corresponds to a timestamp. For each plot, the horizontal axis is
BRENT (U.S. Brent Crude Oil) and the vertical axis is DIESEL (Gas Oil).
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Figure 17: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of BRENT and GAS in energy data. Each row of plots corresponds
to a method and each row corresponds to a timestamp. For each plot, the horizontal axis is BRENT
(U.S. Brent Crude Oil) and the vertical axis is GAS (Natural Gas).

Figure 18: Blue points are real samples and orange points are generated by neural SDEs. The dy-
namics of the joint distribution of BRENT and LIGHT in energy data. Each row of plots corresponds
to a method and each row corresponds to a timestamp. For each plot, the horizontal axis is BRENT
(U.S. Brent Crude Oil) and the vertical axis is LIGHT (U.S. Light Crude Oil).

29



1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Figure 19: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of DIESEL and GAS in energy data. Each row of plots corresponds
to a method and each row corresponds to a timestamp. For each plot, the horizontal axis is DIESEL
(Gas Oil) and the vertical axis is GAS (Natural Gas).

Figure 20: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of DIESEL and LIGHT in energy data. Each row of plots corre-
sponds to a method and each row corresponds to a timestamp. For each plot, the horizontal axis is
DIESEL (Gas Oil) and the vertical axis is LIGHT (U.S. Light Crude Oil).
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Figure 21: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of GAS and LIGHT in energy data. Each row of plots corresponds
to a method and each row corresponds to a timestamp. For each plot, the horizontal axis is GAS
(Natural Gas) and the vertical axis is LIGHT (U.S. Light Crude Oil).

Figure 22: Blue points are real samples and orange points are generated by neural SDEs. The dy-
namics of the joint distribution of BUND and UKGILT in bunds data. Each row of plots corresponds
to a method and each row corresponds to a timestamp. For each plot, the horizontal axis is BUND
(Euro Bund) and the vertical axis is UKGILT (UK Long Gilt).
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Figure 23: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of BUND and USTBOND in bunds data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is BUND (Euro Bund) and the vertical axis is USTBOND (US T-BOND).

Figure 24: Blue points are real samples and orange points are generated by neural SDEs. The
dynamics of the joint distribution of UKGILT and USTBOND in bunds data. Each row of plots
corresponds to a method and each row corresponds to a timestamp. For each plot, the horizontal
axis is UKGILT (UK Long Gilt) and the vertical axis is USTBOND (US T-BOND).
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Figure 25: Sample paths for EUR/USD exchange rates from the exchange rate dataset. Blue lines
represent real samples, while red lines represent those generated by neural SDEs. From left to right,
the plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively.
The horizontal axis represents time, and the vertical axis represents the EUR/USD exchange rate.

Figure 26: Sample paths for USD/JPY exchange rates from the exchange rate dataset. Blue lines
represent real samples, while red lines represent those generated by neural SDEs. From left to right,
the plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively.
The horizontal axis represents time, and the vertical axis represents the USD/JPY exchange rate.

Figure 27: Sample paths for ”DOLLAR” index from the stock indices dataset. Blue lines represent
real samples, while red lines represent those generated by neural SDEs. From left to right, the
plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The
horizontal axis represents time, and the vertical axis represents the ”DOLLAR” index value.
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Figure 28: Sample paths for ”USA30” index from the stock indices dataset. Blue lines represent
real samples, while red lines represent those generated by neural SDEs. From left to right, the
plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The
horizontal axis represents time, and the vertical axis represents the ”USA30” index value.

Figure 29: Sample paths for ”USA500” index from the stock indices dataset. Blue lines represent
real samples, while red lines represent those generated by neural SDEs. From left to right, the
plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The
horizontal axis represents time, and the vertical axis represents the ”USA500” index value.

Figure 30: Sample paths for ”USATECH” index from the stock indices dataset. Blue lines represent
real samples, while red lines represent those generated by neural SDEs. From left to right, the
plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The
horizontal axis represents time, and the vertical axis represents the ”USATECH” index value.
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Figure 31: Sample paths for ”USSC2000” index from the stock indices dataset. Blue lines represent
real samples, while red lines represent those generated by neural SDEs. From left to right, the
plots correspond to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The
horizontal axis represents time, and the vertical axis represents the ”USSC2000” index value.

Figure 32: Sample paths for silver prices from the metal dataset. Blue lines represent real samples,
while red lines represent those generated by neural SDEs. From left to right, the plots correspond
to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The horizontal axis
represents time, and the vertical axis represents silver prices.

Figure 33: Sample paths for gold prices from the metal dataset. Blue lines represent real samples,
while red lines represent those generated by neural SDEs. From left to right, the plots correspond
to signature kernels, truncated signature, SDE-GAN, and FDM, respectively. The horizontal axis
represents time, and the vertical axis represents gold prices.
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