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Abstract

Despite significant progress in Vision-Language Pre-
training (VLP), current approaches predominantly empha-
size feature extraction and cross-modal comprehension,
with limited attention to generating or transforming visual
content. This gap hinders the model’s ability to synthe-
size coherent and novel visual representations from textual
prompts, thereby reducing the effectiveness of multi-modal
learning. In this work, we propose MedUnifier, a uni-
fied VLP framework tailored for medical data. MedUni-
fier seamlessly integrates text-grounded image generation
capabilities with multi-modal learning strategies, includ-
ing image-text contrastive alignment, image-text matching
and image-grounded text generation. Unlike traditional
methods that reply on continuous visual representations,
our approach employs visual vector quantization, which not
only facilitates a more cohesive learning strategy for cross-
modal understanding but also enhances multi-modal gener-
ation quality by effectively leveraging discrete representa-
tions. Our framework’s effectiveness is evidenced by the ex-
periments on established benchmarks, including uni-modal
tasks, cross-modal tasks, and multi-modal tasks, where it
achieves state-of-the-art performance across various tasks.
MedUnifier also offers a highly adaptable tool for a wide
range of language and vision tasks in healthcare, marking
advancement toward the development of a generalizable Al
model for medical applications.

1. Introduction

The rapid growth of medical imaging datasets has acceler-
ated the development of deep-learning models to enhance
clinical decision-making processes. However, annotating
these extensive datasets requires specialized expertise, mak-
ing large-scale annotation unfeasible. To overcome this
limitation, one effective approach is to leverage associated
medical reports containing detailed diagnostic descriptions

provided by radiologists [52]. In recent years, deep learning
models that utilize multi-modal data as inputs have drawn
more attention, driven by advancements in attention mech-
anisms or transformer-based models [27, 40, 70].
Accordingly, vision-and-language pre-training (VLP)
models have been developed, many drawing inspiration
from the foundational CLIP model [48]. These models pri-
marily leverage a dual-encoder approach, consisting of an
image encoder and a text encoder, to independently extract
uni-modal features. They aim to maximize cosine simi-
larity between paired data via contrastive learning. Re-
searchers have further enhanced these models by incorpo-
rating domain-specific knowledge and making targeted ad-
justments to the original CLIP, resulting in label-efficient
adaptations [26, 62-64, 69, 71]. In addition, fusion-based
encoders have attracted considerable attention. These fu-
sion models utilize self-attention or co-attention mecha-
nisms to achieve early integration of visual and textual
modalities [3, 34, 35]. This joint processing enables the
learning of multi-modal representations that are crucial for
tasks requiring complex multi-modal reasoning, such as
medical visual question answering. For fusion models,
cross-modal matching with hard sampling strategies is em-
ployed to strengthen correlations between matched data.
Image-grounded text understanding with masked language
modelling (MLM), originally developed for the BERT [13],
is also deployed to enhance multi-model interaction. PTU-
nifier [10], as an example, focused on multi-modal un-
derstanding yet did not possess generative ability during
pre-training, thus necessitating the use of an additional
language decoder and fine-tuning for language generative
tasks. Meanwhile, image-grounded text generation with the
causal language modelling (CLM) is often applied to facil-
itate vision-grounded language generation tasks. However,
we observe that current VLP approaches often overlook the
generation of visual content, limiting the model’s capacity
to produce coherent and novel visual representations based
on textual or multi-modal prompts, thus reducing the poten-
tial of multi-modal learning. Although recent studies have
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Figure 1. Our MedUnifier framework incorporates learnable em-
beddings to enable multi-modal interactions. The red components
focus on the initial extraction of visual features and the reconstruc-
tion of medical images. The green elements are dedicated to the
modelling and interpretation of medical reports. Meanwhile, the
blue components apply a range of attention-masking strategies to
achieve a comprehensive fusion of image and text representations.

integrated masked image modelling (MIM) into the VLP
framework [7, 72], this approach does not fully enable the
generation of comprehensive visual content nor capture de-
tailed visual information effectively.

In this paper, we present MedUnifier, a unified VLP
framework for medical data (Figure 1), designed to seam-
lessly integrate text-grounded image generation with ad-
vanced multi-modal learning strategies, including image-
text contrastive alignment, image-text matching, and image-
grounded text generation. Our approach begins with a
Transformer model featuring learnable embeddings, in-
spired by BLIP-2 [36], a 12-layer transformer encoder as
the trainable component, paired with a pre-trained visual
encoder that embeds preliminary visual features. To extend
its functionality for vision generation, we introduce a novel
learning objective, termed text-grounded image generation
(TIG) loss. This objective leverages vector-quantization to
facilitate discrete visual representation learning [56], guid-
ing vision generation using textual data. Additionally, we
devise a novel latent adapter to connect the base model
with the image generation module, enabling end-to-end co-
training with three other learning objectives: image-text
contrastive (ITC), image-text matching (ITM), and image-
grounded text generation (ITG) losses. To our knowledge,
MedUnifier is the first model to adapt learnable embed-
dings to the medical domain, bridging the gap between ex-

isting VLP paradigms and text-grounded image generation
to enhance multi-modal alignment. The main contribution
of this study is listed below:

¢ We introduce MedUnifier, a novel Med-VLP framework
that unifies the current VLP paradigm with a language-
guided visual generation task, marking a significant step
toward an all-in-one VLP model that seamlessly inte-
grates visual and linguistic information.

* We designed a novel TIG module to capture fine-grained
details by recovering pixel-level information from hier-
archical multi-modal representations, enabling the model
to identify subtle visual details, commonly available in
medical data (e.g. small nodules, slight opacities, etc).

* We perform a series of experiments on various down-
stream studies using Chest X-rays, showcasing perfor-
mance enhancements over existing methods across uni-
modality, cross-modality, and multi-modality tasks.

* We also demonstrate the model’s adaptability in generat-
ing realistic medical images and reports, highlighting its
unique capability to augment out-of-distribution datasets.

2. Related Work
2.1. Vision-and-language Pre-training (VLP)

Vision-language models (VLMs) have attracted consider-
able attention due to their powerful ability to integrate vi-
sual and textual data, significantly enhancing image cap-
tioning, visual question answering, and cross-modal re-
trieval. The predominant paradigms for VLP can be broadly
classified into two main categories. The first one fo-
cuses on learning uni-modal encoders for text and im-
ages [26, 29, 62-64, 69, 71], respectively. However, this
dual-encoder architecture limits the capacity to establish in-
tricate interactions between text and image. Another line of
work predominantly focuses on fusion encoder-based struc-
ture [3, 34, 55, 60] to facilitate meaningful interactions be-
tween the two modalities. In the medical setting, Chen et
al. [10] proposed an effective framework to unify dual-
encode style and fusion-encoder. However, these meth-
ods do not take the generation of visual information into
consideration, and lack exploration of detailed vision con-
tent. In this study, we adopt and extend a fusion encoder-
based framework to better align visual and textual features
by incorporating vector quantization to enable the learn-
ing of discrete visual representations, thus facilitating ef-
fective vision generation guided by pertinent textual in-
formation. Compared to existing studies, our work aligns
various modalities and simultaneously creates generic and
versatile representations by leveraging the complementary
strengths of various losses synergistically, therefore allevi-
ating the additional pre-training stages for expert image to-
kenizer and iterative denoising.

29745



‘ Reconstructed Images

‘ Reconstructed Reports ‘ 11

Attention Masking

(1T (Lim) | [ 17C (£icc)
+ [}

1
1
: = 1" :
: E :: Q: learnable emb positions; | |
\ :: W: word token positions. :
: T T I " O unmasked [ masked 1
[ 4 \( N noa w '
1 Top Global Feature ff;5 Learned 1 Ooog St G !
! Lotent || [TTINNN] Embedding f9 | Global Feature f T nQOogn | Bidirectional Self- 1
Adapter 9 fets) attention Mask 1
| ” = i, 00 00
| Priorz”? [—= [ E— nw (ITm) 1
a) J_ . 1 Local Feature ogog |
! B[] Erm I o Qa w .
| Veotor Q[ s xN il . ooEm . I
! TIG Quantised = B‘ Feed Forward l ‘ Feed Forward ] ‘ Feed Forward ] ‘ Feed Forward l IT6 IIQ OOmm Multl-modgl Causal !
" (Luig) 75 (Lito) Self-attention Mask | |
1 tig itg) |1 Iw OO Om (ITG)
| ) n 0ooo |
| 1 Q w !
. % [ seifatten | [ self-Atten b selratten | [ seiratten | I OOEm 1
\ Necio — nQ OOmEmE Uni-modal Self- |1
X Quantised Prior zbottom Bottom Attention Masking Shared Weight 1" attention Mask 1
e ] nw BE OO (Tc) 1
I N\ Adapter/\_ ) EE OO y
: Image Generator |mag.T+¢ Encoder = Text Generator : : 1
— 1 1
! ’I '! O " :
‘ TIG H Text-grounded Image Generation ‘ ‘ IT™ l ‘ Image Text Matching ‘
Image Learnable Report
‘ ITG H Image-grounded Text Generation ‘ Inputs X! Embedding Q Inputs X* ‘ ITC l ‘ Image Text Contrastive ‘

Figure 2. Left: model architecture consists of an image-text encoder, a text generator, and an image generator to extract the most relevant
visual and textual representations by optimizing four distinctive loss functions (ITM, ITC, ITG, TIG). Right: self-attention masking
strategies for different learning objectives. Bottom: detailed learning objectives. Integrating visual and textual information enables deep
fusion through cross-modal interaction and allows each modality to be processed independently for uni-modal generation.

2.2. Text to Image (T2I) Generation

Text-to-image (T2I) tasks aim to generate an image accord-
ing to a given textual description. Generative adversarial
networks (GANs) [31, 39, 51, 68] and auto-regressive (AR)
transformers [16, 19, 49, 65] were widely recognized for
their exceptional performance and popularity. Advance-
ments in variational auto-encoders (VAEs) and vector quan-
tized VAEs (VQ-VAEs) have further improved T2I genera-
tion by introducing a discrete latent space for more stable
generation [15, 20, 45, 49, 65]. LLM-CXR [33] incorpo-
rated pre-trained VQ-GAN into powerful LLM, predicting
dual-modal tokens. Moreover, diffusion models [14, 25]
have recently taken the leading position in T2I generation
tasks. By adapting the advanced diffusion model, MedM2G
[67] emphasized high-quality content generation. Despite
their effectiveness, diffusion models are notably resource-
intensive, often necessitating thousands of iterative steps for
denoising, leading to significantly slower speeds. It is hard
for diffusion models to get evident visual features due to
modelling data distribution implicitly [54]. Consequently,
for our T2I tasks, we turn to VQ-VAEs to learn more ro-
bust representations, thereby enhancing the quality and ef-
ficiency of medical image generation effectively.

3. Method

In this section, we introduce our MedUnifier framework for
aggregating four key learning objects on Med-VLP. We first
formulate the problem to be solved in §3.1 . Then we de-
scribe the process of extraction and fusion of multi-modal
features using the base model in §3.3 with model architec-

ture presented in §3.2. Lastly, we illustrate the integration of
our proposed text-grounded image generation module and
connection with the base model in §3.4.

3.1. Problem definition

We formulate the Med-VLP problem with inspiration from
the previous studies [9, 10]. Formally, given a set of medical
images X! € {«%,2%,...,«% } with corresponding clinical
reports X1 € {a!, 2k, ..., 2%}, the entire pre-training ob-
jective function can be defined as

M
Ltotal = Z )\mE'rn(Hm(-F(XIaXT)))

m=1

)

where F represents backbone taking the paired [z¢, z!] as
input. H,, stands for task-specific modules for further en-
coding visual and textual features. £,,, and \,,, are different
loss functions and their weights for the overall loss calcula-
tion with the total number of loss functions being M.

3.2. Model architecture

The proposed model mainly consists of three components,
an image-text encoder, a text generator, and an image gener-
ator with cross-attention layer, masking strategies and vec-
tor discretization for extraction on the visual and textual
representations, as shown in Figure 2.

Image-text encoder: We adopted BERT-styled Trans-
former [37] as image-text encoder network for fusing multi-
modal information in depth. The image-text encoder is con-
structed by 12 transformer blocks. Its input contains a set
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of learnable embeddings and clinical reports tokenized by
words [13]. Learnable embeddings and textual input inter-
act with each other through self-attention layers [57] using
different masking strategies for various pre-training tasks.
We further processed input images into a set of patch em-
beddings by using a pre-trained, frozen Vision Transformer
(ViT) from [18], attaining informative visual features while
saving computational costs during training. Moreover, the
initial visual embeddings engage with the image-text en-
coder network through cross-attention layers, which are in-
tegrated within each transformer block. At the final layer
of the last transformer block, we incorporated distinct, task-
specific heads tailored to address various tasks.

Text generator: To generate accurate and coherent med-
ical reports, we duplicated the text encoder of the image-
text encoder as a language-generative network with shared
weights (coloured in green). A decoding head was further
added on the top to map each word token embedding to the
vocabulary dictionary.

Image generator: The primary objective of VLP is to
learn representations that are transferable across tasks.
While the most advanced vision generative models, such
as GANs and DMs, excel at generating high-quality and
diverse visual content, they typically capture data distri-
butions implicitly, which these models make it challeng-
ing to explicitly access intermediate visual representations,
limiting their utility in VLP applications. Furthermore
medical data often display similar visual or textual pat-
terns and hence encompass nuanced yet crucial medical
pattern, which is often overlooked by the existing VLM
approaches. To address these constraints, we integrated a
vector-quantized variational auto-encoder (VQ-VAE) [56]
within a cross-modal interactive fusion framework to gen-
erate high-quality synthetic visual content and improve per-
formance across multiple downstream tasks.

3.3. Fusion of visual and textual features

Here, we outline the information flow within the image-text
encoder, as well as describe three types of pre-training tasks
(ITC, ITM, ITG) in detail.

Given that 2* € RE*XH*W we divided the entire image
into L, patches with spatial size (h,w) through convolu-
tional operation and added learnable positional encodings:

X' =[piors)P1>Pas- - PL,] + Epyg )

We prepended pj¢ ) for aggregation of visual information.
Then these patch embeddings get passed through a standard
pre-trained ViT-g, denoted as Ej, to attain preliminary vi-

sual embeddings f* € R(LvH1h)xdo.

Er (XY

fv - [.f’[UCLS]v f’luocal} 3
:[.f’[UCLS]v ’ll)afgv"'af%v] 4

where fiog) is global visual feature, fj,., € RFv*
represent local visual features.

For the textual input, we followed BERT [13] to tokenize
the input text to word embeddings, adding learnable posi-
tional encodings:

Xt = [w[SPE]7w17w2a"'7th]+E§)OS (5)

We prepended a special token w(spg), utilizing different
[SPE)] tokens for identifying differing tasks.

In order to enable the interaction between word em-
beddings and preliminary visual embeddings, we con-
structed a set of learnable embeddings, denoted as Q@ =
[41,42,--,9.,),Q € R%a*da We unified word embed-
dings and learnable embeddings of the same feature dimen-
sion, e.g. d; = d,. Then we concatenated @ and X tto
form the input of the image-text encoder, denoted as Fq,
encoding it to get output embeddings:

Eq(1Q. X']) = [£*, f'] 6)
= [fqa fIESPE]a ffocal] (7)

We employed a cross-attention mechanism [1] to facilitate
interaction between learnable embeddings and preliminary
visual embeddings. This design enables f¢ to function as
the final visual representation. To ensure clarity over the
fusion of learnable embeddings and textual representations,
we implemented distinct masking strategies within the self-
attention layers (Figure 2, right panel).

Image-text contrastive learning (ITC) The task aims to
align visual and textual representations by maximizing their
mutual information through a contrastive approach. To ac-
complish this, we replaced w[SPE] with w[CLS] to fa-

cilitate global textual representations denoted as ffc Ls] €

R?. Furthermore, we implemented uni-modal masking
(Figure 2, right panel) to enable learnable embeddings
Q and textual embeddings X' to attend exclusively to
themselves. f¢ and ffc s are then linearly projected to
representations as:

gq = qutc( q) (8)
g' = Hi(Flors) ©)

where HY, ., H!,. are ITC heads. We computed the pairwise

itc
similarity between each visual and textual representation g?
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and g* and chose the highest one as the image-text similarity
to calculate bi-directional contrastive loss:

ztc‘t) N Z

exp(max < g7, gt > /7)
Zn L exp(max < g7, gt > /7)

(10)
N
£(§|q) Z exp(maX < gk’gk > /T)
-1 Zn 1 exp(max < gnagk; > /T)
(11)

where 7 € R is a scaling temperature parameter initialized
to 0.07, N is mini-batch size and <-, -> represents the co-
sine similarity. The overall ITC loss is defined as:

Eitc - itc itc

We here expanded visual representation space from a con-
ventional single vector to a set of vectors e.g. f? € REa*d
which is different from [26, 63].

Image-text matching (ITM) This task aims to learn a
precise alignment by classifying image-text pairs as either
positive or negative. We implemented a bi-directional mask
(Figure 2, right panel) that allows all learnable embeddings
and word token embeddings to attend to one another. The
resulting output of learned embeddings denoted as f9, cap-
ture enriched multi-modal information. These tokens were
then fed into a two-class linear classifier, H;:,,,, Where the
outputs are averaged across learned embeddings to generate
a logit and compute the Image-Text Matching (ITM) loss:

1 Y ,
Litm = N ; —log(p(Yk|Y%)) (13)
1 &
.1 4 q
Y = Lq Hztm(.fi)v (14)

1

-
Il

Y represents ground truth labels within mini-batch by hard
negative samples mining, as stated in [34].

Image-grounded text generation (ITG) This task is to
generate text conditioned on paired images. To achieve a
coherent and precise generation of medical reports within
a unified VLP framework, we chose CLM [5, 47] where
each word token attends only to preceding tokens, follow-
ing a GPT-style language model architecture [5]. Inspired
by UniLM [17], we implemented a multi-modal causal self-
attention mask (Figure 2, right panel). We replaced the
special token w[SPE] with w[DEC] to signal a decoding
task. We also introduced a word prediction head, denoted

as H;t4. This learning objective is formalized as:

N L

Lito = NI ZZ—log (pi) (15)
T k=11=1

pi:SOftmax( itg(flocal)) (16)

=p(w;|Q, ..., w;_1) (17)

3.4. Text-grounded image generation (TIG)

We also introduce an innovative and efficient module de-
signed for the text-grounded image generation task, with in-
tegration into the previously discussed image-text encoder
and text generator for a versatile Med-VLP model.

Rethinking VQ-VAE The VQ-VAE [56] offers a signifi-
cant advantage over other generative models due to its abil-
ity to explicitly learn discrete visual representations. This
feature aligns closely with the image-text encoder, which
similarly learns discrete representations from a dictionary
of learnable embeddings. Motivated by this, we chose to
adopt VQ-VAE as the image generator in our framework,
which forms a different unified Med-VLP framework from
other studies [7, 10, 72]. Additionally, the image-text en-
coder generates two distinct types of visual features: one for
abstract visual representations, denoted as f?, and another
for fine-grained, local visual embeddings, f;,.,;- Conse-
quently, the image-text encoder can be viewed as a powerful
multi-modal encoder, akin to the image encoder in conven-
tional VAEs [24, 56]. Inspired by the work of [50], we de-
veloped hierarchical vector quantizers and image decoders.
Figure 2 further illustrates the proposed text-grounded im-
age generator. Our TIG module is specifically designed to
capture fine-grained details through recovering pixel-level
information from hierarchical multi-modal representations,
enabling the model to identify subtle visual details.

Bridging the gap The features f¢ € RZ«*% contains
textual implications derived from the co-training image-text
encoder, which we regard as the top latent representation,
denoted z!°P € RLa*da_ In contrast, f},.,, € REF**9 does
not include textual information. Therefore, we concatenate

el With the aggregated textual representation, f[c Ls] €

R'*9: along the feature dimension, resulting in the multi-

modal bottom latent representation z?* € REwx(dvtdi),
At the top level, we devise the latent adapter, denoted as

Z4op, for transforming z'°? into spatial feature map z°P:

2P = Zy,,(2"P) (18)
where Z;,, consisted of a nonlinear transformation, spa-
tial positional encoding summer [61] and a residual block
[22]. The illustration can be found in appendix 7. We re-
shaped z%°P and then pass it through Z;,,, reaping z!°? €
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Rtop XhtopXwion -~ Followed by a vector quantization layer
with a latent embedding space ¢‘°P, we gain discrete fea-
ture map z/P € R¥tor X feopXweop:

zZ"P = quantizero,(zL°P) (19)

At the bottom level, in accordance with the top level, a
latent adapter and vector quantizer with a latent embedding

space e’°!*°™ are deployed to gain a discrete feature map:

200 = Z00(2%) (20)

bot ~ bot t
z,%" = quantizeryo;(2.”, 2,”) (21)

where z%°* are viewed as having spatial size hpor X Wpot =

L x W Producing z%°"**™ is conditioning on z!°7.
We built hierarchical decoders D to recover raw images

from discrete multi-modal representations:
it = D(zlP, 20) (22)
The text-grounded image generation (TIG) loss is formu-
lated as:
N

1 ;
Liig = 5 > —logp(wh|2g”, 25) (23)
k=1

+ [[sglze] — el + Bu [|sele’] — =7
+ ||sg[zl;°t} o 6bot||2 +ﬂ2 HSg[EbOt} o ZZOtH2

where the negative logarithmic term can be written as mean
square error (MSE) Hx}€ — Ty sg[-] is gradient stop oper-
ation. Hyper-parameters (31, 32 are both set to be 0.5.

3.5. Total learning objectives

We provide a comprehensive summary of all the learning
objectives and present the ultimate loss function:

£t0tal = )\lﬁitc + >\2£itm + >\3£'itg + )\4£tig (24)

Four weights A were set to 1 in experiments. These weights
were determined by ablation study (see appendix 11).

4. Experiments

We perform the pre-training on the current largest multi-
modal medical dataset, MIMIC-CXR v2.0.0 [30] and eval-
uate our model on various downstream tasks, followed by
an ablation study for probing purpose, which shows the pro-
posed method’s superiority.

4.1. Implementation details

We employed a BERT model as the primary network for
the image-text encoder and utilized ViT-g as the pre-trained
ViT. The input image resolution was set to 224 x 224, with
a maximum text length of 95 tokens, and 32 learnable em-
beddings. The top and bottom codebook size were both

set to 512 with feature dimension of 768. For optimiza-
tion, we applied the AdamW optimizer [43] with parame-
ters 51 = 0.9, B2 = 0.95, and a weight decay of 0.05. A
cosine learning rate decay schedule was used, with a peak
learning rate of le-4. We incorporated a warm-up phase for
the initial 5% of training steps, starting with a learning rate
of le-5. The pre-training process was conducted on four
NVIDIA A100 GPUs.The implementation details are fur-
ther elaborated in appendix 8.

4.2. Medical Vision-and-Language Benchmark

To assess the effectiveness of our method, we conducted
experiments across three types of tasks: uni-modal, cross-
modal, and multi-modal. We conducted experiments on
MedUnifier with/without TIG and compared with previous
studies as our main experimental results. All benchmark
datasets used in experiments pertain specifically to radi-
ology with detailed descriptions in the appendix 9. For
baselines, we took reference from papers and implemented
them using official codes: ConVIRT[69], GLoRIA[26],
BioViL[4], LoVT [44], MedCLIP[62], MGCA [58],
PRIOR [11], REFERS [71], CXR-CLIP [64], ViLT[2],
R2Gen [9], PTUnifier [10], DCL [38], MOTOR [41],
UniXGer[32], RoentGen[6], LLM-CXR[33].

Uni-modal tasks assess the learned visual representations
for image modality by applying uni-modal masking within
classification scope on datasets such as RSNA Pneumonia
[53], SIIM-ACR [66], and COVIDx [59]. To examine the
model’s data efficiency, we fine-tune it using different pro-
portions of the training data (1%, 10%, or 100%).

Cross-modal tasks require models to align vision and
language modalities. We conduct experiments across three
tasks: image-to-text retrieval (ITR), text-to-image retrieval
(TIR), and zero-shot image classification (ZS). For ITR
and TIR, we report cross-modal information retrieval met-
rics, the mean Average Precision at K (mAP@K), using the
MIMIC 5x200 dataset. In the ZS task, we employ MIMIC
5x200, CheXpert 5x200 [11, 26], and draw 500 positive
and 500 negative samples from the full RSNA Pneumonia
dataset [53] for evaluation purpose.

Multi-modal tasks generate uni-modal content through
multi-modal interaction. We carry out two kinds of experi-
ments including image-grounded text generation (ITG) and
text-grounded image generation (TIG). For ITG, we adopt
the MIMIC-CXR held-out test set to evaluate the quality
of generated reports. Standard natural language generation
(NLG) criteria are used to assess the performance, includ-
ing BLEUn [46], METEOR [12], and ROUGE-L [42]. For
TIG, following [50], we first train two Pixelsnail models [8]
to model multi-modal priors 2P, zb°*. Then we sample
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RSNA (AUC) SIIM (AUC) COVIDx (ACC)
Methods 1% 10% 100% 1% 10% 100% 1% 10% 100%
ConVIRT[69] 842 869 887 842 857 915 725 825 920
GLORIA[26] 84.1 868 89.1 851 885 921 665 805 88.0
BioViL[4] 820 854 836 798 81.6 905 - - -
LoVT [44] 85.1 865 893 855 885 922 - - -
MGCA [58] 858 877 892 861 89.6 920 748 848 923
PRIOR [11] 857 87.1 892 872 89.1 923 - -
MedUnifer (w/o TIG) 86.3 87.1 88.1 87.6 887 923 753 875 92.8
MedUnifer (w TIG)  87.6 88.8 91.7 879 925 948 768 883 935

Table 1. Fine-tuned image classification results on RSNA, SIIM and COVIDx with 1%, 10%, 100% training data. Area under ROC curve
(AUROC [%]) are reported for RSNA and SIIM datasets, and accuracy (ACC [%]) is reported for COVIDx dataset. The best and second-
best results are highlighted in bold and underlined, respectively. Our method achieves the best performance across all datasets.

Image-Text Retrieval (ITR) Text-Image Retrieval (TIR)

Methods
mAP@1 mAP@5 mAP@I0 mAP@1 mAP@5 mAP@10

ConVIRT[69] 46.5 53.9 53.8 20.0 454 355
GLoRIA[26] 46.7 56.4 55.0 51.8 595 58.9
BioViL[4] 47.3 57.7 55.6 54.6 64.3 62.8
MedCLIP [62] 47.6 58.0 55.9 56.3 69.9 66.7
MGCA [58] 47.1 574 554 53.1 61.9 61.1
REFERS [71] 524 59.9 58.6 60.6 71.9 69.0
CXR-CLIP [64] 51.8 61.2 58.5 60.2 69.2 64.6
MedUnifier (w/o TIG) ~ 57.4 65.4 60.3 59.6 68.3 63.4
MedUnifier (w TIG) 60.7 66.6 61.7 63.1 70.8 64.4

Table 2. Cross-modal retrieval results on MIMIC-CXR 5x200
dataset. The top K (1, 5, 10) mean Average Precision metrics are
reported. Our method achieves the best performance for ITR tasks.

Methods MIMIC 5x200 | CheXpert 5x200 | RSNA
ACC ACC ACC
ConVIRT[69] 43.8 352 77.4
GLoRIA[26] 475 45.0 68.3
BioViL[4] 48.5 422 77.1
MedCLIP[62] 47.1 41.1 81.8
MGCA [58] 48.0 40.9 76.2
REFERS [71] 49.5 41.8 78.0
CXR-CLIP [64] 49.7 35.9 76.9
MedUnifer (w/o TIG) 44.8 40.8 85.0
MedUnifer (w TIG) 50.4 435 $2.0

Table 3. Zero-shot image classification results on MIMIC 5x200,
CheXpert 5x200 and RSNA datasets. Our method achieves the
best performance for MIMIC 5x200 and RSNA datasets. Note
that GLoRIA is trained on the CheXpert dataset.

latent encodings from both priors and generate new medi-
cal images by decoding latent encodings. For quantitative
analysis, we present FID [23] scores.

4.3. Results and Analyses

To validate the effectiveness of MedUnifier, we conduct
experiments on the above vision-and-language benchmark.
The results of the main experiments are presented in Ta-

ble 1,2, 3, 4 5 and Figure 6. We observe several notewor-
thy findings in our results. First, our model outperforms
prior studies on uni-modal tasks across various downstream
datasets, as shown in Table 1. This improvement suggests
that integrating TIG significantly enhances the model’s abil-
ity to learn more transferable visual representations. Sec-
ond, for cross-modal retrieval, MedUnifier model achieves
the highest performance, demonstrating a superior ability
to understand and integrate cross-modal content compared
to other models (see Table 2). The obtained results further
highlight the better performance of MedUnifier, suggesting
that our approach supports the necessary complementary
semantic data for cross-modal retrieval. We also observe
that excluding the TIG module slightly decreases MedUni-
fier’s effectiveness in text-image retrieval tasks, which may
be a result of an over-reliance on ITG that leads to an im-
balance in vision-language fusion. In addition, MedUnifier
demonstrates better performance on zero-shot classification
tasks for both the MIMIC 5x200 and RSNA datasets in Ta-
ble 3. However, GLoRIA outperforms our model on the
CheXpert 5x200 dataset, likely due to its pre-training on
the full CheXpert dataset with accompanying medical re-
ports. Nonetheless, the results indicate the effectiveness of
employing prompt ensembles within the proposed method,
leading to enhanced overall performance improvements.
Table 4 demonstrates that our models, both with and with-
out the TIG module, surpass previous methods for image-
grounded medical report generation. The Med-VLP frame-
work also gains substantial advantages from incorporating
causal language modelling, which together contributes to
its improved performance. In Figure 3, we provide a com-
parison of the generated report and ground truth report. Fi-
nally, we conduct both quantitative and qualitative analyses
on text-grounded image generation tasks in Table 5 and Fig-
ure 6 (see appendix). It highlights that MedUnifier with
TIG achieve comparable performance for medical vision
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Methods MIMIC-CXR test set

BL-1 BL-2 BL-3 BL-4 MTR RG-L
DCL[38] - - - 109 150 284
MOTOR[41] - 21.3 - 15.6 193 314
ViLT[2] - 21.3 - 9.2 - 29.6
R2Gen [9] 353 21.8 145 103 142 277
PTUnifier [10] - - - 10.7 - -
MedUnifier (w/o TIG) | 40.1 244 160 113 188 29.6
MedUnifier (w TIG) 415 263 181 129 227 34.0

Table 4. The performance of all baselines and our method on the
test set of MIMIC-CXR dataset for Natural Language Generation
(NLG) metrics. BL-n denotes BLEU score using up to n-grams;
MTR and RG-L denote METEOR and ROUGE-L, respectively.
Our method achieves the best performance across all metrics.

generation tasks with less model’s complexity (one-stage
pre-training) then existing models [6, 32, 33], all of which
require additional pre-training for image tokenizer or itera-
tive denoising. From a direct visual inspection, the recon-
structed visual samples are nearly indistinguishable from
authentic radiographs. Moreover, synthetic samples gen-
erated from multi-modal priors demonstrate high diversity,
highlighting their potential to augment out-of-distribution
medical data effectively.

Ground Truth: Heart size is normal. The aorta is tortuous as before. The mediastinal and hilar
contours are normal. The pulmonary vasculature is normal. Lungs are clear.

Generated: PA and lateral views of the chest provided. There is
. The cardiomediastinal silhouette is normal. Imaged osseous structures are
intact. No free air below the right hemidiaphragm is seen.

Ground Truth: ___. No relevant change is noted. The bilateral chest tubes are in
stable position. Stable position of the mediastinal drains. There is no evidence for the presence
of a pneumothorax. No larger pleural effusions. The
alignment of the sternal wires is unremarkable. Mild to moderate pulmonary edema is present.
g and support devices have been
pneumothorax

monary venous pressure.
Retrocardiac opacification is consistent with volume loss in the left lower lobe.

Generated:

Figure 3. Comparison of ground truth and generated radiology re-
ports reveals strong semantic alignment. In the top figure, both
reports describe normal heart size, no pneumothorax or pleural
effusion, and a normal cardiomediastinal silhouette, with the gen-
erated text adding details on osseous structures/intrathoracic pro-
cesses. In the bottom figure, both reports align on pneumothorax
and cardiomegaly. The same colours denote matched content be-
tween the generated sequences and the ground truth report.

4.4. Ablation study

To demonstrate the efficacy of our proposed method, we
perform an ablation study (Table 6) across various learning
objectives. The results indicate that using only the ITC loss
(ID 1) yields the lowest performance. As ITM and ITG ob-
jectives are incrementally incorporated, performance gradu-
ally improves (IDs 2 and 3), highlighting how refined cross-
modal alignment and multi-modal language modelling en-
hance the model’s overall capabilities. Interestingly, the
model with TIG (ID 4) surpasses the one with ITG (ID
3). We attribute this phenomenon to the relative difficulty

Methods | FID | | Methods | FID |
UniXGer[32] 78.2 | Validation set 17.2
RoentGen[6] 42.4 Reconstruction 27.2

LLM-CXR[33] | 22.8 | MedUnifier 46.2

Table 5. FID score [23] on reconstructed and synthetic images, us-
ing the MIMIC-CXR pre-training dataset as the reference dataset.
The FID score using MIMIC-CXR validation is also provided for
a fair comparison. Reconstructed images are generated by pass-
ing the training set through our MedUnifier. Synthetic images are
produced from sampled and decoded latent encodings using the
trained Pixelsnail models and VAE decoder.

Learning Objectives ‘ ITR ‘ Zero-shot cls ‘ Fine-tuned cls

ID‘

MIMIC 5x200 | RSNA  SIIM  COVID

ITC ITM ITG TIG ‘ mAP@1 ‘ (ACC) (AUC) (AUC) (ACC)
1 v 53.7 41.4 87.0 89.4 90.8
2 v v 55.2 443 87.1 89.8 91.5
3 v v v 574 44.8 88.1 92.3 92.8
4 v v v 585 46.2 89.1 92.6 91.3
5 v v v v 60.7 50.4 91.7 94.8 93.5

Table 6. Ablation studies on the different modules. The best per-
formance is achieved using all objectives. Details see appendix 11.

of generating pixel-level image representations guided by
text, as compared to generating word-level representations
guided by visual input, which leads the model to learn more
abstract, well-aligned representations. Ultimately, the inte-
gration of all objective types (ID 5) enables the model to
achieve optimal performance, underscoring the viability of
incorporating vision generation into existing frameworks.

5. Conclusion

In this paper, we introduce a novel and unified Med-VLP
model, MedUnifier, which optimizes four distinct learning
objectives simultaneously. By leveraging learnable embed-
dings and encoding raw images through a pre-trained Vi-
sion Transformer (ViT), MedUnifier circumvents the need
to learn visual embeddings from scratch. Additionally, a
VQ-VAE-based text-grounded image generation task is fur-
ther incorporated into the Med-VLP framework to enhance
its representation learning capacity. It reconstructs pixel-
level visual details from both image and report, facilitat-
ing fine-grained visual understanding commonly available
in medical data (subtle visual details e.g. small nodules,
slight opacities, etc.) and efficient use of multi-modal rep-
resentations through hierarchical latent adapters of dynami-
cally adjusting the abstraction for each mode. Our proposed
method effectively complements existing Med-VLP frame-
works and achieves state-of-the-art performance. Our work
also has significant implications for enhancing the VLP de-
velopment for radiological applications.
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