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ABSTRACT

Nonlinear dimensionality reduction often lacks interpretability due to the ab-
sence of source features in low-dimensional embedding space. We propose Fea-
tureMAP, an interpretable method that preserves source features by tangent space
embedding. The core of FeatureMAP is to use local principal component anal-
ysis (PCA) to approximate tangent spaces. By leveraging these tangent spaces,
FeatureMAP computes gradients to locally reveal feature directions and impor-
tance. Additionally, FeatureM AP embeds the tangent spaces into low-dimensional
space while preserving alignment between them, providing local gauges for pro-
jecting the high-dimensional data points. Unlike UMAP, FeatureMAP employs
anisotropic projection to preserve both the manifold structure and the original data
density. We apply FeatureMAP to interpreting digit classification, object detec-
tion and MNIST adversarial examples, where it effectively distinguishes digits and
objects using feature importance and provides explanations for misclassifications
in adversarial attacks. We also compare FeatureMAP with other state-of-the-art
methods using both local and global metrics.

1 INTRODUCTION

Nonlinear dimensionality reduction methods are widely used for visualising and preprocessing high-
dimensional data in machine learning (Tenenbaum et al.| |2000; Roweis & Saul, 2000; |[Zhang &
'Wang, 20065 Donoho & Grimes}|2003; |Belkin & Niyogi, 2003;|Zhang & Zhal [2004; |Van der Maaten
& Hintonl, 2008 Mclnnes et al., [2018]). These methods assume that the intrinsic dimensionality of
the underlying manifold is significantly lower than the ambient dimensionality of real-world data
(Levina & Bickel, 2004} Pope et al.,|2021; Wright & Mal|2022). Nonlinear dimensionality reduction
techniques approximate this manifold using a discrete graph, such as a k-nearest neighbor (KNN)
graph. These methods project data from high-dimensional to low-dimensional space to preserve the
topological structure of the original data.

While nonlinear dimensionality reduction is effective for visualizing high-dimensional data,
one major limitation is the lack of interpretability in the reduced-dimension results (Mclnnes
et all 2018)). Unlike linear methods such as Principal Component Analysis (PCA), where
the dimensions in the embedding space correspond to the directions of the greatest vari-
ance of the original data, nonlinear methods do not provide such clear interpretations.

Specifically, nonlinear dimensionality reduction, such as t-SNE and UMAP, prioritises preserving
distances between data points, which often results in the loss of source feature information in the
embedding space. Consequently, it fails to illustrate feature contributions, or loadings, as effectively
as linear methods like PCA, making it challenging to explain the significance of individual features
in the reduced-dimensional space.

In this paper, we aim to enhance the interpretability of nonlinear dimensionality reduction. Beyond
preserving the topological structure of data points in the embedding space, we focus on incorporating
source features to create a more interpretable approach. Feature information is encoded within the
column space of the data, and we use the tangent space to locally represent this column space
(Singer & Wu, 2012} [Lim et al., 2021)). The concept of employing tangent space arises from the
observation of anisotropic density on a manifold, where some curves passing through a point are
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Figure 1: FeatureMAP enables gradients in visualization. a. FeatureMAP embeds the group of digit
1 images from the MNIST dataset into a two-dimensional space. b, c. A randomly selected data
point (highlighted in red) is displayed along with its associated tangent space, spanned by the basis
vectors v; and vy, with the top-10 feature gradients annotated. d. The feature importance, derived
from the magnitude of the gradients, is mapped onto the selected image as a saliency map. This
map highlights the the digit’s edge through feature importance. e. The tangent spaces are visualized
using local gauges by local PCA bases. f. The feature gradients of pixel 127 are visualized, showing
both direction and magnitude (inset plot).

flat while others are steep, reflecting the varying degrees of feature variation in different directions.
The set of tangents to these curves forms the tangent spaces, which incorporates the source feature
information.

We propose Feature-preserving manifold approximation and projection (FeatureMAP), to address
these gaps by integrating feature preservation directly into the embedding process. Unlike exist-
ing methods, it embeds tangent spaces alongside neighborhood graphs, enabling a more faithful
representation of local geometry and feature relationships. This distinct approach ensures that the
embedding not only maintains global and local accuracy but also supports interpretability by visu-
alizing feature contributions.

We approximate the manifold’s topological structure using a kNN graph and compute the tangent
space by local PCA at the local nearest neighbours. Based on the tangent space, FeatureMAP
computes the gradient for each feature, enabling the computation of both feature importance and
the direction at each point. Feature importance at a data point serves as a saliency map, highlighting
the significant features after embedding, while feature direction illustrates how features change
locally in the low-dimensional space ( Fig. [I). Additionally, FeatureMAP embeds the tangent
spaces to construct local gauges for projecting data points in the low-dimensional space. The gauge
at each point is associated with a hyperellipsoid, with its radii determined by the singular values,
reflecting anisotropic density. Thus, FeatureMAP preserves this anisotropic density by maximising
the correlation between the local anisotropic radii in the high- and low-dimensional spaces.

To summarize, we make the following contributions:

* We propose FeatureMAP, an interpretable nonlinear dimensionality reduction method that
preserves source features and local density.

* We evaluate FeatureMAP on digit and object data. FeatureMAP uses feature gradients to
successfully explain the digit classification and object detection.

* We apply FeatureMAP to MNIST adversarial examples to explicitly show that the adver-
sarial attack changes the feature importance, which fools the LeNet classifier.
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In the following sections, we begin by discussing the related works before introducing the proposed
method. This is followed by experiments demonstrating the method’s application to digit classi-
fication, object detection, and MNIST adversarial examples. We also present a comparison with
state-of-the-art methods using both local and global evaluation metrics.

2 RELATED WORK

Nonlinear dimensionality reduction is often considered superior for preserving distance and neigh-

borhood information (Borg & Groenen| 2005}, [Van der Maaten & Hinton|, [2008; [McInnes et al.
2018). Methods like t-SNE, UMAP, and LargeVis rely on kNN graphs to approximate the

manifold (Van der Maaten & Hintonl [2008; [McInnes et al., 2018 [Tang et all 2016). Recent
improvements, such as TriMAP(Amid & Warmuth, 2019), PACMAP (Wang et al., 202T)), and
DensMAP (Narayan et al 2021), aim to better preserve global and local properties. Moreover,
h-NNE (Sarfraz et al. 2022) applied a hierarchical nearest neighbour graph to preserving multi-
level grouping properties of original data. SpaceMAP 2022) used space expansion to
match the high and low dimensional space, while CO-SNE extended t-SNE from
Euclidean space to hyperbolic space. However, these methods lack interpretability as they do not
incorporate source features into the embeddings.

The interpretability of nonlinear dimensionality reduction has been largely overlooked in the design
and evaluation of embedding methods (Liu et al. 2016} [Vellido et al.l 2012} [Frénay & Dumas),
[2016; [Dumas et all, 2018). While linear methods like PCA naturally provide interpretability by
revealing source features (Gabriel, [1971), few approaches have addressed this issue in nonlin-
ear methods. Liu er al. (Liu et all examined the trade-off between interpretability and
embedding structure, and Bibai et al. (Bibal & Frénay| 2019} [Bibal et all 2018} [Marion et al
2019; [Sips et all 2009) proposed explaining low-dimensional axes and scatter plot positions.
Wu et al. (Wu et al., [2019) introduced subspace projection for kernel dimensionality reduction,
and Bibal et al. (Bibal et al) [2020) adapted local interpretable model-agnostic explanations
(LIME) to explain t-SNE. Bardos er al. (Bardos et all, 2022) introduced a model-agnostic expla-
nation technique for dimensionality reduction. More recently, [Corbugy et al. (2024) proposed
gradient-based explanations for nonlinear methods, relying on loss function’s derivatives. In
contrast, our method, FeatureMAP, directly computes gradients over the manifold using local PCA,
enhancing the exploration of topological structures and enabling a more interpretable embedding.

3 THE FEATUREMAP METHOD

We present FeatureMAP to augment manifold approximation by preserving feature information
through gradient calculation. We begin by computing the tangent spaces by local PCA, which en-
ables computing manifold gradients. Next, we embed the tangent spaces while preserving their
alignment, and then project the data points along the embedded gauges into a low-dimensional
space. In the following sections, we elaborate on each step and validate the proposed methods.
Fig. 2)illustrates the framework of our method.

3.1 MANIFOLD GRADIENTS

We follow the manifold assumption, where the data points {1, ..., xm}El C R” lie on a d-
dimensional Riemannian manifold M¢ embedded in R™, with the intrinsic dimension d < n. For
each data point x;, the M has a tangent space T},, M consisting of all vectors at z; that are tangent
to the manifold. Let { f1, ..., f, } denote the basis of the data points, which spans the feature space.

"Vectors of lower-case letters refer to column vectors.
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Figure 2: The FeatureMAP framework. a, b, c. FeatureMAP begins by taking n-dimensional data
as input. In step 1, it constructs a topological space using a k-nearest neighbors (kNN) graph. In
step 2, it computes the tangent space and corresponding gradients using local PCA, and then embeds
the tangent spaces to preserve their alignment (as shown in Figure Fig.[3). d. In step 3, along the
embedded tangent space, FeatureMAP applies an anisotropic projection to project the data into a
low-dimensional space, while illustrating the feature gradients in the local gauges.

Pj; = exp(—(||lz; — =] — dist;) /i)
Pij = Pjji + Pijj — Pyl

(1)

where x; is within the % nearest neighbours of x;, dist; is the distance from x; to its nearest neigh-
bour and ; is adaptive for each i corresponding to the length-scale. Note that the approximate kNN
algorithm 201T) provides theoretical guarantees and has been experimentally shown to
effectively retrieve true positives while controlling false positives, even in the presence of noise.

Based on the kNN graph depicting the topological structure, we retrieve the important features of the
data points X . Obviously, the feature information is encoded in the column space of X, where the
principal components capture the majority of information (Jolliffe & Cadimal, 2016). Meanwhile,
the features are not evenly distributed on the manifold because of curvature: some area on manifold
presents plane surface, while some bends more sharply. This topological heterogeneity suggests us
to locally extract important features by the local principal component analysis (PCA).

Given a data point z;, we center its k£ nearest neighbours as X; = [xgl) — L, ey mgk) — mi]T € Rkxn,
Note that data points are locally modeled as a weighted kNN graph. Considering the edge weight P;;
of kNN graph in Eq. , we construct the weight matrix as W; = diag(/Pii, , .-, \/Pii, ) € RF¥F.
Thus, larger weights are assigned to closer neighbours to emphasize the local neighborhood of each
data point x;, ensuring that the most significant local variation is retained.

To locally derive the principal components around data point x;, we apply weighted singular value
decomposition (SVD)EIto X, and get

Xi=UsV @

’In practice, k is constant (e.g., 15), thus the extra time cost for SVD is O(m).



Under review as a conference paper at ICLR 2025

where X; = W, X,. The singular values ¥; = diag(0oy1, ..., 04) are in decreasing order and the

corresponding right eigenvectors V; = [v1, ..., v%] span the column space of X; (Fig. . We show
that the local PCA space V; approximates the tangent space 1, M by the following theorem.

Theorem 3.1 (Singer & Wu|(2012); Lim et al.| (2021)) The PCA basis V; = [v1,...,vq4] by
weighted SVD approximately represents an orthonormal basis for the tangent space T, M.

We keep the largest d singular values and corresponding right eigenvectors. The intrinsic dimension
d; around data point z; is locally estimated as the number of singular values that captures most of
the data’s variability, with d set as the median of {d;|i = 1,...,m}.

The tangent space represents all possible directions in which one can move from a point x; on
the manifold. Among these directions, the gradient vector identifies both the direction and rate of
steepest ascent of a function on the manifold, aiding in the interpretation of the local space around
point x;. Next, we show how to compute the gradient vector at z; based on the approximate tangent
space.

Consider a function f : M — R, mapping the manifold to its ambient space. Let f;(z) = z;
represent the j-th feature. The gradient of f; is V f;, = e; where e; is the standard basis vector. By
projecting this gradient to the tangent space, we obtain ¢; = (V f|;,v;) = v;;. Thus, the gradient
vector of function f; on the manifold is

V=0 i = Yo, vijvi. 3)

This gradient vector depicts the change of j-th feature. The vector V f; points in the direction of the
steepest increase for the feature f; (Fig. ,f), and its magnitude, ||V fi ||, corresponds to the rate of
increase in that direction. The magnitudes of the gradient provide a saliency map for ranking features
(Fig. [I), where larger magnitudes indicate more important features. We define feature importance
based on the gradient magnitude as follows.

Definition 3.1 (Feature importance) The feature importance at a data point x is defined as the
magnitude of its gradient by

d
IVFill = o)z, 5 =1,....n. &)
=1

The feature importance characterises the increase rate of the j-th feature at the data point x. Higher
feature importance indicates greater variability at this point, providing a local explanation for the
differences in the surrounding data. For example, as shown in Fig. [Id, the saliency map based on
feature importance highlights the edge patterns in the image. This occurs because the pixel features
along the edge changes more rapidly than those in other areas when the given image is compared to
its local neighbors. In addition to feature importance, we also show the directions of feature increase
at a single data point and across the manifold embedding (Fig. [Tk, f). These dynamic patterns by
gradients explain how the feature is changing at each data point and along the manifold.

It is important to note that the tangent space facilitates gradient calculation, enabling us to interpret
the underlying features. In contrast, conventional nonlinear dimensionality reduction methods, such
as diffusion maps, t-SNE, and UMAP (Coifman et al.| 2005; Van der Maaten & Hinton, |2008;
Mclnnes et al., [2018]), do not account for the tangent space, resulting in a lack of interpretability in
the low-dimensional embedding space.

3.2 TANGENT SPACE ALIGNMENT

The tangent space approximation via local PCA serves as local gauges for data points, varying
smoothly across the manifold. Before projecting the high-dimensional data points into a low-
dimensional space, we first project the gauges into the low-dimensional space. Similar to the pair-
wise distance between data points, we consider the pairwise relationship of tangent spaces by their
alignment (Fig. [3). We then embed the tangent spaces by maintaining the pairwise alignment.

For two close data points x; and x;, the tangent spaces are connected by parallel transport, which is
estimated using the rotation matrix between their respective local PCA bases (Singer & Wu, [2012).
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Figure 3: Tangent space alignment and embedding. a. The tangent spaces at data points z; and
x; are associated with basis vectors (with v; and v, annotated) in high-dimensional space. b. The
alignment from point ¢ to point j involves a rotation O;; with angle ©;;. ¢, d. The tangent space
embedding is computed by preserving the rotation angle ©;;.

We define this rotation matrix as the alignment between the two tangent spaces. Formally, given
two data points ; and x; with distance d (¢, j) on the manifold (Fig. , the orthonormal matrices
Vi, Vj from local PCA act as the bases of tangent spaces T,,, M and T%.M, respectively. The
alignment between the two tangent spaces is the rotation matrix by the following optimal alignment
Oijl
: T
Qi = arg min 10 =V;Vi' llp. (5)

Numerically, the alignment of orthonormal matrix O;; is computed by the SVD of VjViT =
U'S'V'T and O;; =U'V'T.
In addition, we define the transformation between x; and x; as:

The transformation I';— ; represents the connection between data points ¢ and j in both topological
space (through distance d (4, j)) and tangent space (through alignment O;;).

Our goal is to preserve both the topological structure and the tangent spaces to enable feature inter-
pretation in low-dimensional space. We first embed the tangent spaces by preserving their alignment
(Eq. (3)) to create local gauges, and then project the data points along these embedded gauges to
maintain the local distances in a low-dimensional space.

3.3 TANGENT SPACE EMBEDDING

In this section, we demonstrate how to project the tangent spaces into a low-dimensional space by
preserving their alignment (Fig. 3).

For each point z;, the tangent space T,, M is estimated by the d largest right eigenvectors V; =
[v1, ..., vq] in Eq. . We define the similarity between the tangent spaces V; and V; as

<Viﬂ VJ>F
c080;; = —————— )
T Vil FIV; e
where (V;, V) r denotes the Frobenius inner product and || - || 7 is Frobenius norm. Eq. (7) presents

the cosine similarity between tangent space V; and Vj;, which induces a general angle ©,;; as shown
in Fig. 3] Note that this similarity quantitatively characterises the alignment between two tangent
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spaces (Eq. (5)). Based on the similarity, we define the probability distribution on the tangent spaces
V ={V4,..., V;, } in terms of cosine distance as

S;1i(©) = exp(—(|1 — cos O] — dist;) /7;) ®)

where 1 —cos ©;; is the cosine distance of these two tangent spaces, ; is related to the local distance
and dist; is the smallest distance from x; to its neighbours. S;|;(©) follows a rescaled exponential
distribution similar to Eq. (I), with normalization applied in the same way as in Eq. (I). In the
following section, we focus on preserving the pairwise cosine distance between tangent spaces in
the low-dimensional embedding space.

Consider projecting the manifold into a d’-dimensional space (d' < d < n). For each data point
x;, let the embedding tangent space be V;° = [v7,...,v5] € RY Similarly, we define the cosine
similarity between V,* and V¢ as
<V;€7 V‘6>F
cosOf; = ——I 9)
Y VEEIVE LR
where OF; is the angle between the embedded tangent space. The probability distribution on the

tangent space embedding, which inherits the heavy-tailed distribution from (Van der Maaten &
[Hinton, 2008} MclInnes et al., 2018)) as:

Ti;(0°) = (1+ad}’(s, 1)~ (10)

where d;; = 1 — cos OF; represents the cosine distance between the embedded tangent spaces V;*
and V¢ and a, b are shape parameters.

Our goal is to compute the tangent space embedding V¢ = {V{?, ..., V.¢} in a way that maximizes
the agreement between the original and embedded tangent spaces by matching the probability dis-
tributions of cosine distances. To achieve this, we minimize the difference between the probability
distributions S and T by Kullback—Leibler divergence:

The tangent space embedding V¢ = {Vy,...,V,¢} provides local gauges for visualizing feature
gradients (Fig. [Tk, 2ld). These local gauges V¢ represent the principal directions along which the
data points are locally distributed in the low-dimensional embedding space. The directions of the
gauge V; are weighted by the singular values [0;1, ..., 0;4/], forming a hyperellipsoid that reflects the
anisotropic density (Fig.[Zb). To preserve this anisotropic density, we project the original data points
along the local gauges.

Note that both local linear embedding (LLE) (Roweis & Saul| 2000) and local tangent space align-
ment (LTSA) (Zhang & Zha, [2004) also depict the local manifold structure using tangent space.
LLE ensures that each embedding data point is represented as the same linear combination of its
neighbors in high-dimensional space, while LTSA implicitly aligns the tangent space to learn the
embedding. Our method differs from these approaches by explicitly embedding the tangent spaces
with pairwise alignment to construct local gauges in low-dimensional space, enabling the visualiza-
tion of feature gradients.

3.4 ANISOTROPIC PROJECTION

In this section, we compute the d’-dimensional (d’ < d < n) embedding Y = {y1, ..., Y } un-
der the gauges V¢. Each local embedded tangent space V,° is weighted by the singular values
¥¢ = diag(os1,...,04a). This tangent space locally represents an anisotropic projection in the
low-dimensional space.

Qij = (L+allys —y; ™) (12)
CE(P||Q) = = 3_,; Pijlog Qi; + (1 — Pij) log(1 — Qyj)- (13)
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Next, we enhance the above loss function by incorporating local anisotropic radius preservation.
Consider the low-dimensional data points y;, with the embedding gauges V¢ = [vf,...,v5] €

R4 %" The local neighbours Y; = {y1, ..., yx } in embedding space are modelled as a hyperellip-
soid, with the radius in the [-th principal direction vj computed as the weighted average distance{’bj3

€ k €
il = ﬁ D=1 Qigll(ys — wa)or |l (14)

Recall that the original tangent space V;, with weight ¥; = diag(oy1, ..., 0:4), forms a hyperellipsoid
(Fig. ) with radius RY, = 7% in the [-th principal direction. Comparing all directions from [ =
1,2,...,d", we have

d/
Corr(re,r¢) = Z Corr(ry,ry) (15)
=1

where Corr(r?,r¢) is the correlation coefficient of local radii in I-th direction between the high-
and low-dimensional space, and 7, r} are logarithm of 1?7, R}, respectively.

We combine the correlation coefficient for anisotropic density (Eq. (I5)) with the loss function for
preserving local pairwise distance (Eq. (I3)) to obtain the overall loss function:

L = CE(P||Q) — XCorr(r°,r°) (16)

where A controls the relative importance of anisotropic density preservation. We minimize this loss
function using SGD to get the d’-dimensional embedding coordinates Y = {y1, ..., ym }.

Therefore, the embedding coordinates Y = {y, ..., Y } not only preserve the topological structure
of local similarity and anisotropic density, but also encapsulate the tangent space embedding V¢
which locally demonstrates the feature gradients (Fig. [2d). The pseudo-code for our FeatureMAP
algorithm is provided in Appendix [A.1.6]

Training. Detailed calculation for SGD is provided in Appendix In practice, we use the
same (hyper)parameters as UMAP (Mclnnes et al., 2018), including number of neighbours, number
of iterations and the min_dist parameter. There are two additional parameters: the weight A < 0 for
anisotropic density preservation and the fraction ¢ € [0, 1] of iterations that consider tangent space
embedding. For our experiment, we use 15 neighbours, 500 epochs, ¢ = 0.3 and A = 0.5. Tuning
of A is included in Fig.

4 EXPERIMENTS

We evaluate FeatureMAP’s ability to interpret the embeddings of MNIST digit classification as well
as Fashion MNIST and COIL-20 object detection, by using feature gradients. Additionally, we ap-
ply FeatureMAP to interpreting MNIST adversarial examples, showing that our method leverages
feature importance to explicitly explain misclassification following an adversarial attack. Further-
more, we compare FeatureM AP with state-of-the-art algorithms using both local and global structure
preservation metrics. More experiments are included in Appendix

4.1 DATASETS AND EVALUATION METRICS

We perform the evaluation on various datasets including standard MNIST (LeCun, |1998), Fashion
MNIST (Xiao et al., |2017), COIL-20 (Nene et al., [1996), Cifar10 (Krizhevsky et al., 2009), single
cell RNA-seq (Liu et al., 2021), and MNIST adversarial examples (Goodfellow et al.| [2014). We
compare with representative methods for dimensionality reduction and visualization, including t-
SNE (Van der Maaten & Hintonl 2008)), h-NNE (Sarfraz et al.l 2022), UMAP (Mclnnes et al.,
2018)), riMAP (Amid & Warmuth, 2019), PACMAP (Wang et al., [2021)), densMAP (Narayan et al.,
2021)) and spaceMAP (Zu & Tao| 2022)), PHATE (Moon et al.,[2019) in terms of both local and global
structure preservation (Espadoto et al.,|2019;|Wang et al.,2021). Local structure preservation metrics
include kNN accuracy, trustworthiness (Venna & Kaski, [2006a) and continuity (Venna & Kaski,
2006b). Global structure preservation metrics cover Shepard goodness, normalized stress (Joia et al.,
2011) and triplet centroid accuracy (Wang et al., [2021). The details to calculate these metrics are
found in (Espadoto et al.,2019;|Wang et al.| [2021).

3We use squared distance because of better empirical performance.
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Figure 4: FeatureMAP on MNIST showing
feature importance. FeatureMAP embeds the
MNIST dataset into 2-dimensional space, form-
ing 10 different clusters (left). From each clus-
ter, digit images are randomly selected to illus-
trate the feature importance by saliency map,
with corresponding original images displayed

ﬂﬂﬂlﬂﬂ

Fashion MNIST

5lmllﬁ=

COIL-20

Figure 5: FeatureMAP on Fashion MNIST and
COIL-20 showing feature importance. For each
dataset, the top row displays the saliency maps
indicating feature importance, while the bottom
row shows the corresponding original images.

on the right. Darker red regions indicate greater
feature importance.

4.2 RESULTS

4.2.1 FEATUREMAP PRESERVING SOURCE FEATURES

We demonstrate that FeatureMAP enables interpretable dimensionality reduction by feature impor-
tance in MNIST digit classification, as well as Fashion MNIST and COIL-20 object detection. Fig. ]
clearly shows distint clusters of different digit groups using FeatureMAP. For each cluster, we ran-
domly select one data point and display its feature importance as saliency map corresponding to the
original images. We find that feature importance explicitly highlights the edges of each digit.

Similarly, we apply FeatureMAP to datasets Fashion MNIST and COIL-20 in Fig.[5] In both
datasets, the important features succeed in identifying objects across different categories. In the
COIL-20 dataset, we also observe that the rotation patterns (lighter red curves) are revealed in the
saliency map, reflecting the dataset’s generation process, where objects were rotated under a fixed
camera (Nene et al.,[1996).

We further illustrate the interpretability of FeatureMAP by showing the gradients and feature im-
portance in Fig.[I] Specifically, we annotate the top-10 most important pixel features, which mainly
appear at the corner angles of the digit object. This suggests that these features play a dominant
role in shaping the local structure of the image. In addition, the edge patterns are observed in the
saliency maps of the digit 1.

4.2.2 FEATUREMAP INTERPRETING ADVERSARIAL EXAMPLES

We show that FeatureMAP interprets MNIST adversarial examples by explaining the misclassifica-
tion after adversarial attack. We use Fast Gradient Sign Attack (FGSM) (Goodfellow et al., [2014)) to
synthesize fake images of MNIST with e = 0.3 and prediction accuracy 0.08, to fool the classifier
LeNet (LeCun et al.,|1998). Formally, the adversarial example z’ € R" satisfies |z’ —z|| < €, where
x is the original image, and the predicted label p(z’) # p(z). The results are included in Fig.[6]and
Supplementary Fig.[8]

We plot the adversarial examples by FeatureMAP in Fig. [6] The top-left part displays both the
original and adversarial labels. Notably, the clustering structure of the adversarial examples closely
resembles the original clusters shown in Fig.[d This similarity arises because the adversarial exam-
ples fall within the e-neighborhood of the original data points (¢ = 0.3), which makes the adversarial
examples retain similar local topological structure with the original examples.

FGSM successfully fools the classifier, with 43% of the data misclassified as digit 8. We randomly
select five images from the cluster originally labeled as digit 1 and display the corresponding adver-
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Figure 6: FeatureMAP on MNIST adversarial examples. FeatureMAP embeds MNIST adversarial
examples to 2-dimensional space, displaying both the original and adversarial labels (top-left). On
the right, five randomly selected adversarial examples from original digit 1 group are shown. The
bottom-left visualizes the average feature importance of adversarial examples misclassified from 1
to 8, alongside the corresponding original digits 1 and 8 before the attack. The saliency map of the
adversarial examples closely resembles that of digit 8.

sarial images with feature importance on the right of Fig.[6] Although the adversarial images are
visually recognizable as digit 1, the saliency map highlights additional important features beyond
the typical edge features of digit 1.

To interpret the additional important features, we compute the average feature importance for ad-
versarial examples misclassified from digit 1 to 8, and compare it with the original average feature
importance of digits 1 and 8 (bottom-left in Fig.[6), respectively. The results show that the important
feature patterns in the adversarial examples more closely resemble those of the original digit 8 than
digit 1, providing a clear explanation for the misclassification after the attack.

4.3 QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART

We compare FeatureMAP with other representative dimensionality reduction methods. The two-
dimensional visualization plots are provided in Fig.[T3] and the quantitative comparison results are
summarized in Tab.[I] FeatureMAP demonstrates comparable performance on both local and global
metrics. Additionally, FeatureMAP outperforms UMAP in terms of density preservation (Figs. [9]
[[0]and [T2). We include the running time comparison in Fig. [T4]

5 DISCUSSION

We propose FeatureMAP, an interpretable nonlinear dimensionality reduction method that em-
ploys manifold gradients to explain the low-dimensional embedding space. Specifically, we em-
bed tangent spaces to locally construct gauges that display feature gradients, thereby explaining the
reduced-dimensional results through feature directions and importance. FeatureMAP also maintains
anisotropic density in two-dimensional plots, which further enhances the interpretability of the vi-
sualization. Our method of preserving features through tangent space embedding provides a plug-in
module for manifold learning.

Experiments on digit classification, object detection, and MNIST adversarial examples demonstrate
that FeatureMAP produces interpretable dimensionality reduction results, which facilitate the ex-
planation of classification outcomes and feature detection. In future work, we plan to extend our
feature-preserving paradigm by applying tangent space embedding to other nonlinear dimension-
ality reduction methods to enhance interpretability. Additionally, we will apply FeatureMAP to
real-world image datasets such as CIFAR-10 and ImageNet, as well as to biological gene expres-
sion data, to strengthen interpretation in classification and feature detection tasks. Furthermore,
we intend to explore complex data by learning sparse, high-order features through sparse manifold
transforms (Chen et al., 2018};2022).
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A APPENDIX

A.1  SOME DETAILS ON FEATUREMAP ALGORITHMS
A.1.1 FUNCTION GRADIENT OVER A MANIFOLD

Given a smooth function f on a Riemannian manifold (M, g), the gradient of f, denoted V f, is
the unique vector field satisfying: g(V f, X') = df (X), for all vector fields X on M, where g is the
Riemannian metric, df is the differential of f, and g(V f, X) denotes the inner product between V f
and X at each point.
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We now illustrate how to estimate the gradient with respect to a single feature f; from discrete data,
where the function of interest is f;(z) = x;. Clearly, the gradient vector of a smooth function
resides in the tangent space at each point on the manifold.

To approximate the tangent space at one data point x;, we perform local PCA (see Equation [2),
obtaining the basis vectors {v1, va,...,v4}. Under this orthonormal basis, the Riemannian metric
simplifies to the identity matrix, g = I.

Next, we compute the gradient of function f; as df;(x) = e;, where e; is the j-th standard basis
vector. We then project this gradient to PCA basis by calculating the coefficients ¢; = (df;, v;) =
v;. Thus, the gradient in PCA basis is given by

d d
ij = Zcivi = Zvijvi (17)
i=1 i=1
This result indicates the direction of steepest increase in terms of PCA basis.

Finally, the magnitude of the gradient is

d
IVfill=_vh)® (18)
i=1
This value represents the rate of increase of f; in the direction of V f;.

A.1.2 LOCAL RADIUS PRESERVATION

We augment loss function of distance preservation by incorporating local anisotropic radius preser-
vation. Consider the low-dimensional data points y; with the embedding gauges V¢ = [v§, ...,v5] €

R >4 We center its k nearest neighbours as Y; = [y1 — vi, ..., yx — v:]7 € R**?’ and project Y;
to its tangent space V¢ as Y; = Y;V,°. For one of y;’s neighbours, say y;, the distance ||y; — y;|] is
invariant under the rotation V¢, which makes Y; fit Eq. (12).

Recall that the original tangent space V; with weight 3; = diag(o;1, ..., 044) forms a hyperellipsoid
(Fig. [2b) with radius R = 02,1 = 1,...,d| The local neighbours Y; in embedding space is also
modelled as a hyperellipsoid, with the radius in direction v§; (! =1, ...,d’) as

1
0= m ;Qijﬂ(yj - yz‘)Ufz||27 (19)

To preserve the local radii in the low-dimensional embedding space, we project the data points to
ensure that the volume of the local point cloud in the low-dimensional space matches the original
hyperellipsoid in high-dimensional space. Formally, we set the local hyperellipsoid volume of orig-

inal and embedding space by ¢(d) [[_, Ry = ¢(d') H;1;1 R¢,, where ¢ denotes a constant related
to dimensions. We rewrite this equation by logarithm and get

TH Ty te=r4+ iy (20)

where r{; = log RS, and r; = log RY,. It is sufficient to set 7§, = Br9 + a (I = 1, ..., d’) to achieve
the above equation, where the problem is modified to a affine relationship between the local radii.
In the [-th principal direction, we measure the goodness of fitting this relationship by correlation
coefficient

Cov(r?,rf)
Corr(rf,rf) = L 2D
b (Var(r?) Var(rg))1/?
where r{ = [r{;,...,ro,;] and r{ = [r§,, ..., S, ]. For all directions, we have
d/
Corr(r°,r¢) = Z Corr(ry,ry) (22)
=1

where Corr(r°,r¢) indicates the agreement of local radii between the high-dimensional and low-
dimensional space.

*We use squared distance (variance) because of better empirical performance.
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A.1.3 STOCHASTIC GRADIENT DESCENT (SGD) FOR ANISOTROPIC PROJECTION

We use anisotropic projection to embed the data points into low-dimensional space. To apply SGD
to optimizing the embedding coordinates, we calculate the derivative of the loss function

L = CE(P||Q) — ACorr(r?,r). (23)

The core of the anisotropic projection lies in optimizing the Pearson correlation between the local
radius in original and embedding space. We first calculate the gradient of this correlation regarding
the embedding coordinates for optimization. We rewrite the correlation as follows:

d’

Cov(rp,ry)
24
Corr(r°,re Zl Var (r?) Var(r))1/2 (24)

where 7 = {r}7, = {logRy}7™, and r§ = {r5}, = {logRg}7>, in the I-th pr1nc1pal
direction of original and embeddlng spaces respectively. We set z;; = y; — yi and rewrite r; as

1
rs = log RS = log=—— Qi |y — yi)v; 2
1 l ZQ?]; J”(J ) ZH

(25)
= log 5= Z Qijllziv5 1,
and .
_ _ T \bj—1
G = Ty, —pm ) 2o
Let ( )
Cov(r?,re
M _ 17 27
Peo (Var(rp) Var(rg))t/?’ 27)
be the correlation in the [-th direction. The derivative of pgl)o with respect to z;; is
ap(l) on— dCov(r?,re) OVar(r§)
02 = Var(ry) 1/2[73%; L. Vg r(rf)” /2 _ fC'ov(rl 7)) Var(rf) ™ 3/2le] (28)

Therefore, the gradient of the correlation in Eq. in the [-th principal direction regarding the
embedding coordinates y; is

ORF Yo
V,, Corr® (7, re Z %p;o a;y” (29)
ij OYi

We further compute the derivative of the variance and covariance in Eq. (28). To simplify the
notation, we set ¢ = E[rf] and center the original local radius as r¢, := log R —m™* Zl 1 log Y.
The gradient in Eq. (I omitted) is calculated as

I ST T SR
92 = Var(r°) z{m— 1(73‘ 0z +7; aZ”)Vaﬂ”(Tl) ’
1 3 are
L ° e e\ —2 e _ ey 1 30
m_lCov(r ;7€) Var(r) "2 [(rf — p )azij (30)
ors
i
and
e QLW
68? _ szg%e [(1+a(zhzi)P —2ab(2h 2i5) 7 24521 2007 23]+ QF Wik2ab(2] )" 25 (31)
(%] i

where W; = 3", (1 +a(2L2)") "' and Q;; = W, M (1 + a(ziszij)b)_l.
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Next, we compute the gradient of the cross-entropy CE(P||Q) (similar to UMAP (McInnes et al.|
2018))). The cross-entropy loss function is

Lo = CE(P||Q) = =) PijlogQi; + (1 — Pij)log(1 — Qi) (32)
ij

and its gradient with respect to z;; is

oL 0logQ; Olog(1 — Qi)
€ = _[P;; Y 1—-p)—— <Y/ 33
(’)zij [ 8Zij +( J) Bzij ] ( )
dlogQs; _ —2ab(z]52:;)" "2y Alog(1—-Qij) 1 2bz;;
where =57 = 1+a(JZ1;rjzij)b and Ogazi,- L= T 1+(zifj;ij)b.

The attractive term P;;log();; is optimized by randomly drawing an edge (i, j) by distribution P,

which means that the edge (4, j) is selected with probability E—.f%j’ followed by calculating the
i#j T

gradient %ﬁ. The repulsive term is estimated by uniformly at random choosing a set of points .S
k¥

dlog(1—Qi1) ]

adjacent to the given point z; and computing ﬁ Yies Brm

Combine the gradient of cross-entropy in Eq. (33) and local radius correlation in Eq. (30). The
gradient for an edge (7, j) at each iteration of the SGD in the {-th principal direction is

0logQi; 1 Z dlog(1 — Q) N Z apﬁfl,] 0%;j (34)
0zi1

S sz'j azij Oy; ’

les

where Z = Z(i ) P;; and m;” is the normalization factor considering the edge is chosen with
probability 2.

In addition, we compute the gradient in Eq. (30) at the start of each epoch. We achieve this by
calculating W; = >, Qys, the local radius 75, the variance and covariance terms in the beginning
of each epoch, regarding them as fixed for all the edges to be updated during that epoch.

A.1.4 STOCHASTIC GRADIENT DESCENT (SGD) FOR TANGENT SPACE EMBEDDING

The key of tangent space embedding is to preserve the alignment between tangent spaces. We depict
the alignment by the general angle between two tangent spaces, which induces the cosine distance
of tangent spaces. We further model the probability distribution of cosine distance in original and
embedding space respectively, and minimize the difference of distribution by KL divergence to
maintain the alignment in embedding space.
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A.1.5 HYPERPARAMETER TUNING

We demonstrate the tuning of the hyperparameter A in the loss function of FeatureMAP in Fig.

The parameter A = 0 corresponds to UMAP. With the increasing of A\, FeatureMAP performs better
in preserving the local anisotropic density with the local radius correlation getting larger, while the
clusters in the two-dimensional plot are not clearly separable when X is large. Consider the trade-off
between the local density preservation and clusters visualization, we set the parameter A as 0.5.

1.25

v1 Radius Preservation
s

R?=0.364
.| R?=0407

b L b5 & A b

ius Preservation

2=
R?=0.374 R2=05

Embedding local radius (log)

IS

10 n 12 13 10 n 12 13 10 n 12 13 10 n
Original local radius (log)

Figure 7: The tuning of hyperparameter A\. The hyperparameter A in FeatureMAP is set from 0 to

1.25 with two-dimensional plot and local radius correlation.
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A1.6 ALGORITHM PSEUDOCODE.

Here are the pseudocodes for our FeatureMAP algorithm. The main algorithm is divided into seven
steps, each detailed in a separate pseudocode.

Algorithm 1 FeatureMAP Algorithm

1: Imput: Data points X = {1, ..., 2, } C R™, number of neighbors k, target dimensionality d’

2: Output: Low-dimensional embedding Y = {y1,...,ym} C RY, gradients, and feature impor-
tance

. Construct the k-nearest neighbor (kNN) graph (Algorithm [2)
. Compute tangent spaces at each data point (Algorithm 3)

. Align tangent spaces (Algorithm [4)

. Embed tangent spaces to low-dimensional space (Algorithm [5)
. Project data points anisotropically (Algorithm [6)

. Compute gradients and feature importance (Algorithm

. Return Y, gradients, and feature importance

YeIasnkw
NV A LN

Ju—

Algorithm 2 Construct KNN Graph

1: Input: Data points X = {z1,...,z,,}, number of neighbors k

: Output: kNN graph G(X, E) with edge weights P;;

3: for each pair of data points (z;,z;) do

4 Find the k-nearest neighbors for x;

5: Connect x; to its k-nearest neighbors to form graph G(X, E)
6 Compute edge weight P;; based on geodesic distance (Eq. )
end for

8: Return: G(X, E) and P;;

[\

el

Algorithm 3 Compute Tangent Spaces

1: Input: Data points X, kNN graph G(X, E)

2: Output: Tangent spaces 1, for each z;

3: for each data point x; do

4 Select its k-nearest neighbors

5 Compute weighted singular value decomposition (SVD) of the neighborhood data matrix
6: Extract the principal components (right singular vectors) as tangent space T, (Eq. (2))
7

8

: end for
: Return: T, for all z;
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Algorithm 4 Align Tangent Spaces

: Input: Tangent spaces T, kNN graph G(X, F)
: Output: Alignment matrices O;;
: for each pair of neighboring data points (z;,z;) do
Compute the alignment matrix O;; using orthonormal bases of T, and T}, (Eq. @)
Ensure alignment by preserving cosine distance between tangent spaces (Eqgs. (7) and (8))
end for
: Return: O;; for all pairs

NousE Wy

Algorithm 5 Embed Tangent Spaces

1: Input: Tangent spaces 1, alignment matrices O;;

2: Output: Embedded tangent spaces in low-dimensional space V,

3: for each tangent space T, do

4: Embed tangent space T, into low-dimensional space V., preserving cosine similarity
(Eqs. (9) and (10))

5: Maximize agreement between original and embedded tangent spaces using Kullback-Leibler
divergence (Eq. (T1))

6: Optimize embedding using stochastic gradient descent (SGD)

end for

8: Return: V. for all tangent spaces

~

Algorithm 6 Anisotropic Projection

1: Input: Data points X, embedded tangent spaces V,

2: Qutput: Low-dimensional embedding Y

3: for each data point x; do

4 Project data point along its embedded tangent space to low-dimensional space (Eq. (I2))
5: Preserve pairwise distances by minimizing cross-entropy loss (Eq. (13))

6 Preserve local neighborhood volume using hyperellipsoid constraints (Eqs. (T4) to (I6))
7: end for

8: Return: Y

Algorithm 7 Compute Gradients and Feature Importance

—_

: Input: Data points X, embedded tangent spaces V.

2: Output: Gradients and feature importance for each data point

3: for each data point x; do

4: for each feature f; do

5: Compute gradient of f; in tangent space (Eq. )

6: Use gradient magnitudes to compute feature importance (Eq. @)
7: Visualize feature importance with saliency maps and quiver plots
8: end for

9: end for

0

—_

: Return: Gradients and feature importance
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A.1.7 COMPARATIVE SUMMARY OF FEATUREMAP'S ADVANTAGES.

A2 MORE RESULTS ON EXPERIMENTS

A.2.1 FEATUREMAP INTERPRETING ADVERSARIAL EXAMPLES

We illustrate how the digits 1 are misclassified to the other labels in Fig.[8] The saliency map illus-
trates the average feature importance. The feature importance pattern in the middle is more similar
to the right than the left, indicating that the adversarial attack FGSM alters the feature importance
and fools the LeNet classifier.

A.2.2 FEATUREMAP PRESERVING DENSITY

We illustrate that FeatureMAP maintains original data density in two-dimensional plot. We apply
FeatureMAP to the digit 1 group of MNIST dataset and plot the correlation of local radius between
embedding and original space. FeatureMAP presents larger local radius correlation than UMAP (in
Supplementary Fig. [10), indicating that FeatureMAP performs better in local density preservation.
Particularly, we cluster the dataset and find that the subgroup (in brown colour) is significantly more
sparse in FeatureMAP than UMAP in Fig.[9] We claim that FeatureMAP correctly reveals this sparse
pattern because FeatureMAP shows positive correlation of local radius between embedding and orig-
inal space. We further demonstrate the digit images from this subgroup in Supplementary Fig.
which exhibit diverse handwritten patterns and agree with the sparse pattern in FeatureMAP.
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1-5

Figure 8: Average feature importance of the adversarial examples and the corresponding original
data. For the original digits 1, we list all the corresponding adversarial examples with average
feature importance in the middle. The left is the original digit 1 and the right is the original digit
with the label same as the corresponding adversarial label.

FeatureMAP presents larger local radius correlation than UMAP in Fig.[T0] We cluster the data (digit
1 in MNIST) on the right of Fig. [I0]and find that the subgroup 5 (in brown colour) is significantly
more sparse in FeatureMAP than UMAP.
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Figure 9: FeatureMAP on MNIST (digit 1) showing density preservation. For one subgroup (colour
in brown), FeatureMAP (top) preserves the local radius against UMAP (bottom) by positive cor-
relation between embedding and original local radius; FeatureMAP correctly illustrates the sparse
pattern compared to UMAP.
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Figure 10: FeatureMAP preserving the original density. FeatureMAP and UMAP are applied to digit
1 group of MNIST (left). The middle is the scatter plot of embedding local radius against original
local radius, along with the straight line of linear regression showing the correlation of local radius
between embedding and original space. The right illustrates the clusters on both FeatureMAP and

UMAP.

A.23  FEATURE IMPORTANCE ON MNIST DATA.
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Figure 11: Twenty data points are randomly selected from the MNIST dataset, with their corre-
sponding saliency maps highlighting feature importance.

We further demonstrate the digit images from this subgroup in Fig. which exhibit diverse hand-
written patterns and agree with the sparse pattern in FeatureMAP.

Image_ 5842 Image_ 62182

. Image_50572
54506 4502

31134 SOSEE

~450;
26376 5342 N
= 31134——

Image_ 10852

featMAP 5842

20434 50572
L 4na2

Image_ 29434

Image_ 54506 Image_ 31134 Image_ 26376 Image_4502

Figure 12: Handwritten digit images from the sparse subgroup of FeatureMAP. 10 data points are
randomly selected from the subgroup 5 in Fig. With the corresponding digit images.
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1242
1243
1244 We employ state-of-the-art nonlinear dimensionality reduction methods on benchmark datasets to
1245  generate the visualizations shown in Fig.[T3] FeatureMAP demonstrates comparable density preser-
1246  vation to densMAP.
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Figure 13: Visualization of multiple datasets by the state-of-the-art nonlinear dimensionality reduc-
tion methods.

Table 1: Quantitative comparison. M,;, M. and M), represent the local metrics: trustworthiness,
continuity and kNN accuracy, respectively. Similarly, M, M, and M.; denote the global metrics:
Shepard goodness, normalized stress and centroid triplet accuracy, respectively.

Experiments t-SNE  h-NNE UMAP triMAP PaCMAP densMAP spaceMAP PHATE FeatureMAP Experiments t-SNE  h-NNE UMAP  riMAP PaCMAP densMAP spaceMAP PHATE  FeatureMAP
M. 098 096 096 095 095 093 095 0.83 0.95 M, 039 020 039 017 028 051 026 015 0.43
MNIST . 097 093 097 096 096 097 096 088 098 MNIST 1 M, 095 100 100 096 099 099 093 099 099
M, 097 096 097 096 097 096 097 076 097 Mo 065 070 069 067 071 070 069 069 070
Fashion M, 099 095098 097097 09 097 083 096 Fashion M. 061 040 061 066 060 065 066 011 0.66
MNIST M. 099 095 099 099 098 098 098 086 099 MNIST 1-M, 096 100 099 096 099 099 093 089 0.99
M 082 084 079 076 077 076 080 062 0.84 Me 070 075 082 0.85 080 082 081 045 0.82
M 1.00 0.98 099 099 099 0.98 0.98 0.95 0.99 Ms 0.52 0.65 0.18 0.30 0.39 0.25 0.21 0.03 0.39
COIL-20 )" 099 097 100 099 099 100 099 097 099 COL-20 4\ 099 099 100 099 100 100 097 099 1.00
M, 095 089 087 08 084 092 08 080 0904 M« 074 073 060 065 069 058 063 055 o070
- M, 093 083 084 085 08 080 090 083 092 ] M. 065 024 068 074 072 078 061 088 0.74
Ciarld ) 0s2 076 094 094 094 093 092 091 094 Cfarld 4\, 099 100 100 098 100 100 097 097 100
My 0.82 0.84 079 076 0.77 0.77 0.31 0.75 0.83 Mo 0.93 0.67 0.92 0.91 0.92 0.92 0.86 0.90 0.93
RNA- M, 099 096 096 095 095 093 098 082 098 RNA- M, 044 018 039 017 028 050 067 028 0.65
seq M, 097 094 097 096 096 087 097 090 097 seq 1-M, 095 100 100 096 093 099 073 09 09
M, 066 069 064 063 062 062 067 076 070 M« 074 060 079 084 079 079 076 090 080
(a) Local metrics (b) Global metrics
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Figure 14: Comparison of running time across different sample sizes. FeatureMAP is comparable

with other methods. The gap between FeatureMAP and UMAP is from both local PCA calculation
and anisotropic projection.
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Figure 15: FeatureMAP enables the visualization of feature directions and importance using feature
gradients. a, b, c. Biplots display feature contributions along data embeddings for PCA, UMAP, and
t-SNE. Top important features are labeled (left). A selected top feature, pixell27, is shown with its
feature contribution, feature importance and feature count. d. FeatureMAP embedding visualizes

feature gradients, highlighting feature directions and importance.
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Figure 16: PCA shows the feature contribution, feature importance and feature count.
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Figure 17: UMAP shows the feature contribution, feature importance and feature count.
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Figure 18: t-SNE shows the feature contribution, feature importance and feature count.
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Figure 19: FeatureMAP shows the feature contribution, feature importance and feature count.
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