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Abstract
With the success of Large Language Models001
(LLMs), many Generative Vision-Language002
Models (GVLMs) have been constructed via003
multimodal instruction tuning. However, the004
performance of GVLMs in multimodal compo-005
sitional reasoning remains largely unexplored,006
as existing evaluation metrics and benchmarks007
focus predominantly on assessing contrastive008
models like CLIP. In this paper, we examine009
both the evaluation metric (VisualGPTScore)010
and current benchmarks for evaluating the com-011
positionality of GVLMs. We find that the012
VisualGPTScore is sensitive to sentence syn-013
tax rather than visual contents, so the curation014
methods of current benchmarks lead to severe015
morphological bias when evaluating with Visu-016
alGPTScore. To combat this, we define a Mor-017
phoBias Score to quantify the morphological018
bias and propose a novel LLM-based strategy019
to calibrate the benchmarks. Moreover, a novel020
and challenging task is added to evaluate the021
robustness of GVLMs against inherent inclina-022
tion toward syntactic correctness. We include023
the calibrated dataset and the task into a new024
benchmark, namely MOrphologicall De-biased025
Benchmark (MODE). Our study provides the026
first unbiased benchmark for the composition-027
ality of GVLMs, facilitating future research in028
this direction. We will release our code and029
datasets.030

1 Introduction031

A surge of research on vision-language mod-032

els (VLMs) has demonstrated success in a wide033

range of tasks, including zero-shot visual recogni-034

tion (Radford et al., 2021; Gao et al., 2021; Zhou035

et al., 2022), visual question answering (Alayrac036

et al., 2022; Chen et al., 2022), and image-to-text037

retrieval (Alayrac et al., 2022; Gong et al., 2023a).038

Previous VLMs are mainly constructed based039

on the contrastive learning framework (CVLMs),040

where visual and linguistic embeddings are pro-041

jected into a joint space to match (Radford et al.,042

2021; Jia et al., 2021; Li et al., 2022). How- 043

ever, with the advent of large language models 044

(LLMs) like ChatGPT, GPT-4 (OpenAI, 2023) and 045

LLaMA (Touvron et al., 2023a), recent studies 046

have extended the LLM architecture to multimodal 047

settings, which is named as Generative VLMs 048

(GVLMs) (Liu et al., 2023a; Zhu et al., 2023; Li 049

et al., 2023a; Gao et al., 2023). The GVLMs devi- 050

ate from the CVLMs in projecting visual features 051

into the latent lexical space of LLMs, and lever- 052

aging the generation capacity of LLMs to solve 053

vision-language tasks. In the training process, most 054

work follows the recipe of freezing the main body 055

of visual encoders and LLMs, only updating the 056

negligible parameters of projecting layers, which 057

is also called “bridge architecture" (Rajesh et al., 058

2023). 059

Despite the emergence of research on GVLMs, 060

the understanding of compositionality in GVLMs 061

has remained an enigmatic black box, with no thor- 062

ough investigations conducted thus far. Previous 063

research studies (Thrush et al., 2022; Zhao et al., 064

2022; Yuksekgonul et al., 2022a; Ma et al., 2023; 065

Ray et al., 2023a) in multimodal compositionality 066

focus on establishing retrieval-based benchmarks 067

for evaluating CVLMs on object relations and at- 068

tribute understanding, order sensitiveness of sen- 069

tence elements, and atom-level understanding. The 070

CVLMs have demonstrated abilities to discriminate 071

position captions from negative ones based on the 072

image-text similarity, where the disparities between 073

the positive and negative captions are relatively sub- 074

tle, such as “an old person kisses a young person" 075

and “a young person kisses an old person" (Thrush 076

et al., 2022). 077

Recently, log-likelihood based scores are lever- 078

aged to evaluate the generative models (Fu et al., 079

2023; Liu et al., 2023b; Lin et al., 2023; Li et al., 080

2023b). Given an image-text pair consisting of 081

an image with positive and negative references, 082

the GVLMs estimate the log-likelihood probabili- 083
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ties of generating positive and negative references084

conditioned on the image, respectively. It quan-085

titatively reflects the GVLMs’ understanding of086

alignment between image and positive/negative ref-087

erences. Following Lin et al. (2023), we alias the088

log-likelihood score as VisualGPTScore.089

In this paper, we examine both the Visual-090

GPTScore and current benchmarks of vision-091

language compositionality. We found that:092

• Using VisualGPTScore to evaluate GVLMs093

is not sensitive to bags-of-words problems094

that broadly exist in the evaluation of CLIP095

with similarity scores. The bags-of-words phe-096

nomenon during evaluation is related to met-097

rics, and metrics based on similarity suffer098

from it.099

• VisualGPTScore sometimes prefers syntac-100

tical correctness rather than content-related101

correctness. It scores negative references102

with reasonable syntax, but unrelated contents103

higher than positive references. In contrast,104

CLIP pays more attention to the correlation of105

visual contents but is not sensitive to the order106

of atoms in references.107

• There exists a morphological bias in current108

multimodal compositional reasoning bench-109

marks. Current compositional reasoning110

benchmarks are curated for evaluating con-111

trastive VLMs, and the method of construct-112

ing negative references may not be suitable113

for generative VLM evaluation.114

Based on these observations, our tactics com-115

prise:116

• We quantitatively assess the morphological117

bias by leveraging large language models, and118

name it as the MorphoBias Score for statistical119

analysis.120

• Based on the MorphoBias Score, we pro-121

pose a MOrphologicall De-biased Bench-122

mark (MODE) based on current benchmarks123

for more robust multimodal compositionality124

evaluation. We adopt different strategies to125

calibrate existing benchmarks. We add a new126

challenging assessment in MODE to evaluate127

the content understanding across visual and128

language modalities. The performance of sev-129

eral GVLMs is reported on MODE, and we130

show the robustness and faithfulness to human131

judgments of our new benchmark.132

2 Background 133

2.1 Generative vision-language models 134

In this paper, we define GVLMs as models that 135

combine visual encoders with large language mod- 136

els (LLMs) trained on large text corpora. The 137

prevailing approach in recent research connects 138

a frozen visual encoder with an LLM by training 139

mapping layers on images-text pairs, followed by 140

fine-tuning using multi-modal instructional data 141

to facilitate multi-turn conversations (Liu et al., 142

2023a; Gao et al., 2023; Zhu et al., 2023; Dai et al., 143

2023; Su et al., 2023; Gong et al., 2023b; Sun et al., 144

2023). This approach is anchored in the idea of 145

treating visual tokens the same as linguistic ones. 146

The visual tokens are mapped into a lexical embed- 147

ding space and harnessed to generate textual con- 148

tent in an autoregressive manner. Formally, given 149

an image I and the visual encoding g(I) from en- 150

coders like Vision Transformer (Dosovitskiy et al., 151

2020), the mapping process can be formulated as: 152

z = M(g(I)), z = {z1, z2, ..., zN}, (1) 153

where N is the number of visual tokens and M is 154

the mapping layers. Different from CVLMs that uti- 155

lize contrastive loss, the training objective of multi- 156

modal autoregressive training is to maximize the 157

log-likelihood of the next true token. Denote the 158

tokenized instructions as p and the output words as 159

ti, (1 ≤ i ≤ K), the GVLM training objective is 160

defined as: 161

max
θM ,θσ

K∑
i=1

logP (ti|p, z, t1, t2, ..., ti−1; θM , θσ)

(2) 162

where θM refers to the learnable parameters of 163

mapping layers M and θσ refers to other tunable 164

parameters like adapter layers in LLaMA-Adapter 165

V2 (Gao et al., 2023), or visual abstractor and 166

LoRA in mPLUG-Owl (Ye et al., 2023). 167

In comparison, the training objective of CVLMs 168

(CLIP-based (Radford et al., 2021)) is based on 169

the contrastive loss between vision and language. 170

Please refer to Appendix A.1 for CVLMs formula- 171

tion. 172

2.2 Vision-language compositionality 173

Recent works on vision-language compositionality 174

focus on introducing benchmarks to evaluate the 175

CVLMs, mainly on CLIP (Radford et al., 2021). 176

Winoground (Thrush et al., 2022) is one of the 177

pioneers in building benchmarks for multimodal 178
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compositionality, curating 400 test items to eval-179

uate the pragmatics, symbolic and series factors180

of VLMs. Afterwards, several benchmarks have181

been proposed to challenge the objects, relations182

and attributes understanding of VLMs, including183

VL-CheckList (Zhao et al., 2022), ARO (Yuksek-184

gonul et al., 2022a), CREPE (Ma et al., 2023) and185

Cola (Ray et al., 2023b) etc. These benchmarks are186

in the form of image-text retrieval, requiring the187

model to differentiate positive references from neg-188

ative references based on the visual contents of the189

images. See Fig 6 in the Appendix for the details of190

the image-text retrieval format. These benchmarks191

are curated for evaluating contrastive VL models192

like CLIP, where similarity scores between images193

and references serve as the criteria for selecting194

references. Then, the accuracy of selecting positive195

samples across all data samples will be reported196

to assess the model’s compositional understanding197

capability.198

2.3 Evaluation metrics for multimodal199

retrieval200

Since previous benchmarks have been carefully201

curated for evaluating CLIP, contrastive scores202

naturally emerge as the metric for assessing the203

compositional similarity between images and ref-204

erences. For generative models, an intuitive way205

is reference-based, measuring the quality of gen-206

erated captions with metrics like BLEU (Pap-207

ineni et al., 2002), METEOR (Banerjee and Lavie,208

2005), ROUGE (Lin, 2004) and CIDEr (Vedantam209

et al., 2015). Among the reference-based metrics,210

BERTScore (Zhang et al., 2019) tackles superficial211

matching between captions and references in lex-212

ical expression, delving deeper into the semantic213

similarity matching. GPTScore (Fu et al., 2023)214

proposes to leverage emergent abilities of genera-215

tive models to score generated texts. Inspired by216

GPTScore, recent works (Lin et al., 2023; Li et al.,217

2023b; Liu et al., 2023b) measure the GVLMs us-218

ing the log-likelihood of directly generating ref-219

erence sentences conditioned on the image. We220

follow the Lin et al. (2023) to abbreviate the kind221

of method as VisualGPTScore, which can be for-222

mulated as:223

VisualGPTScore(r|I)224

=

m∑
t=1

wtlogP (rt|r<t,p, I; θGV LM ) (3)225

where I, r, p represents the image, reference sen- 226

tence and instructions. θGV LM refers to parameters 227

of GVLMs and wt =
1
m . The VisualGPTScore is 228

directly estimated conditioned on images and thus 229

reference-free. In this work, we examine the Visu- 230

alGPTScore and discuss the potential influence of 231

using it in current benchmarks for vision-language 232

compositionality. 233

3 Evaluation Metric Examination 234

VisualGPTScore measures the probability of gener- 235

ating specific references conditioned on the given 236

images, as defined in Eqn. 3. The generative evalu- 237

ation method is based on the inherent attribute of 238

GVLMs and used in image-text retrieval (Lin et al., 239

2023; Li et al., 2023b; Liu et al., 2023b). Since 240

current benchmarks on VL compositions consists 241

of image-text pairs, we follow Lin et al. (2023) 242

to utilize VisualGPTScore for evaluating VL com- 243

positionality of GVLMs. However, our primary 244

focus in this section is to examine the robustness 245

of VisualGPTScore. 246

3.1 Experimental setup 247

Model choices: In this section we leverage two 248

state-of-the-art GVLMs, namely LLaVA (Liu et al., 249

2023a) and MiniGPT-4 (Zhu et al., 2023), to con- 250

duct experiments. LLaVA is the first method to 251

project visual features into LLaMA (Touvron et al., 252

2023a) latent space via multimodal instruction tun- 253

ing. A linear projection layer and the parame- 254

ters of the LLM are tuned on conversations, de- 255

tailed descriptions, and complex reasoning datasets. 256

MiniGPT-4 (Zhu et al., 2023) maps visual embed- 257

dings obtained from ViT and Q-Former (Li et al., 258

2022) into Vicuna (Chiang et al., 2023) via a lin- 259

ear projection layer. We adopt the model version 260

of “LLaVA-7B-v0" and “Minigpt4-aligned-with- 261

Vicuna7B" to evaluate. However, we found that 262

when using VisualGPTScore to evaluate compo- 263

sitionality, both models exhibited similar patterns. 264

Therefore, for the sake of brevity, we only present 265

the results for LLaVA. 266

Datasets: We use Winoground (Thrush et al., 267

2022), VL-Checklist (Zhao et al., 2022), 268

ARO (Yuksekgonul et al., 2022a) and CREPE (Ma 269

et al., 2023) in the evaluation analysis, totaling 270

52,189 images and 129,558 reference sentences. 271

All benchmarks necessitate the model’s selection 272

of positive reference sentences from negative ones. 273

For Winoground, we report text score, image score 274
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and group score as the paper (Thrush et al., 2022).275

For other datasets, Recall@1 accuracy is reported.276

VisualGPTScore GPTScore

BERTScore CLIPScore

Figure 1: Box plots of scaled score distributions for orig-
inal (x1) and perturbed captions (x2-x5, x2: shuffle
nouns & adj, x3: shuffle all but nouns &
adj, x4: shuffle within trigrams, x5: shuffle
trigrams). The distribution gap between the original
captions and the shuffled captions is evident for the gen-
erative scores, while the contrastive score (BERTScore)
is significantly less affected by the order of words. The
CLIPScore sub-figure illustrates the distribution of sim-
ilarity scores generated by the CLIP model, which is
compared with the first three sub-figures of LLaVA-7B.

3.2 Sensitivity to bags-of-words277

Previous research works have pointed out that278

CVLMs suffer from the bags-of-words phe-279

nomenon when doing compositional reasoning due280

to the pre-training recipe using visual and text data281

in instances-level (Yuksekgonul et al., 2022b; Di-282

wan et al., 2022). However, we observe that the283

bags-of-words problem is not only related to the284

models, but also highly correlated to the evaluation285

metrics, and VisualGPTScore is not sensitive to the286

bags-of-words phenomenon.287

We explore the influence of different metrics288

in sensitivity to the order of tokens in sentences289

for GVLMs. Following CREPE (Ma et al., 2023),290

we randomly sample 2.5K image-text pairs from291

the COCO dataset (Lin et al., 2014) and adopt292

the following strategies to shuffle the elements of293

captions: Shuffle only nouns & adjectives, Shuf-294

fle all but nouns & adjectives, Shuffle within tri-295

grams, Shuffle trigrams. Then, we calculate the296

VisualGPTScore, GPTScore (Fu et al., 2023) and297

BERTScore (Zhang et al., 2019) based on LLaVA- 298

7B. The distribution of normalized scores are 299

shown in Fig. 1, where x1 represents positive ref- 300

erences and x2-x5 represents shuffled references, 301

respectively. 302

It can be observed that to the same model, 303

LLaVA-7B, VisualGPTScore is similar to 304

GPTScore, more sensitive to the order and 305

structure of reference sentences compared with 306

contrastive metric BERTScore. We also report 307

the score distribution of the CLIP model using 308

contrastive similarity (CLIPScore in Fig. 1), 309

which is similar to the distribution of BERTScore 310

results on LLaVA-7B. It implies the bags-of-words 311

problem may be attributed to the evaluation metrics 312

based on similarity score, but generative scores 313

mitigate the problem to some extent. 314

3.3 Sensitivity to syntax and contents 315

Based on the observation that ViusalGPTScore mit- 316

igates the bags-of-words problem to some extent, 317

we are curious about whether they lean more to- 318

wards evaluating syntactic correctness than con- 319

tent relevance when assessing the compositionality 320

of GVLMs. To examine it, we design an experi- 321

ment using the test set of Flickr30K dataset (Young 322

et al., 2014). Specifically, we sample 507 image- 323

text pairs and construct three types of evaluation 324

cases as shown in Fig. 2. Given an image, the task 325

is to retrieve the positive reference from the cases 326

below. The final scores are averaged over 507 test 327

samples. In Case 1, each positive reference sen- 328

tence is accompanied by two hard negatives with 329

shuffled nouns, adjectives and trigrams. In Case 330

2, the provided negatives are fluent and syntacti- 331

cally correct captions sampled from COCO, which 332

are unrelated to the visual contents. In Case 3, 333

we keep only adjectives and nouns in the positive 334

reference sentences by removing all the adverbs, 335

pronouns and modifiers. 336

We present Recall@1 of VisualGPTScore for 337

the GVLM (LLaVA-7B), and vision-language sim- 338

ilarity for the CVLM (CLIP) in three evaluation 339

cases. As shown in Fig. 3, the LLaVA model can 340

easily discriminate the right reference sentences 341

from the shuffled ones, reaching 98.62% with the 342

help of VisualGPTScore. However, if the negatives 343

are random reference sentences in Case 2, the per- 344

formance degradation is up to 31.56%. In Case 3, 345

where the sentences are syntactically incorrect, the 346

performance drops to 27.02%. In contrast, CLIP 347

excels at excluding negative sentences that are con- 348
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Right caption: an elderly asian woman wearing a straw-like hat sits outside near a bicycle while a gray car is about to pass by. 
Shuffled caption: an like gray hat wearing a bicycle - asian woman sits outside near a straw while a about car is elderly to pass by. 
Shuffled caption: elderly an asian wearing a woman hat sits straw-like a near outside bicycle a while is gray car pass to about by 

Right caption: an elderly asian woman wearing a straw-like hat sits outside near a bicycle while a gray car is about to pass by
Random caption: the two cats are laying on the chair together
Random caption: two giraffes in an outdoor setting eating grass

Content caption: elderly asian woman, straw-like hat, bicycle , gray car     
Random caption: the two cats are laying on the chair together             
Random caption: two giraffes in an outdoor setting eating grass

0.405
0.051
0.077

0.405
0.231
0.432

0.322
0.231
0.432

Case 1 VisualGPTScore

Case 2

Case 3

Figure 2: An example of three Cases of captions we construct to validate the preference of syntax and
contents. Right caption: the original caption of the image, Shuffled caption: caption that the sentence
elements are shuffled, Random caption: fluent and syntactically correct captions from other datasets (COCO),
Content caption: caption that keeps only adjectives and nouns to keep the contents like objects and attributes.
We present the normalized VisualGPTScore of every reference sentences in this example. The scores of the Right
caption and Content caption may be lower compared to the Random caption (0.405, 0.322 vs. 0.432). This
indicates that in this example, generative VLMs tend to prioritize syntactically correct sentences over ones that are
more relevant to the content.

98.62

60
67.06

99.8

27.02

97.83

0

20

40

60

80

100

120

VisualGPTScore CLIP

Case 1 Case 2 Case 3

Figure 3: We report the accuracy of VisualGPTScore
based on LLaVA-7B and contrastive score based on
CLIP in the sampled 507 image-text pairs, each pair is
consisted of three cases like the example in Fig. 2.

textually unrelated to the image, but suffers from349

insensitive to syntax and sentence order.350

The potential reason for the above results is the351

difference in the pre-training paradigm. Specifi-352

cally, the generative model pre-training is to maxi-353

mize the likelihood of the next token prediction354

in an auto-regressive manner. In contrast, the355

training objective of CVLM is to maximize the356

alignment between positive image-text pairs and357

minimize that between negative ones. Previous358

research (Yuksekgonul et al., 2022b) shows that359

CLIP takes the short-cut strategy of not encoding360

the order information, but only object features for361

retrieval/captioning tasks, which conforms to our362

finding. We also conclude that the generative VLMs363

may take the short-cut strategy of not fully mapping364

the visual and linguistic features, but leveraging365

the emerging capacity to generate based on limited366

visual cues.367

4 Benchmarks Examination 368

From above, we know current benchmarks are cu- 369

rated for evaluating CLIP based on similarity score 370

originally. Hence, we also examine the impact of 371

using these datasets for evaluating GVLMs with 372

VisualGPTScore. 373

4.1 Morphological bias in current 374

benchmarks 375

According to the observation made in Section 3, 376

it is evident that auto-regressive vision-language 377

models exhibit sensitivity toward the syntax and 378

order of phrases. Hence, existing benchmarks that 379

generate hard negatives by swapping, shuffling, or 380

replacing specific entities promote a morphological 381

bias, which refers to a preference for models to 382

rely on the morphological structure of words. Con- 383

sequently, this bias can be exploited by GVLMs 384

to effortlessly differentiate between positive and 385

negative samples. 386

To show that the bias exists in current composi- 387

tional reasoning benchmarks, we conduct the ab- 388

lation of utilizing both GVLMs and CVLMs to 389

reason nonsensical images with normal reference 390

sentences. Specifically, we construct the image- 391

text pairs by replacing the original images with 392

images composed of random noises. We observe 393

the performance drop in both the GVLMs and 394

CVLMs. As shown in Fig. 4, the performance 395

degradation of CLIP (ViT-B/32) is large, approach- 396

ing the Recall@1 accuracy of randomly choosing. 397

However, as for the LLaVA-7B, the trend of per- 398

formance dropping is not obvious, indicating the 399

GVLMs make the right choices solely based on 400
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LLaVA (images) LLaVA (noises) CLIP (images) CLIP (noises)

VL-CheckList ARO CREPE

Figure 4: The drop in performance of the LLaVA model when performing compositional reasoning on nonsensical
noisy images is minimal in existing benchmarks, whereas the CLIP model exhibits a significant decrease. This
indicates current benchmarks are exploited by the LLM part of GVLMs, not effective in measuring the multimodal
compositionality.

the linguistic reference sentences without visual401

features. Therefore, the benchmarks lean towards402

evaluating the compositionality of the LLM part in403

GVLMs, rather than that of visio-linguistic repre-404

sentations.405

4.2 MorphoBias score406

To alleviate the morphological bias in current407

benchmarks, we first quantify the bias for anal-408

ysis. In an ideal scenario, in the absence of visual409

intervention, the quantified scores generated by410

GVLMs for positive and negative reference sen-411

tences should be equivalent. Therefore, we define412

the MorphoBias Score to measure the morphologi-413

cal discrepancy between positive and negative ref-414

erence sentences. Formally, the MorphoBias Score415

is calculated using the generative scores of posi-416

tive and negative text produced by auto-regressive417

language models:418

ScoreMorphoBias419

= ∆(
m∑
i=1

wilogP (pi|p<i; θ) (4)420

−
n∑

j=1

ŵj logP (nj |n<j ; θ)),421

where ∆,p,n, θ represent normalization, positive422

tokens, negative tokens, and parameters of LLMs423

respectively. we leverage a strong LLM, Vicuna-424

13B-v1.5 (Chiang et al., 2023), to compute the425

MorphoBias Score, which are normalized between426

−1 and 1. We present the visualization of Morpho-427

Bias Score distributions over different benchmarks428

in Fig. 5. We find that most of the mainstream429

benchmarks except Winoground are biased towards430

positive captions with distribution centers located431

to the right, which makes the generative scores of432

GVLMs on these benchmarks overvalued.433

Relation

Attribute

VG-Relation

VG-Attribute

COCO-Order

Flickr-Order

Atomic

Swap

Negate

Figure 5: We visualize the distribution of MorphoBias
Score in current benchmarks. The MorphoBias Score is
defined as the difference between the LLM-based gen-
erative scores of positive and negative references. For
ARO, VL-CheckList and CREPE, the distribution of the
MorphoBias scores is situated towards the positive end
(to the right of the red line), implying that these bench-
marks are biased to positive captions morphologically.

5 Calibrate the Bias in Benchmarks 434

In this section, we propose a strategy to modify the 435

benchmarks and calibrate the morphological bias 436

in order to provide a better evaluation of GVLMs. 437

Specifically, we filter current datasets leveraging 438

LLMs and add a novel challenge to evaluate visual 439

content understanding. We name the new bench- 440

mark as MOrphologicall De-biased Benchmark, 441

abbreviated as MODE. In the following, we de- 442

scribe the filtering details of each dataset and the 443

new challenge. Then we show human evaluation to 444

show the effectiveness of MODE. 445

5.1 Winoground. 446

The Winoground (Thrush et al., 2022) dataset com- 447

prises 400 image-text pairs, with each pair consist- 448

ing of two images and two captions. The two cap- 449

tions exhibit identical sets of morphemes, albeit in 450
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Comprehensive Relation Attribute Atomic Negate Content

Winoground VL-CheckList VG(ARO) VL-CheckList VG(ARO) VG(CREPE) VG(CREPE) COCO Flickr30K

num of images 800 5,193 2,328 5,858 5,193 1,954 1,930 2500 500
num of references 800 10,386 4,656 11,716 10,386 11,724 11,580 7,500 1,500

metrics Group Score Recall@1

random results 16.7% 50.0% 50.0% 50.0% 50.0% 16.7% 16.7% 33.3% 33.3%

Human Evaluation (closer to 0 is better)
origin ref. - 3.18 1.73 0.95 3.29 1.67 2.11 - -

MODE ref. - 1.40 0.62 0.35 1.01 0.94 1.63 - -

Table 1: Taxonomy of MODE benchmark and human evaluation results on rating bias. Each branch undergoes
human evaluation based on 50 reference sentences from the original dataset and 50 from MODE.

different orders. Different from other benchmarks451

that construct hard negatives by simply altering the452

positive texts, both positive and negative texts in453

Winoground are fluent, meaningful, and can match454

related images. Thus, we include all samples in455

Winoground into the MODE benchmark without456

further calibrating, aiming to evaluate the compre-457

hensive multimodal compositional understanding458

of GVLMs, especially on the pragmatics, symbolic459

and series factors as introduced in (Thrush et al.,460

2022).461

5.2 Relations and attributes.462

Real-world natural scenes are inherently intricate,463

encompassing a multitude of specific attributes464

such as colors, materials, and object relationships.465

Models that can tackle compositional reasoning466

require a nuanced understanding that goes beyond467

mere object-level analysis. Hence, we collect re-468

lation and attribute branches from ARO (Yuksek-469

gonul et al., 2022a) and VL-CheckList (Zhao et al.,470

2022). To calibrate the morphological bias, we471

compute the MorphoBias score of the samples as472

described in Eqn. 4 and filter out ones that have473

a higher score than the threshold. The idea is to474

ensure that samples with strong morphological bias475

are excluded for better vision-language composi-476

tional evaluation.477

We choose the filtering thresholds of the Mor-478

phoBias score to be close to zero (specifically, by479

ensuring the p − value of the MorphoBias score480

is statistically below 1e− 5). The filtered data in-481

cludes 5,193 items from VL-CheckList and 2,328482

items from Visual Genome (Krishna et al., 2017) to483

measure relation reasoning, and 5,858 items from484

VL-CheckList as well as 5,193 items from Visual485

Genome to evaluate attribute reasoning. Specifi-486

cally, for VL-CheckList, the Relation branch con-487

tains two subclasses, i.e. action and spatial, and488

the Attribute branch includes action, color, mate-489

rial, size and state. The number of items in each 490

subclass is elaborated in Table 1. 491

5.3 Atomic and negate. 492

In CREPE benchmark (Ma et al., 2023), the authors 493

propose to assess the VLMs on captions that atoms 494

are replaced or negated. The atom replacing is like 495

a bus with a side, light, and window v.s. a train 496

with a side, light, and window, whereas the atom 497

or sentence negating is as Another bowl on a cloth 498

with an orange in it. The another bowl has a re- 499

flection and casts a shadow v.s. Another bowl on a 500

cloth with an orange in it. The another bowl has a 501

reflection and casts something. There is no shadow. 502

There is a considerable proportion of reconstructed 503

captions in CREPE that are fluent and coherent, 504

thereby we also leverage the same method to filter 505

the samples as we do for relations and attributes. 506

5.4 Replace syntactic perturbation with a 507

content-only understanding challenge. 508

A plethora of benchmarks perturbs the order infor- 509

mation in the reference sentences to measure the 510

word order sensitivity of CVLMs, which tend to 511

treat the captions as bags of words as we present 512

in Fig. 1. The hard negative construction methods 513

include swapping atoms, shuffling nouns, adjec- 514

tives, trigrams, and all words etc. However, due 515

to the intrinsic morphological awareness of LLMs, 516

the challenge of order perturbation is not effective 517

in assessing the visio-linguistic compositionality 518

of GVLMs. Hence, we abandon the order chal- 519

lenge and propose a content-only understanding 520

challenge. 521

Specifically, we modify the positive reference 522

sentences from COCO (Lin et al., 2014) and 523

Flickr30K (Young et al., 2014), keeping only the 524

object- and attribute-related atoms/words. Then, 525

we randomly select fluent, coherent and meaning- 526

ful reference sentences from other datasets to serve 527
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Comprehensive Relation Attribute Atomic Negate Content

LLaVA-7B (Liu et al., 2023a) 13.00 65.52 70.55 35.01 59.01 42.02
LLaVA-13B (Liu et al., 2023a) 17.00 62.75 72.70 38.33 7.56 49.80
MiniGPT-7B (Zhu et al., 2023) 9.50 66.18 78.48 35.62 24.15 19.92
mPLUG-Owl (Ye et al., 2023) 11.00 65.91 69.04 34.90 54.61 35.73
InstructBLIP (Dai et al., 2023) 26.00 73.87 79.39 44.37 66.84 57.83

LLaMA Adapter V2 (Gao et al., 2023) 7.75 58.67 65.07 31.32 20.26 10.48
Emu (Sun et al., 2023) 4.00 68.54 85.84 51.38 87.20 2.79

Table 2: Evaluation results of GVLMs on MODE benchmark. All the models are instruction-tuned. We present the
average performance of two sub-branches within the categories of Relation, Attribute and Content.

as hard negatives, which are unrelated to the vi-528

sual content. Examples of this challenging task529

can be found in Fig. 8 in the Appendix. The task530

poses a challenge and exemplifies the robustness of531

GVLMs against their inherent inclination towards532

syntactically correct reference sentences.533

5.5 Human evaluation of MODE.534

In order to illustrate that our proposed MODE al-535

leviates the morphological bias, we ask two anno-536

tators to rate the disparity between positive and537

negative reference sentences. The rating score538

ranges from -5 to 5, where the higher the score,539

the more reasonable text is for positive reference540

sentences. Conversely, the lower the score, the541

more reasonable the text is for negative ones. The542

definition of reasonable comprises fluency, syntax,543

and the meaning of sentences. Note the reference544

sentences from the original dataset or MODE are545

agnostic to the annotators and we average the rat-546

ings of them. Table 1 clearly demonstrates that the547

reference sentences in our MODE benchmark sub-548

stantially mitigate bias, as indicated by the score549

of human judgments approaching zero. The drop550

implies that the morphological disparity between551

positive and negative reference sentences is drasti-552

cally narrowed.553

5.6 Results of GVLMs on MODE554

Based on the MODE benchmark, we report the555

performance of more concurrent GVLMs based556

on the VisualGPTScore metric in Table 2. It can557

be observed that InstructBLIP (Dai et al., 2023)558

and Emu (Sun et al., 2023) hold the top-2 posi-559

tions in almost all dimensions of our benchmark.560

However, the abysmal performance on Comprehen-561

sive and Content implies the vulnerability of Emu562

when negative reference sentences are hard and563

challenging. In contrast, InstructBLIP and LLaVA-564

13B (Liu et al., 2023a) are more robust to the Con-565

tent challenge and achieve high performance on 566

hard negatives. This provides the first de-biased 567

and comprehensive evaluation of recent GVLMs in 568

terms of visual compositionality. Note that we do 569

not claim that MODE can better measure the 570

performance of GVLMs in all aspects. However, 571

it can better measure their compositionality with 572

less morphological bias, which is supported by the 573

reduction of MorphoBias Score and the human eval- 574

uation in Table 1. We believe this benchmark can 575

facilitate a unified and fair comparison for future 576

GVLM research. 577

6 Conclusion 578

In this work, we evaluate the compositionality of 579

“bridge-architecture" generative VLMs via gener- 580

ative multimodal score, VisualGPTScore. We ex- 581

amine both the VisualGPTScore and current bench- 582

marks for evaluating the multimodal compositional 583

understanding of GVLMs. Based on the examina- 584

tions, we identify the morphological bias that exists 585

in current datasets for GVLMs, and define the bias 586

with MorphoBias Score quantitatively. We then 587

propose a MODE benchmark that calibrates the 588

morphological bias and provides a better content 589

understanding evaluation for GVLMs. We report 590

the results of multiple GVLMs on our proposed 591

MODE benchmark and uncover new findings of 592

the GVLMs’ capabilities. 593

7 Limitations 594

We discuss the potential limitations of this paper 595

from two aspects. First, our proposed novel bench- 596

mark cannot be proved to better measure the perfor- 597

mance of generative VLMs in all aspects, includ- 598

ing emergent capability, vision understanding and 599

complex reasoning. Our benchmark just evaluates 600

the GVLMs in terms of VL compositionality more 601

fairly by removing the morphological bias in pre- 602
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vious benchmarks. Second, our new benchmark is603

based on calibrating the previous ones, and sam-604

pling from them to lower the MorphoBias Score.605

Thus, the scale of the whole dataset is relatively606

small, limiting the generalization of the benchmark607

to some extent.608
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A Appendix828

A.1 Formulations of GVLMs and CVLMs829

In accordance with the discussion in the main text,830

we define GVLMs as models that combine vi-831

sual encoders with large language models (LLMs)832

trained on large text corpora. The visual tokens833

are mapped into a lexical embedding space and834

harnessed to generate textual content in an autore-835

gressive manner. Formally, given an image I and836

the visual encoding g(I) from encoders like Vi-837

sion Transformer (Dosovitskiy et al., 2020), the838

mapping process can be formulated as:839

z = M(g(I)), z = {z1, z2, ..., zN}, (5)840

where N is the number of visual tokens and M is841

the mapping layers. Different from CVLMs that uti-842

lize contrastive loss, the training objective of multi-843

modal autoregressive training is to maximize the844

log-likelihood of the next true token. Denote the845

tokenized instructions as p and the output words as846

ti, (1 ≤ i ≤ K), the GVLM training objective is847

defined as:848

max
θM ,θσ

K∑
i=1

logP (ti|p, z, t1, t2, ..., ti−1; θM , θσ)

(6)849

where θM refers to the learnable parameters of850

mapping layers M and θσ refers to other tunable851

parameters like adapter layers in LLaMA-Adapter852

V2 (Gao et al., 2023), or visual abstractor and853

LoRA in mPLUG-Owl (Ye et al., 2023).854

In comparison, the training objective of CVLMs855

(CLIP-based (Radford et al., 2021)) is based on856

the contrastive loss between vision and language.857

Given an input image I and text T , the encoded858

visual and linguistic features are denoted as fv and859

ft. Then, two transformation matrices Wv and Wt860

are employed to project the visual and text features861

into a joint feature embedding space, which is for-862

mulated as:863

v =
W⊤

v fv
||W⊤

v fv||
, u =

W⊤
t ft

||W⊤
t ft||

(7)864

In the shared embedding space, contrastive learn- 865

ing narrow the discrepancy of vision and language, 866

aligning the image-text pairs in the same batch. The 867

training objective of this process comprises two 868

components, i.e. Lv→t for text retrieval and Lt→v 869

for image retrieval. The similarity of matched pairs 870

will be maximized while unmatched ones will be 871

minimized. The formula is: 872

L =Lv→t + Lt→v

=− 1

|Ω+
v |

∑
Tj∈Ω+

v

log
exp(v⊤i uj/τ)∑

Tk∈Ωt
exp(v⊤i uk/τ)

− 1

|Ω+
t |

∑
Ii∈Ω+

t

log
exp(u⊤i vj/τ)∑

Ik∈Ωv
exp(u⊤i vk/τ)

(8) 873

where Ωv,Ωt represent a batch of images and texts 874

while Ω+
v ,Ω

+
t denote positive subsets matched to 875

image Ii and text Ti. 876

POS: an old person kisses a young person

NEG: a young person kisses an old person

Figure 6: An data example in current benchmarks.
The image, positive and negative references are from
Winoground (Thrush et al., 2022).

A.2 Granularity influence of 877

VisualGPTScore. 878

To explore the influence of granularity of references 879

in the visio-linguistic compositional reasoning, we 880

leverage a language model to enrich the object de- 881

tails and relational phrases for short references in 882

Winoground dataset, where all references are flu- 883

ent and reasonable. Vicuna-13B-v1.51 is adopted 884

as the LLM, which is instruction-following tuned 885

based on LLaMA 2 (Touvron et al., 2023b), one 886

of the strongest open-source LLMs currently. Note 887

1https://huggingface.co/lmsys/vicuna-13b-v1.5/tree/main
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Models&References Text Score Image Score Group Score

LLaVA+Original 12.06 12.77 7.45
LLaVA+Fine-grained 8.51(-3.55) 37.23(+24.50) 6.38(-1.07)
MiniGPT-4+Original 18.44 17.02 9.22

MiniGPT-4+Fine-grained 6.03(-12.41) 31.91(+14.89) 4.96(-4.26)

Table 3: Accuracy of LLaVA and MiniGPT-4 on origi-
nal and fine-grained references of filtered Winoground
dataset. The definitions of Text Score, Image Score, and
Group Score is specified in Winoground (Thrush et al.,
2022).

that we artificially filter out nonsensical and unre-888

lated expanded captions that are not relevant to the889

image and keep 282 of 400 image-text pairs finally.890

The expandation of references is shown in Fig. 7.

In a stunning display of nature's food chain, a brave bird 
fearlessly devoured a slithering snake, demonstrating its 
dominance over the reptile. The bird, with razor-sharp 
talons, expertly grasped the snake, rendering it 
powerless. As the snake writhed in vain, the bird 
proceeded to consume it in a swift and efficient manner, 
showing its superior hunting skills. This remarkable scene 
highlights the intricate balance of the animal kingdom, 
where each species has its place and plays a crucial role 
in maintaining the ecosystem.

a bird eats a snake

LLM

Figure 7: An LLM is leveraged to fine-grain the refer-
ences.

891
We present the results in Table 3, and ob-892

serve that the performance of “Image Score"893

has been largely improved, indicating the fine-894

grained references are beneficial for text-to-image895

retrieval based on the definition of “Image Score"896

in Winoground.897

A.3 Zero-shot answer generation898

Unlike contrastive models, GVLMs excel in zero-899

shot generation when guided by instructions,900

prompts, or demonstrations. We attempt to prompt901

and demonstrate the LLaVA and MiniGPT-4 to out-902

put the choices of positive or negative reference903

sentences based on corresponding images. How-904

ever, we do not consider zero-shot generation of905

answers in our paper with two reasons. First, zero-906

shot answer generation cannot reflect the GVLMs’907

compositional understanding quantitatively, with-908

out scores or probabilities to show the confidence909

of judgements.910

Second, when demonstrating the GVLMs to gen-911

erate the option number of reference sentences di-912

rectly, it is hard to acquire the direct answer due913

to the free-form answer format, especially consid- 914

ering the emergent capability is limited in rela- 915

tively small-scaled GVLMs. In a limited number 916

of instances, we observed successful model outputs 917

where options or inference processes were accu- 918

rately provided, resembling the blue line in Table 4. 919

However, in the majority of cases, the GVLMs gen- 920

erated fabricated answers that were characterized 921

by a rhetorical tone, similar to the examples shown 922

in Table 4. Also, there are cases that the ratio- 923

nales are correct, but the option number is wrong, 924

conflicting with the reasoning process of GVLMs 925

(shown in orange line in Table 4). Hence, assess- 926

ing the compositionality of GVLMs solely through 927

direct zero-shot answer generation becomes chal- 928

lenging, particularly when the zero-shot capability 929

is constrained within a relatively small-scale model 930

like the 7B variant. Furthermore, it is not possible 931

to quantitatively analyze the alignment of a sin- 932

gle image-text pair using this type of evaluation 933

method. 934

• Ducks are known to be efficient at swimming,
and they spend a significant amount of time in
the water. In this image, a duck is swimming on
the water while facing the camera. The option
B is most similar to the image since it describes
a duck walking or swimming in the water.

• Which of the two options provides a better vi-
sual representation of the actual image?

• Which character should I output?
• Which one is most similar to the image?
• The girl is standing to the left of the giraffe, and

they seem to be in a natural environment. The
girl is feeding the giraffe from her hand, and
the giraffe has its tongue out, reaching towards
her hand. The answer is more likely to be B.

Table 4: Examples of zero-shot answer generation
method. Blue: free-form generation, Teal: fabricated
answers, Orange: conflicting rationales and answers.

A.4 Examples of content challenge of MODE 935

We present some examples of items in Content chal- 936

lenge branch in our MODE benchmark in Fig. 8. 937

Each item comprises of one positive reference sen- 938

tence and two negative ones. The red texts are pos- 939

itive reference sentences that only kept visual con- 940

tents related phrases, while the black texts are neg- 941

ative reference sentences that extracted randomly 942

from other datasets. The negative reference sen- 943

tences are fluent, coherent and meaningful, but 944

irrelevant to the contents of images. 945
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The pure content understanding is challenging.946

Specifically, the intrinsic inclination of GVLMs947

towards syntactic correctness drives the GVLMs948

to prefer negative reference sentences. From the949

perspective of our proposed MorphoBias score, the950

bias of our Content Challenge is opposite to the951

current benchmarks, which is biased to the neg-952

ative reference sentences in morphology. There-953

fore, GVLMs have to overcome the negative bias954

in morphology and show the robustness of visual955

understanding.956
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baby , bouncy seat , boy , !ys

whi" ba#room wi# a sink, !ilet, garbage can and basket

kitchen wi# wooden cabinets and grani" coun"r!ps

woman , peach tank !p , mountain bike

a woman skiing down a ski slope in #e slope

a group of people are in an inner tube looking boat

girls , $ee branch , dog

a female is on #e compu"r playing a car game

#ere is one snowboarding going down #e hi%

large green $ain , wooden cra"s

two black and one whi" dog in"rac&ng in #e grass

a man is standing at edge of a pond, wi# two dogs 

and is #rowing a branch is wa"r

donuts , paper , coffee cup

a bearded man wearing a denim jacket sits on a bench

a be%hop is pushing lu(age around inside a ho"l

sma% crowd , people , doubles match , "nnis

young male wi# glasses, blond-hair and beard, holding a black 

shovel over a campfire and a barbecue pit, fi%ed wi# red meat

two people waving #eir hands in #e air and looking up

suit case , large leaf se*ing , car

one lone army soldier overlooking an area wi# binoculars 

or perhaps a range finder in a sub desert area

black male wearing ye%ow shirt doing a reading wi# his equipment

pla" +% , pizza , corn , cheese

a young man holding a young woman in his arms as #ey get splashed 

by wa"r shoo&ng up ,om a fountain

an old man wi# a beard is si*ing on a milk cra" on #e s$eet

ta% giraffe , ta% brush

two people stand at #e peak of a mountain

two men wearing mar&al arts clo#ing are prac&cing mar&al arts

various elec$onics , floor

a woman wi# a drink and a woman wi# a ce%phone

a man jumps rope while a crowd of people watch him

living room scene , man , young girl , wii con$o%ers , woman 

a woman wearing a pink shirt showing a man wi# a s$iped swea"r 

how ! do some work wi# yarn

two "ams, one in pink and one in whi", play lacrosse on a field

Figure 8: Examples of Content challenge in our MODE benchmark. The red texts denote positive reference
sentences that solely capture visual elements while disregarding sentence structure. On the other hand, the black
texts represent negative reference sentences that are grammatically sound and meaningful, yet unrelated to the visual
contents depicted in the images.
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