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ABSTRACT

Recent studies highlight the promise of LLM-based prompt optimization, espe-
cially with TextGrad (Yuksekgonul et al., 2024), which automates “differentia-
tion” via texts and backpropagates textual feedback provided by LLMs. This
approach facilitates training in various real-world applications that do not sup-
port numerical gradient propagation or loss calculation. It opens new avenues for
optimization in decentralized, resource-constrained environments, suggesting that
users of black-box LLMs (e.g., ChatGPT) could enhance components of LLM
agentic systems (such as prompt optimization) through collaborative paradigms
like federated learning (FL). In this paper, we systematically explore the poten-
tial and challenges of incorporating textual gradient into FL. Our contributions
are fourfold. Firstly, we introduce a novel FL paradigm, Federated Textual
Gradient (FedTextGrad), that allows FL clients to upload their locally opti-
mized prompts derived from textual gradients, while the FL server aggregates
the received prompts through text summarization. Unlike traditional FL frame-
works, which are designed for numerical aggregation, FedTextGrad is specif-
ically tailored for handling textual data, expanding the applicability of FL to a
broader range of problems that lack well-defined numerical loss functions. Sec-
ondly, building on this design, we conduct extensive experiments to explore the
feasibility of federated textual gradients. Our findings highlight the importance of
properly tuning key factors (e.g., local steps) in FL training to effectively integrate
textual gradients. Thirdly, We highlight a major challenge in federated textual
gradient aggregation: retaining essential information from distributed prompt up-
dates. Concatenation often produces prompts that exceed the LLM API’s context
window, while summarization can degrade performance by generating overly con-
densed or complex text that lacks key context. Last but not least, in response to
this issue, we improve the vanilla variant of FedTextGrad by providing action-
able guidance to the LLM when summarizing client prompts by leveraging the
Uniform Information Density principle. Such a design reduces the complexity of
the aggregated global prompt, thereby better incentivizing the LLM’s reasoning
ability. Through this principled study, we enable the adoption of textual gradients
in FL for optimizing LLMs, identify important issues, and pinpoint future direc-
tions, thereby opening up a new research area that warrants further investigation.

1 INTRODUCTION

Large Language Models (LLMs) (Zhao et al., 2023), such as GPT (Brown, 2020), Gemini (Team
et al., 2023) and LLaMa (Touvron et al., 2023), have become the foundational backbone of modern
natural language processing (NLP) systems. These models often require fine-tuning to enhance their
responsiveness to specific tasks. While existing open datasets play an important role in LLM tuning,
the vast amount of privately owned, potentially sensitive data continuously generated by end devices
represents a significant, yet largely untapped, pool of samples for LLM fine-tuning.

To adapt to this reality, federated learning (FL) (McMahan et al., 2017) offers a promising privacy-
preserving framework for collaboratively fine-tuning LLMs with distributed, privately owned data.
To address the efficiency demands and black-box nature of many involving LLM APIs (Achiam
et al., 2023), recent advancements in zeroth-order optimization (Qin et al., 2023; Fang et al., 2022)
are beginning to provide useful tools for exploring this avenue. However, these methods gener-
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ally rely on numerical loss calculations to estimate gradients Balasubramanian & Ghadimi (2022),
which is infeasible when using black-box LLM APIs, where the loss definition is unclear (Yang
et al., 2024b) and only textual feedback (e.g., human feedback in ChatGPT (Achiam et al., 2023)) is
available (Yuksekgonul et al., 2024).

Recently, LLMs have been demonstrated as effective optimizers (Pryzant et al., 2023; Liu et al.,
2024; Yang et al., 2024b), capable of automatically refining prompts step-by-step to enhance perfor-
mance (Shinn et al., 2024), while providing informative and interpretable natural language crit-
icism to the variables to guide how the variables should update. As a representative method,
TextGrad (Yuksekgonul et al., 2024) enables automatic “differentiation” through text, allowing the
backpropagation of textual feedback to improve individual components of a compound LLM agentic
system without relying on gradients or numerical calculations. While TextGrad offers substantial
advantages in traditional centralized machine learning settings, its adaptation to FL environments
remains unexplored. In this paper, we seek to answer the exploratory question:

Can textual gradient work under federated learning settings?

Our contributions are fourfold, as outlined below.

Adapting: To facilitate textual gradient operations in FL environments, we propose a first-of-its-
kind FedTextGrad method. Under this method, each FL client is equipped with TextGrad-based
textual gradients during local training. Instead of uploading model parameters like in classical FL
(e.g., FedAvg (McMahan et al., 2017)), clients upload their optimized local prompts to the FL server.
The server then performs prompt aggregation through concatenating and summarizing clients’ local
prompts, and redistribute the global prompt back to the clients for further training.

Investigating: With FedTextGrad, we then conduct experimental studies across various LLMs
and configurations to empirically investigate its relative performance under FL settings compared
to TextGrad in centralized settings on a range of reasoning tasks. During this process, we study
the impact of key factors—such as local update epochs, batch size, number of clients, and data
heterogeneity—on the performance of our framework.

Uncovering: Through our empirical investigation, we have identified a key challenge for feder-
ated textual gradient aggregation: preserving critical information in distributed prompt updates.
Concatenation-based prompt aggregation can produce excessively long prompts that exceeds the
LLM API’s context window, while summarization-based prompt aggregation often degrades per-
formance by generating overly complex and densely packed texts. This is currently the key hurdle
hindering the adoption of textual gradient in FL settings.

Improving: To address this challenge, we develop an key insight that uneven distribution of in-
formation within the summarized prompts is the root cause. We then introduce an enhanced sum-
marization method based on the Uniform Information Density (UID) principle to ensure more
balanced information distribution across the summarized global prompt. It improves prompt ag-
gregation in FedTextGrad by maintaining a uniform information density, resulting in shorter
aggregated prompts that preserve critical contents without sacrificing model performance.

Related work: A detailed literature review is provided in App. A.
FL for LLMs. As LLMs have achieved significant success in centralized learning, there is a grow-
ing interest in adapting FL to accommodate the fine-tuning of pre-trained LLMs (Ren et al., 2024),
particularly to supplement the publicly available data with privately owned datasets Jin & Li (2023).
In response, several frameworks have emerged recently, including OpenFedLLM Ye et al. (2024)
and FederatedScope-LLM Kuang et al. (2024). Moreover, advanced methods such as FedbiOT Wu
et al. (2024) which safeguards model ownership, and FFA-LoRA Sun et al. (2024) which enhances
performance under differential privacy constraints, are being developed to optimize LLM training in
federated environments.
LLMs as Optimziers. Recent research has turned towards leveraging LLMs as optimizers in black-
box settings (Yang et al., 2023). The foundation of this concept stems from the ability of LLMs to
simulate human decision-making. Zheng et al. (2023) benchmarked the behavior of LLMs and
human decisions, finding that modern LLMs align closely with human judgment. Building on
this, Yang et al. (2024b) proposed optimization by prompting, where LLMs generate new solutions
based on a prompt that includes previously generated solutions.Ma et al. (2024) further investigated
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𝜕𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝜕𝑃𝑟𝑜𝑚𝑝𝑡

= “𝑖𝑚𝑝𝑟𝑜𝑣𝑒	𝑡ℎ𝑒	𝑝𝑟𝑜𝑚𝑝𝑡	𝑏𝑦	… ”

𝜕𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛
𝜕𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

= “𝑖𝑚𝑝𝑟𝑜𝑣𝑒	𝑡ℎ𝑒	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑏𝑦	… ”
𝜕𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒
𝜕𝑃𝑟𝑜𝑚𝑝𝑡

= “𝑖𝑚𝑝𝑟𝑜𝑣𝑒	𝑡ℎ𝑒	𝑝𝑟𝑜𝑚𝑝𝑡	𝑏𝑦	… ”

LLM LLM

LLM LLM

1.Prompt 2.Response

𝜕𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛
𝜕𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒

= “𝑖𝑚𝑝𝑟𝑜𝑣𝑒	𝑡ℎ𝑒	𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒	𝑏𝑦	… ”

3.Evaluation

1.Prompt 2.Response 3.Evaluation

5. Prompt 
Aggregation

Server

Client 1

Client 2

Query: I have a chicken, a frog, a 
mouse, a cat, two pigs, and two 
rabbits. How many animals do I 
have?

Prompt: You will answer a 
reasoning question. Think step by 
step. The last line of your 
response should be of the 
following format: 'Answer: 
$VALUE' where VALUE is a 
numerical value.

Response: To find the total 
number of animals, we need to 
count each type of animal 
individually and then add them 
together.
1. You have 1 chicken.
2. You have 1 frog.
..
Now, let's add all the animals 
together: 
1 (chicken) + 1 (frog) + 1 (mouse) 
+ 1 (cat) + 2 (pigs) + 2 (rabbits) = 8

Updated Prompt: You will 
answer a reasoning question. 
Think step by step and provide a 
clear and concise explanation of 
your reasoning and calculations. 
Make sure to include any 
intermediate steps or 
calculations and clearly indicate 
the final answer within your 
explanation. Do not simply state 
the final answer without 
providing any explanation or 
justification…

Ground Truth: 8
Answer: 8

Evaluation: 1

Aggregated Prompt: You will answer 
a reasoning question by thinking 
step-by-step and providing a clear 
and concise response that 
accurately addresses the question 
being asked. Consider the context of 
the question and provide a response 
that is relevant and accurate. To 
achieve this, break down the 
problem into smaller steps and 
provide a clear explanation of each 
step, …

Query: I have three oranges, a pig, 
a frog, a cow, three bananas, a 
nectarine, and a snail. How many 
animals do I have?

Prompt: You will answer a 
reasoning question. Think step by 
step. The last line of your 
response should be of the 
following format: 'Answer: 
$VALUE' where VALUE is a 
numerical value.

Response: To find the total 
number of animals, we need to 
identify and count the animals in 
the given list.

1. The list includes a pig, a frog,
and a cow. These are all animals.
2. We don‘t need to count the 
fruits and snail as they are not 
animals.

So, the total number of animals is
3.

Ground Truth: 4
Answer: 3

Evaluation: 0

Updated Prompt: You will 
answer a reasoning question by 
thinking step-by-step and 
providing a clear and concise 
response that accurately 
addresses the question being 
asked. Consider the context of 
the question and provide a 
response that is relevant and 
accurate. Ensure that your 
response includes a clear and 
concise answer in the format: 
'Answer: $VALUE' where VALUE 
is a numerical value. …

Concatenation? 

Summarization?

How to aggregate?

Challenges

Heterogeneity

Robustness

Privacy

Efficiency

4. Textural 
Grad

4. Textural 
Grad

Multi-Epoch

Figure 1: Illustration of FedTextGrad, where the upper part (blue boxes) and the lower part (green
boxes) represent two different clients. Within each client, circles represent the prompts, and boxes
represent the LLM. FedTextGrad consists of four steps for local updating, proceeding from left
to right. In step-1 (Prompt), the client is tasked with answering the Query by initializing a
Prompt to the LLM to obtain a response. Then, in step-2 (Response), the LLM performs
multi-step reasoning (e.g., CoT) and generates a Response. In step-3 (Evaluation), the
Response is evaluated against the ground truth by the LLM, and a Evaluation score is generated.
Finally, in step-4 (Textual Grad), the Prompt is updated ”backward” based on feedback
from the LLM. After this, the client sends the Updated Prompt to the server. On the server-side, the
collected prompts from all clients are aggregated by the server, which acts as a trusted third party,
and then sent back to the clients, as shown in step-5. Two aggregation strategies are available:
simply concatenating the prompts or using the server-side LLM to summarize them. The system
iteratively performs local updates (multiple local epochs of steps 1-4) and global aggregation
(step-5) for optimization in the FL system.

whether LLMs are effective prompt optimizers. Tools like DSPy Khattab et al. (2023) and Pro-
TeGi Pryzant et al. (2023) introduced programmatic frameworks for optimizing LLM-based APIs,
achieving performance gains across tasks such as question answering and prompt refinement. These
new solutions are then assessed and incorporated into the prompt for the next optimization step.

2 THE PROPOSED FedTextGrad METHOD

In this section, we first provide background on TextGrad, including its forward operation, backpro-
pogation and how LLM-as-the-optimizer can be integrated with TextGrad (Section 2.1). Next, we
explain the analogy between textual and numerical gradients, and describe its extension into the FL
setting - FedTextGrad (Section 2.2). Finally, we present preliminary results across various LLM
APIs using TextGrad and FedTextGrad, highlighting the performance drops (Section 2.3).

2.1 PRELIMINARIES ON TEXTGRAD.

TextGrad is a framework that leverages LLMs for iterative prompt optimization through natural
language feedback, combining (1) a forward operation to generate and evaluate responses, (2)

3
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backpropagation-like updates using textual gradients, and (3) LLM-based optimization via Textual
Gradient Descent to refine prompts effectively across tasks.

Forward Operation of TextGrad. As illustrated in Figure 1, the forward operation of TextGrad
take input query and the Prompt (parameter to be optimized) to a fixed LLM to generating responses.
This Response is then concatenated with the Evaluation Instruction to form the input for the next
LLM call for evaluation. The structure of the computational graph can be expressed as:

Query + Prompt LLM−−−→ Response + Evaluation Instruction LLM−−−→ Evaluation,

where + denotes the concatenation operation. The depth of this computational graph can be ex-
tended by adding intermediate response nodes before performing the final evaluation step. This ex-
tension accommodates a more complex step-by-step reasoning chain, which is analogous to adding
more layers in a deep neural network.

Backpropogation of TextGrad. Based on the output of the forward operation, TextGrad pro-
ceeds with backpropagation to update the Prompt by calculating ∂Evaluation/∂Prompt using the
Chain Rule – first computing the ‘gradient’ with respect to the Response, ∂Evaluation/∂Response,
by collecting feedback on the Response from the Evaluation; then ∂Response/∂Prompt, by obtain-
ing prompt updates from Response using LLMs. The textural gradient represents natural language
feedback, such as: “This response can be improved by...”, guiding the adjustment of variables (e.g.,
the Prompt) to optimize the downstream objective, similar to how numerical gradients function in
traditional optimization. This approach allows for the iterative refinement of the Prompt, analogous
to the use of numerical gradients in backpropagation to optimize neural network weights.

LLMs-as-Optimizers in TextGrad. After obtaining the ‘gradient’ (∂Evaluation/∂Prompt), Tex-
tual Gradient Descent (TGD) leverages LLMs to update the Prompt, by iteratively refining it using
the obtained textual ‘gradient’, similar to the backpropagation process in neural networks. The
update rule for the Prompt is:

Promptnew = TGD.step (Prompt, ∂Evaluation/∂Prompt) , (8)

where textual gradients inform the optimization process.

Algorithm 1 Algorithm of FedTextGrad
Input: N clients indexed by i, B: local mini-
batch size, C: Client sampling rate. T : number
of rounds
Output: Updated Prompts P

1: ServerExecute(C):
2: Initialize P 0

3: for each round t = 1, 2, . . . T do
4: m← max(C ·N, 1)
5: St ← (random set of m clients)
6: for each client i ∈ St in parallel do
7: P t+1

i ← ClientUpdate(i, P t)
8: end for
9: P t+1 ← PromptAgg([P t+1

i ]i∈St
)

10: end for
11: Return Final PT

12: ClientUpdate(i, P ):
13: B ← (Split Di in to batches of size B)
14: for each local epoch e = 1 to E do
15: for each batch b ∈ B do
16: P ← TGD.step

(
P, ∂Evaluation

∂P

)
17: end for
18: end for
19: Return P to server.

Essentially, TGD.step(·) is implemented
through an LLM call using a predefined in-
struction template: “Below are the criticisms on
{Prompt}: {∂Evaluation/∂Prompt}. Incorporate
the criticisms and generate an updated prompt.”

2.2 FROM TEXTGRAD TO FedTextGrad.

We introduce FedTextGrad, a novel adapta-
tion of TextGrad for FL environments. While
our initial demonstration focuses on prompt op-
timization (Pryzant et al., 2023), the methodol-
ogy is versatile and can be applied to a wide
range of tasks such as retrieval-augmented gen-
eration (Lewis et al., 2020) and tool use (Schick
et al., 2024) supporting federated LLM agentic
systems.
FedTextGrad extends TextGrad by integrat-
ing textual gradient-based optimization into FL
client local training. In this setup, clients opti-
mize their local prompts using LLM-generated
textual gradients, sharing these prompts instead
of raw gradient updates with the central server.
It mirrors FedAvg (McMahan et al., 2017), where
local model updates are aggregated at the server.
Rather than aggregating numerical gradients,
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FedTextGrad aggregates natural language prompts across clients. The key innovation in
FedTextGrad is enabling collaborative textual optimization in FL settings, where prompts are
iteratively improved by individual FL clients and then aggregated to form a global prompt. The
challenge here lies in defining an effective aggregation strategy for these local prompts. We first
explore intuitive methods such as concatenation and summarization to evaluate their effectiveness
across various LLM APIs and FL settings.

2.3 FedTextGrad FRAMEWORK DESCRIPTION

The FedTextGrad framework iteratively refines prompts through (1) client-specific updates using
textual gradients, (2) server-side aggregation into a global prompt, and (3) redistribution to clients
across communication rounds. The detailed process, outlined in Algorithm 1, follows these steps:
1. Client Prompt Updates: (Algorithm 1, steps 12-18): Each client i receives the global prompt
P t and fine-tunes it using its local dataset Di. Textual gradients generated by the LLM guide this
local optimization, producing an updated prompt P t

i , which captures the unique distribution of each
client’s data.
2. Server Prompt Aggregation (Algorithm 1, step 9): The server collects the updated prompts P t

i
from all clients and aggregates them into a new global prompt P t+1. Aggregation strategies such as
concatenation or summarization are used to integrate client updates.
3. Global Prompt Distribution (Algorithm 1, steps 6-8): The server then distributes the updated
global prompt P t+1 to all clients. This iterative process continues across several communication
rounds, with each iteration refining the global prompt based on client-specific updates.

This iterative framework enables prompt updates at both local and global levels, ensuring the model
adapts effectively to heterogeneous client environments.

3 EXPERIMENTAL INVESTIGATION

3.1 EXPERIMENT SETTINGS

Data and Tasks. We evaluate FedTextGrad on prompt optimization across three key tasks from
the BBH benchmark (Srivastava et al., 2022): 1) BBH Object Counting, 2) BBH Multistep Arith-
metic, and 3) GSM8k Math Problem (Cobbe et al., 2021). They are well-suited for assessing the
effectiveness of prompt optimization in complex reasoning scenarios. For each dataset, we split it
into training, validation, and test sets. We adopt the dataset preprocessing methodology outlined
in (Yuksekgonul et al., 2024). The training set is used for prompt optimization. The validation set
is used for prompt selection and hyper-parameter tuning. The test set is used for reporting the final
performance, thereby ensuring fair and rigorous evaluation.

Model and Setup. For our experiments, we use the Llama-3.1-8B model (Dubey et al., 2024) for
prompt optimization, serving as both the inference engine and the optimizer within our framework.
Unless otherwise specified, we use a default batch size of 3 with 3 local steps for tuned hyper-
parameters, with batches sampled randomly with replacement. After each iteration, the same batch
is evaluated in a loop. The prompt is updated only if the performance does not drop compared to the
previous non-updated version. Under homogeneous FL settings, each dataset is randomly split into
3 clients, each having an equal number of training and validation samples.

3.2 EMPIRICAL STUDY ON KEY HYPER-PARAMETER CHOICES

This section investigates the impact of key hyper-parameters, including local steps, number of clients
and batch size, on FedTextGrad through ablation studies.

Local steps: Previous FL research (McMahan et al., 2017) has frequently conducted ablation studies
on local steps to understand the balance between local model updates and global model synchroniza-
tion. In traditional FL, increasing local steps is expected to reduce communication costs by allowing
more local updates before synchronization with the server (McMahan et al., 2017; Li et al., 2020).
However, this often comes at the cost of performance degradation due to local overfitting and diver-
gence from the global model. As observed in Fig. 2a, increasing local steps in our setting leads to a
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(a) Local Steps (b) Number of FL Clients (c) Batch Sizes

Figure 2: Ablation study of the impact of three key FL hyper-parameters on FedTextGrad, eval-
uated across three datasets.

significant performance drop, confirming that too many local updates without frequent synchroniza-
tion exacerbate model misalignment across clients.

Number of clients: Previous work McMahan et al. (2017); Li et al. (2020) has explored the effect
of increasing the number of clients in FL to evaluate the model’s robustness to client heterogeneity
and communication bottlenecks. In Fig. 2b, we examine this effect by splitting a single-task dataset
into multiple subsets, each representing a client. With the increase in the number of clients, the
performance drops dramatically. This can be attributed to communication overhead and misaligned
prompt updates between the server and clients. Furthermore, in tasks like Object Counting, increas-
ing the number of clients consistently degraded performance, likely due to the model’s sensitivity to
the heightened heterogeneity and divergent data distributions.

Batch size: Ablation studies on batch size in FL typically explore its impact on convergence and
communication efficiency. Larger batch sizes are expected to stabilize training by reducing gradient
variance, but they might also slow the convergence due to the reduced frequency of updates (McMa-
han et al., 2017). In Fig. 2c, it can be observed that increasing the batch size initially improves
performance by smoothing the optimization process. After a certain threshold, performance de-
clines. This is likely due to less frequent updates, which reduce the model’s ability to adapt quickly
to new data distributions, especially under distribution shifts.

In summary, our ablation studies reveal that while increasing local steps and batch size can ini-
tially stabilize and improve optimization, they ultimately introduce significant challenges related to
communication efficiency and global model alignment. Similarly, increasing the number of clients
improves performance up to a point, but leads to degradation due to communication and synchro-
nization issues, particularly in data heterogeneous environments.

3.3 EVALUATION ON HETEROGENEOUS SETTINGS

Table 1: Performance of Heterogeneous
FedTextGrad Framework Across Batch
Sizes (B) and Local Steps (E). This table
presents the performance of the Heteroge-
neous FedTextGrad framework using three
datasets (Object Counting, Multistep Arithmetic,
GSM8K) as clients in a federated learning setup,
with a total of 3 clients.

E B = 1 B = 3 B = 10

3 0.73 (0.03) 0.78 (0.02) 0.72 (0.03)
5 0.83 (0.02) 0.86 (0.02) 0.84 (0.01)
10 0.81 (0.03) 0.83 (0.02) 0.80 (0.02)

Heterogeneous Experimental Setup. We
evaluate the Heterogeneous FedTextGrad
framework using three distinct datasets: Object
Counting, Multistep Arithmetic, and GSM8K,
with each dataset representing a client in the
federated learning setting. The experiments fo-
cus on two critical hyperparameters: the num-
ber of local steps (E) and batch size (B). Lo-
cal steps (E) refer to the number of client-
specific updates performed before global model
synchronization, while the batch size (B) de-
termines the number of samples processed in
each local update. To investigate the interac-
tion between these hyperparameters, we con-
duct evaluations with E ∈ {3, 5, 10} and B ∈
{1, 3, 10}. Each dataset is split evenly among
clients, and the performance is assessed based
on the model’s ability to adapt under varying hyperparameter configurations.
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Results and Observations. The results presented in Table 1 reveal notable patterns in the Het-
erogeneous FedTextGrad framework’s performance across different local steps and batch sizes.
Increasing local steps (E) from 3 to 5 improves performance across all batch sizes, indicating that
more local updates allow clients to better capture their specific data distributions. However, further
increasing E to 10 leads to a slight performance degradation, suggesting that excessive local updates
before synchronization may result in overfitting to client-specific data. Similarly, batch size (B) ex-
hibits an optimal value at B = 3, which consistently delivers the best results. Larger batch sizes,
such as B = 10, show diminishing returns or even performance drops, possibly due to the reduced
frequency of updates, which hampers the model’s ability to adapt effectively to local distributions.
These findings underscore the importance of careful tuning of local steps and batch size to balance
local adaptation with global model convergence.

3.4 PERFORMANCE WITH VARIOUS LLM APIS.

Experimental Setup. We evaluate the performance of various LLM application programming in-
terfaces (APIs) on the BBH Object Counting dataset, considering both centralized and federated
learning settings. In the federated learning setup, we use the homogeneous FedTextGrad con-
figuration with the following default hyperparameters: local steps (E = 3), batch size (B = 3),
and three clients, each receiving an evenly split portion of the dataset. For the centralized setting,
the split datasets are grouped and trained as a single dataset, enabling a direct comparison between
centralized learning and federated learning.

Results. The results, illustrated in Figure 3, highlight several notable trends. In the centralized
TextGrad setting (Figure 3a), GPT-4 (Achiam et al., 2023) achieves the highest accuracy (0.99),
closely followed by LLaMA-3.1-405B (0.96) and LLaMA-3.1-70B (0.95). In the federated learning
setting (Fig. 3a), while GPT-4 continues to perform best (0.98), there is a slight performance drop
across all models when transitioning from centralized to federated learning. The performance gap
is more pronounced in smaller models, such as Gemma-2-9B (Team et al., 2024) and Qwen-2-
7B (Yang et al., 2024a), which experience sharper declines in accuracy (see Fig. 3b). These findings
suggest that while federated learning has a marginal effect on more capable models like GPT-4 and
LLaMA, the impact is more substantial for less powerful LLMs, underscoring the challenges of
federated learning in heterogeneous environments.

(a) TextGrad on BBH Object Counting (b) FedTextGrad on BBH Object Counting

Figure 3: Comparison of the impact of different LLMs on (a) Centralized TextGrad and (b)
FedTextGrad for BBH Object Counting tasks.

4 ENHANCED FedTextGrad PROMPT AGGREGATION METHOD

In the following section, we first highlight the limitations of directly applying prompt concatenation
for prompt aggregation in FedTextGrad, demonstrating that this approach is impractical due to
the excessive token length it generates, which often exceeds the context window of LLM API and
leads to processing errors. Second, we explore summarization as an alternative method to miti-
gate this issue; however, we observe that it consistently underperforms compared to concatenation.
Finally, inspired by principles of human communication, we introduce an enhanced summariza-
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tion approach that incorporates uniform information density. We find that this simple yet effective
method significantly improves performance while maintaining practical token lengths.

4.1 PROMPT CONCATENATION ANALYSIS

Concatenation aggregation in FedTextGrad risks exceeding token limits and increasing
costs, posing scalability challenges. Concatenation is a natural approach for aggregating text infor-
mation; however, this method introduces a significant issue in our FedTextGrad framework, as
the prompt length increases with the number of clients, potentially exceeding token limits and lead-
ing to rejection by LLM API services. The Fig. 4 illustrates the exponential growth in concatenated
prompt token length as the number of clients increases, highlighting the risk of exceeding GPT-4’s
context window limit of 8192 tokens (denoted by the red dashed line). The right y-axis shows the
associated cost in USD, with increasing token lengths resulting in higher costs. Error bars represent
the standard deviation of token lengths across different client configurations. The figure emphasizes
the trade-off between prompt length and scalability in federated learning settings, particularly when
using concatenation-based prompt aggregation methods.

4.2 CONCATENATION VS. SUMMARIZATION

Figure 4: Increasing token length of concate-
nated prompts.

Summarization is often regarded as a natural so-
lution to mitigate the issue of long token lengths
introduced by concatenation. However, in our
FedTextGrad framework, summarization under-
performs compared to concatenation, prompting the
need for further enhancements. In this section,
we compare concatenation and summarization as
prompt aggregation strategies. The results, shown in
Fig. 6a, cover three tasks: Object Counting, Multi-
step Arithmetic, and GSM8K. For the Object Count-
ing task, concatenation slightly outperforms summa-
rization with accuracies of 0.90 and 0.88, respec-
tively. In the more complex Multistep Arithmetic
task, the performance gap is more pronounced, with
concatenation (0.69) significantly surpassing sum-
marization (0.55). In contrast, for the GSM8K task,
both methods perform comparably, with concatena-
tion achieving 0.94 accuracy and summarization closely following at 0.92. Overall, concatenation
consistently demonstrates superior performance, particularly in more complex tasks like multistep
arithmetic, underscoring its advantage in our framework.

4.3 THE PROPOSED SUM UID PROMPT AGGREGATION METHOD

We propose a UID-based prompt summarization method to overcome the limitations
of summarization’s information non-uniformity, enhancing the stability and accuracy of
FedTextGrad. Fig. 5 highlights the effects of different prompt aggregation approaches. The
main challenge lies in efficiently combining local prompt updates into a global prompt that retains
essential information while adhering to input length constraints for federated optimization. Direct
concatenation of client prompts can produce overly long global prompts, particularly with many FL
clients, potentially exceeding the LLM’s context window. Summarization addresses this issue by
keeping the global prompt within the allowed length, but it often creates overly dense prompts that
degrade model performance.

UID Hypothesis. To address the issue of excessive token lengths in concatenation, we pro-
pose a prompt aggregation method based on the Uniform Information Density Hypothesis
(UIDH) (Meister et al., 2020), which posits that effective communication involves distributing in-
formation uniformly. We hypothesize that uneven information distribution in prompts adversely
affects LLM performance, as critical updates from clients may be diluted. To mitigate this, we in-
troduce an enhanced summarization approach incorporating UID principles to ensure a balanced
representation of client updates in the aggregated prompt.
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Measuring Uniformity. To measure information density uniformity (Meister et al., 2020), sur-
prisal values are computed for each word in a text based on the conditional probabilities de-
rived from a pre-trained language model, such as GPT-2. The uniformity is quantified by the
variance in surprisal values, where lower variance indicates a more uniform distribution of in-
formation. The process involves tokenizing the text, extracting log-probabilities, calculating sur-
prisal for each token, and then computing the mean and variance of these values. The mean sur-
prisal (µ) represents the average information density, while the variance (σ2) reflects the unifor-
mity of information distribution:µ = 1

N

∑N
i=1 I(wi|C), σ2 = 1

N

∑N
i=1(I(wi|C) − µ)2 where

I(wi|C) = − log2 P (wi|C) is the surprisal for token wi given context C, and N is the number of
tokens in the text. A lower value of σ2 indicates higher uniformity in information density, consistent
with the Uniform Information Density hypothesis.

Performance Gains. Our method improves prompt aggregation by maintaining a uniform informa-
tion density across the summarized prompt, preserving key information from each client while pre-
venting over-compression. Fig. 6a shows that, compared to summarization, our UID-based method
yields superior performance in Object Counting and GSM8K dataset. Our empirical results demon-
strate consistent gains in accuracy and prompt stability, confirming the effectiveness of applying
UID principles in FL systems.

5 AN ENVISIONED ROADMAP FORWARD

With LLMs becoming a burgeoning field and model sizes continuously increasing, addressing the
high costs and data privacy concerns in LLM training is paramount. Adapting FL to LLMs offers a
promising direction. FedTextGrad introduces a novel and efficient paradigm that utilizes LLMs
as optimizers and textual gradients to update LLM components. However, practical implementation
of FedTextGrad involves several critical challenges, including (1) managing heterogeneous data
to prevent conflicting contexts and ensure effective aggregation, (2) developing privacy-preserving
methods tailored to textual gradients, as traditional approaches often compromise utility in natural
language settings, (3) improving communication efficiency through advanced summarization and
adaptive encoding to scale in federated environments, and (4) ensuring robustness against diverse
adversarial attacks by adapting different defense mechanisms.

Learning on Heterogeneous Environment: When encountering heterogeneous data and model
architecture, clients can produce conflicting contexts, which result in failed texture aggregation or
ambiguous summarized texts. In traditional federated learning (FL), strategies such as resolving
gradient conflicts or regularizing clients’ gradient updates (Li et al., 2020), as well as sharing com-
mon hidden features (Yi et al., 2024), have proven effective. However, these approaches depend on
numerical operations or the use of hidden features, making them unsuitable for scenarios involv-
ing textual gradients or black-box settings. Consequently, adapting existing methods or developing
novel solutions represents a crucial direction for future research.

Concatenation Summarization Sum. w/ UID

Information 
Density (ID) 
Distribution

You will answer a reasoning 
question. Think step by step. 
The last line of your response 
should be of the following 
format: 'Answer: $VALUE' where 
VALUE is a numerical value

Aggregated 
Prompt 
Length

You are to solve a reasoning question and 
explain each step of your process. After 
completing your reasoning, provide your final 
numerical answer. On the last line, format it as: 
'Answer: $VALUE', where VALUE is the result, 
you calculated. 

Context Window (e.g., 8k Tokens in GPT-4)

P1: When answering a 
reasoning question, provide a 
clear and explicit explanation 
of your thought process, 
including any relevant 
calculations or reasoning ……

PN: When answering a counting 
question, clearly state the 
problem being asked based on 
the input provided, considering 
the context of the question, the 
type of item being asked ……

……

N Clients

Overly Condensed Concise yet Smooth
ID

# Tokens

ID

# Tokens

ID

# Tokens

Figure 5: Illustration of the three types of prompt aggregation proposed in this paper: 1) Concate-
nation – where prompts from clients are directly concatenated; 2) Summarization – where a large
language model (LLM) is employed to summarize the prompts provided by the clients; 3) Sum-
marization with UID (SUM w/ UID) – where the summarization process is enhanced by applying
uniform information density principles.
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(a) Concatenation vs. Summarization (b) Summarization vs. Sum UID

Figure 6: Observations of different aggregation strategies, where (a) presents the performance of
concatenation and summarization, and (b) compares the performance of UID and summarization.

Privacy Attack and Protection: By sharing texture gradient from client LLMs, FedTextGrad
exposure attack surfaces. Although direct gradient inversion might be less effective on textual gra-
dients, adversaries could still use the contextual nature of text to uncover private information, mak-
ing careless prompt engineering a significant risk for revealing sensitive data (Yao et al., 2024).
In traditional FL, privacy protection methods such as differential privacy (DP), secure multi-party
computation (SMPC), and homomorphic encryption are widely used to safeguard numerical gra-
dients (Behnia et al., 2022). However, these strategies face challenges when applied to federated
textual gradients, as natural language contains more context and meaning, making it harder to ob-
fuscate without losing utility. While DP could introduce noise into text, this risks rendering the gra-
dients incoherent, and SMPC or encryption techniques would require significant advances to handle
the complexity of encrypted text. Thus, new privacy-preserving methods tailored specifically for
textual data are needed in federated learning.

Communication Efficiency: Traditional FL typically utilizes three main techniques—pruning,
compression, and sparse updates—to improve the efficiency of transmitting numerical data like
gradient tensors (Jiang et al., 2022). However, none of these methods are specifically designed for
the textual gradient domain. Unlike numerical gradients, textual gradients are inherently contex-
tual and carry semantic information, making direct compression or sparsification infeasible without
risking the loss of critical information or coherence, highlighting the need for further research into
scalability within FedTextGrad.

Robustness: Research in this area examines various methods, such as poisoning attacks, Byzantine
attacks, and other empirical approaches, that adversaries use to undermine the integrity of global
models in FL systems. To counter these attacks, various defense mechanisms have been developed
to enhance robustness in FL. For example, Byzantine-resilient aggregation methods like Krum and
Trimmed Mean mitigate malicious updates by focusing on reliable client contributions and have
been widely adopted in traditional FL (So et al., 2020; Jin & Li, 2023) but infeasible in the textu-
ral context. Methods based on outlier detection can identify and remove suspicious updates. With
proper prompt design or text embedding, such strategies show potential for use in FedTextGrad.
However, the inherent complexity of LLM-based systems exacerbates the difficulty of both execut-
ing these attacks and defending against them.

6 CONCLUSIONS

In this work, we introduced FedTextGrad, an extension of the TextGrad framework specifically
designed to address the challenges of prompt optimization in federated learning settings. By identi-
fying the training instability caused by aggregating distributed prompt updates and demonstrating the
limitations of traditional concatenation and summarization-based techniques, we proposed a novel
approach based on Uniform Information Density Principles to enhance FedTextGrad prompt
summarization. Our method addresses the issue of uneven information distribution, leading to im-
proved prompt efficacy and overall performance in federated environments. This study establishes
a foundation for future advancements in prompt optimization for large-scale, distributed learning
systems and opens new avenues for deploying LLMs in privacy-sensitive, resource-constrained en-
vironments.
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2: Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Tu Vu, Brian Lester, Noah Constant, Rami Al-Rfou, and Daniel Cer. Spot: Better frozen model
adaptation through soft prompt transfer. In Proceedings of the 60th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers), pp. 5039–5059, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Colin White, Samuel Dooley, Manley Roberts, Arka Pal, Ben Feuer, Siddhartha Jain, Ravid Shwartz-
Ziv, Neel Jain, Khalid Saifullah, Siddartha Naidu, et al. Livebench: A challenging, contamination-
free llm benchmark. arXiv preprint arXiv:2406.19314, 2024.

Feijie Wu, Zitao Li, Yaliang Li, Bolin Ding, and Jing Gao. Fedbiot: Llm local fine-tuning in
federated learning without full model. In Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 3345–3355, 2024.

Hongda Wu and Ping Wang. Fast-convergent federated learning with adaptive weighting. IEEE
Transactions on Cognitive Communications and Networking, 7(4):1078–1088, 2021.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024a.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. 2023. Accessed on, 1, 2023.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. In The Twelfth International Conference on Learning
Representations, 2024b. URL https://openreview.net/forum?id=Bb4VGOWELI.

Yifan Yao, Jinhao Duan, Kaidi Xu, Yuanfang Cai, Zhibo Sun, and Yue Zhang. A survey on large
language model (llm) security and privacy: The good, the bad, and the ugly. High-Confidence
Computing, pp. 100211, 2024.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and
Siheng Chen. Openfedllm: Training large language models on decentralized private data via fed-
erated learning. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pp. 6137–6147, 2024.

Liping Yi, Han Yu, Chao Ren, Gang Wang, Xiaoguang Liu, and Xiaoxiao Li. Federated model
heterogeneous matryoshka representation learning. arXiv preprint arXiv:2406.00488, 2024.

Da Yu, Peter Kairouz, Sewoong Oh, and Zheng Xu. Privacy-preserving instructions for aligning
large language models. arXiv preprint arXiv:2402.13659, 2024.

Fuxun Yu, Weishan Zhang, Zhuwei Qin, Zirui Xu, Di Wang, Chenchen Liu, Zhi Tian, and Xiang
Chen. Fed2: Feature-aligned federated learning. In Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining, pp. 2066–2074, 2021.

Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and
James Zou. TextGrad: Automatic “differentiation” via text. arXiv preprint arXiv:2406.07496,
2024.

13

https://openreview.net/forum?id=Bb4VGOWELI


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. Advances in Neural Information Processing Systems, 36:46595–46623, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 FEDERATED LEARNING WITH LLMS

Federated Learning. FL is a privacy-preserving collaborative training paradigm that allows mul-
tiple parties to build a shared global model without the need to exchange raw data. One of the
main challenges in FL is data heterogeneity, as client datasets often stem from different distribu-
tions (McMahan et al., 2017). To address this issue, various techniques have been proposed, includ-
ing regularization (Li et al., 2020), gradient correction (Niu & Deng, 2022), feature alignment (Yu
et al., 2021), adaptive aggregation weights (Wu & Wang, 2021), momentum introduction (Liu et al.,
2020), and leveraging pre-trained models (Huang et al., 2023).

Fedeated Learning with LLMs. As LLMs have achieved significant success in centralized learn-
ing, there is a growing interest in adapting FL to accommodate the fine-tuning of pre-trained
LLMs (Ren et al., 2024), particularly to supplement the publicly available data with privately
owned datasets (Jin & Li, 2023). In response, several frameworks have emerged recently, includ-
ing OpenFedLLM (Ye et al., 2024) and FederatedScope-LLM (Kuang et al., 2024). Moreover,
advanced methods such as FedbiOT (Wu et al., 2024) which safeguards model ownership, and FFA-
LoRA (Sun et al., 2024) which enhances performance under differential privacy constraints, are
being developed to optimize LLM training in federated environments.

Privacy in LLM Prompting. LLM prompting have revolutionized natural language processing
but face significant challenges when handling privacy-sensitive text data, a topic that remains rela-
tively underexplored. Chong et al. (2024) propose “Casper,” a browser extension that sanitizes user
prompts by removing sensitive information before submission to LLMs. Edemacu & Wu (2024)
survey privacy-preserving prompt engineering techniques, emphasizing approaches such as differ-
ential privacy and data obfuscation. Gim et al. (2024) introduce “Confidential Prompting,” which
leverages confidential computing to secure user prompts during LLM inference. Yu et al. (2024)
tackle privacy concerns in instruction tuning by generating synthetic instructions under differential
privacy guarantees, reducing data exposure risks. Finally, Li et al. (2024) present “LLM-PBE,” a
toolkit designed to evaluate privacy risks and mitigation strategies in LLMs. These studies high-
light the pressing need for robust privacy-preserving mechanisms in LLM prompting applications.
Building on these advancements, future work can explore integrating privacy-preserving techniques,
such as differential privacy, data obfuscation, or confidential computing, into FedTextGrad to secure
prompts or textual gradients and mitigate privacy risks in federated learning scenarios.

A.2 LLMS AS OPTIMIZERS

Prompt Optimization. Prompt optimization has attracted significant attention, with various
strategies proving effective in enhancing the performance of LLMs. Techniques such as selecting
optimal few-shot examples (Pryzant et al., 2023), in-context learning (Dong et al., 2022), chain
of thought reasoning (Wei et al., 2022), and model ensembles (Jiang et al., 2023) have shown
promise. Furthermore, several strategies have been developed to automate this process. White-box
approaches, which rely on numerical gradients, offer a useful solution. However, they are limited
by the need to access model parameters, restricting their applicability to only open-source LLMs.

LLMs as Optimizier. Recent research has turned towards leveraging LLMs as optimizers in black-
box settings (Yang et al., 2023). The foundation of this concept stems from the ability of LLMs to
simulate human decision-making. Zheng et al. (2023) benchmarked the behavior of LLMs and
human decisions, finding that modern LLMs align closely with human judgment. Building on
this, Yang et al. (2024b) proposed optimization by prompting, where LLMs generate new solu-
tions based on a prompt that includes previously generated solutions. Ma et al. (2024) further in-
vestigated whether LLMs are effective prompt optimizers. Tools like DSPy Khattab et al. (2023)
and ProTeGi Pryzant et al. (2023) introduced programmatic frameworks for optimizing LLM-based
APIs, achieving performance gains across tasks such as question answering and prompt refinement.
All LLM-as-optimizer approaches require the LLM to be as powerful (large-scale) as possible, as
smaller LLMs currently lack the capability to serve as effective optimizers. However, it is feasible
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to reuse prompts optimized by large-scale models for smaller ones Vu et al. (2022), enabling the
adaptation of the LLM-as-optimizer paradigm in resource-constrained settings

TextGrad. Recently, TextGrad (Yuksekgonul et al., 2024) presents a more generalized approach
of using LLM as optimizers by adapting the above ideas to broader domains, such as optimizing
instances like molecular structures or code snippets, using a textual-backpropagation-based frame-
work. These methods highlight the versatility of LLMs in enhancing their own outputs across diverse
applications, thus opening up opportunities for prompt optimization in closed-source LLMs within
centralized learning settings by circumventing the need for access to model parameters. However,
the research question of how to achieve similar advances in FL settings remains unresolved. This
paper seeks to address this question. Nevertheless, adapting FedTextGrad to resource-constrained
settings with smaller LLMs remains a challenging and unresolved research question, as smaller
LLMs often lack the capacity to serve effectively as LLM-as-optimizers for self-refinement.

B EXPERIMENTAL DETAILS

B.1 DATASETS

We evaluate our method on three primary reasoning tasks:

• BBH Object Counting (Srivastava et al., 2022): A task challenges models to accurately
count objects based on visual or textual descriptions, testing their ability to reason about
quantities and manage multiple elements within a scene or context.

• BBH Multi-Step Arithmetic (Srivastava et al., 2022): Another BBH task that tests a
model’s ability to solve mathematical problems that require multiple sequential steps of
reasoning, assessing its proficiency in handling complex, multi-stage arithmetic operations.

• GSM8k Math Problem (Cobbe et al., 2021): A dataset of grade school math problems
designed to test the mathematical reasoning capabilities of LLMs.

B.2 BASE MODELS

We conduct experiments using five large language models (LLMs), encompassing both widely-used
commercial APIs such as GPT-4o and GPT-3.5 (Achiam et al., 2023), as well as cutting-edge open-
source models like Llama 3, Llama 3.1 (Dubey et al., 2024), and Qwen 2 (Yang et al., 2024a).

By leveraging this diverse set of models, we are able to rigorously assess the scalability and ro-
bustness of our approach across a range of architectures and model sizes, ensuring comprehensive
evaluation and applicability.

B.3 FedTextGrad SETUP

All datasets are split into training, validation, and test sets. The training set is used to optimize
prompts through FedTextGrad, the validation set helps with the prompt selection and hyper-
parameter tuning, and the test set is reserved for reporting the final performance. FL simulates a
decentralized setting where clients send prompt updates to a central server without sharing raw data.
We will opensource the code upon acceptance.

C PROMPT AGGREGATION TECHNIQUES

Prompt aggregation plays a critical role in federated learning with LLMs, especially as the number
of clients increases. We explore two primary methods for aggregating client prompts and evaluate
their effectiveness under varying conditions.

• Concatenation: In this method, the individual prompts from each client are concatenated
into a single, aggregated prompt. While simple to implement, this approach has significant
drawbacks. As the number of clients increases, the total prompt length can easily exceed
the input length constraints imposed by large language models (LLMs), such as GPT-4’s
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context window of 8192 tokens. This results in prompts being truncated or rejected by the
LLM API, severely limiting the scalability of this approach in federated settings.

• Summarization: To alleviate the issue of prompt length in concatenation, summarization
techniques are applied to compress the information from each client into a shorter prompt.
Although this reduces token length, it often comes at the cost of performance degradation.
The compression inherent in summarization leads to information loss, particularly when
the prompts contain complex or diverse client-specific updates. This information loss can
cause suboptimal model performance, especially in tasks that require retaining detailed and
nuanced client data.

• Summarization with Uniform Information Density: We introduce a summarization ap-
proach based on the Uniform Information Density (UID) hypothesis, which ensures a more
balanced distribution of information within aggregated prompts. The UID hypothesis sug-
gests that distributing information uniformly optimizes communication efficiency, and we
apply this principle to mitigate the performance degradation observed in traditional sum-
marization methods. By maintaining uniform information density, our method preserves
critical information from each client while reducing prompt length, aligning with LLM
input constraints. This approach consistently enhances performance across tasks by im-
proving reasoning accuracy and prompt stability in federated learning environments.

An Example of the Prompt Designed for Summarizing Prompts From TextGrad.

Prompt for Summarization

Merge the following list of prompts into a single, cohesive
prompt while preserving all original information. Ensure
that the final instruction remains unchanged and is placed
as the last sentence. Provide only the merged prompt.

An Example of the Prompt Designed for Summarizing Prompts with UID From TextGrad.

Prompt for Summarization with UID

Merge the following list of prompts into a single, cohesive
prompt while preserving all original information. Apply
Uniform Information Density Principles. Ensure that the
final instruction remains unchanged and is placed as the
last sentence. Provide only the merged prompt.

A Concatenated Prompt Example.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Concatenated Prompt for Object Counting

When answering a reasoning question, provide a clear and
explicit explanation of your thought process, including any
relevant calculations or reasoning, to support your answer.
Use specific language to explain your reasoning, and avoid
using vague or ambiguous language that could be interpreted
in multiple ways.

Provide a detailed and step-by-step explanation of your
thought process, including any relevant calculations or
reasoning, to support your answer. For example, a good
response might be: ’To determine the total number of
objects, I counted each item individually: 1 microwave, 1
table, 1 fridge, 1 stove, 1 oven, 1 toaster, 1 couch, and 4
cars. Therefore, the total number of objects is 1 + 1 + 1 +
1 + 1 + 1 + 1 + 4 = 11.’

Ensure that your response is clear, concise, and free
of unnecessary words or phrases, and that it clearly
addresses the question being asked. Use precise and
descriptive language to explain your reasoning, avoiding
oversimplification and providing a nuanced or detailed
explanation of the answer.

Consider the potential for ambiguity in your response and
avoid using language that could be interpreted in multiple
ways. Provide a clear and concise explanation of the
reasoning behind your answer, using relevant details and
examples to support your response.

When providing a numerical answer, avoid including
unnecessary phrases or context, and focus on presenting
the answer in a clear and concise format, such as a single
number or a brief explanation of the calculation.

When answering a counting question, provide a clear and
explicit statement of the count, using a specific format
such as ’Answer: X’ where X is the numerical value. When
providing a final answer, explicitly state the operations
performed to arrive at the answer, and provide a clear and
concise explanation of the reasoning behind the answer.

Use precise and descriptive language to explain your
reasoning, avoiding oversimplification and providing a
nuanced or detailed explanation of the answer. Address any
missing information in the problem and provide a complete
and accurate response.

Use specific details and concrete examples to support your
response and provide a clear and concise explanation of the
reasoning behind the answer. Provide a final answer that
explicitly states the operations performed to arrive at the
answer and includes a clear and concise explanation of the
reasoning behind the answer.

Use a formal and objective tone to ensure that the response
is clear and unambiguous. If ambiguity is unavoidable,
provide a clear and concise explanation of the ambiguity,
and ensure that the response is still clear and unambiguous.
Ensure that the response directly addresses the question
being asked and provides a clear and concise answer to the
problem.
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A Summarized Prompt Example.

Summarized Prompt for Object Counting

When answering a counting question, clearly state the
problem being asked based on the input provided, considering
the context of the question, the type of item being asked
about, and any relevant information that may affect the
answer.

Identify and count the specific category of items mentioned
in the question, and provide a clear and concise count of
the objects mentioned. Ensure that the numerical answer
is accurate and precise, and provide a clear and concise
step-by-step explanation of how you arrived at your answer.

Be aware of idiomatic and colloquial language that may
affect the answer, and use your best judgment to interpret
any unclear or ambiguous language in the question. Consider
alternative scenarios or edge cases that may affect the
answer, and use relationship understanding to disambiguate
any unclear or ambiguous language in the question.

Provide a direct answer to the problem being asked, in the
format "The total number of [object type] is [number]".
Avoid paraphrasing the input and use step-by-step
explanations to provide a clear understanding of the
calculation or reasoning behind the answer.

Specify the type of objects being counted, such as
’animals,’ ’fruits,’ or ’household items,’ based on the
input provided. To ensure accuracy, please count each
type of object individually and add them together. For
example, if the question asks for the total number of
musical instruments, count each type separately (e.g.,
guitars, violins, drums).

Answer: $VALUE where VALUE is a numerical value. The last
line of your response should be of the following format:
"Answer: $VALUE" where VALUE is a numerical value.

D EXPERIMENTS ON MORE CHALLENGING AND HIGH-COMPLEXITY TASKS
WITH FEDTEXTGRAD

To evaluate the performance of FedTextGrad on tasks with higher complexity and reasoning chal-
lenges, we conducted experiments using GPT-4o on datasets extracted from LiveBench (White
et al., 2024). These datasets include tasks that test logical inference, spatial reasoning, and math-
ematical abstraction, providing a rigorous benchmark for assessing the robustness of our Fed-
TextGrad.

Experimental Setup. We evaluated FedTextGrad on two categories of tasks: reasoning and ad-
vanced mathematical problems. For reasoning tasks, we utilized Web of Lies (Version 2), an en-
hanced dataset that introduces deductive red herrings to challenge logical rigor; Zebra Puzzle, a
deductive reasoning task involving multiple constraints across variables like colors and nationali-
ties; and a Spatial Dataset, requiring the model to reason about numerical and positional attributes
of solid, regular heptagons. For mathematical tasks, we employed the AMPS Hard Dataset, de-
signed to test advanced symbolic manipulation and mathematical reasoning through challenging,
randomized problem distributions.
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Table 2: Performance of Centralized and Federated Configurations on Reasoning and Mathematical
Tasks. Best test accuracies are reported for each method across the datasets. Results for Centralized
TextGrad and FedTextGrad with summarization.

Category Dataset Centralized TextGrad FedTextGrad

Reasoning
Spatial 0.53 0.40

Web of Lies 0.37 0.30
Zebra Puzzle 0.33 0.27

Math AMPS Hard 0.46 0.50

Table 3: Results of Prompt Transferability from LLaMA 3.2-11B to LLaMA 3.2-3B. The table
reports the performance of prompts optimized on the larger model and directly transferred to the
smaller model, compared to initial prompts without optimization. Performance metrics are predic-
tion accuracy on the task (higher is better).

Task Initial Prompt ↑ Transferred Prompt ↑ Performance Change
Object Counting 0.66 0.69 +0.03
Multi-step Arithmetic 0.51 0.66 +0.15
GSM8K 0.80 0.72 -0.08

Results. In Table 2, on reasoning tasks, FedTextGrad with summarization demonstrates adequate
performance but remains below the centralized TextGrad configuration across all datasets. For the
Web of Lies dataset, FedTextGrad achieves an accuracy of 0.30, which is lower than the central-
ized TextGrad accuracy of 0.37, highlighting challenges in adapting to deductive reasoning tasks in
federated settings. Similarly, on the Zebra Puzzle dataset, FedTextGrad achieves 0.27 compared to
the centralized TextGrad’s 0.33, reflecting the difficulty of effectively optimizing logical reasoning
tasks in a decentralized environment. For the Spatial dataset, FedTextGrad records 0.40 accuracy
compared to the centralized TextGrad’s 0.53, further showcasing challenges in handling spatial rea-
soning under federated conditions.

In contrast, results for the mathematical task (AMPS Hard Dataset) show that FedTextGrad sur-
passes centralized TextGrad with an accuracy of 0.50 versus 0.46. This indicates that, despite chal-
lenges in reasoning tasks, FedTextGrad excels in tasks requiring mathematical reasoning, possibly
due to its ability to better capture client-specific variations in structured numerical tasks. These
results underscore the varying effectiveness of FedTextGrad across different task domains, with po-
tential for further improvements in reasoning tasks under federated settings.

E FEASIBILITY OF SMALLER LLMS DEPLOYMENT WITH TEXTGRAD.

Experimental Setup. To evaluate the feasibility of deploying prompts optimized on larger LLMs
in resource-constrained settings, we conducted an additional experiment on prompt transferring.
Specifically, prompts optimized using TextGrad on a larger model (LLaMA 3.2-11B) were di-
rectly applied to a smaller model (LLaMA 3.2-3B) without further optimization. Unlike the
LLaMA 3.1-8B model used in the main text, we opted for the LLaMA 3.2 series because the
3.1 series does not include models smaller than 8B. The LLaMA 3.2 series, on the other hand,
offers a wider range of model sizes, making it suitable for evaluating prompt transferability across
different model scales. The tasks used were the same as in the main text, including BBH Object
Counting, BBH Multi-step Arithmetic, and GSM8K.

Results. The results in Table 3 showed that on BBH Object Counting and BBH Multi-step Arith-
metic, the transferred prompts achieved significantly better performance compared to the initial
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Table 4: Averaged performance with client heterogeneity of summarization and UID summarization
across three clients under varying batch sizes (B). Performance is reported as the mean accuracy
across tasks.

Method B = 1 B = 3 B = 10
Summarization 0.73 (0.03) 0.78 (0.02) 0.72 (0.03)
UID Summarization 0.75 (0.02) 0.79 (0.02) 0.74 (0.03)

prompts. This indicates the potential for reusing optimized prompts in smaller, resource-efficient
models without requiring further optimization. However, on the GSM8K task, the transferred
prompts experienced a noticeable performance downgrade. This highlights the challenges of prompt
generalization for more complex reasoning tasks. These findings suggest that prompt transferring is
a promising approach for leveraging the optimization capabilities of larger LLMs while deploying
smaller models in resource-constrained settings. Nevertheless, the observed limitations in tasks like
GSM8K underscore the need for further studies to enhance the generalization capabilities of prompt
transferring within the TextGrad framework. This represents an important direction for future re-
search.

F UID SUMMARIZATION GENERALIZABILITY ON CLIENT HETEROGENEITY.

Experimental Setup. We evaluate the robustness of UID-based summarization in heterogeneous
client settings, where each client is assigned a distinct task. This configuration follows the setup
described in Section 3.3 of the main text. The tasks used to simulate client heterogeneity include
reasoning-based benchmarks, and the model employed is LLaMA 3.1-8B.

In this setup, three clients handle unique tasks to represent heterogeneity in data distributions.
Specifically, one client addresses object counting tasks, another manages multi-step arithmetic,
and the third tackles problems from GSM8K. UID-based summarization is compared with stan-
dard summarization aggregation to measure its performance under these conditions. Additionally,
performance trends are analyzed as the batch size increases to better understand the behavior of the
summarization methods. The training epoch is fixed to 3 as the default for all experiments.

Results The results in Table 4 demonstrate that UID-based summarization performs effectively
under moderate client heterogeneity. It achieves slightly better results than standard summariza-
tion aggregation, showcasing its ability to retain essential information while adapting to diverse
data distributions. Moreover, the performance trends with increasing batch size closely mirror those
observed for standard summarization, indicating consistent and stable behavior across different con-
figurations. These findings highlight the effectiveness of UID summarization in federated settings
with heterogeneous client data. They reinforce its applicability in real-world scenarios, where client
heterogeneity is a common challenge. The additional results and analysis are included in the revised
manuscript to provide a comprehensive evaluation of the method under varying conditions.

G DYNAMIC PROMPT AGGREGATION

To explore the feasibility of dynamic aggregation strategies in federated learning, we conduct an
experiment evaluating the performance of dynamic switching between concatenation and summa-
rization during the aggregation stage. This experiment extends the analysis presented in Figure 6(a),
using the same dataset and LLaMA 3.1-8B model.
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Experimental Setup. In this experiment, we implement a dynamic aggregation strategy where
concatenation is used for prompt aggregation by default. However, if the concatenated prompt
exceeds the model’s pre-defined context window (selected as 800 tokens), summarization is applied
to reduce the prompt length. This hybrid approach leverages the strengths of both methods, aiming
to balance information retention and context limitations. The federated setup follows the same
configuration as described in Figure 6(a) of the main text.

Results. The results, shown in Figure 7, demonstrate that the dynamic aggregation strategy un-
derperforms compared to both the summarization-only and concatenation approaches in general.
Notably, in one task (object counting), the dynamic strategy slightly outperforms summarization.
However, in other tasks, its performance lags behind. These findings highlight the potential adapt-
ability of dynamic aggregation switching in managing varying prompt lengths.

Figure 7: Concatenation vs Sum-
marization vs Dynamic Aggrega-
tion Performance.

Discussion. This experiment underscores the promise of dy-
namic aggregation switching as an effective strategy for fed-
erated textual aggregation. By addressing context window
constraints dynamically, the method balances the trade-off be-
tween information retention and prompt length management.
However, a significant limitation is the need to pre-select an
optimal context window for specific datasets, which can be
challenging and requires dedicated selection and prior knowl-
edge. Future work could focus on refining the switching cri-
teria and exploring its applicability across a broader range of
datasets and models.

H SURPRISAL ANALYSIS ON SUMMARIZATION WITH AND WITHOUT UID

Figure 8: Summarization vs
UID Summarization Aggregation
Prompt Surprisal Value.

To investigate the information retention capabilities of UID
summarization compared to standard summarization, we con-
duct an experiment analyzing the mean and maximum sur-
prisal values of prompts after aggregation. Surprisal values
measure the unexpectedness of generated text, providing in-
sights into the uniformity and completeness of information
across aggregated prompts.

Experimental Setup. We calculate the mean and maximum
surprisal values of prompts aggregated using both standard
summarization and UID summarization. The calculations are
performed across multiple tasks to ensure a comprehensive evaluation. Surprisal values are derived
from the aggregated prompts post-processing, capturing how effectively the summarization methods
retain critical information.

Results. The results in Figure 8 indicate that the mean and maximum surprisal values for UID
summarization are nearly identical to those for standard summarization across all tasks. This sug-
gests that both methods exhibit similar levels of information retention. While UID summarization is
specifically designed to enhance information uniformity, it does not introduce additional information
loss compared to standard summarization, as evidenced by the surprisal metrics.

Discussion. These findings confirm that UID summarization retains essential information as ef-
fectively as standard summarization while achieving improved task performance, as demonstrated
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in Section 4. The analysis highlights the robustness of UID summarization in ensuring both critical
information retention and enhanced uniformity.
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