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ABSTRACT

Idempotence is the stability of image codec to re-compression. At the first
glance, it is unrelated to perceptual image compression. However, we find that
theoretically: 1) Conditional generative model-based perceptual codec satisfies
idempotence; 2) Unconditional generative model with idempotence constraint
is equivalent to conditional generative codec. Based on this newfound equiva-
lence, we propose a new paradigm of perceptual image codec by inverting un-
conditional generative model with idempotence constraints. Our codec is theo-
retically equivalent to conditional generative codec, and it does not require train-
ing new models. Instead, it only requires a pre-trained mean-square-error codec
and unconditional generative model. Empirically, we show that our proposed
approach outperforms state-of-the-art methods such as HiFiC (Mentzer et al.,
2020) and ILLM (Muckley et al., 2023), in terms of Fréchet Inception Distance
(FID). The source code is provided in https://github.com/tongdaxu/
Idempotence-and-Perceptual-Image-Compression.

Figure 1: A visual comparison of our proposed approach with state-of-the-art perceptual image
codec, such as HiFiC (Mentzer et al., 2020) and ILLM (Muckley et al., 2023).

1 INTRODUCTION

Idempotence refers to the stability of image code to re-compression, which is crucial to practical
image codec. For traditional codec standard (e.g., JPEG (Wallace, 1991), JPEG2000 (Taubman et al.,
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2002), JPEG-XL (Alakuijala et al., 2019)), idempotence is already taken into consideration. For
neural image compression (NIC), by default idempotence is not considered. Thus, specific methods
such as invertible network (Helminger et al., 2021; Cai et al., 2022; Li et al., 2023) and regularization
loss (Kim et al., 2020) have been proposed to improve the idempotence of NIC methods.

In the meantime, there has been growing success in perceptual image compression. Many recent
studies achieve perceptual near-lossless result with very low bitrate (Mentzer et al., 2020; Muckley
et al., 2023). The majority of perceptual image compression methods adopt a conditional genera-
tive model (Tschannen et al., 2018; Mentzer et al., 2020; He et al., 2022b; Agustsson et al., 2022;
Hoogeboom et al., 2023; Muckley et al., 2023). More specifically, they train a decoder that learns the
posterior of a natural image conditioned on the bitstream. This conditional generative model-based
approach is later theoretically justified by Blau & Michaeli (2019); Yan et al. (2021), who show
that such approach achieves perfect perceptual quality and is optimal in terms of rate-distortion-
perception trade-off when the encoder is deterministic.

At the first glance, idempotence and perceptual image compression are unrelated topics. Indeed,
researchers in those two areas barely cite each other. However, we find that idempotence and per-
ceptual image compression are, in fact, closely related. More specifically, we demonstrate that:
1) Perceptual image compression with conditional generative model brings idempotence; 2) Un-
conditional generative model with idempotence constraints brings perceptual image compression.
Inspired by the latter, we propose a new paradigm of perceptual image compression, by inverting
an unconditional generative model with idempotence constraint. Compared with previous condi-
tional generative codec, our approach requires only a pre-trained unconditional generative model
and mean-square-error (MSE) codec. Furthermore, extensive experiments empirically show that our
proposed approach achieves state-of-the-art perceptual quality.

2 PRELIMINARIES

2.1 IDEMPOTENCE OF IMAGE CODEC

Idempotence of image codec refers to the codec’s stability to re-compression. More specifically,
denote the original image as X , the encoder as f(.), the code as Y = f(X), the decoder as g(.) and
the reconstruction as X̂ = g(Y ). We say that the codec is idempotent if

f(X̂) = Y , or g(f(X̂)) = X̂, (1)

i.e., the codec is idempotent if the re-compression of reconstruction X̂ produces the same result.

2.2 PERCEPTUAL IMAGE COMPRESSION

In this paper, we use Blau & Michaeli (2018)’s definition of perceptual quality. More specifically,
we say that the reconstructed image X̂ has perfect perceptual quality if

pX̂ = pX , (2)
where pX is the source image distribution and pX̂ is the reconstruction image distribution. In this
paper, we slightly abuse the word ”perception” for this divergence-based perception, and use the
word ”human perception” for human’s perception instead.

The majority of perceptual image codec achieves perceptual quality by conditional generative model
(Tschannen et al., 2018; Mentzer et al., 2020; He et al., 2022b; Agustsson et al., 2022; Hooge-
boom et al., 2023). More specifically, they train a conditional generative model (such as conditional
generative adversial network) to approximate the real image’s posterior on the bitstream. And the
reconstruction image X̂ is obtained by sampling the posterior:

X̂ = g(Y ) ∼ pX|Y , where Y = f(X). (3)
Blau & Michaeli (2019) prove that this conditional generative codec achieves perfect perceptual
quality pX̂ = pX . Further, when f(.) achieves the optimal MSE ∆∗, then the MSE of perceptual
reconstruction is bounded by twice of the optimal MSE:

E[||X − X̂||2] ≤ 2∆∗, (4)
Moreover, Yan et al. (2021) further justify conditional generative codec by proving that it is optimal
in terms of rate-distortion-perception (Blau & Michaeli, 2019) among deterministic encoders.

2



Published as a conference paper at ICLR 2024

Figure 2: The relationship between idempotence and perceptual image compression.

3 IDEMPOTENCE AND PERCEPTUAL IMAGE COMPRESSION

In this section, we connect idempotence and perceptual image compression. Specifically, we show
that ideal conditional generative codec is idempotent. On the other hand, sampling from uncon-
ditional generative model with ideal idempotence constraint leads to conditional generative codec.
Their relationship is shown in Fig. 2.

3.1 PERCEPTUAL IMAGE COMPRESSION BRINGS IDEMPOTENCE

We first show that ideal conditional generative codec satisfies idempotence, i.e, X̂ ∼ PX|Y ⇒
f(X̂) = Y . Given a specific value y with non-trivial probability pY (Y = y) ̸= 0, we define the
inverse image of y as f−1[y] = {x|f(x) = y}. By definition, all the elements x ∈ f−1[y] encode
into y. Then if we can show X̂ ∈ f−1[y], we can show that this perceptual codec is idempotent.

To show that X̂ ∈ f−1[y], let’s consider a specific value x with non-trivial probability pX(X =
x) ̸= 0. As Y = f(X) is a deterministic transform, when x /∈ f−1[y], we have the likelihood
pY |X(Y = y|X = x) = 0. Therefore, for any x /∈ f−1[y], we have pXY (X = x, Y = y) =

pY |X(Y = y|X = x)pX(X = x) = 0. As pX|Y = pXY /pY , for any x /∈ f−1[y], we have
the posterior pX|Y (X = x|Y = y) = 0. And therefore, for any sample X̂ ∼ pX|Y=y , we have
Pr{X̂ ∈ f−1[y]} = 1, i.e., X̂ ∈ f−1[y] almost surely. By definition of f−1[y], this codec is
idempotent. We summarize the above discussion as follows:

Theorem 1. (Perceptual quality brings idempotence) Denote X as source, f(.) as encoder, Y =

f(X) as bitstream, g(.) as decoder and X̂ = g(Y ) as reconstruction. When encoder f(.) is deter-
ministic, then conditional generative model-based image codec is also idempotent, i.e.,

X̂ = g(Y ) ∼ pX|Y ⇒ f(X̂)
a.s.
= Y. (5)

3.2 IDEMPOTENCE BRINGS PERCEPTUAL IMAGE COMPRESSION

In previous section, we have shown that perceptual quality brings idempotence. It is obvious that
the simple converse is not true. A counter-example is JPEG2000 (Taubman et al., 2002), which is
idempotent by design but optimized for MSE. However, we show that with unconditional generative
model, idempotence does bring perceptual quality.

More specifically, we want to show that sampling from unconditional distribution X̂ ∼ pX with
idempotence constraint f(X̂) = Y , is equivalent to sampling from the posterior pX|Y . Again, we
consider a non-trivial y with pY (Y = y) ̸= 0. Similar to previous section, as f(.) is deterministic,
we have pY |X(Y = y|X = x) = 1 if x ∈ f−1[y], and pY |X(Y = y|X = x) = 0 if x /∈ f−1[y].
Then, we can compute the posterior distribution as

pX|Y (X = x|Y = y) ∝ pX(X = x)pY |X(Y = y|X = x)

∝
{

pX(X = x), x ∈ f−1[y],
0, x /∈ f−1[y].

(6)

The above equation shows that when x /∈ f−1[y], the posterior likelihood pX|Y (X = x|Y = y) =

0, and no sample with value x can be generated almost surely. And when x ∈ f−1[y], the posterior
likelihood pX|Y (X = x|Y = y) is proportional to the source distribution pX(X = x). Therefore,
sampling from the source pX with idempotence constraint f(X) = Y is equivalent to sampling
from the posterior pX|Y . We summarize the above discussion as follows:
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Theorem 2. (Idempotence brings perceptual quality) Denote X as source, f(.) as encoder, Y =

f(X) as bitstream, g(.) as decoder and X̂ = g(Y ) as reconstruction. When encoder f(.) is de-
terministic, the unconditional generative model with idempotence constraint is equivalent to the
conditional generative model-based image codec, i.e.,

X̂ ∼ pX , s.t. f(X̂) = Y ⇒ X̂ ∼ pX|Y . (7)

And more conveniently, the unconditional generative model with idempotence constraint also satis-
fies the theoretical results from rate-distortion-trade-off (Blau & Michaeli, 2019; Yan et al., 2021):

Corollary 1. If f(.) is the encoder of a codec with optimal MSE ∆∗, then the unconditional gener-
ative model with idempotence constraint also satisfies

pX̂ = pX , E[||X − X̂||2] ≤ 2∆∗. (8)

Furthermore, the codec induced by this approach is also optimal among deterministic encoders.

Besides, those results can be extended to image restorations (See Appendix. A).

4 PERCEPTUAL IMAGE COMPRESSION BY INVERSION

4.1 GENERAL IDEA

Theorem 2 implies a new paradigm to achieve perceptual image compression by sampling from a
pre-trained unconditional generative model with the idempotence constraint. More specifically, we
can rewrite the left hand side of Eq. 7 in Theorem 2 as

min ||f(X̂)− Y ||2, s.t. X̂ ∼ pX . (9)

Then the problem has exactly the same form as a broad family of works named ‘generative model
inversion’ for image super-resolution and other restoration tasks (Menon et al., 2020; Daras et al.,
2021; Wang et al., 2022; Chung et al., 2022a). From their perspective, f(.) is the down-sample
operator, Y is the down-sampled image and ||f(X̂) − Y ||2 is the ‘consistency’ penalization that
secures the super-resolved image X̂ corresponds to the input down-sampled image. The X̂ ∼ pX
is the ‘realness’ term, and it ensures that X̂ lies on the natural image manifold (Zhu et al., 2016).
And solving Eq. 9 is the same as finding a sample that satisfies the consistency, which is the inverse
problem of sampling. Therefore, they name their approach ‘inversion of generative model’. For us,
the f(.) operator is the encoder, and Y is the bitstream. And so long as our encoder is differentiable,
we can adopt their inversion approach for image super-resolution to inverse the codec.

4.2 ENCODE AND DECODE PROCEDURE

To better understand our proposed approach, we describe the detailed procedure of communicating
an image from sender to receiver and implementation details. We start with the pre-trained model
that is required for the sender and receiver:

• The sender and receiver share a MSE optimized codec with encoder f0(.), decoder g0(.).
Despite we can use any base codec, MSE-optimized codec leads to tightest MSE bound.

• The receiver has a unconditional generative model qX approximating the source pX .

And the full procedure of encoding and decoding an image with our codec is as follows:

• The sender samples an image from the source X ∼ pX .

• The sender encodes the image into bitstream Y = f0(X), with the encoder of pre-trained
MSE codec. And Y is transmitted from sender to receiver.

• Upon receiving Y , the receiver inverses a generative model with idempotence constraint:

min ||f0(X̂)− Y ||2, s.t. X̂ ∼ qX . (10)
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For practical implementation, we can not directly use the binary bitstream Y for idempotence con-
straint. This is because most of generative model inversion methods (Menon et al., 2020; Daras
et al., 2021; Chung et al., 2022a) use the gradient ∇X̂ ||f0(X̂) − Y ||2. On the other hand, for most
NIC approaches, the entropy coding with arithmetic coding (Rissanen & Langdon, 1979) is not
differentiable. We propose two alternative constraints to this problem:

• y-domain constraint: We do not constrain the actual bitstream Y . Instead, we constrain the
quantized symbols before arithmetic coding. Further, we use straight-through-estimator to
pass the gradient through quantization. And we call this constraint y-domain constraint.

• x-domain constraint: On the other hand, we can also decode the re-compressed image and
constrain the difference between the MSE reconstructed image of source X and the MSE
reconstructed image of sample. More specifically, instead of solving Eq. 10, we solve:

min ||g0(f0(X̂))− g0(Y )||2, s.t. X̂ ∼ qX , (11)

Similarly, the quantization is relaxed by STE to allow gradient to pass. And we call this
constraint x-domain constraint.

The y-domain and x-domain constraint correspond to two idempotence definitions in Eq. 1. And
when g0(.) is MSE optimal, those two constraints are equivalent (See Theorem 3 of Appendix. A).
And beyond STE, other gradient estimators such as additive noise, multi-sample noise and stochastic
gumbel annealing can also be adopted (Ballé et al., 2017; Xu et al., 2022; Yang et al., 2020).

4.3 COMPARISON TO PREVIOUS WORK

Compared with previous works using conditional generative model (Mentzer et al., 2020; Muckley
et al., 2023), our proposed approach does not require specific conditional generative model for dif-
ferent codec and bitrate. It only requires one unconditional generative model, and it can be directly
applied on even pre-trained MSE codec. Furthermore, it is theoretically equivalent to conditional
generative codec, which means that it conveniently shares the same theoretical properties in terms
of rate-distortion-perception trade-off (Blau & Michaeli, 2019).

Compared with previous proof of concept using unconditional generative model (Ho et al., 2020;
Theis et al., 2022), our proposed approach does not require bits-back coding (Townsend et al., 2018)
or sample communication (Li & El Gamal, 2018), which might have rate or complexity overhead.
Further, it is implemented as a practical codec. Moreover, our approach uses exactly the same
bitstream Y as MSE codec. This means that the receiver can choose to reconstruct a MSE optimized
image or a perceptual image and even achieve perception-distortion trade-off (See Appendix. B.3).

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Metrics We use Fréchet Inception Distance (FID) to measure perceptual quality. This is because we
use Blau & Michaeli (2018)’s definition of perceptual quality, which is the divergence between two
image distributions. And FID is the most common choice for such purpose. We use MSE and Peak-
Signal-Noise-Ratio (PSNR) to measure distortion, which are the default choice for image codec.
We use bpp (bits per pixel) to measure bitrate. To compare codec with different bitrate, we adopt
Bjontegaard (BD) metrics (Bjontegaard, 2001): BD-FID and BD-PSNR. Those BD-metrics can be
seen as the average FID and PSNR difference between codec over their bitrate range.

Datasets Following previous works in unconditional image generation (Karras et al., 2019; Ho et al.,
2020), we train our unconditional generative models on FFHQ (Karras et al., 2019) and ImageNet
(Deng et al., 2009) dataset. As (Chung et al., 2022a), we split the first 1000 images of FFHQ as test
set and the rest for training. And we use first 1000 images of ImageNet validation split as test set
and use the ImageNet training split for training. To test the generalization ability of our method on
other datasets, we also use first 1000 images of COCO (Lin et al., 2014) validation split and CLIC
2020 (Toderici et al., 2020) test split as additional test set. As previous works (Karras et al., 2019;
Ho et al., 2020) in unconditional generative model, we central crop image by their short edge and
rescale them to 256× 256.
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Previous State-of-the-art Perceptual Codec We compare our approach against previous state-of-
the-art perceptual codec: HiFiC (Mentzer et al., 2020), Po-ELIC (He et al., 2022b), CDC (Yang &
Mandt, 2023) and ILLM (Muckley et al., 2023). HiFiC is the first codec achieving perceptual near
lossless compression with very low bitrate. Po-ELIC is the winner of CVPR CLIC 2022, a major
competition for perceptual codec. CDC is a very recent perceptual codec using conditional diffusion
model. ILLM is the latest state-of-the-art perceptual codec. We use the official model to test HiFiC,
CDC and ILLM. We contact the authors of Po-ELIC to obtain the test results on our datasets. For
fairness of comparison, we also test a re-trained version of HiFiC (Mentzer et al., 2020) and ILLM
(Muckley et al., 2023) on FFHQ and ImageNet dataset. So that their training dataset becomes the
same as ours. We acknowledge that there are other very competitive perceptual codec (Iwai et al.,
2021; Ma et al., 2021; Agustsson et al., 2022; Goose et al., 2023; Hoogeboom et al., 2023), while
we have not included them for comparison as they are either unpublished yet or do not provide
pre-trained model for testing.

MSE Codec Baseline As we have discussed, our approach requires a MSE optimized codec as base
model. As we only requires the codec to be differentiable, most of works in NIC (Ballé et al., 2018;
Minnen et al., 2018; Minnen & Singh, 2020; Cheng et al., 2020; He et al., 2022a; Liu et al., 2023)
can be used. Among those MSE codec, we choose two representative models: Hyper (Ballé et al.,
2018) and ELIC (He et al., 2022a). Hyper is perhaps the most influential work in NIC. Its two level
hyperprior structure inspires many later works. ELIC is the first NIC approach that outperforms
state-of-the-art manual codec VTM (Bross et al., 2021) with practical speed. For reference, we also
choose two traditional codec baseline: BPG and VTM (Bross et al., 2021).

Base Inversion Constraint bpp FID ↓ MSE ↓ MSE bound

ELIC - - -

0.07

94.35 91.75 -

Proposed (ELIC)

StyleGAN2 PULSE x-domain 15.33 754.2

183.5
StyleGAN2 ILO x-domain 26.15 689.2
DDPM MCG x-domain 135.1 929.2
DDPM DPS y-domain 5.377 189.2
DDPM DPS x-domain 5.347 161.9

Table 1: Ablation study with FFHQ and ELIC. Bold: best FID. Bold red: too large MSE.

Figure 3: Ablation study on unconditional generative model with FFHQ and ELIC.

5.2 ABLATION STUDY

Unconditional Generative Model As we have discussed, our approach requires an unconditional
generative model for inversion. The most adopted models for inverse problem are StyleGAN family
(Karras et al., 2019) and DDPM (Ho et al., 2020). Multiple approaches are proposed to invert
StyleGAN and DDPM. And they are shown to be effective for image super-resolution and other
restoration tasks (Menon et al., 2020; Daras et al., 2021; Roich et al., 2022; Daras et al., 2022;
Wang et al., 2022; Chung et al., 2022b;a). For StyleGAN inversion, we choose two mostly adopted
approach: PULSE (Menon et al., 2020) and ILO (Daras et al., 2021). For DDPM inversion, we
choose MCG (Chung et al., 2022b) and DPS (Chung et al., 2022a) as they are the most popular
methods for non-linear inversion.

To find the most suitable unconditional generative model, we compare StyleGAN2 + PULSE, Style-
GAN2 + ILO, DDPM + MCG and DDPM + DPS. The implementation details are presented in
Appendix. B.1. As Tab. 1 and Fig. 3 show, compared with DDPM + DPS, other three methods
either have too high FID or have MSE significantly larger than 2×MSE of ELIC. Further, they look
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visually less desirable and less similar to the source. Therefore, we use DDPM + DPS inversion in
later experiments.

Domain of Idempotence Constraint As we have discussed, there are two kinds of constraint for
idempotence, namely y-domain and x-domain. In theory, those two constraints are equivalent (See
Theorem 3 of Appendix A). While in practice, they can be different as the strict idempotence condi-
tion f0(X̂) = Y might not be achieved. We compare the y-domain and x-domain in Tab. 1. Those
two constraints achieve similar FID while x-domain has lower MSE. This might be due to that x-
domain directly optimizes MSE on pixel-level. Therefore, we choose x-domain constraint in later
experiments.

Figure 4: A visual comparison of our proposed approach with state-of-the-art perceptual image
codec, such as HiFiC (Mentzer et al., 2020) and ILLM (Muckley et al., 2023).

Figure 5: Reconstruction diversity of proposed approach.

5.3 MAIN RESULTS

Perceptual Quality We compare the perceptual quality, in terms of FID, with state-of-the-art per-
ceptual codec on multiple datasets. The results are shown in Tab. 2 and Fig. 11 of Appendix. B.3.
Tab. 2 shows that our approach with ELIC (He et al., 2022a) achieves the lowest FID on all datasets.
Furthermore, our approach with Hyper (Ballé et al., 2018) achieves second lowest FID on all
datasets. We note that the base codec of HiFiC and ILLM is Mean-Scale Hyper (Minnen et al.,
2018), which outperforms the Hyper. On the other hand, the base codec of Po-ELIC is ELIC, which
is the same as ELIC. Besides, our approach outperforms CDC, which uses DDPM as generative
model like us. Additionally, on FFHQ and ImageNet dataset, our approach also outperforms HiFiC
and ILLM re-trained on those two dataset. Therefore, it is clear that our approach outperforms pre-
vious perceptual codec and achieves state-of-the-art FID metric, as we have excluded the difference
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of base codec, generative model and dataset. Furthermore, qualitative results in Fig. 1, Fig. 4 and
Fig. 12- 15 of Appendix B.3 also show that our approach is visually more desirable. On the other
hand, Fig. 11 of Appendix B.3 shows that the MSE of our approach is within twice of base codec,
and Tab. 2 shows that the PSNR of our method is within 10 log10 2 = 3.01 dB of base codec. This
means that our proposed approach satisfies the MSE bound by rate-distortion-perception trade-off
(Blau & Michaeli, 2018). And as our approach shares bitstream with MSE codec, we can achieve
perception-distortion trade-off (See Appendix. B.3). In addition, we also evaluate KID (Binkowski
et al., 2018) and LPIPS (Zhang et al., 2018) in Appendix. B.3.

Method FFHQ ImageNet COCO CLIC

BD-FID ↓ BD-PSNR ↑ BD-FID ↓ BD-PSNR ↑ BD-FID ↓ BD-PSNR ↑ BD-FID ↓ BD-PSNR ↑
MSE Baselines
Hyper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ELIC -9.740 1.736 -10.50 1.434 -8.070 1.535 -10.23 1.660
BPG -4.830 -0.8491 -8.830 -0.3562 -4.770 -0.3557 -4.460 -0.4860
VTM -14.22 0.7495 -13.11 0.9018 -11.22 0.9724 -12.21 1.037

Conditional Generative Model-based
HiFiC -48.35 -2.036 -44.52 -1.418 -44.88 -1.276 -36.16 -1.621
HiFiC∗ -51.85 -1.920 -47.18 -1.121 - - - -
Po-ELIC -50.77 0.1599 -48.84 0.1202 -50.81 0.2040 -42.96 0.3305
CDC -43.80 -8.014 -41.75 -6.416 -45.35 -6.512 -38.31 -7.043
ILLM -50.58 -1.234 -48.22 -0.4802 -50.67 -0.5468 -42.95 -0.5956
ILLM∗ -52.32 -1.415 -47.99 -0.7513 - - - -

Unconditional Generative Model-based
Proposed (Hyper) -54.14 -2.225 -52.12 -2.648 -56.70 -2.496 -44.52 -2.920
Proposed (ELIC) -54.89 -0.9855 -55.18 -1.492 -58.45 -1.370 -46.52 -1.635

Table 2: Results on FFHQ, ImageNet, COCO and CLIC. ∗: re-trained on corresponding dataset.
Bold: lowest FID. Underline: second lowest FID.

Diversity of Reconstruction Another feature of our approach is the reconstruction diversity.
Though it is theoretically beneficial to adopt stochastic decoder for conditional generative codec
(Freirich et al., 2021), most of previous works (Mentzer et al., 2020; He et al., 2022b; Muckley
et al., 2023) adopt deterministic decoder and lost reconstruction diversity. On the other hand, our
approach preserves this diversity. In Fig. 5, we show the pixel-level standard deviation σ of our re-
construction on the first image of Fig. 4 with sample size 16. Further, in Fig. 5, 16 of Appendix B.3,
we present alternative reconstructions, which differ a lot in detail but all have good visual quality.

Idempotence Consider we have a MSE codec. The first time compression is X̂(1) = g0(f0(X)), and
re-compression is X̂(2) = g0(f0(X̂

(1))). We evaluate its idempotence by MSE between first time
compression and re-compression ||X̂(1)− X̂(2)||2. According to our theoretical results, we can also
use our approach to improve idempotence of base codec. Specifically, after first time compression,
we can decode a perceptual reconstruction X̂

(1)
p by Eq. 10, and use this perceptual reconstruction for

re-compression X̂(2)′ = g0(f0(X̂
(1)
p )). By Theorem 1, we should have ||X̂(1) − X̂(2)′ ||2 = 0, i.e.,

this augmented codec is strictly idempotent. In practice, as shown in Tab. 3, the augmented codec’s
re-compression MSE is smaller than the base codec. This indicates that our proposed approach can
acts as an idempotence improvement module for MSE codec.

Re-compression metrics

MSE ↓ PSNR (dB) ↑
Hyper 6.321 40.42
Hyper w/ Proposed 2.850 44.84

ELIC 11.80 37.60
ELIC w/ Proposed 7.367 40.93

Table 3: The idempotence comparison between
base MSE codec and our approach.

Method Number
of models Train Test

HiFiC, ILLM K ∼K weeks ∼0.1s
MCG, DPS 1 0 ∼50s
Proposed 1 0 ∼60s

Table 4: Complexity of different methods, K
refers to the number of bitrate supported, which
is 3 for HiFiC and 6 for ILLM.
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Complexity Compared with conditional generative codec (e.g., HiFiC (Mentzer et al., 2020) and
ILLM (Muckley et al., 2023)), our approach has lower training but higher testing complexity. Com-
pared with inversion based image super-resolution (e.g. MCG (Chung et al., 2022b), DPS (Chung
et al., 2022a)), our approach’s complexity is similar. Tab. 4 shows that our approach greatly reduces
training time. Specifically, for conditional generative codec, a conditional generative model is re-
quired for each rate. If the codec supports K rates, K generative models should be trained. For
HiFiC and ILLM, each model takes approximately 1 week. And the codec needs K weeks of train-
ing. While for us, this extra training time is 0 as we can utilize pre-trained unconditional generative
model. While as the inversion-based image super-resolution, our method requires gradient ascent
during testing, which increases the testing time from ∼ 0.1s to ∼ 60s.

6 RELATED WORK

6.1 IDEMPOTENT IMAGE COMPRESSION

Idempotence is a consideration in practical image codec (Joshi et al., 2000). In traditional codecs like
JPEG (Wallace, 1991) and JPEG2000 (Taubman et al., 2002), the encoding and decoding transforms
can be easily made invertible, thus idempotence can be painlessly achieved in these codec. In NIC,
however, it requires much more efforts to ensure the idempotence (Kim et al., 2020). This is because
neural network based transforms are widely adopted in NIC, and making these transforms invertible
either hinders the RD performance (Helminger et al., 2021) or complicates the coding process (Cai
et al., 2022). To the best of our knowledge, we are the first to build theoretical connection between
idempotence and perceptual quality.

6.2 PERCEPTUAL IMAGE COMPRESSION

The majority of perceptual image codec adopt conditional generative models and successfully
achieve near lossless perceptual quality with very low bitrate (Rippel & Bourdev, 2017; Tschan-
nen et al., 2018; Mentzer et al., 2020; Agustsson et al., 2022; Yang & Mandt, 2023; Muckley et al.,
2023; Hoogeboom et al., 2023). Blau & Michaeli (2019) show that conditional generative codec
achieves perfect perceptual quality with at most twice of optimal MSE. Yan et al. (2021) further
prove that this approach is the optimal among deterministic encoders. The unconditional generative
model-based codec is explored by Ho et al. (2020); Theis et al. (2022). Though no actual codec
is implemented, they reveal the potential of unconditional generative model in image compression.
To the best of our knowledge, our approach is the first actual codec using unconditional generative
model. It does not require training new models and is equivalent to conditional generative model-
based perceptual codec.

7 DISCUSSION & CONCLUSION

A major limitation of our proposed approach is the testing time. This limitation is shared by all
methods that use inversion of generative models (Menon et al., 2020; Daras et al., 2021; Chung
et al., 2022a), and there are pioneering works trying to accelerate it (Dinh et al., 2022). Another
limitation is that the resolution of the proposed approach is not as flexible. We can use patches as
workaround (Hoogeboom et al., 2023) but there can be consistency issue. This limitation is also
shared by all unconditional generative models, and there are also pioneering works trying to solve
it (Zhang et al., 2022). As those two limitations are also important in broader generative modeling
community, we believe they will be solved soon as the early-stage methods grow mature.

To conclude, we reveal that idempodence and perceptual image compression are closely connected.
We theoretically prove that conditional generative codec satisfies idempotence, and unconditional
generative model with idempotence constrain is equivalent to conditional generative codec. Based
on that, we propose a new paradigm of perceptual codec by inverting unconditional generative model
with idempotence constraint. Our approach does not require training new models, and it outperforms
previous state-of-the-art perceptual codec.

9



Published as a conference paper at ICLR 2024

ETHICS STATEMENT

Improving the perceptual quality of NIC in low bitrate has positive social values, including reducing
carbon emission by saving resources for image transmission and storage. However, there can also
be negative impacts. For example, in FFHQ dataset, a face with identity different from the original
image can be reconstructed. And this mis-representation problem can bring issue in trustworthiness.

REPRODUCIBILITY STATEMENT

For theoretical results, the proof for all theorems are presented in Appendix A. For experiment, all
four datasets used are publicly accessible. In Appendix B.1, we provide additional implementation
details including the testing scripts for baselines and how we tune hyper-parameters. Besides, we
provide source code for reproducing the experimental results as supplementary material.
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A PROOF OF MAIN RESULTS

In previous sections we give intuition and proof sketch of the theoretical results. We provide formal
proof in this appendix.

Notations We use the capital letter X to represent discrete random variable, lowercase letter x to
represent a specific realization of random variable, and calligraphic letter X to represent the alphabet
of a random variable. We use pX to represent the probability law of random variable and pX(X = x)
to represent the probability of a specific realization of a discrete random variable. We use Pr(.) to
represent the probability of a specific event. We use ∆

= to represent definition and a.s.
= to represent

almost sure convergence.

Theorem 1. (Perceptual quality brings idempotence) Denote X as source, f(.) as encoder,
Y = f(X) as bitstream, g(.) as decoder and X̂ = g(Y ) as reconstruction. When encoder f(.)
is deterministic, then conditional generative model-based image codec is also idempotent, i.e.,

X̂ = g(Y ) ∼ pX|Y ⇒ f(X̂)
a.s.
= Y.

Proof. We start with a specific value y ∈ Y , where Y is the alphabet of random variable Y . Without
loss of generality, we assume pY (Y = y) ̸= 0, i.e., y lies within the support of pY . We define the
inverse image of y as a set:

f−1[y]
∆
= {x ∈ X |f(x) = y}, (12)

where X is the alphabet of random variable X . According to the definition of idempotence, we need
to show that X̂ ∈ f−1[y]. Note that as encoder f(.) is deterministic, each x ∈ X only corresponds
to one y. Again, we consider a specific value x ∈ X , pX(X = x) ̸= 0. We note that the likelihood
of Y can be written as

pY |X(Y = y|X = x) =

{
1, f(x) = y
0, f(x) ̸= y

(13)

Then, for all x /∈ f−1[y], the joint distribution pXY (X = x, Y = y) = pX(X = x)pY |X(Y =
y|X = x) = 0. And thus the posterior pX|Y (X = x, Y = y) = 0. In other words, for all samples
X̂ ∼ pX|Y (X|Y = y), the event Pr(X̂ /∈ f−1[y]) = 0. And therefore, we conclude that

Pr(X̂ ∈ f−1[y]) = 1, (14)

which indicates almost sure convergence f(X̂)
a.s.
= Y .

Theorem 2. (Idempotence brings perceptual quality) Denote X as source, f(.) as encoder,
Y = f(X) as bitstream, g(.) as decoder and X̂ = g(Y ) as reconstruction. When encoder f(.)
is deterministic, the unconditional generative model with idempotence constraint is equivalent to
the conditional generative model-based image codec, i.e.,

X̂ ∼ pX , s.t. f(X̂) = Y ⇒ X̂ ∼ pX|Y .

Proof. Similar to the proof of Theorem 1, we consider a specific value of x ∈ X with pX(X =
x) ̸= 0. As

y = f(x) (15)

is a deterministic transform, we have

pY |X(Y = y|X = x) =

{
1, f(x) = y
0, f(x) ̸= y

(16)

Then by Bayesian rule, for each (x, y) ∈ X × Y ,

pX|Y (X = x|Y = y) ∝ pY |X(Y = y|X = x)pX(X = x) (17)

∝ h(X = x, Y = y), (18)

where h(X = x, Y = y) =

{
1× pX(X = x) = pX(X = x), f(x) = y
0× pX(X = x) = 0, f(x) ̸= y

(19)
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We can treat h(X = x, Y = y) as an un-normalized joint distribution. ∀(x, y) ∈ X × Y , it has 0
mass where f(x) ̸= y, and a mass proportional to pX(X = x) where f(x) = y. As this holds true
∀(x, y), then we have

pX|Y ∝ h(X,Y ) (20)

And sampling from this un-normalized distribution is equivalent to sampling from pX with the
constrain f(X) = y. Therefore, sampling from posterior

X̂ ∼ pX|Y (X|Y ) (21)

is equivalent to the constrained sampling from marginal

X̂ ∼ pX , s.t. f(X̂) = Y, (22)

which completes the proof.

Corollary 1. If f(.) is the encoder of a codec with optimal MSE ∆∗, then the unconditional gener-
ative model with idempotence constraint also satisfies

pX̂ = pX , E[||X − X̂||2] ≤ 2∆∗. (23)

Furthermore, the codec induced by this approach is also optimal among deterministic encoders.

Proof. By Theorem 2, we have shown the equivalence of the unconditional generative model with
idempotence constraint and conditional generative model. Then this corollary is simply applying
Theorem 2 of Blau & Michaeli (2019) and Theorem 2, Theorem 3 of Yan et al. (2021) to conditional
generative model.

In previous section, we state that for MSE optimal codec, the idempotence constraint f(X̂) = Y is
equivalent to g(f(X̂)) = g(Y ). Now we prove it in this appendix. To prove this, we only need to
show that for MSE optimal codec, the decoder g(.) is a invertible mapping. Blau & Michaeli (2019)
already show that g(.) is a deterministic mapping, i.e., ∀y1, y2 ∈ Y, g(Y1) ̸= g(Y2) ⇒ y1 ̸= y2.
Then, we only need to show that if the reconstruction is different, the bitstream is different, i.e.,
∀y1, y2 ∈ Y, y1 ̸= y2 ⇒ g(Y1) ̸= g(Y2). Formally, we have:
Theorem 3. Denote X as source, f(.) as encoder, Y = f(X) as bitstream, g(.) as decoder and
X̂ = g(Y ) as reconstruction. When encoder f(.) is deterministic, for MSE optimal codec,

y1 ̸= y2 ⇒ g(y1) ̸= g(y2). (24)

Proof. We prove by contradiction. We assume that ∃y1 ̸= y2, g(y1) = g(y2). Then we notice
that we can always construct a new codec, with bitstream y1, y2 merged into a new one with higher
probability pY (Y = y1) + pY (Y = y2). This means that this new codec has exactly the same
reconstruction, while the bitrate is lower. This is in contradiction to the assumption that our codec
is MSE optimal.

To provide a more intuitive illustration, we will include an example with discrete finite alphabet (our
theoretical results are applicable to any countable alphabet or Borel-measurable source X and any
deterministic measureable function f(.)):
Example 1. (1-dimension, discrete finite alphabet, optimal 1-bit codec): Consider discrete 1d ran-
dom variable X , with alphabet X = {0, 1, 2, 3, 4, 5}, and Y with alphabet Y = {0, 1}. We as-
sume P (X = i) = 1

6 , i.e., X follows uniform distribution. We consider a deterministic transform
f(X) : X → Y = round(X/3). Or to say, f(.) maps {0, 1, 2} to {0}, and {3, 4, 5} to {1}. This
is infact the MSE-optimal 1-bit codec for source X (See Chapter 10 of [Elements of Information
Theory]). And the joint distribution P (X,Y ), posterior P (X|Y ) is just a tabular in Tab. 5.

We first examine Theorem. 1, which says that any sample from X ∼ P (X|Y = y) satis-
fies f(X) = y. Observing this table, this is indeed true. As for f(X) ̸= y, the posterior
P (X = x|Y = y) is 0.
We then examine Theorem. 2, which says that sampling from X ∼ P (X) with f(X) = y constraint
is the same as sampling from P (X|Y = y). We first identify the set such that f(X) = y. When
y = 0, this set is {0, 1, 2}. And when y = 1, this set is {3, 4, 5}. And sampling from p(X) with
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x y p(X = x, Y = y) p(X = x|Y = y) f(x)

0 0 1/6 1 0
1 0 1/6 1 0
2 0 1/6 1 0
3 0 0 0 1
4 0 0 0 1
5 0 0 0 1
0 0 0 0 0
1 1 0 0 0
2 1 0 0 0
3 1 1/6 1 1
4 1 1/6 1 1
5 1 1/6 1 1

Table 5: Tabular of probability in Example. 1.

constrain f(X) = y is equivalent to sampling from one of the two subset with probability ∝ p(X).
And this probability is exactly P (X|Y = y).

Additionally, Note that we only limit f(.) to be deterministic and measureable. Thus, those theo-
retical results can be extended to other noise-free inversion-based image restoration, such as super-
resolution. Despite inversion-based super-resolution has been studied for years empirically, their
theoretical relationship with conditional model based super-resolution, and distortion-perception
(Blau & Michaeli, 2018) trade-off is in general unknown. PULSE (Menon et al., 2020) are the pio-
neer of this area, and they justify their approach by ”natural image manifold” assumption. And later
works in inversion-based super-resolution follow theirs story. On the other hand, our Theorem. 1, 2
and Corollary. 3 can be extended into image super-resolution as:

• Conditional generative super-resolution also satisfies idempotence, that is, the up-sampled
image can down-sample into low-resolution image.

• Inversion-based super-resolution is theoretically equvalient to conditional generative super-
resolution.

• Inversion-based super-resolution satisfies the theoretical results of distortion-perception
trade-off (Blau & Michaeli, 2018), that is the MSE is at most double of best MSE.

We believe that our result provides non-trivial theoretical insights to inversion-based super-
resolution community. For example, Menon et al. (2020) claim that the advantage of inversion-
based super-resolution over the conditional generative super-resolution is that inversion-based super-
resolution ”downscale correctly”. However, with our theoretical result, we know that ideal condi-
tional generative super-resolution also ”downscale correctly”. Currently they fail to achieve this
due to implementing issue. Another example is that most inversion-based super-resolution (Menon
et al., 2020) (Daras et al., 2021) report no MSE comparison with sota MSE super-resolution, as it is
for sure that their MSE is worse and there seems to be no relationship between their MSE and sota
MSE. However, with our theoretical result, we know that their MSE should be smaller than 2x sota
MSE. And they should examine whether their MSE falls below 2x sota MSE.

After the submission deadline, we become aware of an alternative of Theorem. 1 and Theorem. 2
which is presented in a concurrent paper by Ohayon et al. (2023).

B ADDITIONAL EXPERIMENTS

B.1 ADDITIONAL EXPERIMENT SETUP

All the experiments are implemented in Pytorch, and run in a computer with AMD EPYC 7742 CPU
and Nvidia A100 GPU.

For FID evaluation, we adopt the same code as official implementation of OASIS (Sushko et al.,
2020) in https://github.com/boschresearch/OASIS. To ensure we have enough num-
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ber of sample for FID, we slice the images into 64×64 non-overlapping patches. All the BD metrics
are computed over bpp 0.15 − 0.45, this is because HiFiC and CDC only have the bitrate over this
range. And extrapolation beyond this range can cause inaccurate estimation.

For the re-trained version of HiFiC (Mentzer et al., 2020), we adopt a widely
used Pytorch implementation in https://github.com/Justin-Tan/
high-fidelity-generative-compression. For the re-trained version of ILLM
(Muckley et al., 2023), we adopt the official Pytorch implementation. We follow the original paper
to train our models on FFHQ and ImageNet dataset.

We note that the official HiFiC (Mentzer et al., 2020) is implemented in TensorFlow in https:
//github.com/tensorflow/compression. We test the official implementation and the
Pytorch implementation, and the results are as Tab. 6. In terms of BD-FID, the Pytorch version
outperforms Tensorflow version in FFHQ, ImageNet and CLIC dataset, while it is outperformed by
tf version in COCO. The overall conclusion is not impacted.

Method FFHQ ImageNet COCO CLIC

BD-FID ↓ BD-PSNR ↑ BD-FID ↓ BD-PSNR ↑ BD-FID ↓ BD-PSNR ↑ BD-FID ↓ BD-PSNR ↑
HiFiC (Pytorch) -48.35 -2.036 -44.52 -1.418 -44.88 -1.276 -36.16 -1.621
HiFiC (Tensorflow) -46.44 -1.195 -40.25 -0.828 -46.45 -0.917 -35.90 -0.920

Table 6: Comparison of Pytorch HiFiC and Tensorflow HiFiC.

For Hyper (Ballé et al., 2018), we use the pre-trained model by CompressAI (Bégaint
et al., 2020), which is trained on Vimeo (Xue et al., 2017). For ELIC (He et al.,
2022a), we use the pre-trained model in https://github.com/VincentChandelier/
ELiC-ReImplemetation, which is trained on ImageNet training split. To the best of our knowl-
edge, their training dataset has no overlap with our test set.

For BGP, we use the latest version BPG 0.9.8 in https://bellard.org/bpg/. For VTM,
we use the latest version VTM 22.0 in https://vcgit.hhi.fraunhofer.de/jvet/
VVCSoftware_VTM/-/releases/VTM-22.0. We convert the source to YUV444, encode
with VTM and convert back to RGB to compute the metrics. The detailed command line for BPG
and VTM are as follows:

bpgenc −q {2 2 , 2 7 , 3 2 , 3 7 , 4 2 , 4 7} f i l e −o f i l e n a m e . bpg

bpgdec f i l e n a m e . bpg −o f i l e

. / EncoderApp −c e n c o d e r i n t r a v t m . c f g − i f i l e n a m e . yuv \
−q {2 2 , 2 7 , 3 2 , 3 7 , 4 2 , 4 7} −o / dev / n u l l −b f i l e n a m e . b i n \
−−SourceWidth =256 −− S o u r c e H e i g h t =256 −−FrameRate =1 \
−−FramesToBeEncoded =1 −− I n p u t B i t D e p t h =8 \
−−InputChromaFormat =444 −−ConformanceWindowMode=1

. / DecoderApp −b f i l e n a m e . b i n −o f i l e n a m e . yuv −d 8

For training of StyleGAN (Karras et al., 2019), we adopt the official implementation. The only
difference is that our model does not have access to the test set of FFHQ. We directly use the pre-
trained DDPM by (Chung et al., 2022a), which is trained without the test set.

For PULSE (Menon et al., 2020) inversion of StypleGAN, we follow the original paper to run spher-
ical gradient descent with learning rate 0.4. We run gradient ascent for 500 steps. For ILO (Daras
et al., 2021) inversion of StyleGAN, we follow the original paper to run spherical gradient descent on
4 different layers of StyleGAN with learning rate 0.4. We run gradient ascent for 200, 200, 100, 100
steps for each layer. For MCG (Chung et al., 2022b) and DPS (Chung et al., 2022a), we follow the
original paper to run gradient descent for 1000 steps, with scale parameter ζ increasing as bitrate
increases. We explain in detail about how to select ζ in next section.
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B.2 ADDITIONAL ABLATION STUDY

Why some inversion approaches fail In Tab. 1, we show that some inversion approaches fail for
image codec, even with our theoretical guarantee. This is because our theory relies on the assumption
that the generative model perfectly learns the natural image distribution, while this is hard to achieve
in practice. And we think this is where the gap lies. More specifically, GAN has better ”precision”
and worse ”recall”, while diffusion has a fair ”precision” and fair ”recall”. The ”precision” and
”recall” is defined by Sajjadi et al. (2018). Or to say, the distribution learned by GAN largely lies
in the natural image distribution better, but many area of natural image distribution is not covered.
The distribution learned by diffusion does not lies in natural image distribution as good as GAN, but
it covers more area of natural image distribution. This phenomena is also observed and discussed
by Dhariwal & Nichol (2021) and Ho & Salimans (2022). The ”precision” is more important for
sampling, but ”recall” is more important for inversion. That is why the GAN based approach fails.
The MCG fails probably because it is not well suited for non-linear problems.

ζ Selection The ζ parameter in DPS (Chung et al., 2022a) is like the learning rate parameter in
PULSE (Menon et al., 2020) and ILO (Daras et al., 2021). It controls the strength of idempotence
constraint. When ζ is too small, the perceptual reconstruction will deviate from the original image,
and the MSE will go beyond the MSE upperbound. When ζ is too large, artefacts will dominate the
image, and again, the MSE will go beyond the MSE upperbound.

Figure 6: Ablation study on MSE − ζ with ImageNet dataset and ELIC. Left: MSE between source
and reconstruction. Right: MSE between ELIC and re-compression.

As shown in Fig. 6, using a ζ too small or too large will cause the reconstruction MSE higher than
the theoretical upperbound. While using a proper ζ achieves a MSE satisfies the MSE upperbound.
On the other hand, the MSE of ELIC and re-compressed reconstruction indeed goes lower as ζ
goes up. This is because this term is exactly what ζ is penalizing. Despite a large ζ strengthen
the idempotence constraint, it can also push reconstruction off the learned natural image manifold.
Another example is shown in Fig. 8. It is shown that using insufficiently large ζ can sometimes lead
to weird reconstruction.

To further understand this phenomena, we visualize the perceptual reconstruction and the re-
compression results of those perceptual reconstruction. As shown in Fig. 7, when ζ = 0.15, 0.3,
the re-compression image does not look like the ELIC reconstruction. And this indicates that the
idempotence constraint is not strong enough. While when ζ = 0.6, 1.2, 2.4, the re-compression
image looks the same as ELIC reconstruction. However, when ζ = 1.2, 2.4, the perceptual recon-
struction is dominated by noise. And therefore its MSE still exceeds the MSE upperbound.

In practical implementation, we search ζ from 0.3 and increase it when it is not large
enough. For five bitrate of Hyper based model, we select ζ = {0.3, 0.6, 1.2, 1.6, 1.6}
on FFHQ, {0.3, 0.6, 0.6, 1.2, 1.2} on ImageNet, {0.6, 0.6, 0.6, 1.2, 1.2} on COCO and
{0.45, 0.9, 0.9, 1.2, 1.6}. For five bitrate of ELIC based model, we select ζ =
{0.3, 0.6, 1.2, 1.6, 1.6} on FFHQ, {0.3, 0.6, 0.6, 1.2, 1.6} on ImageNet, {0.6, 0.6, 0.6, 1.2, 1.2} on
COCO and {0.45, 0.6, 0.6, 1.2, 1.6} on CLIC. Sometimes the ζ required for different images are
different. Therefore, we also introduce an very simple adaptive ζ mechanics. More specifically, we
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Figure 7: Ablation study on adjusting ζ with ImageNet dataset and ELIC.

Figure 8: An example of using improper ζ with ImageNet dataset and ELIC.

evaluate the MSE between re-compressed perceptual reconstruction and MSE reconstruction. If it
is larger than 32, we multiple ζ by 1.5 until K time. We set K = {1, 1, 2, 4, 4} for all methods and
datasets. We note that it is possible to exhaustively search ζ for better perceptual quality. However,
it will drastically slow down the testing.

B.3 ADDITIONAL RESULTS

Other Metrics Besides the FID, PSNR and MSE, we also test our codec using other metrics such as
Kernel Inception Distance (KID) (Binkowski et al., 2018) and LPIPS (Zhang et al., 2018). Similar
to FID and PSNR, we report BD metrics:
The result of KID has same trend as FID, which means that our approach is sota. While many other

approaches outperform our approach in LPIPS. This result is expected, as:

• KID is a divergence based metric. And our approach is optimized for divergence.

• LPIPS is a image-to-image distortion. By distortion-perception trade-off (Blau & Michaeli,
2018), perception optimized approaches can not achieve SOTA LPIPS.

• All other perceptual codec (HiFiC, ILLM, CDC, Po-ELIC) except for ours use LPIPS as
loss function during training.
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Method FFHQ ImageNet COCO CLIC

BD-logKID ↓ BD-LPIPS ↓ BD-logKID ↓ BD-LPIPS ↓ BD-logKID ↓ BD-LPIPS ↓ BD-logKID ↓ BD-LPIPS ↓
MSE Baselines
Hyper 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ELIC -0.232 -0.040 -0.348 -0.058 -0.236 -0.062 -0.406 -0.059
BPG 0.1506 -0.010 0.027 -0.010 0.126 -0.012 0.039 -0.008
VTM -0.232 -0.031 -0.298 -0.048 -0.216 -0.050 -2.049 -0.048

Conditional Generative Model-based
HiFiC -3.132 -0.108 -2.274 -0.172 -2.049 -0.172 -1.925 -0.148
HiFiC∗ -4.261 -0.110 -2.780 -0.173 - - - -
Po-ELIC -3.504 -0.104 -2.877 -0.167 -2.671 -0.168 -2.609 -0.145
CDC -2.072 -0.060 -1.968 -0.099 -1.978 -0.101 -2.122 -0.084
ILLM -3.418 -0.109 -2.681 -0.181 -2.620 -0.180 -2.882 -0.155
ILLM∗ -4.256 -0.106 -2.673 -0.178 - - - -

Unconditional Generative Model-based
Proposed (Hyper) -5.107 -0.086 -4.271 -0.058 -4.519 -0.083 -3.787 -0.056
Proposed (ELIC) -5.471 -0.099 -5.694 -0.106 -5.360 -0.113 -4.046 -0.079

Table 7: Results on FFHQ, ImageNet, COCO and CLIC. ∗: re-trained on corresponding dataset.
Bold: lowest KID. Underline: second lowest KID.

FFHQ ImageNet COCO CLIC

Hyper 0.0000 0.0000 0.0000 0.0000
ELIC 0.0098 0.0148 0.0146 0.0176
HiFiC 0.0030 0.0064 0.0071 0.0058
ILLM 0.0001 0.0041 0.0058 0.0042
Proposed (Hyper) -0.0065 -0.0399 -0.0262 -0.0236
Proposed (ELIC) -0.0029 -0.0203 -0.0135 -0.0132

Table 8: MS-SSIM on FFHQ, ImageNet, COCO and CLIC.

• ILLM (Muckley et al., 2023) also achieves sota FID, KID and visual quality at that time,
but its LPIPS is outperformed by an autoencoder trained with LPIPS.

In terms of MS-SSIM, ELIC > HiFiC > ILLM > Hyper > Proposed (ELIC) > Proposed (Hyper).
We are reluctant to use MS-SSIM as perceptual metric, as this result is obviously not aligned with
visual quality, and should not be used when we considering divergence based perceptual quality as
(Blau & Michaeli, 2018), because:

• MS-SSIM is an image to image distortion. By Blau & Michaeli (2018), it is in odd with
divergence based metrics such as FID, KID. Theoretically, there does not exist a codec that
achieve optimal FID and MS-SSIM at the same time.

• In terms of MS-SSIM, ELIC, a mse optimzied codec, is the sota. This indicates that MS-
SSIM correlates poorly with human perceptual quality.

• Similar result is also reported by Muckley et al. (2023) Fig. 3, where the MS-SSIM of
ILLM is not even as good as Hyper, which is a mse optimized codec. This indicates that
MS-SSIM correlates poorly with human perceptual quality.

• In a perceptual codec competition CVPR CLIC 2021, the human perceptual quality is tested
as final result and MS-SSIM, FID are evaluated. The 1st place of human perceptual test
result among 23 teams ”MIATL NG”, also has lowest FID, which indicates FID correlates
well with human perceptual quality. On the other hand, its MS-SSIM ranks 21st place
among 23 teams, which indicates MS-SSIM correlates poorly with human perceptual qual-
ity.

Rate Distortion Curve We do not have enough room in the main text to show rate-distortion curve.
We present them in Fig. 11 of appendix instead.

Perception Distortion Trade-off A couple of perception image codec have achieved perception-
distortion trade-off with the same bitstream (Iwai et al., 2020; Agustsson et al., 2022; Goose et al.,
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Figure 9: Perception distortion trade-off by convex interpolation.

2023). As our proposed approach shares the same bitstream as the MSE codec, we are already ca-
pable of decoding the optimal perceptual quality and optimal MSE at the same time. To achieve
the intermediate points of perception-distortion trade-off, we can utilize the convex interpolation
method proposed by Yan et al. (2022). More specifically, Yan et al. (2022) prove that when di-
vergence is measured in Wasserstein-2 (W2) distance, convex combination of perceptual and MSE
reconstruction is optimal in distortion-perception trade-off sense. In our case, even if the divergence
is not W2, convex combination is able to achieve a reasonable result. More specifically, we denote
the MSE reconstruction as X̂∆, and perceptual reconstruction as X̂p. The convex combination is

X̂α = αX̂p + (1− α)X̂∆, α ∈ [0.0, 1.0]. (25)

We evaluate this approach on ImageNet dataset with ELIC as base codec, as this setting covers
the widest range of perception and distortion. In Fig. 9, we can see that our interpolated codec
successfully cover a wide range of perception-distortion trade-off, More specifically, our optimal
perception codec has FID lower than ILLM (Muckley et al., 2023) but a MSE higher than ILLM.
However, the interpolation with α = 0.8 still has a FID lower than ILLM. But its MSE is already
on par with ILLM. And the interpolation with α = 0.6 has a FID comparable to ILLM, but its MSE
is obviously lower. This indicates that the interpolated version of our codec remains competitive in
perception-distortion trade-off.

Visual Comparison of Different Bitrate We visualize our reconstruction from low to high bitrate,
along with ELIC as our bitrate is the same. It is interesting to find that both our approach and ELIC
converge to the source image as bitrate grows high, but from different directions. For us, the visual
quality does not differ much as bitrate goes high, while the reconstruction becomes more aligned
with the source. For ELIC, the reconstruction grows from blurry to sharp as bitrate goes high.

Visual Comparison with Other Methods We do not have enough room in the main text to compare
all approaches visually. In main text Fig. 4, we only compare our approach to HiFiC (Mentzer et al.,
2020) and ILLM (Muckley et al., 2023). Thus, we put the visual results of other methods in Fig. 12-
15 here in Appendix.
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Figure 10: The visual result of ELIC and our proposed approach as bitrate goes high gradually.

Reconstruction Diversity In main text Fig. 5, we only present three alternative reconstructions that
is used to compute standard deviation. In Fig. 16, we present additional 12 reconstructions to show
that our reconstruction has good diversity.
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Figure 11: The rate-distortion curve of different methods.
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Figure 12: A visual comparison of our proposed approach with other approaches.
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Figure 13: A visual comparison of our proposed approach with other approaches.
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Figure 14: A visual comparison of our proposed approach with other approaches.
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Figure 15: A visual comparison of our proposed approach with other approaches.
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Figure 16: Reconstruction diversity of proposed approach.
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