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ABSTRACT

We address the challenge of solving multi-objective bandit problems, which are
increasingly relevant in real-world applications where multiple possibly conflict-
ing objectives must be optimized simultaneously. Existing multi-objective algo-
rithms often rely on complex, computationally intensive methods, making them
impractical for real-world use. In this paper, we propose a novel perspective by
showing that objective diversity can naturally induce free exploration, allowing
for simpler, near-greedy algorithms to achieve optimal regret bounds up to log-
arithmic factors with respect to the number of rounds. We introduce simple and
efficient algorithms for multi-objective linear bandits, which do not require con-
structing empirical Pareto fronts and achieve a regret bound of (’)(\/T) under suf-
ficient objective diversity and suitable regularity. We also introduce the concept
of objective fairness, ensuring equal treatment of all objectives, and show that
our algorithms satisfy this criterion. Numerical experiments validate our theoreti-
cal findings, demonstrating that objective diversity can enhance algorithm perfor-
mance while simplifying the solution process.

1 INTRODUCTION

Multi-objective decision-making problems have become increasingly prevalent in today’s complex,
real-world applications. From recommendation systems to robotics, decision-makers often face the
need to optimize multiple conflicting objectives simultaneously. This complexity naturally leads to
the formulation of multi-objective bandit problems (Drugan & Nowe, |[2013}; [Turgay et al., 2018; Lu
et al.}|2019;Xu & Klabjan, [2023; Cheng et al., 2024; lcrepon et al.,[2024; Kim et al.,2023), a general-
ization of the single-objective bandit framework. However, solving multi-objective bandit problems
is particularly challenging due to the added complexity of balancing the exploration-exploitation
tradeoff across multiple objectives.

To address this challenge, many multi-objective bandit algorithms often resort to complex, some-
times computationally intractable methods (Yahyaa & Manderick, 2015} Turgay et al., 2018} [Lu
et al., 2019; Kim et al.| |2023)), especially when compared to their simpler single-objective coun-
terparts (Abbasi-Yadkori et al, [2011; (Chu et al., [2011; |Chapelle & Lil 2011} |Agrawal & Goyal,
2013;|Abeille & Lazaricl 2017). Many of these methods often involve constructing empirical Pareto
fronts in each round, leading to significant computational overhead, making them less practical for
real-world deployment.

Despite the additional complexity that multiple objectives introduce, we aim to address the following
intriguing research question:

Can the presence of multiple diverse objectives actually facilitate learning rather than hinder it?

To our best knowledge, this question has never been addressed. To some, it may appear even some-
what counter-intuitive since a larger number of objectives usually implies a more challenging prob-
lem setup. Yet, we ask whether the diversity in objectives can induce exploration, enabling simpler
near-greedy algorithms to achieve performance guarantees of statistical efficiency which is typically
obtained by more complex approaches.
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In this work, we propose a novel perspective on this problem by showing that objective diversity—
rather than feature diversity, which is commonly assumed in the literature—can drive exploration
in multi-objective linear bandits. This new insight allows us to demonstrate the statistical efficiency
of simple round-robin greedy algorithms, such as the algorithms we introduce, MORR-Greedy and
MORO-Greedy. Remarkably, our algorithms achieve optimal regret bounds with respect to the num-
ber of rounds 7" without the need for the context (feature) diversity assumption that underpins most
of the existing greedy bandit literature (Kannan et al.,|2018; Raghavan et al.,2018};|Hao et al., 2020
Bastani et al., 2021).

While most previous works on greedy bandits (Kannan et al., 2018} [Raghavan et al.| 2018}, |Bastani
et al., [2021) rely on context diversity to induce exploration, we do not assume any such diversity
in the features. Our algorithms even perform effectively in fixed feature settings, where previous
greedy approaches and their proof techniques fail. To our best knowledge, this finding represents
the first result where a greedy-type algorithm achieves no regret results without relying on feature
diversity in parametric bandits. Furthermore, this work is the first to study the provable efficiency of
simple round-robin algorithms for multi-objective linear bandits.

We rigorously analyze our algorithms in terms of both regret performance and objective fairness,
demonstrating their theoretical and empirical superiority under objective diversity and suitable reg-
ularity, even without feature diversity. Our work introduces a new perspective in multi-objective
bandit research, showing that, in certain cases, more and diverse objectives can help rather than
complicate the learning process.

Our main contributions are summarized as follows.

1.1 CONTRIBUTIONS

* We rigorously analyze a new and sufficient condition for the multi-objective bandit prob-
lem, under which near-greedy algorithms achieve statistical efficiency without relying on
the commonly assumed context diversity condition in the greedy bandit literature (Kannan
et al.| [2018; |[Raghavan et al., 2018} [Hao et al.l [2020; Bastani et al 2021). This result is
driven by the free exploration enabled by the diversity of objectives. Notably, this free ex-
ploration occurs even in fixed context settings, not just stochastic environments. Our key
insight is that having multiple objectives simplifies rather than complicates the problem,
enhancing the performance of the algorithms.

* We propose two simple yet highly efficient algorithms, MORR-Greedy and MORO-Greedy,
for multi-objective linear bandits. Unlike many existing multi-objective algorithms, these
algorithms do not require constructing an empirical Pareto optimal set of arms in each
round, resulting in simpler implementation and lower computational overhead.

* We establish that MORR-Greedy and MORO-Greedy are statistically efficient under objective
diversity and regularity assumptions, achieving a regret bound of (’)(\//\ioT), where d is the

dimension of the feature vectors, 7" is the total number of rounds, and A is the diversity
index of objective parameters defined in Section 4]

* We introduce a novel evaluation criterion for multi-objective bandit algorithms, called ob-
Jective fairness, which ensures that all objectives are treated equitably, with no objective
being neglected. We rigorously prove that both MORR-Greedy and MORO-Greedy satisfy
this principle.

» Through extensive numerical experiments, we demonstrate that MORR-Greedy consistently
outperforms existing multi-objective methods across a wide range of scenarios. These
results empirically validate our theoretical claims, showing that the diversity of objectives
not only facilitates exploration but also significantly enhances algorithmic performance.

1.2 RELATED WORK

The multi-objective bandit problem, an extension of the single-objective bandit framework that cap-
tures real-world scenarios with multiple conflicting optimization objectives, was first introduced by
Drugan & Nowel (2013). They proposed two approaches using the UCB algorithm: one based on
Pareto optimality and the other on scalarization. The scalarization approach simplifies the problem
by converting it into a single-objective one, using weighted combinations of objectives. In contrast,
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Table 1: Comparison with Related Work. K is the total number of arms, d is the dimension of
feature vectors, 7' is the time horizon, and A denotes the minimum Pareto regret over suboptimal
arms.

Paper Objective  Parametric Free Exploration Regret

Drugan & Nowe (2013)  Multiple X X O(X logT)

Lu et al.| (2019) Multiple O X O(df )

Cheng et al.[(2024) Multiple O x O((dT)*?)

Kim et al.[(2023) Multiple O X O(d®logdT + 4 log 4T)
Kannan et al.| (2018) Single o of (9( VAT

Bastani et al.| (2021)) Single o Of (with margin cond.) O(dK log T')

Bayati et al.| (2020) Single X o O(TK~'* + K)i

This work Multiple o o O(VdT)

T With the diversity assumption on context distribution. In [Kannan et al.|(2018), o2 refers to the
standard deviation of Gaussian perturbation applied to the contexts.
t Bayesian regret, which is a weaker notion of regret compared to frequentist (worst-case) regret.

the Pareto optimality approach treats all objectives equally, without making any assumptions about
their relationships. This second approach inspired numerous studies on multi-objective bandits fo-
cused on Pareto efficiency (Turgay et al.| 2018} [Lu et al.| 2019} Xu & Klabjan, [2023; |Cheng et al.,
2024 (crepon et al., 2024} |[Kim et al., 2023)).

Recent advancements have extended the multi-objective bandit framework to linear contextual set-
tings. [Lu et al.| (2019) established theoretical regret bounds for the UCB algorithm within the gen-
eralized linear bandit framework. (Cheng et al.|(2024) introduced two algorithms for multi-objective
stochastic linear bandits under a hierarchy-based Pareto dominance condition. These methods differ
based on how objectives are structured hierarchically, with their regret bounds compared in Table|I]
Additionally, [Kim et al.|(2023) explored Pareto front identification in linear bandit settings, focusing
on algorithms that prioritize learning the optimal Pareto set.

While these works made important strides, they largely overlook the potential for free exploration
that can arise from the diversity of objectives, particularly in the absence of context diversity. Re-
cent research on single-objective linear contextual bandits with stochastic contexts has shown that
if context diversity is sufficiently high, greedy algorithms can achieve near-optimal regret bounds
(Bastani et al., |2021; [Kannan et al.| [2018}; |[Raghavan et al., 2018 |[Hao et al., 2020). However, the
extension of these results to multi-objective bandits has been limited by an assumption of context
diversity, leaving a gap in understanding how exploration can occur without it.

Our work addresses this gap by focusing on free exploration driven by objective diversity, even in
the absence of context diversity. While Bayati et al.| (2020) demonstrated that greedy algorithms
perform well in non-contextual single-objective settings when the number of arms is large, they
relied on a 3-regularity assumption related to the reward distribution. In contrast, we introduce the
concept of ~y-regularity (Definition [6)), which extends the notion of regularity to feature spaces in
the multi-objective setting. Unlike previous work, which provided only Bayesian regret bounds,
we rigorously establish worst-case regret bounds for our proposed algorithms, MORR-Greedy and
MORO-Greedy, under this new regularity assumption.

Our research also contributes by showing that free exploration can occur even in fixed context set-
tings, driven solely by the diversity of the objectives. This is the first time that a theoretical guarantee
has been provided for such exploration in multi-objective linear bandits, without relying on context
diversity—a significant departure from existing literature.
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2 PROBLEM SETTINGS

2.1 NOTATIONS

We denote by [n] the set {1,...,n} for a positive integer n. We use ||x||2 to denote the I norm of
vector 7 € R% and ||z|| 4 = V2T Az to denote the weighted norm of z induced by a positive definite
matrix A € R™¢. We write B} = {x € R? | ||z||» < R} and S& ' = {x € R? | ||z|]2 = R}.
When d is clear in the context, we just use B := B% and Si := {z € R? | ||z||2 = R}. Finally,
1condition means the identity function having value 1 if the condition is true, and O otherwise .

2.2 MULTI-OBJECTIVE LINEAR BANDITS

In each round t = 1,2, ..., T, each feature vector z; € R? for i € [K] is associated with stochas-
tic reward y; ., (t) for objective m € [M] with mean z, 0%, where 67, € R? is a fixed, unknown
parameter. While we present our problem setting in the fixed feature setup for clear exposition
of our main idea, we also present our results under varying context setting in Appendix [B] Af-
ter the agent pulls an arm a(t) € [K], the agent receives a stochastic reward vector y, ;) (t) =
(Ya(),1(t)s - -+ Yae), (1)) € RM as a bandit feedback, where y, ), (£) = xj(t)ej; + Na(t),m(t)
and 7),(4),m (t) € R is a zero mean noise for objective m € [M]. To simplify notation, we denote
by x(t) := x4y and y(t) := ya@) (t) with slight notational overloading the selected arm vector in
round ¢ and its rewards respectively. We assume that for all m € [M], 14(4),m (t) is conditionally
o?-sub-Gaussian with o > 0, i.e., for all A € R, E[e*e.m(|F, 1] < exp (A\20?/2) where H,
is the history ({z(s)}sef, {a(s)}sep, {¥(s)}sepy) and Fy is the o-algebra generated by H; and
z(t+1).

2.2.1 PARETO REGRET METRIC

In this work, we use the notion of Pareto regret (Drugan & Nowe, 2013} Turgay et al., 2018; Lu
et al.l [2019; Xu & Klabjan, 2023} |Cheng et al., 2024} crepon et al., [2024; Kim et al., 2023) as the
performance metric for the multi-objective bandit algorithms. Before we formally define the Pareto
regret, we first introduce the notions of Pareto order and Pareto front.

Definition 1 (Pareto Order). For u = (ul, e ,uM), v = (vl, e 7UM) € RM, the vector u
dominates v, denoted by v < w, if and only if vy, < U, for all m € [M|, and there exists m’ € [M)|
such that vy, < Uy,. We use notations v £ u when v is not dominated by u, and u || v when u and
v are incomparable, i.e., either u or v are not dominated by the other, respectively.

Definition 2 (Pareto Front). Let pi; € R™ be the expected reward vector of arm i € [K|. Then, arm
1 is Pareto optimal if and only if u; is not dominated by ;, for all i' € [K]. The Pareto front is the
set of all Pareto optimal arms.

Definition 3 (Pareto Regret). We denote Pareto suboptimality gap A; for arm i € [K]| as the
infimum of the scalar € < 0 such that x; becomes Pareto optimal after adding e to all entries of its
expected reward. Formally,

A;:=inf{e | (u; +€) £ py,Vi' € [K]}.

Then, the cumulative Pareto regret is defined as PR(T) := 23:1 E[Ay)), the cumulative Pareto
suboptimality gap A, ) of the arms pulled by the learner.

The goal of the agent is to minimize the cumulative Pareto regret while ensuring fairness over ob-
jectives, which is described in the next section.

2.2.2 OBIJECTIVE FAIRNESS

Pareto regret minimization is a central goal in multi-objective bandit algorithms, but it does not fully
capture the multi-objective nature of the problem. Focusing solely on Pareto regret minimization
allows algorithms to optimize for a single specific objective, potentially neglecting others, while
achieving regret bounds comparable to those in single-objective settings (Xu & Klabjan, [2023).
Therefore, meaningful multi-objective bandit algorithms should aim to balance multiple objectives,
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typically incorporating additional considerations such as fairness, alongside Pareto regret minimiza-
tion.

In the context of multi-objective bandits, fairness reflects the algorithm’s impartial treatment of
multiple equivalent objectives. The earliest notion of fairness, to the best of our knowledge, was
introduced by |Drugan & Nowe|(2013)) and emphasizes equal representation across all Pareto fronts.
This concept is closely linked to Pareto front approximation and remains a key objective for many
existing algorithms (Drugan & Nowe, 2013} [Yahyaa & Manderick} 2015} Turgay et al., [2018; |Lu
et al., 2019). However, in practice, the true Pareto front is often unknown, requiring most Pareto-
efficient algorithms to rely on empirical Pareto front approximations during the selection process.
This reliance introduces two significant challenges: the lack of theoretical guarantees concerning the
fairness of true Pareto optimal arms, and the computational overhead associated with constructing
the empirical Pareto front in each round.

To address these limitations, we propose a new notion of fairness in multi-objective bandit problems,
focusing on the fairness of objectives. Specifically, we advocate for algorithms that consistently
consider all optimal arms for each objective, ensuring that no objective is neglected over time. This
perspective shifts the focus from approximating the Pareto front to ensuring that each objective is
adequately and equitably addressed throughout the decision-making process.

Definition 4 (Objective fairness). Let ;. be the expect reward of arm i for objective m, ay, be
the arm that has the largest reward for objective m, and p, := fiqx m. For all € > 0, define the
objective fairness index p. r of an algorithm as

T
1
e := min | =E 1o, . .
Pet = e <T Lz_; (i —tat) m < }D

Then, we say that the algorithm satisfies the objective fairness if there exists a positive lower bound
B that satisfies the following conditions:

1L hmT—)oo Pe, T > B,

2. B does not include a term with the number of arms K.

The objective fairness index measures the proportion of rounds in which the e-optimal arms are
selected for the least chosen objective. This index provides a means to evaluate how fairly the algo-
rithm treats the near-optimal arms of each objective. If p. 7 ~ ﬁ the algorithm is almost perfectly
fair to each objective, while p. r ~ 0 indicates that the algorithm neglects at least one objective.
Intuitively, objective fairness is an asymptotic concept that ensures the proportion of selecting near-
optimal arms remains balanced across all objectives over time. Condition 2 is included to impose
a constraint that ensures the strategy performs better than a random strategy, which selects all arms
with equal probability.

Remark 1. Most existing multi-objective algorithms constructing the empirical Pareto front for
each rounds are unlikely to satisfy the objective fairness criterion, because the empirical Pareto
front continuously changes over time t.

3 PROPOSED ALGORITHM

3.1 MULTI-OBJECTIVE ROUND ROBIN — GREEDY ALGORITHM

We propose a new algorithm named the MORR-Greedy algorithm, which selects arms greed-
ily in a round-robin manner for each objective. At first, the algorithm greedily selects arms
based on the initial parameters 1, ..., 3y, until the minimum eigen value of the Gram matrix
Vicr = Zi;ll x(s)x(s)" exceeds a certain threshold \. After the initial rounds, the algorithm

selects arms greedily, using the OLS estimators O (t) of 07, as targets, iteratively. We describe
our algorithm targets each objective once per round to make analysis simpler, however, when the
importance of the objectives varies, we can adjust the frequency of each objective accordingly.

Most of existing algorithms regarding Pareto efficiency construct the empirical Pareto front on
each round, resulting in complex algorithm structure and less practicality. Compare to other multi-
objective bandit algorithms, our proposed algorithm is very easy to implement and has significantly
lower computational overhead. Aside from these advantages, surprisingly, our simple algorithm can
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Algorithm 1 Multi-Objective Round Robin — Greedy Algorithm (MORR-Greedy)

Require: 7', A\ {Parameters: Total rounds 7', minimum eigenvalue threshold A}
1: Initialize Vo < 0 x I, B1,...,0Bm € RY
2: fort =1toT do

3 m<+t%M{Ifm==0,thenm < M}

4:  if Apin(Vi—1) > A then

5: Update the OLS estimators 0y (t), . .., O (t)
6: Select action a(t) € arg max;cx] 2] 0 (1)
7. else

8: Select action a(t) € arg max;c(x] 2] Bm

9: endif

10:  Observe the reward vector y(t) = (ya(tm(t), .. ,ya(t)7M(t))
11:  Update V; + Vi1 + az(t)z(t) T
12: end for

achieve theoretical performance guarantees (under suitable regularity) which is typically obtained
by more complex algorithms.

We also introduce another multi-objective near-greedy algorithm MORO-Greedy (Algorithm [D.T))
in the appendix, which is a version of the MORR-Greedy algorithm that incorporates stochastic
selection process and we analyze this algorithm in Appendix D}

3.2 FREE EXPLORATION INDUCED BY OBJECTIVE DIVERSITY

The MORR-Greedy algorithm (Algorithm([I]) is built on the insight that exploration can arise naturally,
even when the algorithm is focused solely on exploitation, provided the bandit problem involves
sufficiently diverse objectives. In most of the existing multi-objective bandit literature, increasing
the number of objectives complicates the problem setup and leads to more complex algorithms,
especially compared to single-objective bandits.

However, we observe a surprising and beneficial side effect: the diversity of objectives can induce
free exploration, enabling simple near-greedy algorithms like MORR-Greedy to achieve statistically
efficient performance (see Theorem I)).

The core idea is that, for each objective, rounds in which greedy selections are made for other
objectives can simultaneously serve as exploration rounds for the remaining objectives. In the round-
robin process, exploitation occurs for one objective, while the other objectives naturally benefit from
exploration. This dynamic allows for automatic exploration without incurring additional Pareto
regret, providing a significant performance advantage.

This phenomenon is intuitive, yet it has not been rigorously examined in multi-objective settings
until now. Our work is the first to formalize the conditions under which natural exploration can
occur in the presence of objective diversity, paving the way for simpler, more efficient algorithms in
multi-objective bandit problems.

3.3 A STRATEGY FOR SELECTING INITIAL PARAMETERS

To expedite the initial exploration phase, a practical strategy involves constructing a set of M feature
vectors that are as diverse as possible. This diversity helps ensure that each objective is sufficiently
represented from the outset, enabling the algorithm to gather meaningful information early on. The
following definition formalizes the properties of the initial values used in this strategy, ensuring
robust exploration across all objectives.

Definition 5 (Exploration Facilitating Initial Parameters). For m € [M], let z,, be the greedy
selection among x1,...,xx for the initial objective parameter [3,,. We say that initial objec-
tive parameters are exploration facilitating when a set of initial vectors {31, ..., Sar } maximizes

M
)\min <Zm=1 Zm (ZWL)T
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4 ANALYSIS

In this section, we analyze the MORR-Greedy algorithm from the perspectives of regret and objective
fairness. Our analysis is established in the fixed feature setup to expose our main idea clearly,
however we also present the similar results under the stochastic environment in Appendix[B] We start
with the bounded assumption similar to those used in the linear bandit literature (Abbasi-Yadkori
et al.,[2011;|Chu et al., 2011 |Agrawal & Goyal, 2013; Abeille & Lazaric,[2017)).

Assumption 1 (Boundedness). Vi € [K], ||zi|l2 < 1, and ¥Ym € [M], ||6},]]2 = 1.

Assumption [I] is used to make a clean analysis for convenience and the first part of it is in fact
standard in bandit literature. Notably, we can obtain a regret bound of the proposed algorithm that
differs by a constant factor with ||2;||2 < Tmax and I < 0%, < L for all m € [M]. We will later
discuss how to extend our analysis to an arbitrary bound for feature vectors and objective parameters

in Appendix [E]

As stated earlier in Introduction, we are interested in the problem setting where diverse objectives
play a positive role, rather than incurring hindrance. We start with simple condition that objective
parameters span R%.

Assumption 2 (Objective diversity). We assume 6%, ..., 0%, span R%.

In the following analysis, we define Ao := Amin (77 fo:l 0,(6%)T), which has a positive value
under Assumption [2] It is important to note that we can actually relax Assumption [2] so that

1,...,0% span the spanning space of feature vectors, span({z1,...,2x}) (see details in Sec-
tion . That is, it can be sufficient to assume that 67, ..., 0}, span a strict subspace of R, Yet, for

clear exposition of our main idea, we work with Assumption [2}

Next, we introduce the ~-regularity condition that describes the regularity on feature space in multi-
objective linear bandits. The similar notion of regularity, called S-regularity, in the non-contextual
MAB setup is introduced by [Bayati et al.|(2020). They assume the prior distribution I" of the ex-
pected reward 1 of each arm satisfies P, [ > 1 —¢€] = O(¢”) for all € > 0. The ~-regularity extends
the S-regularity to linear reward bandit problems with multiple objectives.

Definition 6 (y-regular condition). For fixed v € (0,1], we say that the set of feature vectors
{z1,..., 2K} satisfies y-regular condition if there exists o > 0 that satisfies

T B
x; > 7.
16112

VB € Bo(63)U... UBL(0},), Jie K], (1)

We will generalize the y-regular condition under varying context setup later in Definition [7/in Ap-
pendix [B] In this case, y-regularity condition requires the positive probability of the existence of
near-optimal arms for all directions in R

. . . . A2
Assumption 3 (y-regularity). We assume {x1, ..., vk} satisfies yo-regular with o > 1 — 78.

Assumption[3]says that there exists at least one near optimal arm for directions in the neighborhoods
of objective parameters. We can relax the existence of near optimal arms in Assumption [3] to the
positive probability of existence of near optimal arms in Assumption [B.T]under stochastic context
setting. In comparing Assumption where d = M = 1 with B-regularity, we observe that -
regularity can be viewed as a weaker notion than 3-regularity. Detailed analysis on both assumptions
can be found in Appendix [C.2]

It is worthy to note that above assumptions are irrelevant to context diversity assumption which is
commonly used in the existing greedy bandit literature (Kannan et al.,|2018; Raghavan et al., 2018;
Hao et al.,|2020; |Bastani et al.| 2021)). Especially, we explain the cases where ~y-regularity holds but
context diversity does not in Appendix

Before we start our analysis, we denote by « the value of « that holds the condition (1) with ~q. If
: N B R 2D 2

v is greater than ¥)(Xo,v0) == \/ & — 335 %0 — (1 — 73 ) /1 — 75, then we replace the value of

ag with ¥(Ag, 70). Since the condition becomes tighter as « increases, the ~p-condition still holds

even if the value of «y is replaced by a smaller value.
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4.1 THE REGRET BOUND OF MORR-GREEDY

We establish the lower bound of the minimum eigenvalue of Gram matrix that increases linearly with
respect to t. Typically in many greedy bandit approaches, the linear growth of minimum eigenvalue
of Gram matrix is derived by showing a constant lower bound on Ay (E[z(t)a(t) " |H—1]) for
each round ¢ through context diversity. However, instead of leveraging context diversity, we use the
diversity of the objectives to establish a constant lower bound for Apin Zi‘):ty_l z(s)x(s)T) for
asingle cycle s = tg, to+ 1, ... , to + M — 1 in round-robin process. Let Ty denote the number
of rounds required until condition A, (V3) > A is satisfied.

Lemma 1 (Minimum eigenvalue growth). Suppose Assumptions 1, 2 and, 3 hold, and fix § > 0.
. . . o o2
If we run Algorithm 1 with A = min [ao 2dT log(%)7 4o (g log (1 + %) + log ((15))] then

P
g

with probability 1 — 2M, the following holds for the minimum eigenvalue of the gram matrix

Amin <z_: x(s)x(s)T> >A+Co(t—To — M),

s=1

forTy+ M <t<T, whereCO:)\0—2\/2—%20[0\/1—73—270\/1—0@).

The proof of the lemma is given in Appendix
Remark 2. We can always get Cy > % by setting the value of o no greater than (g, vo) =

Y Y 2 . . .
o~ 391 Y0 — (1 — %) \/1 —~¢. In other words, this replacing process serves to increase the

minimum eigenvalue of the Gram matrix at a rate O(\g).

It is well known that the minimum eigenvalue of the gram matrix increases proportionally with ¢,

we can easily obtain an order of /7T regret bound. The following theorem demonstrates that the
MORR-Greedy algorithm possesses near optimal regret.

Theorem 1 (Pareto Regret of MORR-Greedy). Suppose Assumptions 1, 2 and, 3 hold. If we run
Algorithm I with A\ = min [alU\/QdT log(dT?), % (41og (14 2F) +log (T))}, then the Pareto

[e3

regret of Algorithm 1 is bounded by
PR(T) < Ci1+/2dT log(dT') + 4Ty + 10M,

8o
Ao—2y/2+2001/T—72~270y/1—a2
The proof of the theorem is given in Appendix

where C1 =

Discussion of Theorem (1} The theorem demonstrates that the cumulative Pareto regret bound of

MORR-Greedy is O(‘{\ioT) Theorem |1| provides the theoretical foundation that if multiple objec-
tives possess diversity and suitable regularity, simple round-robin type algorithms can outperform
even more complicated exploration-based algorithms for multi-objective linear bandits (such phe-
nomenon is witnessed in the experiements in Section [3).

Remark 3. If the m feature vectors selected greedily by the initial objective parameters that are
spanning R?, then the minimum eigenvalue of the Gram matrix will increase proportionally with t
during the exploration process. In other words, when we use \ in Theorem|l| Ty can be bounded
at a scale of O(min(dlog T,\/dT)) as long as the algorithm selects M feature vectors that are
spanning R¢ during the initial Round Robin process. (In the case of fixed arms, we can always
ensure this).

The following is an argument regarding how quickly exploration can be completed. It is generally
challenging to specifically determine the bound on 7j. However, in the MORR-Greedy algorithm,
by using exploration facilitating initial objective parameters 51, . . ., a7, we can get the worst-case
theoretical bound on Tj.

Corollary 1 (Number of Initial rounds). Suppose Assumptions 1, 2 and, 3 hold. If we run Algorithm
1 with exploration facilitating initial objective parameters, Ty can be bounded by Ty < LC%)J + M

where Cy = Mg — 2\/24—2040\/1 — 2 = 270y/1 — ad.
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The proof of the corollary is given in Appendix [A-4]

4.2 OBIJECTIVE FAIRNESS OF MORR-GREEDY

We confirmed that the MORR-Greedy algorithm satisfies the objective fairness. In the MORR greedy
algorithm, we can obtain l, bounds for the difference between the estimators of each objective
parameter and the true objective parameters. This implies that for a given ¢, with high probability,
there exists T such that we can select only near-optimal arms with a reward within an € radius of
the optimal reward after round 7. The following theorem shows the lower bound on the ratio of
selecting the near optimal arms for each objective.

Theorem 2 (Objective Fairness of MORR-Greedy). Given Assumptions 1 to 3, the Algorithm 1
satisfies for all m € [M],

gy Tr-T.—M 3M
Z 1{H:n7#a(t),m,<5} Z T 1— T ,
t=1

—E
3202d log(dT)

T
(L :
(/\0—2\/24-2040\/ 1= —2v0y/1—0}) €

where T, = max |+ To+ M, 2Ty +2M) in the same setting

as Theorem/[]]

The proof of the theorem is given in Appendix [A3]

Discussion of Theorem 2l The theorem demonstrates that we have a lower bound on the ex-
pected proportion of selecting near optimal arms with respect to each objective by p.r >

(%) (1 — %) It is notable that lim7_, (W) (1 — %) = ﬁ and the limit does
not include a term with K. This implies that our algorithm satisfies objective fairness and selects
near-optimal arms for each objective equally at a ratio of % as time grows. Moreover, we prove that
with high probability, Algorithm 1 selects only e-optimal arms of an objective, after a certain rounds

T..

5 EXPERIMENT

We conduct experiments in both fixed and stochastic context settings to evaluate the empirical perfor-
mance of our proposed algorithm MORR-Greedy. We compare the proposed algorithm with the two
most well-known multi-objective algorithms P-UCB (Drugan & Nowe| 2013) and MOGLM-UCB (Lu
et al., |2019). P-UCB is the first multi-objective algorithm for non-contextual MAB setting, while
MOGLM-UCB is developed to solve generalized linear bandit problems. We confirm the performance
of the three algorithms in a linear bandit y,,, (t) = N (27 07,,0.1%) for all i € [K] and m € [M]. Our
results are averaged over 10 different instances for each (d, K, M )-combination, and we conducted
a 10-round reputation experiment on the same problem instance. Detailed settings of experiments
can be found in Appendix [G.I]

50 50
° P-UCB ° P-UCB
D40 D40
g —— MOGLM-UCB g —— MOGLM-UCB
230 —— MORR-Greedy 230 —— MORR-Greedy
© ©
a a
L2 L2
= =
© ©
E E
E10 E10
3 3
© M © i ! i
100 200 300 400 500 100 200 300 400 500
Rounds Rounds
(ad=5K=50,M=>5 (b)d =10, K =100, M =10

Figure 1: Evaluation of multi-objective bandit algorithms with tuned parameters

Figure (1| illustrates the performance of each algorithm under two different (d, K, M) combinations
in the fixed feature setup. Additional results, including performance in various settings and with
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stochastic contexts, can be found in Appendix [G.I] The results clearly demonstrate that our pro-
posed algorithm outperforms the others empirically, despite its simpler structure. Notably, while
the performance of the other algorithms degrades as the number of objectives and arms increases,
MORR-Greedy maintains consistent performance. This shows that when the objectives are suffi-
ciently diverse, our near-greedy algorithm exhibits superior empirical performance, surpassing more
complex methods. Additionally, we conducted experiments to evaluate how our algorithm selects
near-optimal arms for each objective in a balanced manner and to assess its performance under
various initial objective parameters. The results are presented in Appendices and

6 CONCLUSION

In this work, we introduced MORR-Greedy, a near-greedy algorithm for multi-objective bandits.
We identified sufficient conditions where free exploration arises from objective diversity, enabling
our algorithm to achieve O(‘/AioT) regret bounds under objective diversity and feature regularity.
We also introduced the concept of objective fairness, ensuring equal treatment of all objectives,
and demonstrated that MORR-Greedy satisfies this criterion. Our findings offer a new perspective,
showing that diverse objectives can actually enhance learning in multi-objective bandits.

7 REPRODUCIBLITY STATEMENT

For theoretical results, we provide all assumptions in Section ] and a complete proof of our main
results in Appendix |Al We also present similar results that can be obtained under different environ-
ment or assumptions and the proofs of the results in Appendix and [F| We also included the
data and code, along with instructions to reproduce our experimental results, in the supplementary
material.
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A ANALYSIS OF MORR-GREEDY WITH FIXED FEATURES

A.1 PROOF oF LEMMA[II

The key idea of our analysis is that, in each cycle in round-robin process, the algorithm selects arms
that are close to the directions of 67, ..., 0},. The following lemma tells us that we can bound the
distance between the selected arms and the objective parameters after enough exploration rounds
and enables us to derive the diversity of the selected arms from the objective diversity.

Lemma A.1 (Near Optimal Zone Construction). Given Assumptions 1, assume the OLS estimator

satisfies ||0m (s) — 05,|] < o, form € [M]and s > Ty + 1. If & € B sarisfies lelngz;II <,

then the distance between x and 0}, is bounded by

165, — 2ll2 < /20 + ay/T— 72 — /1 - a2).

12
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Figure A.1: The larger circle represents the unit sphere in R? while the interior of smaller circle
indicates the region where 0,,(s) may exist. Then, the blue line illustrates the case when x that
T ém(‘s) >

satisfies ' —
[0 ()] —

~ is farthest from the 6.

Proof of Lemma Consider the case when x is the farthest from 6.
As we easily can see from Figure [A.1}

165, — 2|3 < (@+vV1=9%)2+ (V1-0a2 —9)? =2+ 20y/1 - 92— 29V/1 - a2
|

Now, we will demonstrate that the minimum eigenvalue of the gram matrix increases proportionally
with ¢. This technique is often used in the analysis of greedy algorithms for a single objective with
stochastic contexts (Kannan et al.| [2018; |Bastani et al., |2021)), where the increase in the minimum
eigenvalue of the gram matrix is used to derive the bound of ||A() — 6,||o. We use the diversity
of the objectives to establish a constant lower bound for the minimum eigenvalue of the gram ma-
trix consists of the selected feature vectors within a single cycle of the Round Robin process, i.e.

Amin (Ziojtéw*l m(s)x(s)T) foracycles=tg, to+1, ... , to+M—1.
Lemma A.2. Let Assumptions 1, 2, and 3 hold. Assume the OLS estimator satisfies ||0pm (s) —
051l < ao, forall m € [M] and s > To + 1. Then, the selected arms for a single cycle s

to, to+ 1, ..., to+ M — 1 (tg > Tpy) by Algorithml satisfies
to+M—1
Amin ( > x<s>r<s>T) > (Ao - 2\/2 (1 +aoy/1-23 —W@)) M.
s=to

Proof of Lemma Let m(s) be the target objective for iteration s, and consider near optimal zone
R(s) := {z € B? | xTG"L)(S)H > vo}. Since ||é,,L(5)(s) =05l < a0 holds for s > Ty + 1, we

16 s (5)
can easily confirm H IIZ o~ Pmes) ‘ < ag holds geometrically. Then, Assumption guarantees
m(s) (S
L

m(s) (s) *
that there exists at least 1 arm in R(s), and so z(s) should be in R(s). Thus, by Lemmal|A.1} we can

gt 12(5) — By | < /2 (1+ 0y T=73 —20V/T=3).

13
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Then, for any unit vector u € B,

to+M—1 to+M—1
w( > x(s)x(s)T)u= > (wa(s)”

s=to s=to
to+M—1

3 <u 00y + (a(s) — 0;(8))>2

s=to
to+M—1

S () + () =) +2 (w050 ) (o (s) — O3 )

s=to
M
T (Z 0;;(9;;)T) u—|—0—2\/2 (1+am/1 22—/l _ag)M
m=1
> M)\0—2\/2 <1+0&0\/1-’Y§ —’Yoy/l—Ozg)M.

Therefore, we have Apin (Zi‘;téw_l x(s)x(s)T) > ()\0 — 2\/2 (1 + ao\/l -2 - 70\/1 — ag)) M.

Proof of Lemma If we choose A as stated in Lemma the OLS estimator satisfies ||, (s)—0%,|| <
ag for all s > Ty + 1 and m € [M] with probability 1 — 2M 4, by Lemma Thus, by applying
Lemma@to every single round after exploration, we have, for t > Ty + M,

t—1 To t—1
Amin <Z; x(s)x(s)T> > Amin (Z x(s)x(s)T> 4+ Amin ( Z x(s)x(s)T>

s=1 s=To+1
t—1-T,
>\ + [MO} x CoM

>A+Co(t—To — M),

where Cy := \g — 2\/2(1 +av1l—c2 —cy/1—a?)).

A.2 PROOF OF THEOREMIII
m

Lemma A.3. Fix § > 0. Under the same conditions as Lemma [I| with probability at least 1 —3M§,
forallm € [M] and t > 2Ty + 2M, the OLS estimator 0.,,(t) of 0%, satisfies

|

where Cy = g — 2\/2(1 +avl—c?—cvl—a?)).

Proof of Lemma From the closed form of the OLS estimators, for all m € [M],

With Lemma |1} We are ready to derive the I bound of 6, (t) — 67, for m € [M].

20 | dlog(dt/)
Co\lt—Ty — M’

am(t) - 9m g =

n(6) = 5,

2

2
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For the denominator, we have Ay (Vi—1) > A+ Co(t —Tp — M) for t > Ty + M, with probability
at least 1 — 2M 0, by Lemma To bound the [; norm of S;_1 ., = Zi;ll z(8)Na(s),m(s), we
can use Lemma@ the martingale inequality of |[Kannan et al.| (2018)). The lemma states for fixed

m € [M], ||St—1,mll2 < o+/2dtlog(dt/d) holds with probability at least 1 — §. Therefore, with
probability at least 1 — 3M ¢, for all m € [M] and t > 2T, 4+ 2M,

o+/2dtlog(dt/?) < 20 | dlog(dt/d)
27/\+00(t—T0—M)700 t—Ty— M’
The last inequality holds when ¢ > 27T + 2M.

6 () - 65,

< %\/% holds for all m €
2

[M] and t > 2Ty + 2M where Cy = Ao — 2\/2(1 +av/1 —c2 — c/1 —a?)). Then, P(E) < %

by Lemma with § = %
Let m(t) be the target objective for round ¢ and a, be the optimal arm with respect to objective m.

Then, the suboptimality gap on round ¢ is bounded by

T % * N *
Agy(t) < (2az,,)) Oty — x(t)Tem(t) < 2|0y (1) — Oyl l2-

m(t)

m

Proof of Theorem Let F be the event that ’ ’ém(t) —0r

Let A ax be the maximum suboptimality gap. For ¢ > 2Ty + 2M,
E[Aaw) ()] < E[Aq(ty(t) | E] + P(E)Amax
3M

< QE[ ||ém(t)(t) - ern(f)HQ | E] + TAmax

40 | dlog(dtT)  3M
< — | ————= + —Apax-
~Co\t—-Ty—M + T :

Then, the Pareto Regret is bounded by

T
PRT) = Y E[Auw®)] + (270 + 2M)Apax
t=2Ty+2M+1

T
4o [ dlog(diT 3M
> do | dlog(dtT) (25T + 2Ty + 2M } Aoy
co\Ni—To—M T
t=2To+2M+1

T
do v/ 2dlog(dT) / idt + {276 + 5M } Anax
Co 0o WVt
< %U\/sz log(dT) + 2{2T; + 5M .

0

The last inequality holds because we have Ay, < 2 under Assumption

IN

IN

A.3 OBIJECTIVE FAIRNESS OF MORR-GREEDY

Proof of Theorem|2] Define the event ,,, ; for all m € [M] as
Qi := {w € Q| Objective m is a target objective for round ¢}.

Then, P(2n,¢) = 1{t=m mod ar} from the Round-Robin process.

< %w%holdsfwallm € [M]andt > 2T +2M
2

where Cp = A\g — 2\/2(1 +av1l—c2—cV1—a?)). Then, P(E) < 34 by Lemmawith

Let E be the event that ‘ ‘ém(t) -6,

15
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§ = 7. We know that on ,,,, N E, for t > 2T}, + 2m,

. 40 | dlog(dtT) 4o | 2dlog(dT)
- <20 (t) = 05 |l2 < oy | el < O [ ST
My, — Ha(t)y,m = H () mHQ— Co\lt—=Ty—M — Co\\t—To— M

_ 3202d log(dT) N
Let T, = max(| &5 | +To+M, 2Ty+2M). Then, on Q,,, ;NE, we have 11y, — fta(1),m < €
forallt > T..

Therefore, for all m € [M],

a 1
Z 1{ltfn_l"a(t),1n<e}‘| = T
t=1

[M]=

1
TE E {1{u;—ﬂa<t>,m<€}]

t=1

E[l{ufn—lta(t),m<€} | Qm’t] P(vat)

Y
el
(7~

~

M-

1
=7 E[L (s oo mze) | Qo] P(Qnt)
t=T.+1
1 T
> T Z E[L {0 —poym<ey | Qme N E]P(E)
t=T+1, M‘tfm
1 T
>3 . BB
t=T.+1, M|t—m
1
>

L[T-T] () s
T M T

> (i) (0-F)

A.4 THE PARAMETER A\ AND THE NUMBER OF INITIAL ROUNDS

Now, let’s discuss the appropriate value of A, the threshold of the minimum eigenvalue of the gram
matrix. For convenience, denote V; := >_0_ a(s)z(s)T and Sy := 3! _, 2(8)14(5)(s)T. When
the minimum eigenvalue of the empirical covariance matrix Vr, exceeds a certain threshold, we can
guarantee the I, bound of the OLS estimator 6(t) of 6, for ¢ > Tj, with high probability. Le.,

Nuin (Vi) = fla) = |0(t) - 6.

<a, Vt>1Tj
2

If we set A = f(ap), then with high probability,
values 50, . 75]%.

Kveton et al.| (2020) suggest f(a) using a bound of |[S||y,_,-1. However, a small mistake was
made in their process: the bound they derived by modifying Theorem 1 of |Abbasi-Yadkori et al.
(2011)) is actually a bound for || ZZ:TO-H 2(8)Na(s)(8) "||v,_,~1, where 7o = min{t > 1:V; = 0},
not ||S¢||y,_,—1. To address this problem, the simplest approach would be to use the bound of ||.S;||2

suggested by Kannan et al. (2018). In this case, f(a) would include a term with v/dT. Alternatively,
using the bound of || S|y, -1 proposed by |Li et al.| (2017), that f(a) can be constructed without

VT, relying on dlog T. Through these two approaches, we can obtain an @(min(\/ dT,dlogT))
bound for A.

Lemma A.4. Given Assumption 1, for any a > 0 and 6 > 0, if we set \
L lo dT. 402 /d 2T 1
A = min la 2dT10g(T)v 2 <2 log (1 + d) + log (6))] ,

16

6un(t) = 05,

‘ < ap after playing with initial
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then with probability at least 1 — 2M, the OLS estimator satisfies |0 (t) — 0%, ||2 < a for all
m € [M]andt > Ty + 1.

Proof of Lemma First we will bound X using the fact

Hém(t) — g 1Si—1,mll2,

o 1
e < —
2 H(W‘l) St‘“”” = Amin (Vi—1)

where S ,, == Zi:l x(s)na(s),m(s)T.

Since ||Si—1,m|l2 < 0+/2dtIn(td/d) holds with probability at least 1 — § by Lemma and
Amin(Vi—1) = Amin(Vr,) for t > Ty + 1, we have Hém(t) -0, ’2 < a for all m € [M] and

t > Ty + 1 with probability at least 1 — M § when the value of A set to 24 /2dT log(%).

Alternatively, we can use the fact

1

2
’2 - (St—l,m)TVt—l71Vt—1715t—1,m S m||st—l,m||%/t,l—l'

8 t) - 0,

By Lemma ||St717m”%/t—1_1 < 40%(£1og(1 + 2t) + log()) holds with probability at least

1 — 4, and hence, we have Hém(t) -6,

‘2 < aforallm € [M]and t > Ty + 1 with probability at
least 1 — M by setting A to 4% (4 log(1 + 2L) 4 log(1)).

|
Proof of Corollary|l| From the definition of the exploration facilitating initial objective parameters,

the minimum eigenvalue of the gram matrix consists of the feature vectors greedly selected by
exploration facilitating initial objective parameters satisfies

Amin (to%lﬂs)x(sf) > (Ao - 2\/2 (1 +apy/1- 3 - 7\/SD M,

s=to

by Lemma Then, for any 77 > LC%J + M, if we keep playing with the initial values for T}
rounds,

Ty T
)\min (Z .T(S)x(s)T> Z |:]\;:| X ClM Z Ol(Tl - M) Z A

Hence, we have T;) < LC%J + M.

B ANALYSIS OF MORR-GREEDY WITH STOCHASTIC CONTEXTS

B.1 SETTING

In each round ¢t = 1,2,..., T, the set of feature vectors x(t) = {z;(t) € R% i € [K]} is drawn
from some unknown distribution P, (¢). Each arm’s feature z;(t) € x(t) for i € [K] need not be
independent of each other and can possibly be correlated. In this case, we denote x,(4)(t) as x(t).
Other settings are identical to the fixed arms case.

B.2 RESULTS FOR STOCHASTIC CONTEXTS
In this section, we first present the regret bound of MORR-Greedy and the results on objective fairness

when played in a stochastic context. The proofs of each theorem are provided in the subsequent
sections.
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To analyze the MORR-Greedy algorithm in the case of stochastic contexts, it is necessary to modify
the definition of ~y-regularity slightly. In the stochastic version, it is necessary to assume the exis-
tence of a near-optimal arm not only near the true objective parameter but also in all directions to
ensure that the selected arms during the exploration process are sufficiently diverse. Instead, there
is a clear advantage in that, even with the assumption of a small positive bound on the probability of
the existence of near-optimal arms allows us to obtain a regret bound that differs only by a constant
factor in the results under fixed contexts.

Definition 7 (y-Regular condition for Stochastic Contexts). For fixed v < 1, we say that the distri-
bution P, (t) of feature vector set x(t) satisfies y-Regular condition if there exists a positive number
q~ that satisfies

V@ e Sdil, ]P’X(t)[ﬂz S [K], Ii(t)Tﬁ > ’y] > Q-
Assumption B.1 (y-Regularity for Stochastic Contexts). We assume P, (t) satisfies yo-regular con-
dition for all t € [T], withyo > 1 — /\é where Ao = Amin (57 M e (GL)T)

m=1"m
In the following analysis, we use notation gq := ¢, where g, satisfies the condition in Deﬁnition
The fixed version of vy-regularity can be viewed as a special case of Definition [7| with ¢, = 1. As
A detailed analysis of ~-regularity is provided in Appendix [C] As stated earlier in Section ] ~-
regularity is a condition that applies the notion of S-regularity from Bayati et al.| (2020) to context
distribution in the multi-objective setting. We explain why ~-regularity can be treated as a weaker
condition than -regularity in Appendix

The following assumption is essential to guarantee that in each round ¢, the feature vectors drawn

from P, (t) are not influenced by previous rounds s =1,...,¢ — 1.

Assumption B.2 (Independently Distributed Contexts). The context sets x(1),...,x(T), drawn
from unknown distribution Py(1),..., P (T) respectively, are independently distributed across
time.

All of the greedy linear contextual bandit with stochastic contexts assumes the independence of
context sets. It is important to note that feature vectors within the same round are allowed to be
dependent, even under Assumption[B.2] Additionally, this independence assumption does not imply
that the feature vector is diverse. For example, assuming independence does not ensure the diversity
of the feature vector if the distribution of feature vectors only contains two candidates.

The following theorem demonstrates that the MORR-Greedy algorithm also possesses optimal regret
in the case of stochastic contexts by replacing Assumption 3 with Assumptions 4 and 5. The leading
term is 2/¢qo times of that of the result from fixed contexts.

Theorem B.1 (Pareto Regret of MORR-Greedy with Stochastic Contexts). Sup-
pose Assumptions 1, 2, [B.1l and hold. If we run Algorithm 1 with A\ =

2 4
min [o% 2dT log(dT?), % (41og (14 27) + log (T))} for some oy < m Yo —

(1 - %ﬁ) /1 — 73, the Pareto regret of Algorithm 1 is bounded by

10d
PR(T) < Co+/2dT log(dT) + 2 <2T0 4+ 5M + C?]) 7
0
160

Aogqo—2q0 \/2 (H‘ao\/ 1=73 =704/ 1—C¥§) .

The proof of the theorem is given in Appendix
We confirmed that the MORR-Greedy algorithm also satisfies the objective fairness in the case of
stochastic contexts.

Theorem B.2 (Objective Fairness of MORR-Greedy with Stochastic Contexts). Given Assumptions
1, 2, and the Algorithm 1 satisfies for all m € [M],

T

T—-T.— M 3M 1 64024
Z]‘{an_l‘a(t),m<€}‘| 2 ( MT> <1 — 7T d(cﬂﬂ)C(IU€2>7
t=1

where T, = max(| 640 dlog(dT) | +To+ M, 2Ty + 2M) in the same
()\0—2\/2 (l+ao\/ 1—vZ =04/ l—ag) )2q2e?
setting as Theorem|B.1]

where Cy =

1
—E
T
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The proof of the theorem is given in Appendix [B.4]

6402d

Remark B.1. Note that the per > (T=&1) (1 -5 d(l)%@) and the lower bound

MT daT

64024
satisfies (T=L=21) (1 —3M d(le)CQU‘2> — a7 as T — .

B.3 PROOFS OF THEOREM [B.1]

In the stochastic version, similarly to the fixed version, we can establish a constant lower bound
for the minimum eigenvalue of the Gram matrix formed by the selected feature vectors within a
single cycle of the Round Robin process. In the case of fixed contexts, Lemma[A.2] demonstrates
that the eigenvalue of the Gram matrix can increase by a constant amount (or more) during a single
round. The following lemma is a modified version of Lemma[A.2] adapted to apply to the situation
of stochastic contexts.

Lemma B.1 (Near Optimal Zone Construction). Given Assumptions 1 and 2, assume the OLS es-

timator satisfies ||0,,(s) — 01]] < «, for all m € [M) and s > Ty + 1. Define near optimal zone
R, (s) with respect to obejective j on round s as

O (s

Rn(s)={zeB|z" Ai()_’y}

10 (5]

Let z1,...,zy be any vectors in near optimal zones Ry (t1), ..., Ry(ta) of different objectives
onroundty,. .. t, wheret; > Ty + 1 for all m € [M]. Then, the minimum eigenvalue of Gram

matrix consists of z1, . . ., zpr satisfies

Amin <§: zm(zm)—r> > ()\0—2\/2 (1+aﬂ—7 1—a2>>.

m=1

The proof can be demonstrated in the same manner as Lemma[A.2]
Remark B.2. The Lemma suggests when the algorithm can quit the exploration to obtain the linear

increase of the minimum eigenvalue of Gram matrix. If the algorithm explores until ém(t) is within

2 4 2
v of 0, for a < A—“ — % v - ( — %) V1 —~2, then we have a positive value for \g —

2\/2 (1 tay/T—92 —VI— a2).

The next step is proving the constant increase of the minimum eigenvalue of Gram matrix in a single
round. We will make a constant lower bound for )\min(zzzyq E[z(s)x(s) " |Hs_1]) within a
single cycle of the Round Robin process.

Lemma B.2. Suppose Assumptions 1, 2, and [B.2| hold. Assume the OLS estimator satisfies
10 (5)) — 0%|| < o, for all m € [M] and s > Ty + 1 for some ag > 0. Then, the selected arms

for a single cycle s = tg, to+ 1, ..., to+ M — 1 (tg > Ty) by Algorithml satisfies
to+M—1
Amin( > Elz(s)z(s) [Haoa]) > <A0—2\/2 <1+a0\/1—73—70\/1—a%>>q0M.
s=to

Proof of Lemma For s > Ty + 1, let m(s) be the target objective for iteration s and R(s) :=

d T ém(s)()
{reB |z T @l = > 70}. Then,

Efa(s)2(s) T [Ho1]

= Ela(s)a(s) " [Hs-1,2(s) € R(s)] Plz(s) € R(s)[Hs-1]

— Blu(s)2(s) T [Ha_1,2(5) € R(s)] P[3i € [K], i(s) € R($)[Ho1]

= Elz(s)z(s) " |He_1,2(s) € R(s)] P[Fi € [K], z;(s) € R's)] (.- Assumption[B.2)
= qo Blz(s)z(s) " [Hs—1,2(s) € R(s)] (.- Assumption[B.1)
> qo x(s)x(s) ", where x(s) = E[z(s)|Hs_1,z(s) € R(s)]. (" Lemmal[H.4).
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Thus, we have Zt“M YElz(s)z(s) | Heo1] = qo Z?’:téwfl x(s)x(s)T, where x(s) =

Elz(s)|Hs—1,2(s) € R( )]. Since R(s) is a convex set for all m € [M] and s > Ty, x(s) should
be inside R(s), so we can apply Lemma [B.1]by

to+M—1 to+M—1
Amin ( Z E[I(S)z(s)T|H5—1D > G0 Amin( Z X(S)X(S)T)
> go X (AO - 2\/2 (1 + a0y/1 =73 —04/1 —a3>> M.

The following lemma shows that the minimum eigenvalue of Gram matrix increases linearly with ¢
with high probability.

Lemma B.3 (Minimum eigenvalue growth of Gram matrix with stochastic contexts). Suppose As-
sumptions 1, 2, and hold. Assume the OLS estimator satisfies ||0m(s) — 0%,|| < ag for

all m € [M] and s > Ty + 1 for some oy > 0. Then fort > Ty + M, the following holdsfor the
minimum eigenvalue of the Gram matrix of arms selected by Algorithm 1

lmmz <)‘+C;q0(t—To—M)]§deC°q°(tmw,

where Cy = ()\0 - 2\/2 (1 +apy/1 =798 —704/1 —a%)) :
Proof of Lemma (B3| By Lemma[B.2] for t > T; + M,

t—1
Amin( 3 Ele(s)a(s) T[Ha1]) > [0 x CoqoM > (£ — Ty — M)Coao.

s=To+1

In other words, P[Ain (32— Elz(s)(s) T [Hs-1]) > Cogo(t—To—M)] = 1holds fort > Ty+M.
By applying LemmdH.3|to compute the lower bound of the minimum eigenvalue of the Gram matrix
after exploration, we have

t—1
C €Yo — Coag(t—Tp—M)
T 040 Coao(t—To—M —Coa(t—=To—M)
P [Amin( TZ+11:(S)’I(S) ) S 2 (t - TO - M)] < d(o 50 5) 0do( 0 ) S de 10
s=To

Therefore, by subadditivity of minimum eigenvalue,

P l)\min( z(s)z(s)T) < A+
1

ngo(t—T M)] gdew

S

The next lemma provides I, bound of 6, (t) — 67, for m € [M].
Lemma B.4. Suppose Assumptions 1, 2, [BI] and [B.2] hold, and fix 6 > 0. If we run Al-

gorithm 1 with A = min { 2dT log(dT) " ( log (1 + QT) + log( ))} for some oy <

\ 3 A 2741 Yo — (1 — %3) /1 — 73, then with probability at least 1 — 3M§ — deicogO(tlgTrM),

forall m € [M] and t > 2Ty + 2M, the OLS estimator 0,,(t) of 07, satisfies

so [ dlog(dt)s)
“ Coq \t—Toy— M’

where Cy :)\0—2\/2 (1+a0\/1—'y§—fyo\/1—ag>.

() - 6,

20



Under review as a conference paper at ICLR 2025

The proof can be demonstrated in the same manner as Lemma[A3] Proof of Theorem[B-1] Let E be
the event that ||6™(t) — 04]| < A2\ /HBUD) holds for all ¢t > 2T; + 2M and m. € [M]. Then,

— Coqo
P(E) < 32 4+ de —RGERD by Lemma
Let A ax be the maximum suboptimality gap. For t > 2T, + 2m,

]E[Aa(t) (t)] < E[Aa(t) (t) | E] + HD(la)Amax

max

3M —Coao(t—Tp—M)
10
T

< 2] |[Bry (1) = O |12 | E] + ( e

< 8o leg(dtT) i 3ﬁ T de—Coqo(tlgTo—M) Ao,
Coqo t— To -M T

Then, the Pareto Regret is bounded by

T
PRT) = Y E[duy®)] + (2To + 2M)Apax
t=2To+2M+1
T
8o leg(dtT) 3M —Coag(t—Top—M)
—)\T d 2T + 2M YA ax
< Ga\ oo TFTH > de o + 2T} + 2M}
t=2To+2M+1
8o T 1 X —Cpag(t—Tg—M)
S 07\/ 2d log(dT)/ —dt + 2T0 + 5M + Z de 10 Amax
090 o Vi t=2To+2M
160 10d
§ \/ 2dT10 dT -+ (2T -+ 5M + ) Amax
Coqo 8ldT) 0 Coqo
160 10d
< ——/2dT log(dT +2<2T +5M + >
Co(]o g( ) 0 Oqu

The last inequality holds because we have A, < 2 under Assumption

B.4 PROOFS OF THEOREM B2
Proof of Theorem|B.2] Define the event Q,,, ; for all m € [M] as

Qi := {w € Q| Objective m is a target objective for round ¢}.
Then, P(Q2,¢) = 1{¢t=m mod m} from the Round-Robin process.

Let E be the event that ‘ O (t) — 07, < %‘;o % holds for all m € [M] and

‘ 2

t > 2Ty + 2M where Cy = Mg — 2\/2 (1+a0 1773770«/17048). Then, P(E) <
3M 4 de=Con(t=To=M) py Lemmawith § = 7. We know that on Q,, , N E, for t > 2T+ 2M,

. A " dlog(dtT 8o 2d log(dT
Hn = Ha(t)m < 2/|0m () = 07, |2 < gldtT) g(dT)
Cogo\\t—To—M ~ Cogo \| t =T — M

Let 7, = max(Lngé‘i;Ozing)J+T0+M, 2T +2M). Then, on Q,,, ;N E, we have 115, — fta(r).m < €
010
forallt > T..
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Therefore, for all m € [M],

T T
1 1
TE Zl{“fn_ua(”””Q}} 2 T ZE[I{M’&—MQQ),M«} | Qi t] P(Qt)
t=1 =1
1 T
2 f Z E[l{ufn—ua<t),m<e} | Qm,t N E] ]P(E)
t=Te+1, M[t—m
1 T
>5 2. PEE)
t=T.+1, M[t—m
1 e 3M
= oM Cogo(Te—To— M)
=7 2 (1 - — e ConT Ty >

t=T.+1, M|t—m

T-T, 3M 1 64024
€ T (=) Cgaoe?
T—-T.—M 3M 1  640%d
e 7 T J(—_\Coaoe2
MUT )(1 T d(dT) 0490 )

Y

vV
/N N =

C ~v-REGULARITY

In this section, we present the meaning of ~y-regularity, compare it with the different regularity con-
dition used in another greedy bandit study(Bayati et al.|(2020)), and explain the difference between
~-regularity and context diversity. As mentioned in the previous section, the fixed version can be
viewed as a case where the probability g, is set to 1 in the stochastic version. Therefore, we con-
ducted a general analysis of the + regularity in the stochastic version. (See Definition [7).

C.1 INTERPRETATION OF v-REGULARITY

In summary, -regularity signifies that for any direction 3 € S9!, there exists at least one near
optimal arm satisfying z;(t) " 3 > ~ with a probability of at least g~ Intuitively, if the union of the
supports of each arm z;(¢) for i € [K] cover all S¥~1, y-regularity will be guaranteed for all v < 1.
The following lemma formalizes this concept.

Lemma C.1. Suppose x(t) contains K continuous variables x1(t), . . . , x  (t) with density function
fi,- o fx- If f = fi + ... + fx is a bounded function and positive near S*= (i.e., there exist a
radius r € (0,1) satisfies f is always positive at {x € R? | r < ||z||s < 1}), then P, (t) satisfies
~-regularity for all v € (0, 1).

Proof of Lemma Fix v € (0,1). From the definition of f, f/K is the probability density
function of X = uniform(z1(t),...,zk(t)). Define ps = Pyy[XT 5 > 7] for unit vector
B € S ' Then,

f(z f(z
ps =Py X B>7]= / de > %dfﬂ >0,
{z€B? | 2T B>} {z€B? | 2T f>max(v,r)}
forall g € S 1.
Consider the function F' : f3 =N ps. From the boundedness of f, we can easily check F' is contin-
uous. By the fact that the compactness is preserved by continuous functions, {ps | 8 € S~} is

compact. Define ¢, := min{pg|s € S9=11, then we have gy > O since pg > O forall 8 € Sé-1 .
Then, for all 8 € S¢~1

Pypy[3i € [K], i(t) ' B> > Pyy[X B> =ps > ¢
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Remark C.1. The above lemma states that if the arm set includes just a single continuous variable
that can cover S*=1, then ~-regularity will hold for all v < 1 regardless of the distributions of the
remaining arms.

C.2 v-REGULARITY VS 3-REGULARITY

In Bayati et al.| (2020), they assume the prior distribution I' of the expected reward p of each arm
satisfies P, [ > 1 — €] = ©(¢?) for all € > 0 in non-contextual MAB setting. Let’s compare this
with vy-regularity when m = d = 1. We claim that vy-regularity can be considered weaker than
[B-regularity from three perspectives.

The most significant difference is that in S-regularity, the probability that the expected reward i,
exceeds 1 — e is required for all arm ¢ € [K], along with the assumption that u;’s are drawn
independently from prior I'. In contrast, in ~y-regularity, it is sufficient to ensure that the prob-
ability that one of the K arms satisfies x; (t)TB > ~, without the need for the independence
assumption between arm vectors. Secondly, unlike S-regularity, y-regularity does not require a
specific relationship like ©(1 — ) between the probability of the existence of near-optimal arms
Py [3i € [K], ;(t)TB > 7] and the threshold ~ ; instead, it focuses on the existence of a pos-
itive lower bound ¢,. Lastly, in Bayati et al| (2020), the S-regularity assumes the probability of
p > 1 —eforall € > 0. In contrast, this study does not mandate y-regularity for -y very close to 1;

it is sufficient to hold y-regularity only for v > 1 — (42)2.

C.3 «a-REGULARITY VS CONTEXT DIVERSITY

In recent years, there has been significant attention on the optimality of the Greedy algorithm in
1-objective bandit problems (Bastani et al., [2021; [Kannan et al., 2018; |Raghavan et al., [2018}; [Hao
et al.;[2020). A common theme among these studies is assuming that the feature vector follows a con-
tinuous distribution that satisfies specific diversity conditions. MORR-Greedyalways achieve optimal
regret under any form of context diversity assumptions which can drive A yin (E[z(t)z(t) T |H—1]) >
Ao. Given the results in the single-objective setting, this is not surprising at all.

The ~-regularity condition is fundamentally different from context diversity condition. Naturally,
in the single-objective setting, we cannot guarantee that the greedy algorithm will perform well
under the v-regularity condition. However, when the number of objectives is sufficiently large, the
intersection of the multi-objective setting and the ~-regularity condition leads to free exploration,
resulting in optimal regret. The following example highlight cases where the assumption of context
diversity is not met, yet the regularity condition remains valid, enabling the MORR-Greedyoptimal
performance in many-objective bandit problems.

Example 1 (Containing Fixed Arms) Imagine a situation where one feature vector is a continuous
variable while the other arms are fixed. For example, let z;(t) be uniformly distributed over B¢
while z5(t) = w,...,2x(t) = z are fixed at some points in S~!. By Lemma P, (t)
satisfies «y-regularity for all v € (0,1). However, it is easy to see that diversity is not satisfied
because Amin (E[z()2(t) T|0(t) = 3]) = Amin (2224 ) = 0.

Example 2 (Low-Randomness Distribution) Consider a scenario where the feature vectors are drawn
from a finite set of discrete points. Despite the lack of diversity, if these points are strategically
chosen to cover S~ ! adequately, the regularity condition can still be satisfied. For example, suppose
there is a set of points P = {a1, as, ..., ay} that contains /1 — y2-net of S?~!. Assume that 2, (t)
be chosen uniformly from the N; < d points in P with the largest first coordinates, and other arms
x2(t),. ..,k (t) be chosen from the remaining points. Obviously, P, (t) satisfies y-regularity with
¢y > 7. However, greedy selection by the vector (1,0, ..., 0) should be z1(t) and there are only
N; < d candidates that can be x1(t). Therefore, context diversity does not hold in this scenario.

Although ~v-regularity encompasses cases where context diversity is not covered, there is no inclu-
sion relationship between the two conditions. Here is an example where regularity does not hold,
but context diversity does.

Example 3 (Proper Support) Consider a case where 1 is given as the upper bound of the [, norm of
feature vectors, but the actual support of feature vectors is smaller. For instance, if x;(t) follows a
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uniform distribution over B¢ /o forallé € [K]and ¢ € [T, then context diversity still holds (Bastani

et al.| (2021)), but y-regularity does not hold for y > 1/2.

D ANOTHER PROPOSED ALGORITHM

D.1 MULTI-OBJECTIVE RANDOM OBJECTIVE — GREEDY ALGORITHM

The following algorithm is the MORO-Greedy algorithm. In each round, it randomly selects one
objective and chooses the arm greedily based on this objective. The algorithm takes as input the
probabilities for selecting each objective, which can be uniformly set to ﬁ if no specific information
is available. Similar to the MORR-Greedy algorithm, this algorithm utilizes the initial 31, ..., Oxs
values until Ay (Vi—1) > A for a threshold A, and then uses the OLS estimators ém(t) of 6% in

each round ¢.

Algorithm D.1 Multi-Objective Random Objective — Greedy Algorithm (MORO-Greedy)

Require: 7', A\, (w1, ..., wys) {Parameters: Total rounds 7', minimum eigenvalue threshold A, the
distribution of objectives (w1, ..., was)}
1: Tnitialize Vo 0 x I, and By, .. ., Bar € RY
2: fort =1toT do
3:  Randomly select m € [M] from the distribution (w1, ..., war).

4 if Amin(Vi_1) > A then

5 Update the OLS estimators 0y (t), ..., O (t)
6: Select action a(t) € arg max;c(x] 2] 0 (t)
7:  else

8: Select action a(t) € arg max;c(x] 2] Bm

9: endif

10:  Observe the reward vector y(t) = (Ya(e),1(t), -, Ya(t) 1 (1))
11:  Update V; < Vi1 +z(t)z(t) "
12: end for

The MORO-Greedy algorithm can be viewed as operating a greedy algorithm in a multi-objective
setting where the dominant objective changes with each round randomly. Specifically, in a scenario
where the dominant objective varies across users’ preferences and no objective has a zero probability
of being dominant, the result of this section shows that simply applying a greedy algorithm to the
dominant objective could be an optimal strategy.

D.2 ANALYSIS OF MORO-GREEDY ALGORITHM

The following lemma demonstrates that objective diversity in MORO-Greedy leads to context di-
versity even when the features are fixed. The expectation of the lemma below arises not from the
randomness of the contexts, but rather from the randomness associated with the selection of the
algorithm’s objectives.

Lemma D.1. Suppose Assumptions 1, 2, and 3 hold. Assume the OLS estimator satisfies | |0y, (s)) —
0| < ag, forallm € [M] and s > Ty + 1. Then, for s > Ty + 1, the arms selected by Algorithm
2 satisfies

Amin(E[z(s)a(s) " [Hs-1]) > g min (wp,)Co,
me[M]

where Cjy 1= Ao —2\/2 (1—1—040\/1 — 12 —704/1 —ag).
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Proof of Lemmal|D.1} For s > Ty+1, let E,, (s) be the event that the objective m is a target objective

T _Om(s)

and define the near optimal zone R,,(s) := {x € B | x TRET > 7} on round s. Then,

Elz(s)a(s) " [Hs-1]

E[]J(S)JZ(S)T|EM(S),Hs_l]]P’[ rrL( )|Hs 1]

-

1

3
Il

W E[e()2()T | 2(s) € Rn(5), Eun(s), Hoor] Bla(s) € Ron(8) En(5), Ho1]

1

3
ST

me[x(s)a:(s)T | 2(s) € Ry (8), Emn(8), Hs—1|P[Fi € [K],2; € Rin(8)|Em(s), Hs—1]

m=1
- q Onfglilﬂ W) ZE )T | 2(s) € Rin(s), Em(s), He_1]
> qo min (wy,) Xm I
me([M]

where X,,,(s) := E[z(s)| (s) € Rpn(s), Em(s), Hs—1]. The second inequality from the bottom
holds due to the fact that the existence of a near-optimal arm is independent of the choice of the
target objective or the history #H,;_, as established by Assumption [3| The final line is validated by

Lemmal[H.4]

Since R, (s) is a convex set for all m € [M] and s > Ty + 1, X, (s) should be inside R, (s), which
allows us to apply Lemma B.T|to above inequality by

)\min(E[l‘(S)x(s)T|HS—1D Z qo min (wm) )‘min( Xm(S)Xm(S)T)

me[M]

> qo Hfrel%JI\ll](wm) (/\() — 2\/2 (1 + CYO\/l — ’yg —’Y()\/l — Oé%)) .

i=

We can prove the minimum eigenvalue of the gram matrix increases linearly with respect to ¢ with
Lemma [D.1] This leads that the MORO-Greedy algorithm can have the same scale of Pareto regret
bound and objective fairness as in MORR-Greedy.

Corollary D.1 (Pareto Regret of MORO-Greedy). Given Assumption 1, 2, and 3, the
MORO-Greedy algorithm has a regret bound of O(VdT).

Corollary D.2 (Objective Fairness of MORO-Greedy). Given Assumption 1, 2, and 3, the
MORO-Greedy algorithm satisfies the objective fairness.

E RELEASING BOUNDEDNESS ASSUMPTION

In this section, we explain how to release the boundedness assumption, Assumptionm In conclusion,
we can obtain results of the same scale as Theorems [1| and [2| for any arbitrary bound on feature
vector. ||2;||2 < Zmax and I < 0%, < L for all m € [M]. For clarity, we will separately discuss how
to release the I norm bounds of the feature vector and the objective parameters in Appendix
and respectively. However, It is important to note that there is no issue in applying the same
argument even when the bound on the feature vectors and the bound on the objective parameters are
released simultaneously. We present how to release the boundedness assumption in fixed features
setting, but the same reasoning can be applied to the case of stochastic contexts.
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Figure E.1: The interior of the circle with radius I"T“‘ represents the region where 2 may exist in

R<, while that of the smallest circle indicates the region where ém(s) may exist. Then, the blue line
illustrates the case when 2 is farthest from the 07,

E.1 RELEASING BOUND ON FEATURE VECTORS

We demonstrate how the minimum eigenvalue of the Gram matrix can increase linearly when the /5
norm of the feature vectors is bounded by an arbitrary upper bound xy,,x. The ~y-regularity assump-
tion is related to the scale of the feature, and thus, when we modify the bound of the boundedness
assumption, the «y-regularity assumption also change correspondingly.

Assumption E.1 (Boundedness). Vi € [K], ||xi]l2 < Tmax, and Vm € [M], ||0%,||]2 = 1.
Assumption E.2 (y-Regularity). We assume {x1,...,zx} satisfies ~yo-regular with vy <
s /90 /T AL — 2.

0

The following lemma is the key of the releasing process.

Lemma E.1. Given Assumptions assume the OLS estimator satisfies ||0,,(s) — 07| < a, for
m e [M]ands>To+ 1. Ifx € Bgmx satisfies HZ""EZ;H < v, then the distance between % and
0%, is bounded by

Proof of Lemma Consider the case when % is the farthest from 6;,. As we easily can see from

Figure

i

* < f1 (Emaxye yogq [(Tmaxye g9 /1T a2,
Y12 v

v

2
or, — =

m

s(a+ <””m">2—1)2+<1—mf

v

2

X i
=1+ ()2 4+ 20, [ (FF)2 — 1 - 2y/1 — a2
gl gl
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|
Corollary E.1. Suppose Assumptions and hold. Assume the OLS estimator satisfies

16 (s) — 6%,|| < o, for all m € [M] and s > Ty + 1. Then, the selected arms for a single cycle
s =tg, to + 1 s to+ M — 1 (tg > Ty) by Algorithml satisfies

to+M—1
Amin ( Z l‘(S)x(S)T) > (}\0’}/3 - 2mmax\/70 + x?nax + 2ag max ,73 - 273 \V 1- Oé%) M.

s=to

The above corollary means that even when Assumptions 1 and 3 are replaced by Assumptions [E.T]|
and respectively, we can still obtain a regret bound that differs by at most a constant factor.
Furthermore, using the same argument as before, we can also verify the objective fairness with
replaced assumptions.

E.2 RELEASING BOUND ON OBJECTIVE PARAMETERS

In this section, we present how to handle objective parameters with varying /o norm sizes. The -
regularity assumption is related to the scale of the objectives either, the y-regularity assumption is
modified again correspondingly.

Assumption E.3 (Boundedness). Vi € [K], ||zi||2 < 1, and Ym € [M], 1 <]0%,]]2 < L.

2

Assumption E.4 (v-Regularity). We assume {x1, ...,z } satisfies yo-regular with v < 1 — E;‘ﬁ.

The following lemma is the key of the releasing process.
Lemma E.2. Given Assumptions assume the OLS estimator satisfies ||0,,(s) — 0%,|| < a, for
m € [M]and s > Ty + 1. If v € B? satisfies x 7 Om(s)_ ) | < < 7, then the distance between x and

is bounded by

Il <204 (GvTTE - ().
wale s z z

Proof of Lemma Consider the case when z is the farthest from ﬁ. As we easily can see
from Figure we can obtain the following result from Lemma [A.Tpy replacing o by ¢

<204 (V1= 72—y 1= (5)2).
|| rrL 2 ! l
]

Corollary E.2. Suppose Assumptions [E3} 2] and hold. Assume the OLS estimator satisfies
[10m(s) — 607 || < aq, forallm € [M] and s > Ty + 1. Then, the selected arms for a single cycle

0,
I

s =tg, to + 1 , to+ M — 1 (tg > Ty) by Algorithml satisfies
to+M—1 A o -
T 0 0 0

The corollary can be derived from Lemma and Apin (ﬁ an\le ( Hea: - ) ( HOH*:”Hz )T) > %

m m

Therefore, we can still obtain a regret bound that differs by at most a constant factor and the objective
fairness criterion with Assumption [E.3]and Assumption

F OBIJECTIVE DIVERSITY ON FEATURE VECTOR SPACE

Until now, we have conducted an analysis under the assumption that the feature vectors span
R?. Although this assumption was not explicitly stated, it can be derived from objective diver-
sity(Assumption [2) and ~y-regularity(Assumption [3). In this chapter, we present a sufficient condi-
tion under which MORR-Greedy performs well when the feature vectors do not span R? and explain
how this leads to regret bounds and objective fairness.
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Figure E.2: The larger circle represents the unit sphere in R? while the interior of the smallest circle

indicates the region where 0,,,(s) may exist. Then, the blue line illustrates the case when « is farthest
O

from the g,

Additional Notations. We denote the spanning space of feature vectors x1,...,xx by S, and the
orthogonal complement of S,, by S;-. We use mg(v) : R? — S, as a projection map onto S,.

Intuition. It is evident that any bandit algorithm cannot obtain information about the true objective
parameters in the direction of .S 1 while interacting with feature vectors x1, . .., xx. In other words,
during the process of estimating the objective parameters, no estimator can converge to the true
parameters in the direction of space S-. Interestingly, from the perspective of regret and optimality,
this poses no significant issue. This can be expressed mathematically as for any pair of arms ¢, j €
[K] and m € [M],
@l 0, — ] 0, =] (ns(0;,)) — ] (ms(6},)).

The above equation explains why regret and optimality are determined solely by the projection
vector of the objective parameters onto S.

Before we begin the analysis, it is important to address the OLS estimator used in MORR-Greedy.
When the feature vectors do not span R?, a unique least squares solution no longer exists,

and the closed form cannot be utilized. Therefore, we use an arbitrary solution ém(t) of
(X2 x(s)z(s)T) 6 = 0] (s)y;(s) for each round .

The following are the revised versions of Assumptions 1, 2, and 3, adapted to the feature vector
space.

Assumption F.1 (Boundedness). Vi € [K], ||z;||2 < 1, and Vm € [M], ||7s(0%)||2 = 1.

Once again, the above assumption is intended for a clear analysis. The analyses conducted in this
section can be also extended to arbitrary bounds ||z;||2 < Zmax and I < 75(6%,) < L for all
m € [M] by the same process in Appendix [E]

Assumption F.2 (Objective Diversity on S;). We assume 07, ..., 05, span S,.

In the following analysis, we define A1 := min) g1, ges, (ﬁz%zl (B, 9;>2>, the degree of
the objective diversity on S,. Then, given Assumption[F.2] A\ is always positive.
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Definition 8 (y-Regular Condition on S;). For fixed vy € (0, 1], we say that the set of feature vectors

{z1,..., 2K} satisfies y-regular condition when there exists o > 0 that satisfies
. . : p
Assumption F.3 (y-Regularity on S;). We assume {x1,...,xx} satisfies yo-regular with vy >
2

A1
1- 4L

Once again, in the following analysis, o denotes the value of « that holds the condition (2). If «g
is greater than 4/ )‘% — é—i Yo — (1 — %) /1 — 73, then set ap slightly less than this value.

The only question is how to construct an /o bound on 7g (ém(s)) —Ts (Gi‘n) without utilizing the
minimum eigenvalue of the Gram matrix, which is zero when S, C R9. The key idea is that we

can use min|g||=1, ges, (Zz;ll (B, x(s)>2> to fulfill the role previously played by the minimum
eigenvalue. We present 2 Lemmas, Lemma [F.1] and Lemma to explain the idea. First, The
following demonstrates the linear growth of miny =1, ges, (22;11 (8, x(s)>2)

Lemma F.1. Suppose Assumptions and hold. Assume a least square solution ém(s)
satisfies ||7s (6m(s)) — w5 (05,)|| < oo, for allm € [M] and s > Ty + 1. Then, the selected arms

for a single cycle s = tg, to+ 1, ... , to+ M — 1 (tg > Ty) by Algorithml satisfies
to+M—1
. 2 /
min , z(s > A —24/2( 14+ agy/1—~2 - \/1a2> M.
I8l1=1, Besz< ; B, o)) ) ( ' \/ < VeI
Proof of Lemma Since the greedy selection of 0, (s) is equal to that of g (ém(s)), for the same

reason as Lemma we can get ||z(s) — g (6;(3))”2 < \/2 (1 +apy/1 =798 — Y01 — a%),

where j, is the target objective for round s.

Then, for any unit vector 3 € S,

to+M—1
/ﬂ< > x(s)x(s)T)ﬁ

s=tg

to+M—1

= > {<ﬁ, 775(9:;1(5))>2 + </3, z(s) — TFS(H:%(S))>2 +2 <57 Ws(afn(s))> <5, z(s) — Ws(ﬁfn(s))>}

s=tg

ZM)q2\/2(1+a0\/17370\/1a3)M.

|
The next lemma shows how to derive Il bound on 7g (9m(s)) — mg(07,) with
- ~1 2
miny g1, ges, (Zizl (B, (s)) )

Lemma F2. For all m € [M] and t > 1, any least square solution 0,,(t) of

(22;11 x(s)x(s)T) 0= Zi;ll x(S)ya(s),m(s) satisfies
|| Ei;ll x(s)na(s),m(s)HQ .
miny g -1, pes, (S0} (B (5)°)

s (O (5)) = ms(6,)||, <

Proof of Lemma From the definition of 0, (t), we have
t—1 t—1

(D @()2(s)7) () = 05) = D 2()a(s) m(5).

1 s=1

S
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Since the row space of ( 3>'_} z(s)z(s)T) isin S,

iI(S)na(s)ﬂn(S) = (iI(S)iE(s)T) (71',5' (ém(S)) — 7r5(¢9’:n)>
s=1 2 s=1 )
> B, (ﬂWsZﬂst)ﬂ) s @) = s 65,

The last inequality holds by Lemma[H.3]
|

With above two lemmas, we can obtain the same regret bound and objective fairness as in Theorem

[Mand

G EXPERIMENTS

G.1 EMPIRICAL VALIDATION OF PERFORMANCE OF MORR-GREEDY

We compare the empirical Pareto regret of MORR-Greedy in a linear bandit setting with other
multi-objective algorithms. We experiment with a linear bandit, y,,,(t) = N(z1'6;,,0.1%) for all
i € [K] and m € [M]. For each problem instance, M objective parameters are selected randomly
uniformly from the positive part of S¥~1 and then K (> 2M) feature vectors are drawn from B
In the case of fixed arms, to ensure a certain degree of regularity, the first M feature vectors are
drawn from the multivariate normal distribution with the true objective parameter as the mean and
a covariance matrix of 0.17;. Subsequently, we use the vectors were scaled to ensure that their
magnitudes fall within the range of (3/4,1). The other K — M vectors are drawn uniformly at
random from B?. Among M of K — M vectors are scaled to have length longer than 3/4, while
the rest of them to have their magnitudes smaller than 3/4. Limiting the magnitudes of the feature
vectors prevents meaningless results caused by excessively large Pareto fronts. For the experiment
with varying arms, contexts are drawn from uniform distribution on B?. Our results are averaged
over 10 different instances for each (d, K, M )-combination, and we conduct 10 reputations for 1
problem instance.

We conduct experiments on MORR-Greedy and the two base lines, P-UCB (Drugan & Nowe, 2013)
and MOGLM-UCB (Lu et al.,[2019) with tuned parameters for contextual algorithms. We evaluated the
performance of each algorithm in both cases of fixed arms and stochastic arms. When playing with
stochastic arms, the feature vectors are drawn the uniform distribution on B¢ and only contextual
algorithms MORR-Greedyand MOGLM-UCB are compared. For MOGLM-UCB, we use the confidence

width v; = clog 3::%3 where Z; = Iy + 2 32! 2(s)x(s) T for ¢ = land 0.1, as used in|Lu et al.

(2019). For MORR-Greedy, we use the parameter A = 1, 0.1, and 0.01.

Results are shown in Figure [G.I] and Figure [G.2] In both case, MORR-Greedy outperforms
MOGLM-UCB and MORR-Greedy with the smallest A was the best. This shows that when the ob-
jectives are diverse in multi-objective bandit, short exploration is enough to make the algorithm
perform well.

G.2 EMPIRICAL VALIDATION OF OBJECTIVE FAIRNESS OF MORR-GREEDY

We empirically confirmed that our algorithm fairly selects near-optimal arms for each objective. To
validate this, we empirically calculated the objective fairness index p. 7 at two different € levels: 0.1
and 0.05, for each simulation. The experimental setup was identical to that in Setting[G.1}

As shown in Figure [G.3] and Figure [G.4] in both the fixed arm and stochastic arm cases,
MORR-Greedyselected the e-optimal arms for all objectives at proportions of at least ﬁ for both
€ levels (0.1 and 0.05) in most cases, and the influence of the difference in K was not significant.
The proportion may exceed % because the e-optimal arm sets for the different objectives may over-
lap. (In this experiment, arms were drawn from B¢, and objective parameters were drawn only from

the positive part of S?~1, resulting in frequent overlap of the e-optimal arm sets for the objectives.)
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Figure G.1: Evaluation of multi-objective bandit algorithms playing with fixed arms for various
(d, K, M)
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Figure G.2: Evaluation of multi-objective bandit algorithms playing with stochastic arms for various
(d, K, M)
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Figure G.3: Evaluation of the objective fairness index of the MORR-Greedy algorithm playing with
fixed arms. The y-axis represents the minimum proportion of rounds the e-optimal arm is selected
for each objective.
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Figure G.4: Evaluation of the objective fairness index of the MORR-Greedy algorithm playing with
stochastic arms. The y-axis represents the minimum proportion of rounds the e-optimal arm is
selected for each objective.

G.3 EXPERIMENT ON THE INFLUENCE OF INITIAL OBJECTIVE PARAMETERS

We conducted experiments to investigate the impact of the initial objective parameters on the al-
gorithm’s performance. In the case of fixed arms, once f31,..., 3y are set, the arms that is op-
timized to f31, ..., By will be selected during the exploration process. Thus, when the arms are
invariant, instead of explicitly setting 31, ..., 8a, we only have to select M arms that span R4,
Therefore, we measured the algorithm’s performance for various beta combinations in a stochas-
tic context setting. We test the influence of 31, ..., on four combinations of (d, K, M) =
(5,50,5), (5,100,5), (10,50, 10), (10,100, 10). For each (d, K, M )-combination, our results are
averaged over 10 reputations for each 10 different problem instances. For each simulation, we con-
sidered three different sets of 31, ..., 5y based on diversity. When M = 5, with the standard basis

of R? denoted as {655), ce eé5) }, we considered the most diverse beta set as the standard basis, the
(5) 4 (5) (5) (5 (5) 4 (5
. € +€2 2 +e3 ex +el .
moderately diverse beta set as { N RV A R . }, and the least diverse beta set as
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(5) 4 ,(5) , (5) (5)  (5) , (5) (5) 4 .(5) 4 (5)
{61 +3§+63 , 2 +e\3/§+e4 .- +€\>§+62 } When M = 10, with the standard basis of R¢
(10) (10) . . .
denotedas {e; ,...,ejo ), we considered the most diverse beta set as the standard basis, the mod-
(10) , (10) , (10) (10), (10), (10) (10) , (10), (10)
erately diverse beta set as { = +ef/§ tes , 2 +ei"/§ tea T +e\1/§ tes }, and the least
(10) , (10) , (10) , (10) , (10), (10) (10) , (10) , (10) , (10) , (10), (10)
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Figure G.5: Performance of MORR-Greedy with different initial objective parameters

As shown in Figure it can be observed that MORR-Greedy performs well across all
{P1, -+, Bar}-sets. First, we note that the performance of the low-diversity {01, - , Bas}-set is
particularly good. This is more related to the distribution of the objective parameters than to the
impact of diversity. The low-diversity {31, - - , Bas}-set initializes the objective parameters with
vectors located near the center of the positive part of S~!, and there is a high probability that at
least one true objective parameter exists close to these vectors. In contrast, when initializing with
a high-diversity {1, -- , S }-set, the regret is larger, but it can be observed that exploration ter-
minates earlier in the same A setting. In this case, by selecting diverse features, we can accelerate
the increase of the minimum eigenvalue of the Gram matrix. Consequently, we confirmed that our
algorithm performs well with initial objective parameters of various diversity levels.

H TECHNICAL LEMMAS

Lemma H.1 (Lemma A.1. of[Kannan et al. (2018)). Let 7, ...,n; be independent o*-subgaussian
random variables. Let 1, . . ., x, be vectors in R? with each x, chosen arbitrarily as a function of
(x1,m),- ., (xs—1,n—1) subject to ||xs|| < Tmax. Then with probability at least 1 — 6,

t
S nea(s)|| < ov/20mandt log(dt/5).
s=1

Note that, the above lemma holds even when 71, ..., 7; be conditionally o2-subgaussian random
variables, because it was driven by using o-2-subgaussian martingale.
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Lemma H.2 (Lemma 8 of [Li et al.| (2017)). Given ||z;|| < 1 for all i € [K), suppose there is an
integer m such that Ayin(Vin) > 1, then for any 6 > 0, with probability at least 1 — 0, for all
t>m+1,

d 2t (T max )2 1
||St\|%/t—1 < 402(5 log(1 + %) + log(g)).
Lemma H.3 (Theorem 3.1 of [Tropp|(2011)). Let H1 C Ho - - - be a filtration and consider a finite
sequence { X}, } of positive semi-definite matrices with dimension d adapted to this filtration. Sup-
pose that Amax(Xy) < R almost surely. Define the seriesY =), X and W =Y, E[Xy|Hi_1].
Then for all i > 0, v € [0, 1) we have

e~
. _ ) u/R
P[/\mm(y) < (1 'Y),U and )‘Inln(W) > M] < d((l — 7)177)
Lemma H.4. For any random variable vector X ~ D, E[XX "] = E[X|E[X]T

Proof ofLemma For any v € S* ! o E[XX |Ju = Eju' XX u] = E[{u, X)?] >
(E[(u, X)])* = u "E[X]E[X] " u.
Lemma H.5. Let v be a vector in S C RY and A be a d x d matrix. Then ||Av|ls >

(mingesu' Au) ||v]]2.

Proof of Lemma [H.3]

RO HA v

ol {1 [[oll2

> min || Aul|p > minu " Au.
2 u€sS u€sS
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