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ABSTRACT

We address the challenge of solving multi-objective bandit problems, which are
increasingly relevant in real-world applications where multiple possibly conflict-
ing objectives must be optimized simultaneously. Existing multi-objective algo-
rithms often rely on complex, computationally intensive methods, making them
impractical for real-world use. In this paper, we propose a novel perspective by
showing that objective diversity can naturally induce free exploration, allowing
for simpler, near-greedy algorithms to achieve optimal regret bounds up to log-
arithmic factors with respect to the number of rounds. We introduce simple and
efficient algorithms for multi-objective linear bandits, which do not require con-
structing empirical Pareto fronts and achieve a regret bound of Õ(

√
T ) under suf-

ficient objective diversity and suitable regularity. We also introduce the concept
of objective fairness, ensuring equal treatment of all objectives, and show that
our algorithms satisfy this criterion. Numerical experiments validate our theoreti-
cal findings, demonstrating that objective diversity can enhance algorithm perfor-
mance while simplifying the solution process.

1 INTRODUCTION

Multi-objective decision-making problems have become increasingly prevalent in today’s complex,
real-world applications. From recommendation systems to robotics, decision-makers often face the
need to optimize multiple conflicting objectives simultaneously. This complexity naturally leads to
the formulation of multi-objective bandit problems (Drugan & Nowe, 2013; Turgay et al., 2018; Lu
et al., 2019; Xu & Klabjan, 2023; Cheng et al., 2024; crepon et al., 2024; Kim et al., 2023), a general-
ization of the single-objective bandit framework. However, solving multi-objective bandit problems
is particularly challenging due to the added complexity of balancing the exploration-exploitation
tradeoff across multiple objectives.

To address this challenge, many multi-objective bandit algorithms often resort to complex, some-
times computationally intractable methods (Yahyaa & Manderick, 2015; Turgay et al., 2018; Lu
et al., 2019; Kim et al., 2023), especially when compared to their simpler single-objective coun-
terparts (Abbasi-Yadkori et al., 2011; Chu et al., 2011; Chapelle & Li, 2011; Agrawal & Goyal,
2013; Abeille & Lazaric, 2017). Many of these methods often involve constructing empirical Pareto
fronts in each round, leading to significant computational overhead, making them less practical for
real-world deployment.

Despite the additional complexity that multiple objectives introduce, we aim to address the following
intriguing research question:

Can the presence of multiple diverse objectives actually facilitate learning rather than hinder it?

To our best knowledge, this question has never been addressed. To some, it may appear even some-
what counter-intuitive since a larger number of objectives usually implies a more challenging prob-
lem setup. Yet, we ask whether the diversity in objectives can induce exploration, enabling simpler
near-greedy algorithms to achieve performance guarantees of statistical efficiency which is typically
obtained by more complex approaches.
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In this work, we propose a novel perspective on this problem by showing that objective diversity—
rather than feature diversity, which is commonly assumed in the literature—can drive exploration
in multi-objective linear bandits. This new insight allows us to demonstrate the statistical efficiency
of simple round-robin greedy algorithms, such as the algorithms we introduce, MORR-Greedy and
MORO-Greedy. Remarkably, our algorithms achieve optimal regret bounds with respect to the num-
ber of rounds T without the need for the context (feature) diversity assumption that underpins most
of the existing greedy bandit literature (Kannan et al., 2018; Raghavan et al., 2018; Hao et al., 2020;
Bastani et al., 2021).

While most previous works on greedy bandits (Kannan et al., 2018; Raghavan et al., 2018; Bastani
et al., 2021) rely on context diversity to induce exploration, we do not assume any such diversity
in the features. Our algorithms even perform effectively in fixed feature settings, where previous
greedy approaches and their proof techniques fail. To our best knowledge, this finding represents
the first result where a greedy-type algorithm achieves no regret results without relying on feature
diversity in parametric bandits. Furthermore, this work is the first to study the provable efficiency of
simple round-robin algorithms for multi-objective linear bandits.

We rigorously analyze our algorithms in terms of both regret performance and objective fairness,
demonstrating their theoretical and empirical superiority under objective diversity and suitable reg-
ularity, even without feature diversity. Our work introduces a new perspective in multi-objective
bandit research, showing that, in certain cases, more and diverse objectives can help rather than
complicate the learning process.

Our main contributions are summarized as follows.

1.1 CONTRIBUTIONS

• We rigorously analyze a new and sufficient condition for the multi-objective bandit prob-
lem, under which near-greedy algorithms achieve statistical efficiency without relying on
the commonly assumed context diversity condition in the greedy bandit literature (Kannan
et al., 2018; Raghavan et al., 2018; Hao et al., 2020; Bastani et al., 2021). This result is
driven by the free exploration enabled by the diversity of objectives. Notably, this free ex-
ploration occurs even in fixed context settings, not just stochastic environments. Our key
insight is that having multiple objectives simplifies rather than complicates the problem,
enhancing the performance of the algorithms.

• We propose two simple yet highly efficient algorithms, MORR-Greedy and MORO-Greedy,
for multi-objective linear bandits. Unlike many existing multi-objective algorithms, these
algorithms do not require constructing an empirical Pareto optimal set of arms in each
round, resulting in simpler implementation and lower computational overhead.

• We establish that MORR-Greedy and MORO-Greedy are statistically efficient under objective
diversity and regularity assumptions, achieving a regret bound of Õ(

√
dT
λ0

), where d is the
dimension of the feature vectors, T is the total number of rounds, and λ0 is the diversity
index of objective parameters defined in Section 4.

• We introduce a novel evaluation criterion for multi-objective bandit algorithms, called ob-
jective fairness, which ensures that all objectives are treated equitably, with no objective
being neglected. We rigorously prove that both MORR-Greedy and MORO-Greedy satisfy
this principle.

• Through extensive numerical experiments, we demonstrate that MORR-Greedy consistently
outperforms existing multi-objective methods across a wide range of scenarios. These
results empirically validate our theoretical claims, showing that the diversity of objectives
not only facilitates exploration but also significantly enhances algorithmic performance.

1.2 RELATED WORK

The multi-objective bandit problem, an extension of the single-objective bandit framework that cap-
tures real-world scenarios with multiple conflicting optimization objectives, was first introduced by
Drugan & Nowe (2013). They proposed two approaches using the UCB algorithm: one based on
Pareto optimality and the other on scalarization. The scalarization approach simplifies the problem
by converting it into a single-objective one, using weighted combinations of objectives. In contrast,
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Table 1: Comparison with Related Work. K is the total number of arms, d is the dimension of
feature vectors, T is the time horizon, and ∆ denotes the minimum Pareto regret over suboptimal
arms.

Paper Objective Parametric Free Exploration Regret

Drugan & Nowe (2013) Multiple × × O(K
∆

log T )

Lu et al. (2019) Multiple ◦ × Õ(d
√
T )

Cheng et al. (2024) Multiple ◦ × Õ((dT )2/3)
Kim et al. (2023) Multiple ◦ × O(d3 log dT + d

∆
log dT

∆
)

Kannan et al. (2018) Single ◦ ◦† Õ(
√

dT
σ2 )

Bastani et al. (2021) Single ◦ ◦†(with margin cond.) O(dK log T )

Bayati et al. (2020) Single × ◦ Õ(TK−1/3 +K)‡

This work Multiple ◦ ◦ Õ(
√
dT )

† With the diversity assumption on context distribution. In Kannan et al. (2018), σ2 refers to the
standard deviation of Gaussian perturbation applied to the contexts.
‡ Bayesian regret, which is a weaker notion of regret compared to frequentist (worst-case) regret.

the Pareto optimality approach treats all objectives equally, without making any assumptions about
their relationships. This second approach inspired numerous studies on multi-objective bandits fo-
cused on Pareto efficiency (Turgay et al., 2018; Lu et al., 2019; Xu & Klabjan, 2023; Cheng et al.,
2024; crepon et al., 2024; Kim et al., 2023).

Recent advancements have extended the multi-objective bandit framework to linear contextual set-
tings. Lu et al. (2019) established theoretical regret bounds for the UCB algorithm within the gen-
eralized linear bandit framework. Cheng et al. (2024) introduced two algorithms for multi-objective
stochastic linear bandits under a hierarchy-based Pareto dominance condition. These methods differ
based on how objectives are structured hierarchically, with their regret bounds compared in Table 1.
Additionally, Kim et al. (2023) explored Pareto front identification in linear bandit settings, focusing
on algorithms that prioritize learning the optimal Pareto set.

While these works made important strides, they largely overlook the potential for free exploration
that can arise from the diversity of objectives, particularly in the absence of context diversity. Re-
cent research on single-objective linear contextual bandits with stochastic contexts has shown that
if context diversity is sufficiently high, greedy algorithms can achieve near-optimal regret bounds
(Bastani et al., 2021; Kannan et al., 2018; Raghavan et al., 2018; Hao et al., 2020). However, the
extension of these results to multi-objective bandits has been limited by an assumption of context
diversity, leaving a gap in understanding how exploration can occur without it.

Our work addresses this gap by focusing on free exploration driven by objective diversity, even in
the absence of context diversity. While Bayati et al. (2020) demonstrated that greedy algorithms
perform well in non-contextual single-objective settings when the number of arms is large, they
relied on a β-regularity assumption related to the reward distribution. In contrast, we introduce the
concept of γ-regularity (Definition 6), which extends the notion of regularity to feature spaces in
the multi-objective setting. Unlike previous work, which provided only Bayesian regret bounds,
we rigorously establish worst-case regret bounds for our proposed algorithms, MORR-Greedy and
MORO-Greedy, under this new regularity assumption.

Our research also contributes by showing that free exploration can occur even in fixed context set-
tings, driven solely by the diversity of the objectives. This is the first time that a theoretical guarantee
has been provided for such exploration in multi-objective linear bandits, without relying on context
diversity—a significant departure from existing literature.
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2 PROBLEM SETTINGS

2.1 NOTATIONS

We denote by [n] the set {1, . . . , n} for a positive integer n. We use ||x||2 to denote the l2 norm of
vector x ∈ Rd and ||x||A =

√
x⊤Ax to denote the weighted norm of x induced by a positive definite

matrix A ∈ Rd×d. We write Bd
R = {x ∈ Rd | ||x||2 ≤ R} and Sd−1

R = {x ∈ Rd | ||x||2 = R}.
When d is clear in the context, we just use BR := Bd

R and SR := {x ∈ Rd | ||x||2 = R}. Finally,
1condition means the identity function having value 1 if the condition is true, and 0 otherwise .

2.2 MULTI-OBJECTIVE LINEAR BANDITS

In each round t = 1, 2, . . . , T , each feature vector xi ∈ Rd for i ∈ [K] is associated with stochas-
tic reward yi,m(t) for objective m ∈ [M ] with mean x⊤i θ

∗
m where θ∗m ∈ Rd is a fixed, unknown

parameter. While we present our problem setting in the fixed feature setup for clear exposition
of our main idea, we also present our results under varying context setting in Appendix B. Af-
ter the agent pulls an arm a(t) ∈ [K], the agent receives a stochastic reward vector ya(t)(t) =(
ya(t),1(t), . . . , ya(t),M (t)

)
∈ RM as a bandit feedback, where ya(t),m(t) = x⊤a(t)θ

∗
m + ηa(t),m(t)

and ηa(t),m(t) ∈ R is a zero mean noise for objective m ∈ [M ]. To simplify notation, we denote
by x(t) := xa(t) and y(t) := ya(t)(t) with slight notational overloading the selected arm vector in
round t and its rewards respectively. We assume that for all m ∈ [M ], ηa(t),m(t) is conditionally
σ2-sub-Gaussian with σ > 0, i.e., for all λ ∈ R, E[eληa(t),m(t)|Ft−1] ≤ exp

(
λ2σ2/2

)
where Ht

is the history
(
{x(s)}s∈[t], {a(s)}s∈[t], {y(s)}s∈[t]

)
and Ft is the σ-algebra generated by Ht and

x(t+ 1).

2.2.1 PARETO REGRET METRIC

In this work, we use the notion of Pareto regret (Drugan & Nowe, 2013; Turgay et al., 2018; Lu
et al., 2019; Xu & Klabjan, 2023; Cheng et al., 2024; crepon et al., 2024; Kim et al., 2023) as the
performance metric for the multi-objective bandit algorithms. Before we formally define the Pareto
regret, we first introduce the notions of Pareto order and Pareto front.
Definition 1 (Pareto Order). For u =

(
u1, . . . , uM

)
, v =

(
v1, . . . , vM

)
∈ RM , the vector u

dominates v, denoted by v ≺ u, if and only if vm ≤ um for all m ∈ [M ], and there exists m′ ∈ [M ]
such that vm′ < um′ . We use notations v ⊀ u when v is not dominated by u, and u ∥ v when u and
v are incomparable, i.e., either u or v are not dominated by the other, respectively.

Definition 2 (Pareto Front). Let µi ∈ Rm be the expected reward vector of arm i ∈ [K]. Then, arm
i is Pareto optimal if and only if µi is not dominated by µi′ , for all i′ ∈ [K]. The Pareto front is the
set of all Pareto optimal arms.

Definition 3 (Pareto Regret). We denote Pareto suboptimality gap ∆i for arm i ∈ [K] as the
infimum of the scalar ϵ ≤ 0 such that xi becomes Pareto optimal after adding ϵ to all entries of its
expected reward. Formally,

∆i := inf {ϵ | (µi + ϵ) ⊀ µi′ ,∀i′ ∈ [K]} .

Then, the cumulative Pareto regret is defined as PR(T ) :=∑T
t=1 E[∆a(t)], the cumulative Pareto

suboptimality gap ∆a(t) of the arms pulled by the learner.

The goal of the agent is to minimize the cumulative Pareto regret while ensuring fairness over ob-
jectives, which is described in the next section.

2.2.2 OBJECTIVE FAIRNESS

Pareto regret minimization is a central goal in multi-objective bandit algorithms, but it does not fully
capture the multi-objective nature of the problem. Focusing solely on Pareto regret minimization
allows algorithms to optimize for a single specific objective, potentially neglecting others, while
achieving regret bounds comparable to those in single-objective settings (Xu & Klabjan, 2023).
Therefore, meaningful multi-objective bandit algorithms should aim to balance multiple objectives,

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

typically incorporating additional considerations such as fairness, alongside Pareto regret minimiza-
tion.

In the context of multi-objective bandits, fairness reflects the algorithm’s impartial treatment of
multiple equivalent objectives. The earliest notion of fairness, to the best of our knowledge, was
introduced by Drugan & Nowe (2013) and emphasizes equal representation across all Pareto fronts.
This concept is closely linked to Pareto front approximation and remains a key objective for many
existing algorithms (Drugan & Nowe, 2013; Yahyaa & Manderick, 2015; Turgay et al., 2018; Lu
et al., 2019). However, in practice, the true Pareto front is often unknown, requiring most Pareto-
efficient algorithms to rely on empirical Pareto front approximations during the selection process.
This reliance introduces two significant challenges: the lack of theoretical guarantees concerning the
fairness of true Pareto optimal arms, and the computational overhead associated with constructing
the empirical Pareto front in each round.

To address these limitations, we propose a new notion of fairness in multi-objective bandit problems,
focusing on the fairness of objectives. Specifically, we advocate for algorithms that consistently
consider all optimal arms for each objective, ensuring that no objective is neglected over time. This
perspective shifts the focus from approximating the Pareto front to ensuring that each objective is
adequately and equitably addressed throughout the decision-making process.
Definition 4 (Objective fairness). Let µi,m be the expect reward of arm i for objective m, a∗m be
the arm that has the largest reward for objective m, and µ∗

m := µa∗
m,m. For all ϵ > 0, define the

objective fairness index pϵ,T of an algorithm as

pϵ,T := min
m∈[M ]

(
1

T
E

[
T∑

t=1

1{µ∗
m−µa(t),m<ϵ}

])
.

Then, we say that the algorithm satisfies the objective fairness if there exists a positive lower bound
B that satisfies the following conditions:
1. limT→∞ pϵ,T ≥ B,
2. B does not include a term with the number of arms K.

The objective fairness index measures the proportion of rounds in which the ϵ-optimal arms are
selected for the least chosen objective. This index provides a means to evaluate how fairly the algo-
rithm treats the near-optimal arms of each objective. If pϵ,T ≈ 1

M , the algorithm is almost perfectly
fair to each objective, while pϵ,T ≈ 0 indicates that the algorithm neglects at least one objective.
Intuitively, objective fairness is an asymptotic concept that ensures the proportion of selecting near-
optimal arms remains balanced across all objectives over time. Condition 2 is included to impose
a constraint that ensures the strategy performs better than a random strategy, which selects all arms
with equal probability.
Remark 1. Most existing multi-objective algorithms constructing the empirical Pareto front for
each rounds are unlikely to satisfy the objective fairness criterion, because the empirical Pareto
front continuously changes over time t.

3 PROPOSED ALGORITHM

3.1 MULTI-OBJECTIVE ROUND ROBIN – GREEDY ALGORITHM

We propose a new algorithm named the MORR-Greedy algorithm, which selects arms greed-
ily in a round-robin manner for each objective. At first, the algorithm greedily selects arms
based on the initial parameters β1, . . . , βM , until the minimum eigen value of the Gram matrix
Vt−1 =

∑t−1
s=1 x(s)x(s)

⊤ exceeds a certain threshold λ. After the initial rounds, the algorithm
selects arms greedily, using the OLS estimators θ̂m(t) of θ∗m as targets, iteratively. We describe
our algorithm targets each objective once per round to make analysis simpler, however, when the
importance of the objectives varies, we can adjust the frequency of each objective accordingly.

Most of existing algorithms regarding Pareto efficiency construct the empirical Pareto front on
each round, resulting in complex algorithm structure and less practicality. Compare to other multi-
objective bandit algorithms, our proposed algorithm is very easy to implement and has significantly
lower computational overhead. Aside from these advantages, surprisingly, our simple algorithm can
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Algorithm 1 Multi-Objective Round Robin – Greedy Algorithm (MORR-Greedy)

Require: T, λ {Parameters: Total rounds T , minimum eigenvalue threshold λ}
1: Initialize V0 ← 0× Id, β1, . . . , βM ∈ Rd

2: for t = 1 to T do
3: m← t%M {If m == 0, then m←M}
4: if λmin(Vt−1) > λ then
5: Update the OLS estimators θ̂1(t), . . . , θ̂M (t)

6: Select action a(t) ∈ argmaxi∈[K] x
⊤
i θ̂m(t)

7: else
8: Select action a(t) ∈ argmaxi∈[K] x

⊤
i βm

9: end if
10: Observe the reward vector y(t) =

(
ya(t),1(t), . . . , ya(t),M (t)

)
11: Update Vt ← Vt−1 + x(t)x(t)⊤

12: end for

achieve theoretical performance guarantees (under suitable regularity) which is typically obtained
by more complex algorithms.

We also introduce another multi-objective near-greedy algorithm MORO-Greedy (Algorithm D.1)
in the appendix, which is a version of the MORR-Greedy algorithm that incorporates stochastic
selection process and we analyze this algorithm in Appendix D.

3.2 FREE EXPLORATION INDUCED BY OBJECTIVE DIVERSITY

The MORR-Greedy algorithm (Algorithm 1) is built on the insight that exploration can arise naturally,
even when the algorithm is focused solely on exploitation, provided the bandit problem involves
sufficiently diverse objectives. In most of the existing multi-objective bandit literature, increasing
the number of objectives complicates the problem setup and leads to more complex algorithms,
especially compared to single-objective bandits.

However, we observe a surprising and beneficial side effect: the diversity of objectives can induce
free exploration, enabling simple near-greedy algorithms like MORR-Greedy to achieve statistically
efficient performance (see Theorem 1).

The core idea is that, for each objective, rounds in which greedy selections are made for other
objectives can simultaneously serve as exploration rounds for the remaining objectives. In the round-
robin process, exploitation occurs for one objective, while the other objectives naturally benefit from
exploration. This dynamic allows for automatic exploration without incurring additional Pareto
regret, providing a significant performance advantage.

This phenomenon is intuitive, yet it has not been rigorously examined in multi-objective settings
until now. Our work is the first to formalize the conditions under which natural exploration can
occur in the presence of objective diversity, paving the way for simpler, more efficient algorithms in
multi-objective bandit problems.

3.3 A STRATEGY FOR SELECTING INITIAL PARAMETERS

To expedite the initial exploration phase, a practical strategy involves constructing a set ofM feature
vectors that are as diverse as possible. This diversity helps ensure that each objective is sufficiently
represented from the outset, enabling the algorithm to gather meaningful information early on. The
following definition formalizes the properties of the initial values used in this strategy, ensuring
robust exploration across all objectives.

Definition 5 (Exploration Facilitating Initial Parameters). For m ∈ [M ], let zm be the greedy
selection among x1, . . . , xK for the initial objective parameter βm. We say that initial objec-
tive parameters are exploration facilitating when a set of initial vectors {β1, . . . , βM} maximizes

λmin

(∑M
m=1 zm(zm)⊤

)
.

6
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4 ANALYSIS

In this section, we analyze the MORR-Greedy algorithm from the perspectives of regret and objective
fairness. Our analysis is established in the fixed feature setup to expose our main idea clearly,
however we also present the similar results under the stochastic environment in Appendix B. We start
with the bounded assumption similar to those used in the linear bandit literature (Abbasi-Yadkori
et al., 2011; Chu et al., 2011; Agrawal & Goyal, 2013; Abeille & Lazaric, 2017).

Assumption 1 (Boundedness). ∀i ∈ [K], ||xi||2 ≤ 1, and ∀m ∈ [M ], ||θ∗m||2 = 1.

Assumption 1 is used to make a clean analysis for convenience and the first part of it is in fact
standard in bandit literature. Notably, we can obtain a regret bound of the proposed algorithm that
differs by a constant factor with ||xi||2 ≤ xmax and l ≤ θ∗m ≤ L for all m ∈ [M ]. We will later
discuss how to extend our analysis to an arbitrary bound for feature vectors and objective parameters
in Appendix E.

As stated earlier in Introduction, we are interested in the problem setting where diverse objectives
play a positive role, rather than incurring hindrance. We start with simple condition that objective
parameters span Rd.

Assumption 2 (Objective diversity). We assume θ∗1 , . . . , θ∗M span Rd.

In the following analysis, we define λ0 := λmin(
1
M

∑M
m=1 θ

∗
m(θ∗m)⊤), which has a positive value

under Assumption 2. It is important to note that we can actually relax Assumption 2 so that
θ∗1 , . . . , θ

∗
M span the spanning space of feature vectors, span({x1, . . . , xK}) (see details in Sec-

tion F). That is, it can be sufficient to assume that θ∗1 , . . . , θ∗M span a strict subspace of Rd. Yet, for
clear exposition of our main idea, we work with Assumption 2.

Next, we introduce the γ-regularity condition that describes the regularity on feature space in multi-
objective linear bandits. The similar notion of regularity, called β-regularity, in the non-contextual
MAB setup is introduced by Bayati et al. (2020). They assume the prior distribution Γ of the ex-
pected reward µ of each arm satisfies Pµ[µ > 1− ϵ] = Θ(ϵβ) for all ϵ > 0. The γ-regularity extends
the β-regularity to linear reward bandit problems with multiple objectives.

Definition 6 (γ-regular condition). For fixed γ ∈ (0, 1], we say that the set of feature vectors
{x1, . . . , xK} satisfies γ-regular condition if there exists α > 0 that satisfies

∀β ∈ Bα(θ
∗
1) ∪ . . . ∪ Bα(θ

∗
M ), ∃i ∈ [K], x⊤i

β

||β||2
≥ γ. (1)

We will generalize the γ-regular condition under varying context setup later in Definition 7 in Ap-
pendix B. In this case, γ-regularity condition requires the positive probability of the existence of
near-optimal arms for all directions in Rd.

Assumption 3 (γ-regularity). We assume {x1, . . . , xK} satisfies γ0-regular with γ0 > 1− λ2
0

18 .

Assumption 3 says that there exists at least one near optimal arm for directions in the neighborhoods
of objective parameters. We can relax the existence of near optimal arms in Assumption 3 to the
positive probability of existence of near optimal arms in Assumption B.1 under stochastic context
setting. In comparing Assumption B.1 where d = M = 1 with β-regularity, we observe that γ-
regularity can be viewed as a weaker notion than β-regularity. Detailed analysis on both assumptions
can be found in Appendix C.2.

It is worthy to note that above assumptions are irrelevant to context diversity assumption which is
commonly used in the existing greedy bandit literature (Kannan et al., 2018; Raghavan et al., 2018;
Hao et al., 2020; Bastani et al., 2021). Especially, we explain the cases where γ-regularity holds but
context diversity does not in Appendix C.3.

Before we start our analysis, we denote by α0 the value of α that holds the condition (1) with γ0. If

α0 is greater than ψ(λ0, γ0) :=
√

λ2
0

9 −
λ4
0

324 γ0 −
(
1− λ2

0

18

)√
1− γ20 , then we replace the value of

α0 with ψ(λ0, γ0). Since the condition becomes tighter as α increases, the γ0-condition still holds
even if the value of α0 is replaced by a smaller value.

7
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4.1 THE REGRET BOUND OF MORR-Greedy

We establish the lower bound of the minimum eigenvalue of Gram matrix that increases linearly with
respect to t. Typically in many greedy bandit approaches, the linear growth of minimum eigenvalue
of Gram matrix is derived by showing a constant lower bound on λmin

(
E[x(t)x(t)⊤|Ht−1]

)
for

each round t through context diversity. However, instead of leveraging context diversity, we use the
diversity of the objectives to establish a constant lower bound for λmin

(∑t0+M−1
s=t0

x(s)x(s)⊤
)

for
a single cycle s = t0, t0 + 1, . . . , t0 +M − 1 in round-robin process. Let T0 denote the number
of rounds required until condition λmin(Vt) ≥ λ is satisfied.
Lemma 1 (Minimum eigenvalue growth). Suppose Assumptions 1, 2 and, 3 hold, and fix δ > 0.

If we run Algorithm 1 with λ = min

[
σ
α0

√
2dT log(dTδ ), 4σ2

α2
0

(
d
2 log

(
1 + 2T

d

)
+ log

(
1
δ

))]
, then

with probability 1− 2Mδ, the following holds for the minimum eigenvalue of the gram matrix

λmin

(
t−1∑
s=1

x(s)x(s)⊤
)
≥ λ+ C0(t− T0 −M),

for T0 +M ≤ t ≤ T , where C0 = λ0 − 2
√
2 + 2α0

√
1− γ20 − 2γ0

√
1− α2

0.

The proof of the lemma is given in Appendix A.1.
Remark 2. We can always get C0 ≥ λ0

3 by setting the value of α0 no greater than ψ(λ0, γ0) :=√
λ2
0

9 −
λ4
0

324 γ0 −
(
1− λ2

0

18

)√
1− γ20 . In other words, this replacing process serves to increase the

minimum eigenvalue of the Gram matrix at a rate O(λ0).

It is well known that the minimum eigenvalue of the gram matrix increases proportionally with t,
we can easily obtain an order of

√
T regret bound. The following theorem demonstrates that the

MORR-Greedy algorithm possesses near optimal regret.
Theorem 1 (Pareto Regret of MORR-Greedy). Suppose Assumptions 1, 2 and, 3 hold. If we run
Algorithm 1 with λ = min

[
σ
α0

√
2dT log(dT 2), 4σ2

α2
0

(
d
2 log

(
1 + 2T

d

)
+ log (T )

)]
, then the Pareto

regret of Algorithm 1 is bounded by

PR(T ) ≤ C1

√
2dT log(dT ) + 4T0 + 10M,

where C1 = 8σ

λ0−2
√

2+2α0

√
1−γ2

0−2γ0

√
1−α2

0

.

The proof of the theorem is given in Appendix A.2.

Discussion of Theorem 1. The theorem demonstrates that the cumulative Pareto regret bound of
MORR-Greedy is Õ(

√
dT
λ0

). Theorem 1 provides the theoretical foundation that if multiple objec-
tives possess diversity and suitable regularity, simple round-robin type algorithms can outperform
even more complicated exploration-based algorithms for multi-objective linear bandits (such phe-
nomenon is witnessed in the experiements in Section 5).
Remark 3. If the m feature vectors selected greedily by the initial objective parameters that are
spanning Rd, then the minimum eigenvalue of the Gram matrix will increase proportionally with t
during the exploration process. In other words, when we use λ in Theorem 1, T0 can be bounded
at a scale of Õ(min(d log T,

√
dT )) as long as the algorithm selects M feature vectors that are

spanning Rd during the initial Round Robin process. (In the case of fixed arms, we can always
ensure this).

The following is an argument regarding how quickly exploration can be completed. It is generally
challenging to specifically determine the bound on T0. However, in the MORR-Greedy algorithm,
by using exploration facilitating initial objective parameters β1, . . . , βM , we can get the worst-case
theoretical bound on T0.
Corollary 1 (Number of Initial rounds). Suppose Assumptions 1, 2 and, 3 hold. If we run Algorithm
1 with exploration facilitating initial objective parameters, T0 can be bounded by T0 ≤ ⌊ λ

C0
⌋+M

where C0 = λ0 − 2
√
2 + 2α0

√
1− γ20 − 2γ0

√
1− α2

0.

8
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The proof of the corollary is given in Appendix A.4.

4.2 OBJECTIVE FAIRNESS OF MORR-Greedy

We confirmed that the MORR-Greedy algorithm satisfies the objective fairness. In the MORR greedy
algorithm, we can obtain l2 bounds for the difference between the estimators of each objective
parameter and the true objective parameters. This implies that for a given ϵ, with high probability,
there exists Tϵ such that we can select only near-optimal arms with a reward within an ϵ radius of
the optimal reward after round Tϵ. The following theorem shows the lower bound on the ratio of
selecting the near optimal arms for each objective.
Theorem 2 (Objective Fairness of MORR-Greedy). Given Assumptions 1 to 3, the Algorithm 1
satisfies for all m ∈ [M ],

1

T
E

[
T∑

t=1

1{µ∗
m−µa(t),m<ϵ}

]
≥
(
T − Tϵ −M

MT

)(
1− 3M

T

)
,

where Tϵ = max(⌊ 32σ2d log(dT )

(λ0−2
√

2+2α0

√
1−γ2

0−2γ0

√
1−α2

0)
2

ϵ2
⌋+T0+M, 2T0+2M) in the same setting

as Theorem 1.

The proof of the theorem is given in Appendix A.3.

Discussion of Theorem 2. The theorem demonstrates that we have a lower bound on the ex-
pected proportion of selecting near optimal arms with respect to each objective by pϵ,T ≥(
T−Tϵ−M

MT

) (
1− 3M

T

)
. It is notable that limT→∞

(
T−Tϵ−M

MT

) (
1− 3M

T

)
= 1

M and the limit does
not include a term with K. This implies that our algorithm satisfies objective fairness and selects
near-optimal arms for each objective equally at a ratio of 1

M as time grows. Moreover, we prove that
with high probability, Algorithm 1 selects only ϵ-optimal arms of an objective, after a certain rounds
Tϵ.

5 EXPERIMENT

We conduct experiments in both fixed and stochastic context settings to evaluate the empirical perfor-
mance of our proposed algorithm MORR-Greedy. We compare the proposed algorithm with the two
most well-known multi-objective algorithms P-UCB (Drugan & Nowe, 2013) and MOGLM-UCB (Lu
et al., 2019). P-UCB is the first multi-objective algorithm for non-contextual MAB setting, while
MOGLM-UCB is developed to solve generalized linear bandit problems. We confirm the performance
of the three algorithms in a linear bandit ym(t) = N (xTi θ

∗
m, 0.1

2) for all i ∈ [K] andm ∈ [M ]. Our
results are averaged over 10 different instances for each (d,K,M)-combination, and we conducted
a 10-round reputation experiment on the same problem instance. Detailed settings of experiments
can be found in Appendix G.1.
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(a) d = 5, K = 50, M = 5
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(b) d = 10, K = 100, M = 10

Figure 1: Evaluation of multi-objective bandit algorithms with tuned parameters

Figure 1 illustrates the performance of each algorithm under two different (d,K,M) combinations
in the fixed feature setup. Additional results, including performance in various settings and with
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stochastic contexts, can be found in Appendix G.1. The results clearly demonstrate that our pro-
posed algorithm outperforms the others empirically, despite its simpler structure. Notably, while
the performance of the other algorithms degrades as the number of objectives and arms increases,
MORR-Greedy maintains consistent performance. This shows that when the objectives are suffi-
ciently diverse, our near-greedy algorithm exhibits superior empirical performance, surpassing more
complex methods. Additionally, we conducted experiments to evaluate how our algorithm selects
near-optimal arms for each objective in a balanced manner and to assess its performance under
various initial objective parameters. The results are presented in Appendices G.2 and G.3.

6 CONCLUSION

In this work, we introduced MORR-Greedy, a near-greedy algorithm for multi-objective bandits.
We identified sufficient conditions where free exploration arises from objective diversity, enabling
our algorithm to achieve Õ(

√
dT
λ0

) regret bounds under objective diversity and feature regularity.
We also introduced the concept of objective fairness, ensuring equal treatment of all objectives,
and demonstrated that MORR-Greedy satisfies this criterion. Our findings offer a new perspective,
showing that diverse objectives can actually enhance learning in multi-objective bandits.

7 REPRODUCIBLITY STATEMENT

For theoretical results, we provide all assumptions in Section 4 and a complete proof of our main
results in Appendix A. We also present similar results that can be obtained under different environ-
ment or assumptions and the proofs of the results in Appendix B, E, and F. We also included the
data and code, along with instructions to reproduce our experimental results, in the supplementary
material.
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A ANALYSIS OF MORR-Greedy WITH FIXED FEATURES

A.1 PROOF OF LEMMA 1

The key idea of our analysis is that, in each cycle in round-robin process, the algorithm selects arms
that are close to the directions of θ∗1 , . . . , θ

∗
M . The following lemma tells us that we can bound the

distance between the selected arms and the objective parameters after enough exploration rounds
and enables us to derive the diversity of the selected arms from the objective diversity.

Lemma A.1 (Near Optimal Zone Construction). Given Assumptions 1, assume the OLS estimator
satisfies ||θ̂m(s) − θ∗m|| ≤ α, for m ∈ [M ] and s ≥ T0 + 1. If x ∈ Bd satisfies x⊤ θ̂m(s)

||θ̂m(s)|| ≤ γ,
then the distance between x and θ∗m is bounded by

||θ∗m − x||2 ≤
√
2(1 + α

√
1− γ2 − γ

√
1− α2).

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

<latexit sha1_base64="3Q9u2BxUtqv03Yeym1fm+mXK9AM="></latexit>

✓⇤m

<latexit sha1_base64="ua+YI0t1e1XE8chGGEgypasa66s="></latexit>

1

<latexit sha1_base64="51Yf4bt24A2G1BdekjNueAw43xo="></latexit>↵

<latexit sha1_base64="n/of1j0O8d73rjw9VNSf+ytp40Y=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwVRLx0WXBjQsXFewD2iKT6bSG5sVkIpTizh9wqx8m/oH+hXfGFNQiOiHJmXPPuTP3Xi8J/FQ5zmvBWlhcWl4prpbW1jc2t8rbO600ziQXTR4Hsex4LBWBH4mm8lUgOokULPQC0fbG5zrevhMy9ePoWk0S0Q/ZKPKHPmeKqHZvxMKQlW7KFafqmGXPAzcHFeSrEZdf0MMAMTgyhBCIoAgHYEjp6cKFg4S4PqbESUK+iQvco0TejFSCFIzYMX1HtOvmbER7nTM1bk6nBPRKcto4IE9MOklYn2abeGYya/a33FOTU99tQn8vzxUSq3BL7F++mfK/Pl2LwhA1U4NPNSWG0dXxPEtmuqJvbn+pSlGGhDiNBxSXhLlxzvpsG09qate9ZSb+ZpSa1XueazO861vSgN2f45wHraOqe1o9uTqu1Gv5qIvYwz4OaZ5nqOMCDTRNlY94wrN1aUlrYk0/pVYh9+zi27IePgDy1JGq</latexit>�

Figure A.1: The larger circle represents the unit sphere in Rd while the interior of smaller circle
indicates the region where θ̂m(s) may exist. Then, the blue line illustrates the case when x that
satisfies x⊤ θ̂m(s)

||θ̂m(s)|| ≥ γ is farthest from the θ∗m.

Proof of Lemma A.1. Consider the case when x is the farthest from θ∗m.
As we easily can see from Figure A.1,

||θ∗m − x||22 ≤ (α+
√
1− γ2)2 + (

√
1− α2 − γ)2 = 2 + 2α

√
1− γ2 − 2γ

√
1− α2.

■

Now, we will demonstrate that the minimum eigenvalue of the gram matrix increases proportionally
with t. This technique is often used in the analysis of greedy algorithms for a single objective with
stochastic contexts (Kannan et al., 2018; Bastani et al., 2021), where the increase in the minimum
eigenvalue of the gram matrix is used to derive the bound of ||θ̂(t) − θ∗||2. We use the diversity
of the objectives to establish a constant lower bound for the minimum eigenvalue of the gram ma-
trix consists of the selected feature vectors within a single cycle of the Round Robin process, i.e.
λmin

(∑t0+M−1
s=t0

x(s)x(s)⊤
)

for a cycle s = t0, t0 + 1, . . . , t0 +M − 1 .

Lemma A.2. Let Assumptions 1, 2, and 3 hold. Assume the OLS estimator satisfies ||θ̂m(s) −
θ∗m|| ≤ α0, for all m ∈ [M ] and s ≥ T0 + 1. Then, the selected arms for a single cycle s =
t0, t0 + 1, . . . , t0 +M − 1 (t0 > T0) by Algorithm1 satisfies

λmin

(
t0+M−1∑

s=t0

x(s)x(s)⊤
)
≥
(
λ0 − 2

√
2

(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

))
M.

Proof of Lemma A.2. Let m(s) be the target objective for iteration s, and consider near optimal zone

R(s) := {x ∈ Bd | x⊤ θ̂m(s)(s)

||θ̂m(s)(s)||
≥ γ0}. Since ||θ̂m(s)(s)− θ∗m(s)|| ≤ α0 holds for s ≥ T0 + 1, we

can easily confirm
∣∣∣∣∣∣ θ̂m(s)(s)

||θ̂m(s)(s)||
− θ∗m(s)

∣∣∣∣∣∣ ≤ α0 holds geometrically. Then, Assumption 3 guarantees

that there exists at least 1 arm in R(s), and so x(s) should be in R(s). Thus, by Lemma A.1, we can

get ||x(s)− θ∗m(s)|| ≤
√
2
(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

)
.
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Then, for any unit vector u ∈ Bd,

u⊤
(

t0+M−1∑
s=t0

x(s)x(s)⊤
)
u =

t0+M−1∑
s=t0

⟨u, x(s)⟩2

=

t0+M−1∑
s=t0

〈
u, θ∗m(s) + (x(s)− θ∗m(s))

〉2
=

t0+M−1∑
s=t0

{
〈
u, θ∗m(s)

〉2
+
〈
u, x(s)− θ∗m(s)

〉2
+ 2

〈
u, θ∗m(s)

〉〈
u, x(s)− θ∗m(s)

〉
}

≥ u⊤
(

M∑
m=1

θ∗m
(
θ∗m
)⊤)

u+ 0− 2

√
2

(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

)
M

≥Mλ0 − 2

√
2

(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

)
M.

Therefore, we have λmin

(∑t0+M−1
s=t0

x(s)x(s)⊤
)
≥
(
λ0 − 2

√
2
(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

))
M .

■

Proof of Lemma 1. If we choose λ as stated in Lemma 1, the OLS estimator satisfies ||θ̂m(s)−θ∗m|| ≤
α0 for all s ≥ T0 + 1 and m ∈ [M ] with probability 1 − 2Mδ, by Lemma A.4. Thus, by applying
Lemma A.2 to every single round after exploration, we have, for t ≥ T0 +M ,

λmin

(
t−1∑
s=1

x(s)x(s)⊤
)
≥ λmin

(
T0∑
s=1

x(s)x(s)⊤
)

+ λmin

(
t−1∑

s=T0+1

x(s)x(s)⊤
)

≥ λ+

[
t− 1− T0

M

]
× C0M,

≥ λ+ C0(t− T0 −M),

where C0 := λ0 − 2
√
2(1 + α

√
1− c2 − c

√
1− α2)).

■

A.2 PROOF OF THEOREM 1

With Lemma 1, We are ready to derive the l2 bound of θ̂m(t)− θ∗m for m ∈ [M ].
Lemma A.3. Fix δ > 0. Under the same conditions as Lemma 1, with probability at least 1−3Mδ,
for all m ∈ [M ] and t ≥ 2T0 + 2M , the OLS estimator θ̂m(t) of θ∗m satisfies∣∣∣∣∣∣θ̂m(t)− θ∗m

∣∣∣∣∣∣
2
≤ 2σ

C0

√
d log(dt/δ)

t− T0 −M
,

where C0 = λ0 − 2
√
2(1 + α

√
1− c2 − c

√
1− α2)).

Proof of Lemma A.3. From the closed form of the OLS estimators, for all m ∈ [M ],∣∣∣∣∣∣θ̂m(t)− θ∗m
∣∣∣∣∣∣
2
=

∣∣∣∣∣∣
∣∣∣∣∣∣
(

t−1∑
s=1

x(s)x(s)⊤
)−1 t−1∑

s=1

x(s)ηa(s),m(s)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 1

λmin

(∑t−1
s=1 x(s)x(s)

⊤
) ∣∣∣∣∣
∣∣∣∣∣
t−1∑
s=1

x(s)ηa(s),m(s)

∣∣∣∣∣
∣∣∣∣∣
2
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For the denominator, we have λmin (Vt−1) ≥ λ+C0(t−T0−M) for t ≥ T0+M , with probability
at least 1 − 2Mδ, by Lemma 1. To bound the l2 norm of St−1,m :=

∑t−1
s=1 x(s)ηa(s),m(s), we

can use Lemma H.1, the martingale inequality of Kannan et al. (2018). The lemma states for fixed
m ∈ [M ], ||St−1,m||2 ≤ σ

√
2dt log(dt/δ) holds with probability at least 1 − δ. Therefore, with

probability at least 1− 3Mδ, for all m ∈ [M ] and t ≥ 2T0 + 2M ,∣∣∣∣∣∣θ̂m(t)− θ∗m
∣∣∣∣∣∣
2
≤ σ

√
2dt log(dt/δ)

λ+ C0(t− T0 −M)
≤ 2σ

C0

√
d log(dt/δ)

t− T0 −M
.

The last inequality holds when t ≥ 2T0 + 2M .

■

Proof of Theorem 1. Let E be the event that
∣∣∣∣∣∣θ̂m(t)− θ∗m

∣∣∣∣∣∣
2
≤ 2σ

C0

√
d log(dtT )
t−T0−M holds for all m ∈

[M ] and t ≥ 2T0 + 2M where C0 = λ0 − 2
√
2(1 + α

√
1− c2 − c

√
1− α2)). Then, P(Ē) ≤ 3M

T

by Lemma A.3 with δ = 1
T .

Let m(t) be the target objective for round t and a∗m be the optimal arm with respect to objective m.
Then, the suboptimality gap on round t is bounded by

∆a(t)(t) ≤
(
xa∗

m(t)

)⊤
θ∗m(t) − x(t)⊤θ∗m(t) ≤ 2||θ̂m(t)(t)− θ∗m(t)||2.

Let ∆max be the maximum suboptimality gap. For t ≥ 2T0 + 2M ,

E[∆a(t)(t)] ≤ E[∆a(t)(t) | E] + P(E)∆max

≤ 2E[ ||θ̂m(t)(t)− θ∗m(t)||2 | E] +
3M

T
∆max

≤ 4σ

C0

√
d log(dtT )

t− T0 −M
+

3M

T
∆max.

Then, the Pareto Regret is bounded by

PR(T ) =
T∑

t=2T0+2M+1

E[∆a(t)(t)] + (2T0 + 2M)∆max

≤
T∑

t=2T0+2M+1

4σ

C0

√
d log(dtT )

t− T0 −M
+ {(3M

T
)T + 2T0 + 2M}∆max

≤ 4σ

C0

√
2d log(dT )

∫ T

0

1√
t
dt+ {2T0 + 5M}∆max

≤ 8σ

C0

√
2dT log(dT ) + 2{2T0 + 5M}.

The last inequality holds because we have ∆max ≤ 2 under Assumption 1.

■

A.3 OBJECTIVE FAIRNESS OF MORR-Greedy

Proof of Theorem 2. Define the event Ωm,t for all m ∈ [M ] as

Ωm,t := {ω ∈ Ω | Objective m is a target objective for round t}.
Then, P(Ωm,t) = 1{t≡m mod M} from the Round-Robin process.

LetE be the event that
∣∣∣∣∣∣θ̂m(t)− θ∗m

∣∣∣∣∣∣
2
≤ 2σ

C0

√
d log(dtT )
t−T0−M holds for allm ∈ [M ] and t ≥ 2T0+2M

where C0 = λ0 − 2
√

2(1 + α
√
1− c2 − c

√
1− α2)). Then, P(Ē) ≤ 3M

T by Lemma A.3 with
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δ = 1
T . We know that on Ωm,t ∩ E, for t ≥ 2T0 + 2m,

µ∗
m − µa(t),m ≤ 2||θ̂m(t)− θ∗m||2 ≤

4σ

C0

√
d log(dtT )

t− T0 −M
≤ 4σ

C0

√
2d log(dT )

t− T0 −M
.

Let Tϵ = max(⌊ 32σ
2d log(dT )
C2ϵ2 ⌋+T0+M, 2T0+2M). Then, on Ωm,t∩E, we have µ∗

m−µa(t),m < ϵ
for all t > Tϵ.

Therefore, for all m ∈ [M ],

1

T
E

[
T∑

t=1

1{µ∗
m−µa(t),m<ϵ}

]
=

1

T

T∑
t=1

E
[
1{µ∗

m−µa(t),m<ϵ}
]

≥ 1

T

T∑
t=1

E[1{µ∗
m−µa(t),m<ϵ} | Ωm,t] P(Ωm,t)

≥ 1

T

T∑
t=Tϵ+1

E[1{µ∗
m−µa(t),m<ϵ} | Ωm,t] P(Ωm,t)

≥ 1

T

T∑
t=Tϵ+1, M |t−m

E[1{µ∗
m−µa(t),m<ϵ} | Ωm,t ∩ E] P(E)

≥ 1

T

T∑
t=Tϵ+1, M |t−m

P(E)

≥ 1

T

[
T − Tϵ
M

](
1− 3M

T

)
≥
(
T − Tϵ −M

MT

)(
1− 3M

T

)
■

A.4 THE PARAMETER λ AND THE NUMBER OF INITIAL ROUNDS

Now, let’s discuss the appropriate value of λ, the threshold of the minimum eigenvalue of the gram
matrix. For convenience, denote Vt :=

∑t
s=1 x(s)x(s)

⊤ and St :=
∑t

s=1 x(s)ηa(s)(s)
⊤. When

the minimum eigenvalue of the empirical covariance matrix VT0
exceeds a certain threshold, we can

guarantee the l2 bound of the OLS estimator θ̂(t) of θ∗ for t > T0 with high probability. I.e.,

λmin(VT0
) ≥ f(a) ⇒

∣∣∣∣∣∣θ̂(t)− θ∗∣∣∣∣∣∣
2
≤ a, ∀t ≥ T0

If we set λ = f(α0), then with high probability,
∣∣∣∣∣∣θ̂m(t)− θ∗m

∣∣∣∣∣∣ ≤ α0 after playing with initial
values β0, . . . , βM .

Kveton et al. (2020) suggest f(a) using a bound of ||St||Vt−1
−1 . However, a small mistake was

made in their process: the bound they derived by modifying Theorem 1 of Abbasi-Yadkori et al.
(2011) is actually a bound for ||∑t

s=τ0+1 x(s)ηa(s)(s)
⊤||Vt−1

−1 , where τ0 = min{t ≥ 1 : Vt ≻ 0},
not ||St||Vt−1

−1 . To address this problem, the simplest approach would be to use the bound of ||St||2
suggested by Kannan et al. (2018). In this case, f(a) would include a term with

√
dT . Alternatively,

using the bound of ||St||Vt−1
−1 proposed by Li et al. (2017), that f(a) can be constructed without√

T , relying on d log T . Through these two approaches, we can obtain an Õ(min(
√
dT , d log T ))

bound for λ.
Lemma A.4. Given Assumption 1, for any a > 0 and δ > 0, if we set λ

λ = min

[
σ

a

√
2dT log(

dT

δ
),

4σ2

a2

(
d

2
log

(
1 +

2T

d

)
+ log

(
1

δ

))]
,
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then with probability at least 1 − 2Mδ, the OLS estimator satisfies ||θ̂m(t) − θ∗m||2 ≤ a for all
m ∈ [M ] and t ≥ T0 + 1.

Proof of Lemma A.4. First we will bound λ using the fact∣∣∣∣∣∣θ̂m(t)− θ∗m
∣∣∣∣∣∣
2
=
∣∣∣∣∣∣(Vt−1)

−1
St−1,m

∣∣∣∣∣∣ ≤ 1

λmin (Vt−1)
||St−1,m||2,

where St,m :=
∑t

s=1 x(s)ηa(s),m(s)⊤.

Since ||St−1,m||2 ≤ σ
√
2dt ln(td/δ) holds with probability at least 1 − δ by Lemma H.1 and

λmin(Vt−1) ≥ λmin(VT0) for t ≥ T0 + 1, we have
∣∣∣∣∣∣θ̂m(t)− θ∗m

∣∣∣∣∣∣
2
≤ a for all m ∈ [M ] and

t ≥ T0 + 1 with probability at least 1−Mδ when the value of λ set to σ
a

√
2dT log(dTδ ).

Alternatively, we can use the fact∣∣∣∣∣∣θ̂m(t)− θ∗m
∣∣∣∣∣∣2
2
= (St−1,m)

⊤
Vt−1

−1Vt−1
−1St−1,m ≤

1

λmin(Vt−1)
||St−1,m||2Vt−1

−1 .

By Lemma H.2, ||St−1,m||2Vt−1
−1 ≤ 4σ2(d2 log(1 + 2t

d ) + log( 1δ )) holds with probability at least

1− δ, and hence, we have
∣∣∣∣∣∣θ̂m(t)− θ∗m

∣∣∣∣∣∣
2
< a for all m ∈ [M ] and t ≥ T0 + 1 with probability at

least 1−Mδ by setting λ to 4σ2

a2 (d2 log(1 +
2T
d ) + log( 1δ )).

■

Proof of Corollary 1. From the definition of the exploration facilitating initial objective parameters,
the minimum eigenvalue of the gram matrix consists of the feature vectors greedly selected by
exploration facilitating initial objective parameters satisfies

λmin

(
t0+M−1∑

s=t0

x(s)x(s)⊤
)
≥
(
λ0 − 2

√
2

(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

))
M,

by Lemma A.2. Then, for any T1 ≥ ⌊ λ
C1
⌋ +M , if we keep playing with the initial values for T1

rounds,

λmin

(
T1∑
s=1

x(s)x(s)⊤
)
≥
[
T1
M

]
× C1M ≥ C1(T1 −M) ≥ λ.

Hence, we have T0 ≤ ⌊ λ
C1
⌋+M .

■

B ANALYSIS OF MORR-Greedy WITH STOCHASTIC CONTEXTS

B.1 SETTING

In each round t = 1, 2, . . . , T , the set of feature vectors χ(t) = {xi(t) ∈ Rd, i ∈ [K]} is drawn
from some unknown distribution Pχ(t). Each arm’s feature xi(t) ∈ χ(t) for i ∈ [K] need not be
independent of each other and can possibly be correlated. In this case, we denote xa(t)(t) as x(t).
Other settings are identical to the fixed arms case.

B.2 RESULTS FOR STOCHASTIC CONTEXTS

In this section, we first present the regret bound of MORR-Greedy and the results on objective fairness
when played in a stochastic context. The proofs of each theorem are provided in the subsequent
sections.
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To analyze the MORR-Greedy algorithm in the case of stochastic contexts, it is necessary to modify
the definition of γ-regularity slightly. In the stochastic version, it is necessary to assume the exis-
tence of a near-optimal arm not only near the true objective parameter but also in all directions to
ensure that the selected arms during the exploration process are sufficiently diverse. Instead, there
is a clear advantage in that, even with the assumption of a small positive bound on the probability of
the existence of near-optimal arms allows us to obtain a regret bound that differs only by a constant
factor in the results under fixed contexts.
Definition 7 (γ-Regular condition for Stochastic Contexts). For fixed γ ≤ 1, we say that the distri-
bution Pχ(t) of feature vector set χ(t) satisfies γ-Regular condition if there exists a positive number
qγ that satisfies

∀β ∈ Sd−1, Pχ(t)[∃i ∈ [K], xi(t)
⊤β ≥ γ] ≥ qγ .

Assumption B.1 (γ-Regularity for Stochastic Contexts). We assume Pχ(t) satisfies γ0-regular con-

dition for all t ∈ [T ], with γ0 > 1− λ2
0

8 where λ0 = λmin(
1
M

∑M
m=1 θ

∗
m

(
θ∗m
)⊤

).

In the following analysis, we use notation q0 := qγ0 where qγ satisfies the condition in Definition 7.
The fixed version of γ-regularity can be viewed as a special case of Definition 7 with qγ = 1. As
A detailed analysis of γ-regularity is provided in Appendix C. As stated earlier in Section 4, γ-
regularity is a condition that applies the notion of β-regularity from Bayati et al. (2020) to context
distribution in the multi-objective setting. We explain why γ-regularity can be treated as a weaker
condition than β-regularity in Appendix C.2

The following assumption is essential to guarantee that in each round t, the feature vectors drawn
from Pχ(t) are not influenced by previous rounds s = 1, . . . , t− 1.
Assumption B.2 (Independently Distributed Contexts). The context sets χ(1), . . . , χ(T ), drawn
from unknown distribution Pχ(1), . . . , Pχ(T ) respectively, are independently distributed across
time.

All of the greedy linear contextual bandit with stochastic contexts assumes the independence of
context sets. It is important to note that feature vectors within the same round are allowed to be
dependent, even under Assumption B.2. Additionally, this independence assumption does not imply
that the feature vector is diverse. For example, assuming independence does not ensure the diversity
of the feature vector if the distribution of feature vectors only contains two candidates.

The following theorem demonstrates that the MORR-Greedy algorithm also possesses optimal regret
in the case of stochastic contexts by replacing Assumption 3 with Assumptions 4 and 5. The leading
term is 2/q0 times of that of the result from fixed contexts.
Theorem B.1 (Pareto Regret of MORR-Greedy with Stochastic Contexts). Sup-
pose Assumptions 1, 2, B.1, and B.2 hold. If we run Algorithm 1 with λ =

min
[

σ
α0

√
2dT log(dT 2), 4σ2

α2
0

(
d
2 log

(
1 + 2T

d

)
+ log (T )

)]
for some α0 <

√
λ2
0

4 −
λ4
0

64 γ0 −(
1− λ2

0

8

)√
1− γ20 , the Pareto regret of Algorithm 1 is bounded by

PR(T ) ≤ C2

√
2dT log(dT ) + 2

(
2T0 + 5M +

10d

Cq0

)
,

where C2 = 16σ

λ0q0−2q0

√
2
(
1+α0

√
1−γ2

0−γ0

√
1−α2

0

) .

The proof of the theorem is given in Appendix B.3.
We confirmed that the MORR-Greedy algorithm also satisfies the objective fairness in the case of
stochastic contexts.
Theorem B.2 (Objective Fairness of MORR-Greedy with Stochastic Contexts). Given Assumptions
1, 2, B.1, and B.2, the Algorithm 1 satisfies for all m ∈ [M ],

1

T
E

[
T∑

t=1

1{µ∗
m−µa(t),m<ϵ}

]
≥
(
T − Tϵ −M

MT

)(
1− 3M

T
− d( 1

dT
)

64σ2d
Cq0ϵ2

)
,

where Tϵ = max(⌊ 64σ2d log(dT )

(λ0−2

√
2
(
1+α0

√
1−γ2

0−γ0

√
1−α2

0

)
)2q20ϵ

2

⌋ + T0 +M, 2T0 + 2M) in the same

setting as Theorem B.1.
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The proof of the theorem is given in Appendix B.4.

Remark B.1. Note that the pϵ,T ≥
(
T−Tϵ−M

MT

)(
1− 3M

T − d( 1
dT )

64σ2d
Cq0ϵ2

)
and the lower bound

satisfies
(
T−Tϵ−M

MT

)(
1− 3M

T − d( 1
dT )

64σ2d
Cq0ϵ2

)
→ 1

M as T →∞.

B.3 PROOFS OF THEOREM B.1

In the stochastic version, similarly to the fixed version, we can establish a constant lower bound
for the minimum eigenvalue of the Gram matrix formed by the selected feature vectors within a
single cycle of the Round Robin process. In the case of fixed contexts, Lemma A.2 demonstrates
that the eigenvalue of the Gram matrix can increase by a constant amount (or more) during a single
round. The following lemma is a modified version of Lemma A.2, adapted to apply to the situation
of stochastic contexts.
Lemma B.1 (Near Optimal Zone Construction). Given Assumptions 1 and 2, assume the OLS es-
timator satisfies ||θ̂m(s) − θj∗|| ≤ α, for all m ∈ [M ] and s ≥ T0 + 1. Define near optimal zone
Rm(s) with respect to obejective j on round s as

Rm(s) = {x ∈ Bd | x⊤ θ̂m(s)

||θ̂m(s)||
≥ γ}.

Let z1, . . . , zM be any vectors in near optimal zones R1(t1), . . . , RM (tM ) of different objectives
on round t1, . . . , tm where tj ≥ T0 + 1 for all m ∈ [M ]. Then, the minimum eigenvalue of Gram
matrix consists of z1, . . . , zM satisfies

λmin

(
M∑

m=1

zm(zm)⊤
)
≥
(
λ0 − 2

√
2
(
1 + α

√
1− γ2 − γ

√
1− α2

))
.

The proof can be demonstrated in the same manner as Lemma A.2.
Remark B.2. The Lemma suggests when the algorithm can quit the exploration to obtain the linear
increase of the minimum eigenvalue of Gram matrix. If the algorithm explores until θ̂m(t) is within

γ of θ∗m for α <

√
λ2
0

4 −
λ4
0

64 γ −
(
1− λ2

0

8

)√
1− γ2, then we have a positive value for λ0 −

2

√
2
(
1 + α

√
1− γ2 − γ

√
1− α2

)
.

The next step is proving the constant increase of the minimum eigenvalue of Gram matrix in a single
round. We will make a constant lower bound for λmin(

∑t0+M−1
s=t0

E[x(s)x(s)⊤|Hs−1]) within a
single cycle of the Round Robin process.
Lemma B.2. Suppose Assumptions 1, 2, B.1, and B.2 hold. Assume the OLS estimator satisfies
||θ̂m(s)) − θ∗m|| ≤ α0, for all m ∈ [M ] and s ≥ T0 + 1 for some α0 > 0. Then, the selected arms
for a single cycle s = t0, t0 + 1, . . . , t0 +M − 1 (t0 > T0) by Algorithm1 satisfies

λmin(

t0+M−1∑
s=t0

E[x(s)x(s)⊤|Hs−1]) ≥
(
λ0 − 2

√
2

(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

))
q0M.

Proof of Lemma B.2. For s ≥ T0 + 1, let m(s) be the target objective for iteration s and R(s) :=

{x ∈ Bd | x⊤ θ̂m(s)(s)

||θ̂m(s)(s)||
≥ γ0}. Then,

E[x(s)x(s)⊤|Hs−1]

⪰ E[x(s)x(s)⊤|Hs−1, x(s) ∈ R(s)] P[x(s) ∈ R(s)|Hs−1]

= E[x(s)x(s)⊤|Hs−1, x(s) ∈ R(s)] P[∃i ∈ [K], xi(s) ∈ R(s)|Hs−1]

= E[x(s)x(s)⊤|Hs−1, x(s) ∈ R(s)] P[∃i ∈ [K], xi(s) ∈ R(s)] (∵ Assumption B.2)

⪰ q0 E[x(s)x(s)⊤|Hs−1, x(s) ∈ R(s)] (∵ Assumption B.1)

⪰ q0 x(s)x(s)⊤, where x(s) = E[x(s)|Hs−1, x(s) ∈ R(s)]. (∵ Lemma H.4).
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Thus, we have
∑t0+M−1

s=t0
E[x(s)x(s)⊤|Hs−1] ⪰ q0

∑t0+M−1
s=t0

x(s)x(s)⊤, where x(s) =

E[x(s)|Hs−1, x(s) ∈ R(s)]. Since R(s) is a convex set for all m ∈ [M ] and s > T0, x(s) should
be inside R(s), so we can apply Lemma B.1 by

λmin(

t0+M−1∑
s=t0

E[x(s)x(s)⊤|Hs−1]) ≥ q0 λmin(

t0+M−1∑
s=t0

x(s)x(s)⊤)

≥ q0 ×
(
λ0 − 2

√
2

(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

))
M.

■

The following lemma shows that the minimum eigenvalue of Gram matrix increases linearly with t
with high probability.

Lemma B.3 (Minimum eigenvalue growth of Gram matrix with stochastic contexts). Suppose As-
sumptions 1, 2, B.1, and B.2 hold. Assume the OLS estimator satisfies ||θ̂m(s) − θ∗m|| ≤ α0 for
all m ∈ [M ] and s ≥ T0 + 1 for some α0 > 0. Then for t ≥ T0 +M , the following holds for the
minimum eigenvalue of the Gram matrix of arms selected by Algorithm 1

P

[
λmin(

t−1∑
s=1

x(s)x(s)⊤) ≤ λ+
C0q0
2

(t− T0 −M)

]
≤ de

−C0q0(t−T0−M)
10 ,

where C0 =

(
λ0 − 2

√
2
(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

))
.

Proof of Lemma B.3. By Lemma B.2, for t ≥ T0 +M ,

λmin(

t−1∑
s=T0+1

E[x(s)x(s)⊤|Hs−1]) ≥ [
t− 1− T0

M
]× C0q0M ≥ (t− T0 −M)C0q0.

In other words, P[λmin(
∑t−1

s=1 E[x(s)x(s)⊤|Hs−1]) ≥ C0q0(t−T0−M)] = 1 holds for t ≥ T0+M .
By applying LemmaH.3 to compute the lower bound of the minimum eigenvalue of the Gram matrix
after exploration, we have

P

[
λmin(

t−1∑
s=T0+1

x(s)x(s)⊤) ≤ C0q0
2

(t− T0 −M)

]
≤ d( e

0.5

0.50.5
)C0q0(t−T0−M) ≤ de

−C0q0(t−T0−M)
10 .

Therefore, by subadditivity of minimum eigenvalue,

P

[
λmin(

t−1∑
s=1

x(s)x(s)⊤) ≤ λ+
C0q0
2

(t− T0 −M)

]
≤ de

−C0q0(t−T0−M)
10 .

The next lemma provides l2 bound of θ̂m(t)− θ∗m for m ∈ [M ].

Lemma B.4. Suppose Assumptions 1, 2, B.1, and B.2 hold, and fix δ > 0. If we run Al-

gorithm 1 with λ = min

[
σ
α0

√
2dT log(dTδ ), 4σ2

α2
0

(
d
2 log

(
1 + 2T

d

)
+ log

(
1
δ

))]
for some α0 <√

λ2
0

4 −
λ4
0

64 γ0 −
(
1− λ2

0

8

)√
1− γ20 , then with probability at least 1 − 3Mδ − de−C0q0(t−T0−M)

10 ,

for all m ∈ [M ] and t ≥ 2T0 + 2M , the OLS estimator θ̂m(t) of θ∗m satisfies

∣∣∣∣∣∣θ̂m(t)− θ∗m
∣∣∣∣∣∣
2
≤ 4σ

C0q0

√
d log(dt/δ)

t− T0 −M
,

where C0 = λ0 − 2

√
2
(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

)
.
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The proof can be demonstrated in the same manner as Lemma A.3. Proof of Theorem B.1. Let E be

the event that ||θ̂m(t) − θj∗|| ≤ 4σ
C0q0

√
d log(dtT )
t−T0−M holds for all t > 2T0 + 2M and m ∈ [M ]. Then,

P(Ē) ≤ 3m
T + de

−C0q0(t−T0−M)
10 by Lemma B.4.

Let ∆max be the maximum suboptimality gap. For t ≥ 2T0 + 2m,

E[∆a(t)(t)] ≤ E[∆a(t)(t) | E] + P(E)∆max

≤ 2E[ ||θ̂m(t)(t)− θ∗m(t)||2 | E] +

(
3M

T
+ de

−C0q0(t−T0−M)
10

)
∆max

≤ 8σ

C0q0

√
d log(dtT )

t− T0 −M
+

(
3m

T
+ de

−C0q0(t−T0−M)
10

)
∆max.

Then, the Pareto Regret is bounded by

PR(T ) =
T∑

t=2T0+2M+1

E[∆a(t)(t)] + (2T0 + 2M)∆max

≤ 8σ

C0q0

√
d log(dtT )

t− T0 −M
+ {(3M

T
)T +

T∑
t=2T0+2M+1

de
−C0q0(t−T0−M)

10 + 2T0 + 2M}∆max

≤ 8σ

C0q0

√
2d log(dT )

∫ T

0

1√
t
dt+

(
2T0 + 5M +

T∑
t=2T0+2M

de
−C0q0(t−T0−M)

10

)
∆max

≤ 16σ

C0q0

√
2dT log(dT ) +

(
2T0 + 5M +

10d

C0q0

)
∆max

≤ 16σ

C0q0

√
2dT log(dT ) + 2

(
2T0 + 5M +

10d

C0q0

)
.

The last inequality holds because we have ∆max ≤ 2 under Assumption 1.

■

B.4 PROOFS OF THEOREM B.2

Proof of Theorem B.2. Define the event Ωm,t for all m ∈ [M ] as

Ωm,t := {ω ∈ Ω | Objective m is a target objective for round t}.

Then, P(Ωm,t) = 1{t≡m mod M} from the Round-Robin process.

Let E be the event that
∣∣∣∣∣∣θ̂m(t)− θ∗m

∣∣∣∣∣∣
2
≤ 4σ

C0q0

√
d log(dtT )
t−T0−M holds for all m ∈ [M ] and

t ≥ 2T0 + 2M where C0 = λ0 − 2

√
2
(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

)
. Then, P(Ē) ≤

3M
T +de−C0q0(t−T0−M) by Lemma B.4 with δ = 1

T . We know that on Ωm,t∩E, for t ≥ 2T0+2M ,

µ∗
m − µa(t),m ≤ 2||θ̂m(t)− θ∗m||2 ≤

8σ

C0q0

√
d log(dtT )

t− T0 −M
≤ 8σ

C0q0

√
2d log(dT )

t− T0 −M
.

Let Tϵ = max(⌊ 64σ
2d log(dT )
C2

0q
2
0ϵ

2 ⌋+T0+M, 2T0+2M). Then, on Ωm,t∩E, we have µ∗
m−µa(t),m < ϵ

for all t > Tϵ.
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Therefore, for all m ∈ [M ],

1

T
E

[
T∑

t=1

1{µ∗
m−µa(t),m<ϵ}

]
≥ 1

T

T∑
t=1

E[1{µ∗
m−µa(t),m<ϵ} | Ωm,t] P(Ωm,t)

≥ 1

T

T∑
t=Tϵ+1, M |t−m

E[1{µ∗
m−µa(t),m<ϵ} | Ωm,t ∩ E] P(E)

≥ 1

T

T∑
t=Tϵ+1, M |t−m

P(E)

≥ 1

T

T∑
t=Tϵ+1, M |t−m

(
1− 3M

T
− de−C0q0(Tϵ−T0−M)

)

≥ 1

T

[
T − Tϵ
M

](
1− 3M

T
− d( 1

dT
)

64σ2d
C0q0ϵ2

)
≥
(
T − Tϵ −M

MT

)(
1− 3M

T
− d( 1

dT
)

64σ2d
C0q0ϵ2

)
.

■

C γ-REGULARITY

In this section, we present the meaning of γ-regularity, compare it with the different regularity con-
dition used in another greedy bandit study(Bayati et al. (2020)), and explain the difference between
γ-regularity and context diversity. As mentioned in the previous section, the fixed version can be
viewed as a case where the probability qγ is set to 1 in the stochastic version. Therefore, we con-
ducted a general analysis of the γ regularity in the stochastic version. (See Definition 7).

C.1 INTERPRETATION OF γ-REGULARITY

In summary, γ-regularity signifies that for any direction β ∈ Sd−1, there exists at least one near
optimal arm satisfying xi(t)⊤β ≥ γ with a probability of at least qγ . Intuitively, if the union of the
supports of each arm xi(t) for i ∈ [K] cover all Sd−1, γ-regularity will be guaranteed for all γ < 1.
The following lemma formalizes this concept.
Lemma C.1. Suppose χ(t) containsK continuous variables x1(t), . . . , xK(t) with density function
f1, . . . , fK . If f = f1 + . . . + fK is a bounded function and positive near Sd−1 (i.e., there exist a
radius r ∈ (0, 1) satisfies f is always positive at {x ∈ Rd | r < ||x||2 < 1}), then Pχ(t) satisfies
γ-regularity for all γ ∈ (0, 1).

Proof of Lemma C.1. Fix γ ∈ (0, 1). From the definition of f , f/K is the probability density
function of X = uniform(x1(t), . . . , xK(t)). Define pβ = Pχ(t)[X

⊤β ≥ γ] for unit vector
β ∈ Sd−1. Then,

pβ = Pχ(t)[X
⊤β ≥ γ] =

∫
{x∈BR | x⊤β≥γ}

f(x)

K
dx ≥

∫
{x∈BR | x⊤β≥max(γ,r)}

f(x)

K
dx > 0,

for all β ∈ Sd−1.

Consider the function F : β
F→ pβ . From the boundedness of f , we can easily check F is contin-

uous. By the fact that the compactness is preserved by continuous functions, {pβ | β ∈ Sd−1} is
compact. Define qγ := min{pβ |β ∈ Sd−1}, then we have qγ > 0 since pβ > 0 for all β ∈ Sd−1 .
Then, for all β ∈ Sd−1

Pχ(t)[∃i ∈ [K], xi(t)
⊤β ≥ γ] ≥ Pχ(t)[X

⊤β ≥ γ] = pβ ≥ qγ
■
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Remark C.1. The above lemma states that if the arm set includes just a single continuous variable
that can cover Sd−1, then γ-regularity will hold for all γ < 1 regardless of the distributions of the
remaining arms.

C.2 γ-REGULARITY VS β-REGULARITY

In Bayati et al. (2020), they assume the prior distribution Γ of the expected reward µ of each arm
satisfies Pµ[µ > 1 − ϵ] = Θ(ϵβ) for all ϵ > 0 in non-contextual MAB setting. Let’s compare this
with γ-regularity when m = d = 1. We claim that γ-regularity can be considered weaker than
β-regularity from three perspectives.

The most significant difference is that in β-regularity, the probability that the expected reward µi

exceeds 1 − ϵ is required for all arm i ∈ [K], along with the assumption that µi’s are drawn
independently from prior Γ. In contrast, in γ-regularity, it is sufficient to ensure that the prob-
ability that one of the K arms satisfies xi(t)⊤β ≥ γ, without the need for the independence
assumption between arm vectors. Secondly, unlike β-regularity, γ-regularity does not require a
specific relationship like Θ(1 − γ) between the probability of the existence of near-optimal arms
Pχ(t)[∃i ∈ [K], xi(t)

⊤β ≥ γ] and the threshold γ ; instead, it focuses on the existence of a pos-
itive lower bound qγ . Lastly, in Bayati et al. (2020), the β-regularity assumes the probability of
µ > 1 − ϵ for all ϵ > 0. In contrast, this study does not mandate γ-regularity for γ very close to 1;
it is sufficient to hold γ-regularity only for γ ≥ 1− (λ0

8 )2.

C.3 α-REGULARITY VS CONTEXT DIVERSITY

In recent years, there has been significant attention on the optimality of the Greedy algorithm in
1-objective bandit problems (Bastani et al., 2021; Kannan et al., 2018; Raghavan et al., 2018; Hao
et al., 2020). A common theme among these studies is assuming that the feature vector follows a con-
tinuous distribution that satisfies specific diversity conditions. MORR-Greedyalways achieve optimal
regret under any form of context diversity assumptions which can drive λmin(E[x(t)x(t)⊤|Ht−1]) ≥
λ0. Given the results in the single-objective setting, this is not surprising at all.

The γ-regularity condition is fundamentally different from context diversity condition. Naturally,
in the single-objective setting, we cannot guarantee that the greedy algorithm will perform well
under the γ-regularity condition. However, when the number of objectives is sufficiently large, the
intersection of the multi-objective setting and the γ-regularity condition leads to free exploration,
resulting in optimal regret. The following example highlight cases where the assumption of context
diversity is not met, yet the regularity condition remains valid, enabling the MORR-Greedyoptimal
performance in many-objective bandit problems.

Example 1 (Containing Fixed Arms) Imagine a situation where one feature vector is a continuous
variable while the other arms are fixed. For example, let x1(t) be uniformly distributed over Bd

while x2(t) = x2, . . . , xK(t) = xK are fixed at some points in Sd−1. By Lemma C.1, Pχ(t)
satisfies γ-regularity for all γ ∈ (0, 1). However, it is easy to see that diversity is not satisfied
because λmin(E[x(t)x(t)⊤|θ̂(t) = x2]) = λmin(x2x

⊤
2 ) = 0.

Example 2 (Low-Randomness Distribution) Consider a scenario where the feature vectors are drawn
from a finite set of discrete points. Despite the lack of diversity, if these points are strategically
chosen to cover Sd−1 adequately, the regularity condition can still be satisfied. For example, suppose
there is a set of points P = {a1, a2, . . . , aN} that contains

√
1− γ2-net of Sd−1. Assume that x1(t)

be chosen uniformly from the N1 < d points in P with the largest first coordinates, and other arms
x2(t), . . . , xK(t) be chosen from the remaining points. Obviously, Pχ(t) satisfies γ-regularity with
qγ ≥ 1

N . However, greedy selection by the vector (1, 0, . . . , 0) should be x1(t) and there are only
N1 < d candidates that can be x1(t). Therefore, context diversity does not hold in this scenario.

Although γ-regularity encompasses cases where context diversity is not covered, there is no inclu-
sion relationship between the two conditions. Here is an example where regularity does not hold,
but context diversity does.

Example 3 (Proper Support) Consider a case where 1 is given as the upper bound of the l2 norm of
feature vectors, but the actual support of feature vectors is smaller. For instance, if xi(t) follows a
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uniform distribution over Bd
1/2 for all i ∈ [K] and t ∈ [T ], then context diversity still holds (Bastani

et al. (2021)), but γ-regularity does not hold for γ > 1/2.

D ANOTHER PROPOSED ALGORITHM

D.1 MULTI-OBJECTIVE RANDOM OBJECTIVE – GREEDY ALGORITHM

The following algorithm is the MORO-Greedy algorithm. In each round, it randomly selects one
objective and chooses the arm greedily based on this objective. The algorithm takes as input the
probabilities for selecting each objective, which can be uniformly set to 1

M if no specific information
is available. Similar to the MORR-Greedy algorithm, this algorithm utilizes the initial β1, . . . , βM
values until λmin(Vt−1) > λ for a threshold λ, and then uses the OLS estimators θ̂m(t) of θ∗m in
each round t.

Algorithm D.1 Multi-Objective Random Objective – Greedy Algorithm (MORO-Greedy)

Require: T, λ, (w1, . . . , wM ) {Parameters: Total rounds T , minimum eigenvalue threshold λ, the
distribution of objectives (w1, . . . , wM )}

1: Initialize V0 ← 0× Id, and β1, . . . , βM ∈ Rd

2: for t = 1 to T do
3: Randomly select m ∈ [M ] from the distribution (w1, . . . , wM ).
4: if λmin(Vt−1) > λ then
5: Update the OLS estimators θ̂1(t), . . . , θ̂M (t)

6: Select action a(t) ∈ argmaxi∈[K] x
⊤
i θ̂m(t)

7: else
8: Select action a(t) ∈ argmaxi∈[K] x

⊤
i βm

9: end if
10: Observe the reward vector y(t) =

(
ya(t),1(t), . . . , ya(t),M (t)

)
11: Update Vt ← Vt−1 + x(t)x(t)⊤

12: end for

The MORO-Greedy algorithm can be viewed as operating a greedy algorithm in a multi-objective
setting where the dominant objective changes with each round randomly. Specifically, in a scenario
where the dominant objective varies across users’ preferences and no objective has a zero probability
of being dominant, the result of this section shows that simply applying a greedy algorithm to the
dominant objective could be an optimal strategy.

D.2 ANALYSIS OF MORO-Greedy ALGORITHM

The following lemma demonstrates that objective diversity in MORO-Greedy leads to context di-
versity even when the features are fixed. The expectation of the lemma below arises not from the
randomness of the contexts, but rather from the randomness associated with the selection of the
algorithm’s objectives.

Lemma D.1. Suppose Assumptions 1, 2, and 3 hold. Assume the OLS estimator satisfies ||θ̂m(s))−
θ∗m|| ≤ α0, for all m ∈ [M ] and s ≥ T0 + 1. Then, for s ≥ T0 + 1, the arms selected by Algorithm
2 satisfies

λmin(E[x(s)x(s)⊤|Hs−1]) ≥ q0 min
m∈[M ]

(wm)C0,

where C0 := λ0 − 2

√
2
(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

)
.
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Proof of Lemma D.1. For s ≥ T0+1, letEm(s) be the event that the objectivem is a target objective
and define the near optimal zone Rm(s) := {x ∈ Bd | x⊤ θ̂m(s)

||θ̂m(s)|| ≥ γ0} on round s. Then,

E[x(s)x(s)⊤|Hs−1]

=

M∑
m=1

E[x(s)x(s)⊤|Em(s),Hs−1]P[Em(s)|Hs−1]

⪰
M∑

m=1

wmE[x(s)x(s)⊤ | x(s) ∈ Rm(s), Em(s),Hs−1] P[x(s) ∈ Rm(s)|Em(s),Hs−1]

=

M∑
m=1

wmE[x(s)x(s)⊤ | x(s) ∈ Rm(s), Em(s),Hs−1]P[∃i ∈ [K], xi ∈ Rm(s)|Em(s),Hs−1]

⪰ q0 min
m∈[M ]

(wm)

M∑
m=1

E[x(s)x(s)⊤ | x(s) ∈ Rm(s), Em(s),Hs−1]

⪰ q0 min
m∈[M ]

(wm)

M∑
m=1

xm(s)x(s)⊤,

where xm(s) := E[x(s)| x(s) ∈ Rm(s), Em(s),Hs−1]. The second inequality from the bottom
holds due to the fact that the existence of a near-optimal arm is independent of the choice of the
target objective or the history Ht−1, as established by Assumption 3. The final line is validated by
Lemma H.4.

Since Rm(s) is a convex set for all m ∈ [M ] and s ≥ T0+1, xm(s) should be inside Rm(s), which
allows us to apply Lemma B.1 to above inequality by

λmin(E[x(s)x(s)⊤|Hs−1]) ≥ q0 min
m∈[M ]

(wm) λmin(

M∑
m=1

xm(s)xm(s)⊤)

≥ q0 min
m∈[M ]

(wm)

(
λ0 − 2

√
2

(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

))
.

■

We can prove the minimum eigenvalue of the gram matrix increases linearly with respect to t with
Lemma D.1. This leads that the MORO-Greedy algorithm can have the same scale of Pareto regret
bound and objective fairness as in MORR-Greedy.

Corollary D.1 (Pareto Regret of MORO-Greedy). Given Assumption 1, 2, and 3, the
MORO-Greedy algorithm has a regret bound of Õ(

√
dT ).

Corollary D.2 (Objective Fairness of MORO-Greedy). Given Assumption 1, 2, and 3, the
MORO-Greedy algorithm satisfies the objective fairness.

E RELEASING BOUNDEDNESS ASSUMPTION

In this section, we explain how to release the boundedness assumption, Assumption 1. In conclusion,
we can obtain results of the same scale as Theorems 1 and 2 for any arbitrary bound on feature
vector. ||xi||2 ≤ xmax and l ≤ θ∗m ≤ L for all m ∈ [M ]. For clarity, we will separately discuss how
to release the l2 norm bounds of the feature vector and the objective parameters in Appendix E.1
and E.2, respectively. However, It is important to note that there is no issue in applying the same
argument even when the bound on the feature vectors and the bound on the objective parameters are
released simultaneously. We present how to release the boundedness assumption in fixed features
setting, but the same reasoning can be applied to the case of stochastic contexts.
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1

Figure E.1: The interior of the circle with radius xmax

γ represents the region where x
γ may exist in

Rd, while that of the smallest circle indicates the region where θ̂m(s) may exist. Then, the blue line
illustrates the case when x

γ is farthest from the θ∗m
.

E.1 RELEASING BOUND ON FEATURE VECTORS

We demonstrate how the minimum eigenvalue of the Gram matrix can increase linearly when the l2
norm of the feature vectors is bounded by an arbitrary upper bound xmax. The γ-regularity assump-
tion is related to the scale of the feature, and thus, when we modify the bound of the boundedness
assumption, the γ-regularity assumption also change correspondingly.
Assumption E.1 (Boundedness). ∀i ∈ [K], ||xi||2 ≤ xmax, and ∀m ∈ [M ], ||θ∗m||2 = 1.

Assumption E.2 (γ-Regularity). We assume {x1, . . . , xK} satisfies γ0-regular with γ0 <

xmax

λ0

√
2
√
1 + λ20 − 2.

The following lemma is the key of the releasing process.

Lemma E.1. Given Assumptions E.1, assume the OLS estimator satisfies ||θ̂m(s)− θ∗m|| ≤ α, for

m ∈ [M ] and s ≥ T0 + 1. If x ∈ Bd
xmax

satisfies x⊤ θ̂m(s)

||θ̂m(s)|| ≤ γ, then the distance between x
γ and

θ∗m is bounded by∣∣∣∣∣∣∣∣θ∗m − x

γ

∣∣∣∣∣∣∣∣
2

≤
√
1 + (

xmax

γ
)2 + 2α

√
(
xmax

γ
)2 − 1− 2

√
1− α2.

Proof of Lemma E.1. Consider the case when x
γ is the farthest from θ∗m. As we easily can see from

Figure E.1, ∣∣∣∣∣∣∣∣θ∗m − x

γ

∣∣∣∣∣∣∣∣2
2

≤
(
α+

√
(
xmax

γ
)2 − 1

)2

+ (1−
√
1− α2)2

= 1 + (
xmax

γ
)2 + 2α

√
(
xmax

γ
)2 − 1− 2

√
1− α2.
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■
Corollary E.1. Suppose Assumptions E.1, 2, and E.2 hold. Assume the OLS estimator satisfies
||θ̂m(s) − θ∗m|| ≤ α0, for all m ∈ [M ] and s ≥ T0 + 1. Then, the selected arms for a single cycle
s = t0, t0 + 1, . . . , t0 +M − 1 (t0 > T0) by Algorithm1 satisfies

λmin

(
t0+M−1∑

s=t0

x(s)x(s)⊤
)
≥
(
λ0γ

2
0 − 2xmax

√
γ20 + x2max + 2α0

√
x2max − γ20 − 2γ20

√
1− α2

0

)
M.

The above corollary means that even when Assumptions 1 and 3 are replaced by Assumptions E.1
and E.2, respectively, we can still obtain a regret bound that differs by at most a constant factor.
Furthermore, using the same argument as before, we can also verify the objective fairness with
replaced assumptions.

E.2 RELEASING BOUND ON OBJECTIVE PARAMETERS

In this section, we present how to handle objective parameters with varying l2 norm sizes. The γ-
regularity assumption is related to the scale of the objectives either, the γ-regularity assumption is
modified again correspondingly.
Assumption E.3 (Boundedness). ∀i ∈ [K], ||xi||2 ≤ 1, and ∀m ∈ [M ], l ≤ ||θ∗m||2 ≤ L.

Assumption E.4 (γ-Regularity). We assume {x1, . . . , xK} satisfies γ0-regular with γ0 < 1− λ2
0

8L4 .

The following lemma is the key of the releasing process.
Lemma E.2. Given Assumptions E.3, assume the OLS estimator satisfies ||θ̂m(s)− θ∗m|| ≤ α, for

m ∈ [M ] and s ≥ T0 + 1. If x ∈ Bd satisfies x⊤ θ̂m(s)

||θ̂m(s)|| ≤ γ, then the distance between x and
θ∗
m

||θ∗
m||2 is bounded by∣∣∣∣∣∣∣∣ θ∗m

||θ∗m||2
− x
∣∣∣∣∣∣∣∣
2

≤
√

2(1 + (
α

l
)
√

1− γ2 − γ
√
1− (

α

l
)2).

Proof of Lemma E.2. Consider the case when x is the farthest from θ∗
m

||θ∗
m||2 . As we easily can see

from Figure E.2, we can obtain the following result from Lemma A.1by replacing α by α
l∣∣∣∣∣∣∣∣ θ∗m

||θ∗m||2
− x
∣∣∣∣∣∣∣∣
2

≤
√

2(1 + (
α

l
)
√

1− γ2 − γ
√
1− (

α

l
)2).

■
Corollary E.2. Suppose Assumptions E.3, 2, and E.4 hold. Assume the OLS estimator satisfies
||θ̂m(s) − θ∗m|| ≤ α0, for all m ∈ [M ] and s ≥ T0 + 1. Then, the selected arms for a single cycle
s = t0, t0 + 1, . . . , t0 +M − 1 (t0 > T0) by Algorithm1 satisfies

λmin

(
t0+M−1∑

s=t0

x(s)x(s)⊤
)
≥

λ0
L2
− 2

√
2

(
1 + (

α0

l
)
√
1− γ20 − γ0

√
1− (

α0

l
)2
)M.

The corollary can be derived from Lemma E.2 and λmin

(
1
M

∑M
m=1

( θ∗
m

||θ∗
m||2

)( θ∗
m

||θ∗
m||2

)⊤) ≥ λ0

L2 .

Therefore, we can still obtain a regret bound that differs by at most a constant factor and the objective
fairness criterion with Assumption E.3 and Assumption E.4.

F OBJECTIVE DIVERSITY ON FEATURE VECTOR SPACE

Until now, we have conducted an analysis under the assumption that the feature vectors span
Rd. Although this assumption was not explicitly stated, it can be derived from objective diver-
sity(Assumption 2) and γ-regularity(Assumption 3). In this chapter, we present a sufficient condi-
tion under which MORR-Greedy performs well when the feature vectors do not span Rd and explain
how this leads to regret bounds and objective fairness.
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Figure E.2: The larger circle represents the unit sphere in Rd while the interior of the smallest circle
indicates the region where θ̂m(s) may exist. Then, the blue line illustrates the case when x is farthest
from the θ∗

m

||θ∗
m||2

.

Additional Notations. We denote the spanning space of feature vectors x1, . . . , xK by Sx and the
orthogonal complement of Sx by S⊥

x . We use πS(v) : Rd → Sx as a projection map onto Sx.

Intuition. It is evident that any bandit algorithm cannot obtain information about the true objective
parameters in the direction of S⊥ while interacting with feature vectors x1, . . . , xK . In other words,
during the process of estimating the objective parameters, no estimator can converge to the true
parameters in the direction of space S⊥. Interestingly, from the perspective of regret and optimality,
this poses no significant issue. This can be expressed mathematically as for any pair of arms i, j ∈
[K] and m ∈ [M ],

x⊤i θ
∗
m − x⊤j θ∗m = x⊤i (πS(θ

∗
m))− x⊤j (πS(θ∗m)).

The above equation explains why regret and optimality are determined solely by the projection
vector of the objective parameters onto S.

Before we begin the analysis, it is important to address the OLS estimator used in MORR-Greedy.
When the feature vectors do not span Rd, a unique least squares solution no longer exists,
and the closed form cannot be utilized. Therefore, we use an arbitrary solution θ̂m(t) of(∑t−1

s=1 x(s)x(s)
⊤) θ =∑t−1

s=1 x(s)yj(s) for each round t.

The following are the revised versions of Assumptions 1, 2, and 3, adapted to the feature vector
space.
Assumption F.1 (Boundedness). ∀i ∈ [K], ||xi||2 ≤ 1, and ∀m ∈ [M ], ||πs(θ∗m)||2 = 1.

Once again, the above assumption is intended for a clear analysis. The analyses conducted in this
section can be also extended to arbitrary bounds ||xi||2 ≤ xmax and l ≤ πs(θ

∗
m) ≤ L for all

m ∈ [M ] by the same process in Appendix E.
Assumption F.2 (Objective Diversity on Sx). We assume θ∗1 , . . . , θ∗M span Sx.

In the following analysis, we define λ1 := min||β||=1, β∈Sx

(
1
M

∑M
m=1 ⟨β, θ∗m⟩

2
)

, the degree of
the objective diversity on Sx. Then, given Assumption F.2, λ1 is always positive.
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Definition 8 (γ-Regular Condition on Sx). For fixed γ ∈ (0, 1], we say that the set of feature vectors
{x1, . . . , xK} satisfies γ-regular condition when there exists α > 0 that satisfies

∀β ∈ Bα(πS(θ
∗
1)) ∪ . . . ∪ Bα(πS(θ

∗
M )), ∃i ∈ [K], x⊤i

β

||β||2
≥ γ. (F.1)

Assumption F.3 (γ-Regularity on Sx). We assume {x1, . . . , xK} satisfies γ0-regular with γ0 >

1− λ2
1

8 .

Once again, in the following analysis, α0 denotes the value of α that holds the condition (2). If α0

is greater than
√

λ2
1

4 −
λ4
1

64 γ0 −
(
1− λ2

1

8

)√
1− γ20 , then set α0 slightly less than this value.

The only question is how to construct an l2 bound on πS
(
θ̂m(s)

)
− πS

(
θ∗m
)

without utilizing the
minimum eigenvalue of the Gram matrix, which is zero when Sx ⊊ Rd. The key idea is that we
can use min||β||=1, β∈Sx

(∑t−1
s=1 ⟨β, x(s)⟩

2
)

to fulfill the role previously played by the minimum
eigenvalue. We present 2 Lemmas, Lemma F.1 and Lemma F.2, to explain the idea. First, The
following demonstrates the linear growth of min||β||=1, β∈Sx

(∑t−1
s=1 ⟨β, x(s)⟩

2
)

.

Lemma F.1. Suppose Assumptions F.1, F.2, and F.3 hold. Assume a least square solution θ̂m(s)

satisfies ||πS
(
θ̂m(s)

)
− πS

(
θ∗m
)
|| ≤ α0, for all m ∈ [M ] and s ≥ T0 + 1. Then, the selected arms

for a single cycle s = t0, t0 + 1, . . . , t0 +M − 1 (t0 > T0) by Algorithm1 satisfies

min
||β||=1, β∈Sx

(
t0+M−1∑

s=t0

⟨β, x(s)⟩2
)
≥
(
λ1 − 2

√
2

(
1 + α0

√
1− γ20 − γ0

√
1− α2

))
M.

Proof of Lemma F.1. Since the greedy selection of θ̂m(s) is equal to that of πS
(
θ̂m(s)

)
, for the same

reason as Lemma A.1 we can get ||x(s) − πS
(
θ∗m(s)

)
||2 ≤

√
2
(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

)
,

where js is the target objective for round s.

Then, for any unit vector β ∈ Sx,

β⊤
(

t0+M−1∑
s=t0

x(s)x(s)⊤
)
β

=

t0+M−1∑
s=t0

{
〈
β, πS

(
θ∗m(s)

)〉2
+
〈
β, x(s)− πS

(
θ∗m(s)

)〉2
+ 2

〈
β, πS

(
θ∗m(s)

)〉〈
β, x(s)− πS

(
θ∗m(s)

)〉
}

≥Mλ1 − 2

√
2

(
1 + α0

√
1− γ20 − γ0

√
1− α2

0

)
M.

■

The next lemma shows how to derive l2 bound on πS
(
θ̂m(s)

)
− πS

(
θ∗m
)

with

min||β||=1, β∈Sx

(∑t−1
s=1 ⟨β, x(s)⟩

2
)

.

Lemma F.2. For all m ∈ [M ] and t ≥ 1, any least square solution θ̂m(t) of(∑t−1
s=1 x(s)x(s)

⊤) θ =∑t−1
s=1 x(s)ya(s),m(s) satisfies∣∣∣∣∣∣πS(θ̂m(s)
)
− πS

(
θ∗m
)∣∣∣∣∣∣

2
≤ ||∑t−1

s=1 x(s)ηa(s),m(s)||2
min||β||=1, β∈Sx

(∑t−1
s=1 ⟨β, x(s)⟩

2
) .

Proof of Lemma F.2. From the definition of θ̂m(t), we have( t−1∑
s=1

x(s)x(s)⊤
)
(θ̂m(t)− θ∗m) =

t−1∑
s=1

x(s)ηa(s),m(s).
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Since the row space of
(∑t−1

s=1 x(s)x(s)
⊤) is in S,∣∣∣∣∣

∣∣∣∣∣
t−1∑
s=1

x(s)ηa(s),m(s)

∣∣∣∣∣
∣∣∣∣∣
2

=

∣∣∣∣∣
∣∣∣∣∣(

t−1∑
s=1

x(s)x(s)⊤
) (

πS
(
θ̂m(s)

)
− πS

(
θ∗m
))∣∣∣∣∣
∣∣∣∣∣
2

≥ min
||β||=1, β∈Sx

(
β⊤( t−1∑

s=1

x(s)x(s)⊤
)
β

)∣∣∣∣∣∣πS(θ̂m(s)
)
− πS

(
θ∗m
)∣∣∣∣∣∣

2
.

The last inequality holds by Lemma H.5.

■

With above two lemmas, we can obtain the same regret bound and objective fairness as in Theorem
1 and 2.

G EXPERIMENTS

G.1 EMPIRICAL VALIDATION OF PERFORMANCE OF MORR-Greedy

We compare the empirical Pareto regret of MORR-Greedy in a linear bandit setting with other
multi-objective algorithms. We experiment with a linear bandit, ym(t) = N (xTi θ

∗
m, 0.1

2) for all
i ∈ [K] and m ∈ [M ]. For each problem instance, M objective parameters are selected randomly
uniformly from the positive part of Sd−1 and then K(> 2M) feature vectors are drawn from Bd.
In the case of fixed arms, to ensure a certain degree of regularity, the first M feature vectors are
drawn from the multivariate normal distribution with the true objective parameter as the mean and
a covariance matrix of 0.1Id. Subsequently, we use the vectors were scaled to ensure that their
magnitudes fall within the range of (3/4, 1). The other K − M vectors are drawn uniformly at
random from Bd. Among M of K −M vectors are scaled to have length longer than 3/4, while
the rest of them to have their magnitudes smaller than 3/4. Limiting the magnitudes of the feature
vectors prevents meaningless results caused by excessively large Pareto fronts. For the experiment
with varying arms, contexts are drawn from uniform distribution on Bd. Our results are averaged
over 10 different instances for each (d,K,M)-combination, and we conduct 10 reputations for 1
problem instance.

We conduct experiments on MORR-Greedy and the two base lines, P-UCB (Drugan & Nowe, 2013)
and MOGLM-UCB (Lu et al., 2019) with tuned parameters for contextual algorithms. We evaluated the
performance of each algorithm in both cases of fixed arms and stochastic arms. When playing with
stochastic arms, the feature vectors are drawn the uniform distribution on Bd and only contextual
algorithms MORR-Greedyand MOGLM-UCB are compared. For MOGLM-UCB, we use the confidence
width γt = c log det(Zt)

det(Z1)
where Zt = Id +

1
2

∑t
s=1 x(s)x(s)

⊤ for c = 1and 0.1, as used in Lu et al.
(2019). For MORR-Greedy, we use the parameter λ = 1, 0.1, and 0.01.

Results are shown in Figure G.1 and Figure G.2. In both case, MORR-Greedy outperforms
MOGLM-UCB and MORR-Greedy with the smallest λ was the best. This shows that when the ob-
jectives are diverse in multi-objective bandit, short exploration is enough to make the algorithm
perform well.

G.2 EMPIRICAL VALIDATION OF OBJECTIVE FAIRNESS OF MORR-Greedy

We empirically confirmed that our algorithm fairly selects near-optimal arms for each objective. To
validate this, we empirically calculated the objective fairness index pϵ,T at two different ϵ levels: 0.1
and 0.05, for each simulation. The experimental setup was identical to that in Setting G.1.

As shown in Figure G.3 and Figure G.4, in both the fixed arm and stochastic arm cases,
MORR-Greedyselected the ϵ-optimal arms for all objectives at proportions of at least 1

M for both
ϵ levels (0.1 and 0.05) in most cases, and the influence of the difference in K was not significant.
The proportion may exceed 1

M because the ϵ-optimal arm sets for the different objectives may over-
lap. (In this experiment, arms were drawn from Bd, and objective parameters were drawn only from
the positive part of Sd−1, resulting in frequent overlap of the ϵ-optimal arm sets for the objectives.)
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Figure G.1: Evaluation of multi-objective bandit algorithms playing with fixed arms for various
(d,K,M)
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Figure G.2: Evaluation of multi-objective bandit algorithms playing with stochastic arms for various
(d,K,M)

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

d=5 
 K=50 
 M=5

d=5 
 K=100 

 M=5

d=5 
 K=50 
 M=10

d=5 
 K=100 
 M=10

d=10 
 K=100 
 M=10

d=10 
 K=200 
 M=10

0.1

0.2

0.3

0.4 =0.1
MORR-Greedy ( =1)
MORR-Greedy ( =0.1)
MORR-Greedy ( =0.01)

(a) ϵ = 0.1

d=5 
 K=50 
 M=5

d=5 
 K=100 

 M=5

d=5 
 K=50 
 M=10

d=5 
 K=100 
 M=10

d=10 
 K=100 
 M=10

d=10 
 K=200 
 M=10

0.1

0.2

0.3

0.4 =0.05
MORR-Greedy ( =1)
MORR-Greedy ( =0.1)
MORR-Greedy ( =0.01)

(b) ϵ = 0.05

Figure G.3: Evaluation of the objective fairness index of the MORR-Greedy algorithm playing with
fixed arms. The y-axis represents the minimum proportion of rounds the ϵ-optimal arm is selected
for each objective.
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Figure G.4: Evaluation of the objective fairness index of the MORR-Greedy algorithm playing with
stochastic arms. The y-axis represents the minimum proportion of rounds the ϵ-optimal arm is
selected for each objective.

G.3 EXPERIMENT ON THE INFLUENCE OF INITIAL OBJECTIVE PARAMETERS

We conducted experiments to investigate the impact of the initial objective parameters on the al-
gorithm’s performance. In the case of fixed arms, once β1, . . . , βM are set, the arms that is op-
timized to β1, . . . , βM will be selected during the exploration process. Thus, when the arms are
invariant, instead of explicitly setting β1, . . . , βM , we only have to select M arms that span Rd.
Therefore, we measured the algorithm’s performance for various beta combinations in a stochas-
tic context setting. We test the influence of β1, . . . , βM on four combinations of (d,K,M) =
(5, 50, 5), (5, 100, 5), (10, 50, 10), (10, 100, 10). For each (d,K,M)-combination, our results are
averaged over 10 reputations for each 10 different problem instances. For each simulation, we con-
sidered three different sets of β1, . . . , βM based on diversity. When M = 5, with the standard basis
of Rd denoted as {e(5)1 , . . . , e

(5)
5 }, we considered the most diverse beta set as the standard basis, the

moderately diverse beta set as
{

e
(5)
1 +e

(5)
2√

2
,
e
(5)
2 +e

(5)
3√

2
, . . . ,

e
(5)
5 +e

(5)
1√

2

}
, and the least diverse beta set as
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Figure G.5: Performance of MORR-Greedy with different initial objective parameters

As shown in Figure G.5 it can be observed that MORR-Greedy performs well across all
{β1, · · · , βM}-sets. First, we note that the performance of the low-diversity {β1, · · · , βM}-set is
particularly good. This is more related to the distribution of the objective parameters than to the
impact of diversity. The low-diversity {β1, · · · , βM}-set initializes the objective parameters with
vectors located near the center of the positive part of Sd−1, and there is a high probability that at
least one true objective parameter exists close to these vectors. In contrast, when initializing with
a high-diversity {β1, · · · , βM}-set, the regret is larger, but it can be observed that exploration ter-
minates earlier in the same λ setting. In this case, by selecting diverse features, we can accelerate
the increase of the minimum eigenvalue of the Gram matrix. Consequently, we confirmed that our
algorithm performs well with initial objective parameters of various diversity levels.

H TECHNICAL LEMMAS

Lemma H.1 (Lemma A.1. of Kannan et al. (2018)). Let η1, . . . , ηt be independent σ2-subgaussian
random variables. Let x1, . . . , xt be vectors in Rd with each xs chosen arbitrarily as a function of
(x1, η1), . . . , (xs−1, ηt′−1) subject to ||xs|| ≤ xmax. Then with probability at least 1− δ,∣∣∣∣∣

∣∣∣∣∣
t∑

s=1

ηsx(s)

∣∣∣∣∣
∣∣∣∣∣ ≤ σ√2xmaxdt log(dt/δ).

Note that, the above lemma holds even when η1, . . . , ηt be conditionally σ2-subgaussian random
variables, because it was driven by using σ2-subgaussian martingale.
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Lemma H.2 (Lemma 8 of Li et al. (2017)). Given ||xi|| ≤ 1 for all i ∈ [K], suppose there is an
integer m such that λmin(Vm) ≥ 1, then for any δ > 0, with probability at least 1 − δ, for all
t ≥ m+ 1,

||St||2Vt
−1 ≤ 4σ2(

d

2
log(1 +

2t(xmax)
2

d
) + log(

1

δ
)).

Lemma H.3 (Theorem 3.1 of Tropp (2011)). Let H1 ⊂ H2 · · · be a filtration and consider a finite
sequence {Xk} of positive semi-definite matrices with dimension d adapted to this filtration. Sup-
pose that λmax(Xk) ≤ R almost surely. Define the series Y ≡∑kXk and W ≡∑k E[Xk|Hk−1].
Then for all µ ≥ 0, γ ∈ [0, 1) we have

P[λmin(Y ) ≤ (1− γ)µ and λmin(W ) ≥ µ] ≤ d( e−γ

(1− γ)1−γ
)µ/R.

Lemma H.4. For any random variable vector X ∼ D, E[XX⊤] ⪰ E[X]E[X]⊤

Proof of Lemma H.4. For any u ∈ Sd−1, u⊤E[XX⊤]u = E[u⊤XX⊤u] = E[⟨u,X⟩2] ≥
(E[⟨u,X⟩])2 = u⊤E[X]E[X]⊤u.
Lemma H.5. Let v be a vector in S ⊂ Rd and A be a d × d matrix. Then ||Av||2 ≥
(minu∈S u

⊤Au) ||v||2.

Proof of Lemma H.5.

||Av||2
||v||2

=

∣∣∣∣∣∣∣∣A v

||v||2

∣∣∣∣∣∣∣∣
2

≥ min
u∈S
||Au||2 ≥ min

u∈S
u⊤Au.
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