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Abstract

Biological systems possess remarkable sound source localization (SSL) capabilities
that are critical for survival in complex environments. This ability arises from the
collaboration between the auditory periphery, which encodes sound as precisely
timed spikes, and the auditory cortex, which performs spike-based computations.
Inspired by these biological mechanisms, we propose a novel neuromorphic SSL
framework that integrates spike-based neural encoding and computation. The
framework employs Resonate-and-Fire (RF) neurons with a phase-locking coding
(RF-PLC) method to achieve energy-efficient audio processing. The RF-PLC
method leverages the resonance properties of RF neurons to efficiently convert
audio signals to time-frequency representation and encode interaural time difference
(ITD) cues into discriminative spike patterns. In addition, biological adaptations
like frequency band selectivity and short-term memory effectively filter out many
environmental noises, enhancing SSL capabilities in real-world settings. Inspired
by these adaptations, we propose a spike-driven multi-auditory attention (MAA)
module that significantly improves both the accuracy and robustness of the proposed
SSL framework. Extensive experimentation demonstrates that our SSL framework
achieves state-of-the-art accuracy in SSL tasks. Furthermore, it shows exceptional
noise robustness and maintains high accuracy even at very low signal-to-noise
ratios. By mimicking biological hearing, this neuromorphic approach contributes
to the development of high-performance and explainable artificial intelligence
systems capable of superior performance in real-world environments.

1 Introduction

Sound source localization (SSL) [11, 43] is a critical skill for mammals that enables them to identify
and locate external auditory stimuli. This skill plays a vital role in survival behaviors like prey
detection and predator evasion. Over decades of scientific exploration [39, 48], SSL has evolved
from a purely biological concept to a sophisticated technology with a wide range of applications
across various fields [10, 39]. Today, SSL methods are finding increasing use in areas like security
monitoring [12], robotic navigation [37], and autonomous driving [13, 36].

Early SSL approaches rely on hand-crafted analysis of speech signals from multiple receivers. While
offering a basic ability to localize sound sources, these methods suffer from limitations in accuracy
and robustness. The emergence of Deep Neural Networks (DNNs) and their success in various
domains lead researchers to explore their application in SSL tasks, achieving significant performance
improvements [64, 67]. However, DNN-based approaches face two key challenges. Firstly, DNNs
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achieving high SSL accuracy often require substantial computational resources, leading to increased
energy consumption. Secondly, DNNs struggle to learn the intricate relationships between localization
behaviors and noisy environmental constraints. These limitations hinder the development of portable,
edge-based SSL models [16] for real-world environments.

Recently, Spiking Neural Networks (SNNs) [14, 20, 34], inspired by brain neural architectures,
have gained significant attention for their energy-efficient simulation of neural systems. Spiking
neurons [33] simulate the information transmission mechanism of biological neurons, computing only
upon the arrival of input spikes and remaining silent otherwise [53]. Such an event-driven mechanism
results in sparser information transmission [60, 61], hence reducing computational costs [6, 69].
Therefore, the SNN-based SSL models enable a more energy-efficient emulation of biological SSL
processes. Pan et al. [40] propose a SNN-based SSL model that achieves localization in real audio
signals. Chen et al.[7] improve the model’s performance through a hybrid encoding method, achieving
competitive results with less energy consumption. Although these examples achieve edge-friendly
SSL ability, limitations still exist in neural encoding efficiency and robustness under noisy conditions.

In terms of neural encoding, most methods still rely on Fourier Transform (FT) [27, 55] to encode
ITD [11] present in the received audio signals into spike trains for processing by back-end SSL
model. However, FT operations involve many multiply-accumulate (MAC) computations and require
significant computational resources [58] which hinders our goal of developing energy-efficient SSL
models. In terms of robustness, the superior localization ability in biology not only relies on ITD cues
but also on various auditory mechanisms [22, 54], such as frequency preferences, short-term memory,
etc. Frequency preference significantly mitigates the impact of complex environments on localization
accuracy [31, 62], and auditory short-term memory effectively filters out irrelevant noise [49, 50],
focusing on important auditory signals. However, most SNN-based solutions [3, 32] primarily focus
on ITD cues, with little attention to multiple auditory mechanisms. Therefore, investigating more
energy-efficient and robust SNN-based SSL models remains a pressing challenge to address.

Figure 1: A spike-based SSL framework inspired by biological auditory localization. (a) Schematic of
binaural SSL tasks. (d) Simulation of the SSL tasks. The upper section illustrates two key processes
involved in mammalian localization: (b) the Basilar Membrane and Medial Superior Olive (MSO)
collaborate to capture ITD cues; (c) multiple auditory attention mechanisms further process these ITD
cues for precise localization. The lower section presents our spike-based SSL framework, comprising
two main components: (e) a front-end ITD encoding method employing RF and detection neurons;
(f) A back-end SSL model utilizing multi-auditory attention.

In this paper, we propose a novel SNN-based SSL framework, which primarily comprises an ITD
encoding front-end method and a biomimetic localization back-end model. As illustrated in Fig.1, we
introduce a phase-locking coding (RF-PLC) method using Resonate-and-Fire (RF) neurons [8, 38]
and detection neurons [40]. It simulates the frequency band decomposition function of the basilar
membrane and captures ITD cues, respectively. Furthermore, we introduce a novel back-end SSL
model based on multi-auditory attention (MAA) that integrates frequency preferences and short-term
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memory characteristics. This approach significantly improves both the accuracy and robustness of
localization. Extensive experiment on the HRTF [57], Single Words [30], and SLoClas [42] datasets
demonstrates that our SNN-based model achieves state-of-the-art performance. Moreover, evaluation
in noisy environments reveals the model’s enhanced adaptability to real-world conditions. The work
introduces the following key contributions:

• Spike-based ITD encoding: The RF-PLC method leverages the resonance properties of
RF neurons to perform energy-efficient auditory time-frequency transformations, avoiding
the high resource costs of FT operations. Additionally, it utilizes a phase-locking loop and
ITD detection neurons to encode auditory ITD cues into spike patterns directly, ensuring the
fully spike-driven nature of the entire SSL framework.

• Biologically inspired attention: The MAA module incorporates knowledge of biological
auditory frequency preferences and short-term memory characteristics. Frequency prefer-
ences effectively mask the ITD information of irrelevant frequency bands and spatial regions,
while short-term memory focuses on the interaction of information across adjacent time
steps. This combination enhances the robustness of the SNN model in noisy environments.

• State-of-the-art performance with reduced complexity: By integrating these methods,
we present a SNN-based SSL framework that achieves state-of-the-art performance while
reducing energy consumption to existing works. Additionally, extensive experimentation
demonstrates that our system exhibits superior robustness in noisy environments.

2 Related Work

2.1 ITD Cues for SSL Tasks

To develop biologically inspired models for SSL tasks, researchers have drawn upon the auditory
localization mechanisms observed in mammals [23, 25]. The cues of ITD are recognized as critical
for these models [29, 44, 46, 47]. ITD refers to the temporal disparity in sound arrival between the
ears. Specifically, when a sound source is closer to the listener’s right side, audio reaches the right
ear sooner than the left. The Jeffress model [3] and BiSoLaNN [56] encode ITD cues into spike
trains and corroborate their biological credibility through experiments on barn owls [5]. But these
approaches primarily focus on the localization of pure tones, which significantly differs from the
time-varying audio signal in daily life. Substantially, some researchers [7, 40] have utilized complex
FT operations to obtain the phase information of audio signals. However, FT operations require
substantial computational resources and pose significant challenges when implementing systems on
edge devices with limited computational capabilities. Therefore, the exploration of low-power ITD
encoding methods become a pressing direction to pursue.

2.2 Biological Adaptation in Auditory System

In the field of auditory science, frequency preference and short-term memory characteristics are
essential for understanding auditory processing. Numerous studies [21, 52, 63] have demonstrated
that biological auditory systems exhibit heightened sensitivity to specific frequency ranges, such
as 20-20 000 Hz in humans, with other species like bats and blue whales adapted to different
ranges. Further research [51] has revealed tonotopic maps and variations in frequency tuning across
regions, underscoring the importance of frequency selectivity in hearing. Electrophysiological
experiments [31] confirmed that inner hair cells on the basilar membrane of the cochlea exhibit
significant differences in response to various frequency bands.

These studies underscore the irreplaceable role of frequency band preference in auditory decision-
making. Additionally, compared to visual short-term memory, auditory short-term memory [2, 28]
has a shorter retention span. Nonetheless, it is essential for real-time integration and coherent
environmental perception. Simultaneously, some researchers [50] propose that neurofeedback training
targeting auditory short-term memory can significantly enhance selective attention to auditory signals
in noisy environments. Moreover, Zhong et al. [70] suggested that auditory short-term memory can
highlight sound source characteristics under reverberant conditions, reducing interference from other
sources. However, current SSL methods mainly focus on ITD cues, neglecting these well-established
biological mechanisms. Therefore, the effective integration of diverse auditory attention mechanisms
within SSL tasks to enhance robustness remains a significant ongoing challenge.
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3 Method

In this section, we introduce our spike-based SSL framework, which includes a front-end ITD
encoding method and a back-end localization model. For the front-end ITD encoding, we propose
the energy-efficient RF-PLC method, which uses RF neurons to capture ITD cues and detection
neurons to convert these encoded cues into spike patterns. For the back-end localization model, we
take inspiration from biological adaptation and propose the MAA mechanism to enhance the model’s
localization performance and robustness.

3.1 RF Phase-locking Coding: A Direct Font-end ITD Encoding Method

Due to the physical separation of the ears, sound waves arrive at each ear with slightly different
timing. It leads to differences in the initial phase information between the two audio channels. Pan et
al. [40] propose a Multi-Tones Phase Coding (MTPC) method that utilizes this information to exploit
ITD cues. However, this approach relies on computationally expensive FT operations and introduces
an additional phase transformation step during processing. To overcome these limitations, we propose
the RF-PLC method, leveraging RF neurons’ resonance filtering and periodic decay properties. This
approach effectively eliminates the need for energy-intensive FT and phase transformation processes.
Subsequently, a set of detection neurons with varying delays is employed to efficiently encode the
ITD cues from different microphones into spike patterns.

(a) (b)

Figure 2: Properties of spiking neuron models. (a) Responses of the LIF and RF neurons to an
identical input spike train. We can observe distinct patterns in both membrane voltage accumulation
and spiking behavior between the two neuron models. (b) The frequency-selective properties of RF
neurons. RF neurons with a resonant frequency of 10 Hz (ω = 10) have a significantly stronger
response at 10 Hz compared to the response at 40 Hz.

The first step of our model processes the raw audio to capture ITD cues. We segment the audio into
yl based on the smallest durations by the human ear. These segments are then encoded by specialized
RF neurons [38] tuned to different frequency bands. The dynamics of these RF neurons can be
described as follows:

ZRF [t] = λeiω∆tZRF [t− 1] + I [t] , (1)
where ω represents the resonant frequency of the neuron, indicating the number of radians it progresses
per second. λ serves as the dampening factor, which causes the oscillation to decay exponentially.
∆t represents the sampling rate, which is set to 1. I[t] denotes the audio input. ZRF[t] can be
reformulated as x+ iy ∈ C. A detailed process can be found in Appendix. A. The real component x
of ZRF reflects the current-like behavior of the neuron, capturing the dynamics of voltage-gated and
synaptic currents. The imaginary component y of ZRF[t] serves as a voltage-like variable.

Based on Eq. 1, we depict the spiking behavior of the RF neuron in Fig. 2(a) and summarize its
characteristics in two aspects. Firstly, the complex form of the RF neuron’s dynamics enables it to
capture the phase information in a specific frequency band ω, termed resonance filtering. Secondly,
the dampening factor λ allows it to exhibit periodic decay characteristics when there is no input.

By leveraging RF neurons’ resonance filtering and periodic decay properties, we encode input signals
into ITD cues efficiently and effectively. To better describe the RF-PLC process, we decompose the
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dynamics of the RF neurons into two stages: a silent stage and a spike stage. The silent stage is
utilized to decompose audio information into distinct frequency components and store this data in the
state of the RF. The spike stage then oscillates phase information, effectively converting it into ITD
cues through phase-locking mechanisms. These stages can be described as follows:

ZRF[t] =

{
eiω∆tZRF[t− 1] + I[t], Silent Stage,
λeiω∆tZRF[t− 1], Spike Stage.

(2)

In the silent stage, RF neurons with distinct ω values selectively respond to specific resonant
frequencies. As illustrated in Fig.2(b), when the frequency ω1 of the audio input I[t] closely
matches the RF neuron’s resonant frequency ω, a significant increase in its membrane potential
occurs. Conversely, misalignment between these frequencies leads to a slower accumulation of
membrane potential. This characteristic offers an energy-efficient alternative to the computationally
expensive FT operations. The result of the silent stage can be interpreted as analogous to the initial
phase information of each pure sinusoidal component within the audio signal.

(a) (b)

Figure 3: The proposed the RF-PLC method. (a) ITD cues capture: during the silent stage, RF
neurons replace FT by responding to input signals. In the spike stage, the RF neurons’ first oscillatory
peak time is encoded as their spike firing time through a phase-locking loop. (b) The coincidence
detection network: detection neurons directly encode ITD cues by analyzing the spike timings of
multiple RF neurons from two receivers and generating spikes after a specific time delay.

In the spike stage, we introduce a PLC method that ensures the RF neuron fires a spike only at a specific
phase. Specifically, the spike firing time tlock is defined as the special state when the real part of the
RF neuron state reaches zero and the imaginary part reaches its maximum (ZRF[tlock] = 0 + iymax).
This precise spike timing can be directly utilized as an ITD cue, with details validated in Appendix B.
Notably, the periodic decay characteristic of RF neurons guarantees that only one spike is generated
using our PLC method, ensuring the efficiency of ITD encoding.

As illustrated in Fig. 3(a), we provide a schematic representation for obtaining ITD cues from
input audio. During the silent stage, RF neurons receive audio signals and convert them into phase
information of pure tones at different frequencies. During the spike stage, the PLC method leverages
this phase information to determine whether the RF neuron fires a spike. The precise spike timing of
the RF neuron serves as the ITD cue. Compared to traditional FT-based methods that rely on multiple
network layers, our RF-PLC significantly reduces computational costs and offers a more biologically
plausible representation of ITD cues.

The final step of the RF-PLC method involves detection neurons that convert spike times (also, ITD
cues) into spike patterns. As illustrated in Fig. 3(b), a series of detection neurons are used in each
band, with each neuron tuned to a specific delay preference (from τ1 to τn). These detection neurons
then encode the overall ITD cues for the audio signal. Interestingly, similar symmetrical detection
structures have been observed in mammalian auditory pathways [15], which support the biological
plausibility of our approach.
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3.2 MAA: Multi-auditory Attention Mechanism for Back-end SNN-based SSL Model

After encoding audio signals into spike patterns, we construct a back-end SNN-based model to
process this encoded information for SSL tasks. The SNN-based SSL model is built based on the
Leaky Integrate-and-Fire (LIF) neuron due to its computation efficiency. The LIF model receives the
resultant current and accumulates membrane potential which is used to compare with the threshold to
determine whether to generate the spike. Its dynamic can be described as follows:

U [t+ 1] = H[t] +X[t+ 1], (3)
S[t+ 1] = Θ(U [t+ 1]− Vth), (4)

H[t+ 1] = VresetS[t+ 1] + τU [t+ 1](1− S[t+ 1]). (5)
At each time step t + 1, the spatial input current X[t + 1] is obtained through convolution and
linear layers. This current integrates with the previous temporal input H[t] to update the membrane
potential U [t+ 1]. The Heaviside step function Θ(·) determines whether the binary spike S[t+ 1] is
generated by comparing the membrane voltage with the threshold Vth.

If there is spike emission, H[t] is reset to the resting potential Vreset; otherwise, U [t + 1] decays
with a time constant τ and directly feeds into H[t+ 1]. We denote the LIF spiking neuron layer as
SN (·), which takes X[t + 1] as input and produces the spike tensor S[t + 1] as output. Existing
back-end SNN-based SSL models only rely on simple convolutional and fully connected layers for
localization, without considering biological adaptation mechanisms such as frequency band selectivity
and short-term memory. This leaves substantial room for improvement in localization performance.
Therefore, we draw on these biological mechanisms to propose the computationally efficient MAA.

In the field of SNNs, there have been some studies on attention mechanisms [19, 65, 71]. However,
these methods almost rely heavily on squeeze-and-excitation operations, which introduce additional
MAC operations. Therefore, we propose a novel spike-driven MAA mechanism that comprises a
frequency-spatial joint attention module and a short-term memory structure. The former enhances
networks’ focus on critical ITD cues within key frequency bands. The latter strengthens the model’s
memory for wise decisions across timeframes. Notably, our MAA module is tailored for SSL tasks
and achieves the best trade-off between performance and efficiency.

(a) Spatial Attention in SNNs (b) Time Attention (c) FSJA module (ours) (d) ST-M (ours)

Figure 4: Comparing MAA with spiking attention methods. (a) In SNNs, CA/SA[66] uses MAC-
based broadcasting operations. (b) TA [65] efficiently focuses on temporal sequences but struggles
with streaming data. (c) FSJA adopts a binary attention map as an alternative to MAC-based broad-
casting, enhancing computational sparsity and masking noise (white blocks). (d) ST-M incorporates
ITD cues within a streaming context, significantly reducing the model’s computational resource.

3.2.1 Frequency-Spatial Joint Attention

To enhance adaptive learning and selection of preferred frequency in our SNN-based SSL model,
we propose a spike-driven FSJA module. For each time step, the output of the RF-PLC method is
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defined as X[t] ∈ RC×F×S , where F and S respectively represent the number of RF and detection
neurons, and C denotes the microphone array. The FSJA module can be expressed as follows:

Z = SN (
1

F × S

F∑
i=1

S∑
j=1

Xi,j [t]),AttFS (Z) = SN (ConvBN(Z)) ,FSJA = AttFS (Z) ·X[t], (6)

where ConvBN is convolution operations with a 3× 3 kernel and batch normalization. The matrix Z
is defined as the average of X[t] across the F dimension and S dimension and the spike results after
passing through the LIF neuron. Due to the attention map of FSJA module is in binary spike form, it
effectively concentrates on spike information at specific frequency and spatial dimensions.

To further demonstrate the difference between our FSJA module and previous SNN-based attention
methods across frequency and spatial dimensions, we show the difference between them. As shown
in Fig. 4(a), the existing SNN-based attention module relies on full-precision values. Although
the broadcast operation is a spike-driven computational paradigm, it introduces additional MAC
operations for the next layer. As shown in Fig. 4(c), it effectively avoids MAC-based broadcasting
operations which substantially improves energy efficiency. Additionally, our method effectively
masks the ITD information of irrelevant frequency bands and spatial regions, substantially boosting
the SSL model’s robustness in noisy environments.

3.2.2 Short-term Memory Structure

The auditory short-term memory characteristic enables sustained perception of SSL processing, yet
few studies have focused on this aspect. Although the membrane potential accumulation of spiking
neurons partially reflects this mechanism, its simplified mathematical expression is insufficient for
describing short-term memory adequately. Therefore, we develop an innovative ST-M structure that
emphasizes the interaction of information across adjacent time steps to enhance the neuronal memory
capacity. The structure can be represented as:

In[t] = SN (ConvBN (X[t])) ,

ST [t] = SN (α ConvBN (ST [t− 1]) + (1− α) In[t]) ,
(7)

where In[t] represents the preliminary feature extraction of the input X[t], and ST [t] denotes the
enhanced memory unit, with α serving as the hyperparameter that balances adjacent time steps. Our
ST-M architecture is asynchronous, processing information frame-by-frame rather than employing
time-dimension attention, thereby significantly reducing the computational resources required by
the network and facilitating the direct processing of streaming audio information. Additionally, by
balancing the memory residual at time t − 1 with the input information at time t, our approach
facilitates memory interaction between adjacent time steps. This processing paradigm that relies on
input from adjacent time steps pays more attention to short-term memory, thereby granting our model
improved localization robustness in dynamic environments.

To avoid the MAC operations present in α ConvBN (ST [t− 1]), we integrate α into the firing
threshold of SN , which can be expressed by the following formula:

ST [t] = SN ′
(

ConvBN (ST [t− 1]) +
1− α

α
In[t]

)
. (8)

Here, SN ′ denotes a layer of spiking neurons with a threshold of Vth/α. Due to ST [t] and X[t] being
binary spikes and ConvBN can be fused during inference, Eq. 8 contains no MAC operations which
ensure low power consumption in inference. Compared with attention in the temporal dimension, the
ST-M structure demonstrates asynchronous inference and low-power computational characteristics.
As shown in Fig. 4(b) and Fig. 4(d), TA methods require the processing of all temporal information
and rely on full-precision attention representation, whereas our ST-M structure utilizes only the spike
information from adjacent time steps and features spike-driven computation. This ensures the model
can perform inference in a low-power manner.

Combining the FSJA and ST-M modules, we propose a spike-driven MAA mechanism, with its
insertion location detailed in the Appendix. D. The proposed MAA mechanism leverages the FSJA
module to effectively filter noise, and the ST-M module to strengthen the model’s memory for wise
decisions across timeframes. As a result, our biologically inspired MAA significantly improves the
localization accuracy and robustness of our SNN-based back-end network model.
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4 Experiments

In this section, we evaluate our proposed spike-based SSL framework performance on three datasets:
the HRTF [57], Single Words [30], and SLoClas dataset [42]. Moreover, we examine its energy
efficiency and robustness through extensive ablation studies and noise addition experiments on the
SLoClas dataset.

4.1 Comparison with SOTA Models

The HRTF dataset and Single Word are examined utilizing 2-channel audio at a singular frequency,
with a minimum angular resolution of 10◦. In contrast, the SLoClas dataset comprises 4-channel
audio in real-world scenarios, with a higher resolution of 5◦. Consequently, the SLoClas dataset
presents a higher level of challenge and more closely resembles real-world scenarios. We report in
detail the Mean Absolute Error (MAE) and the classification accuracy (Acc.) [7], defined as shows:

MAE(◦) =
1

N

N∑
i=1

|θ̂i − θ|,

Acc.(%) =
1

N

N∑
i=1

(|θ̂i − θ| < η),

(9)

where θ̂i represents the estimated azimuth angle, and θi denotes the ground truth azimuth angle of
the sample i. MAE quantifies the deviation between predicted and true angles, where a lower value
means superior performance. Moreover, Acc quantifies the similarity between predicted angles and
actual output angles. The η is set differently across datasets to align with their specific characteristics:
For the HRTF and Single Word datasets, η is set at 5◦, while for the SLoClas dataset, it is set to 2.5◦.
In this manner, η is rounded to the nearest increment corresponding to the minimum localization
resolution when calculating classification accuracy.

Table 1: Comparison of sound source localization systems.

Dataset Methods Type Param (M) T DoA

MAE(◦) Acc(%)

HRTF
LSO [57] SNN - - - 74.56%

MNTB [57] SNN - - - 97.38%
Our works SNN 1.64M 4 - 99.84%

Single
Word

MSO/LSO [30] SNN - - - 96.30%
Our works SNN 1.64M 4 - 99.63%

SLoClas

GCC-PHAT [41] ANN 4.17M - 4.39◦ 86.94%
SELDnet [1] ANN 1.68M - 1.78◦ 88.24%
EINV2 [4] ANN 1.63M - 0.98◦ 94.64%

SRP-DNN [64] ANN 1.64M - 0.96◦ 94.12%
FN-SSL [59] ANN 1.68M - 0.63◦ 95.40%

MTPC-CSNN [40] SNN 1.61M 4 1.23◦ 93.95%
MTPC-CSNN [40] SNN 1.61M 8 1.02◦ 94.72%
MTPC-RSNN [40] SNN 1.67M 51 1.48◦ 94.30%
Hybrid Coding [7] SNN 1.61M 4.37 0.60◦ 95.61%

Our works SNN 1.64M 4 0.33◦ ± 0.02◦ 96.40% ±0.3%

As shown in Table 1, our model achieves SOTA accuracy among similarly sized models but also
significantly reduces MAE metrics. Specifically, our model achieves an accuracy of 99.84% and
99.63% on the HRTF datasets and Single Words, respectively. Additionally, on the challenging
SLoClas dataset, our model achieves a MAE of 0.33◦ and an accuracy of approximately 96.4%, while
the number of the model parameter is only 1.64M. It represents a nearly 50% improvement in the
MAE metric compared to the current SOTA performance of SNN-based models. The localization
precision of our model is also competitive compared to other recently introduced ANN models.
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4.2 Ablation Study

To assess the efficiency of the proposed RF-PLC method and MAA module, we conduct a series of
ablation studies. Specifically, we compare our ITD extraction approach in the RF-PLC method with
the established FT-based method used in previous work [40]. As depicted in Fig.5(a), our method
achieves an accuracy nearly identical to that of the conventional approaches, with an error rate of
only 1%. Furthermore, prior research has demonstrated that RF neurons exhibit significantly lower
energy consumption compared to FT operations, particularly when implemented on neuromorphic
hardware [17, 18, 45]. These findings validate the effectiveness of our RF-PLC method in achieving
a highly efficient and accurate ITD encoding scheme.

(a) (b)

Figure 5: (a) RF-PLF achieves results similar to FT-ITD, highlighting the benefit of avoiding FT
operations in ITD encoding. (b) Attention mechanism. MAA’s binary attention map effectively filters
noise and avoids energy-intensive MAC-based broadcasting compared to other spiking attention.

The effectiveness of the MAA module is demonstrated in the model’s localization performance. As
shown in Table. 2, both the FSJA module and ST-M structure components individually enhance the
performance of the back-end SSL model, and their combination yields even superior results. In
addition, compared to attention mechanisms such as TA and TCJA, our attention method employs a
fully spike-driven computational paradigm. This characteristic allows our MAA method to maintain
an energy consumption of 9.58uJ, representing an increase of 8.49% compared to the work[40].
Moreover, Fig.5(b) illustrates the binary nature of the MAA attention map. This design effectively
avoids the energy-intensive broadcasting operations typically associated with MAC units. Details on
the energy consumption calculations are provided in Appendix. D and Appendix. E. This capability
substantially improves the model’s robustness, which is discussed in the following section.

Table 2: Ablation study

Methods Spike-Driven Param (M) Power (uJ) DoA

MAE ( ◦) Acc ( % )

Baseline [40] ! 1.61M 8.83 1.23◦ 93.95%

TA [66] % 1.62M 15.37 0.65◦±0.05◦ 93.37% ±1.2%

TCJA [71] % 1.68M 15.34 0.47◦±0.03◦ 93.45% ±1.0%

ST-M ! 1.62M 8.99 0.45◦±0.03◦ 95.67% ±0.5%

FSJA ! 1.63M 9.42 0.49◦±0.02◦ 95.95% ±0.6%

MAA ! 1.64M 9.58 0.33◦±0.02◦ 96.40%±0.3%

4.3 Robustness Experiments

To assess the robustness of our proposed spike-based SSL framework, we evaluate the distribution of
MAE under varying signal-to-noise ratio (SNR) conditions. It is a metric used to measure the level of
noise present in the input signal. It can be defined as follows:
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SNR (dB) = 10 · log10
(
Psignal

Pnoise

)
, (10)

where Psignal represents the power of the signal and Pnoise denotes the power of the noise. A lower
SNR indicates a higher proportion of noise. Specifically, we incorporate noise from the NOISEX-92
database into audio recordings from different microphone channels. Detailed information about the
noise addition process and the experimental setup is described in the Appendix.C.

As shown in Fig.6(a), we visualize the encoding results of the RF-PLC method under various SNR
conditions to better understand the input form of our back-end model. In addition, we also present the
distribution of recognition over 360◦. As shown in Fig.6(b) and Fig.6(c), the MTPC method is more
likely to predict certain angles, especially in terms of information in the noise direction; however, our
method is not significantly affected by noise information. It indicates that our model exhibits higher
stability. As SNR increases, our method demonstrates higher recognition accuracy. This indicates
that our model effectively suppresses noise in specific frequency bands, thereby preventing significant
variations in recognition results due to increased noise. The results provide strong evidence of the
model’s superior generalization and robustness when applied to complex real-world scenarios.

(a) (b) (c)

Figure 6: Performance under varying SNR levels. (a) Impact of SNR on ITD Encoding: at 0 dB, it
is challenging to intuitively discern the direction of the sound source from the encoding results. (b)
and (c) Different distribution of MAE over 360◦ in MTPC [40] and our model. Our model achieves
enhanced noise resistance and improved localization stability.

5 Conclusion

Inspired by the efficiency of biological auditory systems, this work proposes a novel spike-based
SSL framework. The core components are the RF-PLC method and the MAA module. The RF-PLC
method leverages the resonance properties of RF neurons to bypass computationally expensive FT
operations. It utilizes a phase-locking loop and ITD detection neurons to efficiently encode ITD cues
from the audio signal into spike trains. Furthermore, the study incorporates insights from auditory
biology, including frequency preferences and short-term memory characteristics. By designing a fully
spike-driven MAA module, our SNN-based SSL model effectively filters irrelevant environmental
noise in the frequency domain while temporally focusing on specific auditory content. This approach
achieves superior performance, robustness, and interpretability, significantly advancing the field of
neuromorphic SSL research. It establishes a new benchmark for the development of SSL techniques.
Future work will investigate the deployment of this model on neuromorphic hardware platforms.
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A RF Neurons for Energy Efficient FT alternative

Figure 7: RF neurons serve as an energy-efficient alternative to FT, accumulating membrane potential
during silent phases to substitute for FT, and directly mapping phases during spike phases.

Lemma 1. Nyquist Theorem
The Nyquist Theorem is pivotal for the sampling process in converting analog signals to digital
signals. It stipulates that to avoid aliasing, the sampling frequency must be at least twice the maximum
frequency component present in the analog signal. This criterion ensures that the reconstructed digital
signal closely approximates the original analog signal without distortion.

Lemma 2. Fourier Transform (FT)
Consider an audio sequence x = [x1, x2, . . . , xT ] sampled at frequency fs. The Fourier Transform
(FT) facilitates the conversion from time domain to frequency domain, computed as:

F [k] =

N−1∑
n=0

x[n]e−i 2πN nk =

N−1∑
n=0

x[n]

(
cos

(
2π

N
nk

)
− i sin

(
2π

N
nk

))
, (11)

where N is the number of discrete samples used in the FT. The complex vector F [k] quantifies
the spectral components at varying frequencies. Utilizing Lemma 1, these components represent
sinusoidal signals decomposed at frequencies indexed by k, scaled by fs

N . For each component
F [k] = ak + ibk, the corresponding time-domain signal can be described by:

yk(t) =
√
a2k + b2k sin

(
2π

fs
N

kt+ tan−1

(
bk
ak

))
. (12)

Proof: Assume a series of RF neurons, each with a resonant frequency of ω = [−0 ∗ 2π
N ,−1 ∗

2π
N ,−2 ∗ 2π

N , . . . ,−(N − 1) ∗ 2π
N ], initially set to zero. When exposed to a real-time input audio x,

the response of the kth neuron at time t is given by the recursive update:

ZRFk
[t] = x[t] + λeiωk∆tZRFk

[t− 1]

= x[t] + λeiωk∆t(x[t− 1] + λeiωk∆tZRFk
[t− 2])

=

T∑
n=1

λneinωk∆tx[t− n] =

T∑
n=1

λn (cos (nωk∆t)− i sin (nωk∆t))x[t− n].

(13)

This recursive filtering mimics a discrete Fourier transform when λ = 1. Moreover, RF neurons can
be efficiently implemented on neuromorphic hardware like the Loihi2 chip, facilitating low-power
and high-speed computations.
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B Initial Oscillation Peak of RF Neurons as ITD Cue

Lemma 1. Neural Phase Coder
Inspired by observations of specific mechanisms within the auditory and visual cortices [9, 26],
biological evidence are expressed through phase coding found. It can encode the pure tone audio into
precise-timing spike. Regarding the results of the decomposition:

yL = A1 sin

(
2πf1t+ tan−1

(
bkL

akL

))
, yR = A2 sin

(
2πf1t+ tan−1

(
bkR

akR

))
, (14)

yL and yR represent the single-tone sinusoidal signals arriving at the left and right ears. Subsequently,
the first peak time is encoded into spike time as the arrival time of the sound.

tL =
1

2πf

(
π

2
− tan−1

(
bkL

akL

))
, tR =

1

2πf

(
π

2
− tan−1

(
bkR

akR

))
, (15)

where f represents the frequency of the sinusoidal signal. Thus, ITD can be expressed as tL − tR.
Proof: When RF neurons (from both ears) enter the spike stage, their initial states are represented as
akL

+ ibkL
for the left ear and akR

+ ibkR
for the right ear. Here, L indicates the left ear, R denotes

the right ear, and K refers to the RF neuron associated with the intrinsic frequency fk. Subsequently,
the state will decay oscillations over time. To facilitate understanding, we calculate the real and
imaginary parts in a discrete manner:


akL

[t] = akL
[t− 1] cos (2πfk) + bkL

[t− 1] sin (2πfk) ,

bkL
[t] = −akL

[t− 1] sin (2πfk) + bkL
[t− 1] cos (2πfk)),

(16)

With the RF-PLC method we propose, we can directly spike timing acquisition. Specifically, RF
neurons will fire spike at akL

[tnL
] = 0, bkL

[tnL
] = max(bkL

). In the phase space, this state
represented the first peak of time aligns with the neural phase coder:

ϕlocked = tan−1

(
bkL

[tnL
]

akL
[tnL

]

)
=

π

2
, Phase-locking Loop

ITDRF = tnL
− tnR

≈ tL − tR, RF-based ITD encoding

(17)

where tnL
satisfies ϕlocked = ZRF [tnL

] and tnR
satisfies ϕlocked = ZRF [tnR

]. Due to the discrete
form, our ITD encodings are not identical to those in Lemma 1. The error is in the difference between
the audio’s sampling rate and the actual frequency. It results in our inability to accurately obtain the
first peak time.

Specifically, as Lemma 1 demonstrates, to obtain the spike timing for pure tone audio of different
frequencies, the phase coding model requires leveraging Eq.15 to compute the audio’s ITD cues.
However, with the RF-PLC method we propose, it can only iterate according to the audio’s sampling
rate. The difference between them is dependent on the sampling rate fs, which can be represented as
1/fs. For the dataset SLoClas that we tested, its errors is only approximately 1%.

C Experiment Detail

We primarily validated the accuracy and robustness of our proposed method on the SLoClas dataset.
It utilizes a 4-channel microphone array to collect data on RWCP sound scenes to ensure SNR of
40 to 50dB. It is comprised of ten distinct categories of ambient sounds: bells, bottles, buzzers,
cymbals, horns, metal, particles, phones, rings, and whistles. Each category includes approximately
100 instances, providing a diverse and comprehensive set of audio samples.

Additional, to evaluate the robustness of our method, we need to construct source localization
information under various complex scenarios. Specifically, we can introduce different types of
noise into the audio. The noise sounds are sourced from the NOISEX-92 database, which contains
recordings of various types of real-world noise. We add noise audio to each microphone channel to
simulate noise coming from different directions.
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ComplexV ideoi(n) = mici(n) + λnoise(n), i = 1, 2, 3, 4. (18)

In this setup, mici(n), where i = 1, 2, 3, 4, represents the 4-channel signals recorded by the micro-
phone array. ComplexVideoi denotes the multi-channel data with noise. The noise data consists of
randomly selected audio clips from a noise database. λ is the scaling factor used to adjust the audio
to a specific SNR ratio. A smaller SNR indicates a stronger noise presence in the audio which is
more similar to real environment.

Table 3: Experimental configuration of the sound localization task.
Attributes Setup
1. Data preprocessing:
Sampling rate (Hz) 16000
Frame length (ms) 170
Frame stride (ms) 170
RF neurons n 512
Number of Microphones 4

2. RF-PLC setting:
CQT frequency range (Hz) [0, 8800]
τ (ms) 0.0625
Frequency channels N 40
Coincidence detector Nτ 51
Microphone pairs C 6

3. SNN Hyperparameter:
α 0.75
Timestep 4
Epochs 300
Batch size 128
Optimizer Adam
Base learning rate 1e-3
Learning rate decay Cosine
Weight decay 5e-3

D Model Structure

The overall network architecture of our SNN-based SSL model is illustrated in Fig.8, featuring a
comprehensive system design tailored for sound localization. The architecture consists of two main
components: a front-end RF-PLC method and a back-end MAA-based localization decision network.

In the RF-PLC method, we utilize 512 RF neurons with widths ω that increase incrementally from 0
to 8000Hz. These neurons are strategically deployed as an alternative to the traditional FT operation,
optimizing the model for energy efficiency and computational speed. Additionally, we utilize a
cochlear filter bank following the Constant Q Transform (CQT) which is the most commonly used
and easily implemented cochlear filter bank, to extract auditory features of appropriate dimensions.
This encoding approach not only mimics the cochlear filtering process but also enhances the temporal
dynamics of sound processing. Additionally, N detection neurons are engaged to characterize the
ITD with delays ranging from -25τ to 25τ . Based on the audio sample ratio, the value of τ is set at
0.0625 ms. Furthermore, our model utilizes data from four microphones to compute ITDs between
each pair, resulting in six distinct sets of ITD cues. As a result, each 170 ms speech frame is encoded
into X ∈ ZC×N×Nτ , capturing a rich array of spatial and temporal information. Details of these
parameters can be found in Table.3. This setup ensures a detailed and dynamic spatial representation
of auditory scenes.

In the back-end decision network, we propose a fully spike-based model, which is illustrated in Fig. 8.
We will validate our module within the SSL models [7, 40] consisting of convolutional and MLP
layers. To enhance the performance of the SSL model, we augment this basic structure with our MAA
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module. This module is designed to emulate biological auditory processing by focusing on frequency
band preference and short-term memory capabilities. Compared with traditional spatio-temporal
spike attention techniques [65, 71], our module markedly improves the system’s computational
efficiency, as shown in Table. 2. Additionally, to better illustrate the performance of our module, we
present a comparison with various modules. Details of these networks are provided in Table. 4. This
enhancement allows for faster and more accurate sound localization, demonstrating the potential of
our model in real-world applications.

Figure 8: The structure of the Spike-based Neuromorphic Sound Source Localization. It includes an
RF-PLC encoding method and a back-end classification model based on SNNs.

Table 4: Detail Network
Stage Output Size Baseline Baseline + MAA Baseline + others

Stage 1 12× 25× 20
Conv 3× 3, stride 1

BatchNorm
MaxPooling 2× 2, stride 2

Stage 2 24× 12× 10
Conv 3× 3, stride 1

MAA module other AttentionBatchNorm
MaxPooling 2× 2,stride 2

Stage 3 48× 6× 5
Conv 3× 3, stride 1

MAA module other AttentionBatchNorm
MaxPooling 2× 2,stride 2

Classifier 1× 1× 1 360-FC

E Energy Cost

To describe the energy consumption calculations in the ablation experiments, we introduce a theoreti-
cal energy estimation method for the proposed attention mechanism. Compared to the ANN model,
the energy consumption calculation of the spiking version requires information on the timesteps (T)
and spike firing rates (R). The spike firing rate is defined as the proportion of non-zero elements in
the spike tensor. Since our proposed MAA method is spike-driven, we only need to evaluate the
model’s FLOPs, along with T and R, to estimate the theoretical energy consumption of our methods.

In ANN [35], the FLOPs for the n-th Conv layer are expressed as:

Conv = (kn)
2 · hn · wn · cn−1 · cn, (19)
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where kn denotes the kernel size, (hn, wn) specifies the dimensions of the output feature map, and
cn−1 and cn represent the numbers of input and output channels, respectively. The FLOPs of the
m-th MLP layer in ANNs are:

MLP = im · om, (20)
where im and om represent the input and output dimensions of the m-th MLP layer.

Refer on previous research [24, 68], we assume that all computational data are implemented using
45nm technology for 32-bit floating-point calculations, with EMAC = 4.6pJ and EAC = 0.9 pJ.

In Table 3, we further present the details of different models. Referring to [66, 71], the attention
matrix is derived using the sigmoid function, which results in the network input for the subsequent
layer being non-spiking. Consequently, during the energy consumption calculation, this component
is computed using the energy consumption of MAC operations, leading to a significant increase in
energy consumption within the network. Due to the unique properties of the MAA attention matrix,
our method does not introduce additional floating-point operations.

F Limitation

The limitations of this study include the lack of deployment on edge devices. Furthermore, the limited
availability of datasets for SSL tasks restricts the validation of our model across a broader array
of datasets. Future research will seek to overcome these challenges by amassing a more extensive
collection of datasets and implementing our model on edge devices to more effectively ascertain the
efficacy of our approach. The experimental results reported herein are reproducible, with detailed
descriptions of the model architectures and hyperparameter configurations available in Appendix.
Additionally, our code will be made available on subsequent after review.

G Supplementary Ablation Experiments

To further validate that the enhancement in our model’s performance is indeed due to the effective
implementation of band selection and short-term attention mechanisms, rather than an increased
parameter count. We designed a Conv2d layer module with the same amount of parameters, ensuring
all other parameters remained consistent. Specially,

(a) (b) (c)

Figure 9: Supplemental ablation experiments. In these experiments, the Local module is configured
with the same number of parameters as our proposed models to ensure a fair comparison: (a) A
comparison of MAE.(◦) and Acc.(%) between our proposed MAA and LocalMAA. (b) A comparison
of the MAE between our proposed ST-M and LocalST-M. (c) A comparison of the MAE between
FSJA and LocalFSJA.

As illustrated in Fig. 9, LocalMAA refers to a network with the same number of parameters as our
proposed MAA. It can be observed that our MAA method achieves a lower MAE(◦) and higher
Acc(%). Furthermore, we compared the MAE of different modules, finding that our frequency
band preference and short-term memory structure significantly enhance the network’s localization
performance.
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NeurIPS Paper Checklist
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction clearly describe our contribution, the algorithm,
and the experimental results.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
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much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We mentioned our limitation in Appendix. F
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
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and how they scale with dataset size.
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address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We mentioned our Theory Assumptions and Proofs in Section 3.1 and 3.2
and Appendix. A and B, respectively.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: In the Appendix. C and D, we provide a detailed description of our model
architecture and present all the training details, including dataset processing methods and
hyperparameter settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We mentioned our data in the Appendix. D and code in supplemental material,
respectively.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the full details in Appendix. C and D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We mentioned using random seeds to repeat at least 5 times to calculate the
average in Table. 1 and 2.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We mentioned in the Appendix.C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: This paper strictly adheres to the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This work is foundational research and not tied to particular applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, the paper properly credits the creators or original owners of assets
(e.g.,code, data, models) and explicitly mentions and respects the relevant licenses and terms
of use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are introduced in this article.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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