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Abstract

In this work, we investigate the interplay be-
tween memorization and learning in the context of
stochastic convex optimization (SCO). We define
memorization via the information a learning algo-
rithm reveals about its training data points. We
then quantify this information using the frame-
work of conditional mutual information (CMI)
proposed by Steinke and Zakynthinou [SZ20].
Our main result is a precise characterization of
the tradeoff between the accuracy of a learning
algorithm and its CMI, answering an open ques-
tion posed by Livni [Liv23]. We show that, in the
L2 Lipschitz–bounded setting and under strong
convexity, every learner with an excess error ε
has CMI bounded below by Ω(1/ε2) and Ω(1/ε),
respectively. We further demonstrate the essen-
tial role of memorization in learning problems
in SCO by designing an adversary capable of ac-
curately identifying a significant fraction of the
training samples in specific SCO problems. Fi-
nally, we enumerate several implications of our re-
sults, such as a limitation of generalization bounds
based on CMI and the incompressibility of sam-
ples in SCO problems.

1. Introduction
Despite intense study, the relationship between generaliza-
tion and memorization in machine learning has yet to be
fully characterized. Classically, ideal learning algorithms
would primarily extract relevant information from their train-
ing data, avoiding memorization of irrelevant information.
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This intuition is supported by theoretical work demonstrat-
ing the benefits of limited memorization for strong general-
ization [LW86; RZ15; RZ16; XR17; BMNSY18; SZ20].

This intuition, however, is challenged by the success of mod-
ern overparameterized deep neural networks (DNNs). These
models often achieve high test accuracy despite memorizing
a significant number of training data (see, e.g., [ZBHRV17;
SSSS17; CLEKS19; FZ20; CIJLT+22]). Recent studies
suggest that memorization plays a more complex role in
generalization than previously thought: memorization might
even be necessary for good generalization [Fel20; FZ20;
BBFST21].

In this work, we investigate the interplay between general-
ization and memorization in the context of stochastic convex
optimization (SCO; [SSSS09]). A (Euclidean) SCO prob-
lem is defined by a triple (Θ, Z, f), where Θ ⊆ Rd is a
convex subset and f : Θ × Z → R is convex in its first
argument for every fixed second argument. In such an SCO
problem, a learner receives a finite sample of data points
in the dataspace, Z , presumed to be drawn i.i.d. from an
unknown data distribution, D. The goal of the learner is
to find an approximate minimizer of the population risk
FD(θ) ≜ EZ∼D [f(θ, Z)].

In recent years, SCO has been shown to serve as a useful
theoretical model for understanding generalization in mod-
ern machine learning [Fel16; DFKL20; ACKL21; AKL21;
KLMS22]. The importance of SCO can be traced to a
number of factors, including: (1) it is suitable for study-
ing gradient-based optimization algorithms, which are the
workhorse behind state-of-the-art machine learning algo-
rithms; and (2) while arbitrary empirical risk minimizers
(ERMs) require sample complexity that scales with the prob-
lem dimension [Fel16; CLY23], carefully designed algo-
rithms can achieve optimal generalization with sample com-
plexity independent of dimension [BE02; SSSS09]. This
property aligns with our goal of studying generalization in
overparameterized settings such as DNNs where first-order
methods output models that generalize well, despite the fact
that there exist ERMs that perform poorly [ZBHRV17].

To shed light on the role of memorization in SCO, we an-
alyze the information-theoretic properties of ε-learners for
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SCO problems: we say a learning algorithm A = {An}n≥1
is an ε-learner of (Θ, Z, f) if for sufficiently large n, for ev-
ery data distribution D, FD(An(Sn))−minθ∈Θ FD(θ) ≤ ε
with high probability over the draws of the training set
Sn ∼ D⊗n and the randomness of A. The current paper
revolves around the following fundamental question: How
much information must an ε-learner reveal about their train-
ing data?

To address this question, we study the mutual information
between (various summaries of) the learner’s outputs and
the training set, possibly conditional on other quantities.
Early work along these lines, due to Xu and Raginsky
[XR17] (see also foundational work by [RZ15; RZ16] and
[NHDKR19, App. C]) provided information-theoretic gen-
eralization bounds based on the mutual information between
the full training sample and the output hypothesis (the so-
called input–output mutual information, or IOMI). Recently,
Livni [Liv23] demonstrated a fundamental lowerbound on
the IOMI ε-learners in the context of SCO: for every algo-
rithm, its IOMI scales with the dimension, d. As to whether
studying IOMI sheds light on memorization, there is an
important caveat regarding [Liv23]: bits of information be-
tween the sample and the model do not distinguish between
the number of bits per-sample and the number of memorized
samples. In particular, the work of Livni [Liv23] does not
rule out the sufficiency of memorizing a single example
which overall has O(d) entropy.

To remedy this, our work introduces a refined perspective
on capturing memorization, focusing on conditional mutual
information (CMI) as a notion of information complexity
[SZ20]. CMI quantifies the amount of information that the
learner’s output reveals about its training sample, condi-
tioned on a “super sample”, from which the training sample
is taken. (Formal definitions are provided in Section 3.)
Contrasted with the bound in [XR17], in this setup, the
memorization of a single example provides at most one
bit of information. In other words, the scale of the CMI
is more instructive on the number of memorized samples.
Can we use CMI to fully characterize the interplay between
memorization and learning in SCO?

1.1. Contributions

Our main result is a precise characterization of the tradeoff
between the accuracy of a learning algorithm and its CMI:

Key result: CMI–Accuracy Tradeoff for ε-learners.

We show that in the general SCO setup as well as under fur-
ther structural assumption of strong convexity, there exists a
tradeoff between the accuracy of an ε-learner and its CMI:
Surprisingly, to achieve small excess error, a learner must
carry a large amount of CMI, scaling with the optimal sam-
ple size. This result completely answers an open question

by Livni [Liv23]. More precisely, we study CMI of learners
for two important classes of SCO problems:

• Lipschitz bounded SCO: We construct an SCO problem
such that, for every ε-learner, there exists a distribution
such that the CMI of the learner is Ω(1/ε2), despite the
already-established optimal sample complexity O(1/ε2).
We complement this result with a matching upperbound.
We also show that this result is true for both proper as
well as improper (unconstrained) learning algorithms.

• Strong Convexity: Under further structural assumption of
strong convexity, we establish an Ω(1/ε) lower bound on
CMI of every ε-learner which we show is also tight.

Our proof techniques are inspired from the privacy litera-
ture and build on so-called fingerprinting lemmas [BUV14;
Ste16; KLSU19]. Our key results and proof ideas have
various interesting implications:

Limitation of the CMI Generalization Bound for SCOs.
Our lower bounds highlight that CMI-based generalization
bounds for SCO do not fully explain the optimal excess
error. For algorithms with optimal sample complexity, the
established CMI lower bound implies that standard CMI
generalization guarantees are vacuous.

In more detail, Steinke and Zakynthinou [SZ20] show that
the generalization error of any learner can be bounded by

generalization gap ≤
√

CMID(An)
n

.

(See Section 3 for a more formal statement.) Plugging our
lower bound on CMI into the above equation we obtain an

upper bound on the generalization gap of O
(√

1
ε2·n

)
which

is strictly larger than the true O(ε) error. In particular, for
the optimal choice of n, we obtain a vacuous generalization
bound of order Ω(1), even though the algorithm perfectly
learns. Similarly, under the assumption of strong convexity,
one can learn with sample complexity of O(1/ε). Thus,
again we obtain that the CMI bound may be order of Ω(1),
even though the learner is able to learn.

Necessity of Memorization. Inspired by CMI and mem-
bership inference [CCNST+22], we have developed a frame-
work to quantify memorization in SCO: informally, a point
is considered memorized if adversary can guess correctly if
this point appeared in the training set with a high confidence.
Building on our construction for CMI, we design an adver-
sary capable of correctly identifying a significant fraction
of the training samples in certain SCO problems, implying
that memorization is a necessary component in this context.
A similar point appeared in [FV19; Fel20; BBFST21].
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To be more precise, we consider a contestant and an adver-
sary. The contestant gets to train a model on training set
not revealed to the adversary. The contestant then shows the
adversary a sample either from the training set, or a freshly
drawn sample (not seen during training time). A point is
considered memorized if the adversary correctly identifies
whether the shown sample appeared during training time
(while refraining from accusing freshly drawn samples).

We show that our approach for lower bounding CMI lets
us design an adversary with the following guarantee: there
exists an SCO problem such that for every ε-learner, there
exists a distribution such that the adversary can distinguish
Ω(1/ε2) of the training samples with a high confidence. We
also establish a similar result under an additional assumption
of strong convexity, showing that there exists an adversary
that can distinguish Ω(1/ε) of the training samples. Notice,
that in both cases, the size of sample to be memorized
scales linearly with the sample complexity. In other words,
Any sample-efficient learner needs to memorize a constant
fraction of its training set.

Incompressibility of Samples in SCOs. Our results rule
out the existence of constant-sized (dimension-independent)
sample compression schemes for SCO. Many learning algo-
rithms, like support vector machines (SVMs), generate their
output using only a small subset of training examples— for
SVMs such a subset is known as support vectors. Sample
compression schemes, introduced by Littlestone and War-
muth [LW86], provide a precise characterization of this
algorithmic property. Since the optimal sample complexity
in SCO is dimension-independent, a natural question to ask
is whether we can construct a sample compression scheme
of constant size for SCOs. (Here constant compression
size refers to a dimension-independent quantity.) Using the
results connecting CMI and sample compression scheme
in [SZ20], we show that such a construction is impossible.
This finding is in stark a contrast with binary classification
[MY16].

Individual-Sample variant of CMI. We show that our
techniques extend to lower-bounding the individual sample
variant of CMI proposed in [HNKRD20; RBTS20; ZTL22].

1.2. Organization

The rest of this paper is is structured as follows. In Section 2
we discuss the related work. After providing the necessary
preliminaries in Section 3, we present an overview of the
main results in Section 4. Then, in Section 5, we discuss
several implications of our main results. Finally, in Section 6
and Section 7, we present the key steps of the proofs of the
main results.

2. Related Work
Information-Theoretic Measures of Generalization. In
recent years, there has been a flurry of interest in the use of
information-theoretic quantities for characterizing the ex-
pected generalization error of learning algorithms. For an ex-
cellent overview of recent advances see [Alq21; HDGR23].
Here, we discuss the work on worst-case information-
theoretic measures of learning algorithms. The initial focus
of this line of work [RZ15; RZ16; XR17] was based on
input–output mutual information (IOMI) of an algorithm.
Unfortunately, IOMI does not yield a useful notion of infor-
mation complexity for learning in many key settings. For
instance, prior work, in the settings of binary classification
[BMNSY18; NSY18; LM20] and SCO [Liv23] highlights
severe limitations of the IOMI framework: for every good
learning algorithm in binary classification (SCO), there al-
ways exists a learning problem in which IOMI is unbounded
(dimension-dependent). The notion of CMI [SZ20; GSZ21;
HRVG21; HDMR21; HMRK22; HD22] remedies some of
the above issues, at least in the classification setting. Despite
CMI addressing some of the limitations of IOMI, Haghifam,
Rodriguez-Galvez, Thobaben, Skoglund, Roy, and Dziu-
gaite [HRTSR+23] show that CMI cannot explain the mini-
maxity of gradient descent in SCO. Our work significantly
extends their result: we show that the same limitations hold
for every ε-learner algorithm with a dimension-independent
sample complexity. Notice that gradient descent with a
proper learning rate [BFGT20; ACKL21] is one of the ε-
learner algorithms that can have dimension-independent
sample complexity. See Remark 5.3 for a detailed discus-
sion. A recent work of Wang and Mao [WM23] proposes
a new measure similar to CMI refereed to as hypotheses-
conditioned CMI and shows that it is related to the uniform
stability [BE02]. However, hypotheses-conditioned CMI is
not an appropriate measure for studying memorization in
SCOs since its conditioning term is different.

Memorization. [FZ20; Fel20; BBFST21; BBS22] theo-
retically study the necessity of memorization in learning.
The measure of memorization in our work is different from
the prior work. Also, the mentioned work does not study
the question of memorization in the context of SCOs. Most
similar to our work is [BBFST21] where the authors study
memorization using IOMI. Memorization has been demon-
strated to happen also empirically in state-of-the-art algo-
rithms [CLEKS19; CTWJH+21; HVYSI22; CCNST+22].
In contrast with empirical studies, the aim of a theoretical
investigation is to study its role, and whether it is necessary
or a byproduct of current practices.

Fingerprinting Codes and Privacy Attacks. The key
idea behind our lower bound proof builds on privacy attacks
developed in differential privacy known as fingerprinting
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codes [BS95; Tar08; BUV14; Ste16; KLSU19]. Dwork,
Smith, Steinke, Ullman, and Vadhan [DSSUV15] consider
the problem of designing privacy attacks on the mean es-
timators that expose a fraction of the training data. They
propose an adversary and show that every algorithm that
precisely estimates mean in ℓ∞ leaks the membership of the
samples in the training set. The ℓ∞ hypercube cannot be
learned in a dimension independent sample size, therefore,
to obtain the separation we desire, we can only assume a
weaker ℓ2 approximation, which leads to further challenges,
especially in the unconstrained non-strongly convex case
which is the hardest.

3. Preliminaries
3.1. Stochastic Convex Optimization (SCO)

A stochastic convex optimization (SCO) problem is a triple
(Θ, Z, f), where Θ ⊆ Rd is a convex set and f(·, z) :
Θ → R is a convex function for every z ∈ Z . We re-
fer to Θ as the parameter space, to its elements as pa-
rameters, to elements of Z as data, and to f as the loss
function. Informally, given an SCO problem (Θ, Z, f),
the goal is to find an approximate minimizer of the popu-
lation risk FD(θ) ≜ EZ∼D[f(θ, Z)], given an i.i.d. sam-
ple Sn = {Z1, . . . , Zn} drawn from an unknown distri-
bution D on Z , denoted by D ∈ M1(Z). The empiri-
cal risk of θ ∈ Θ on a sample Sn ∈ Zn is F̂Sn

(θ) :=
1
n

∑
i∈[n] f(θ, Zi), where [n] denotes the set {1, . . . , n}.

A learning algorithm is a sequence A = (An)n≥1 such
that, for every positive integer n, An maps Sn to a (poten-
tially random) element θ̂ = An(Sn) in Rd. The expected
generalization error of An under D is EGED(An) =
E[FD(A(Sn)) − F̂Sn(A(Sn))]. Also, the expected excess
error An under D is E[FD(A(Sn))] − minθ∈Θ FD(θ). A
learning algorithm is called proper if its output, for all pos-
sible training sets satisfies An(Sn) ∈ Θ. Otherwise, it is
called improper.
Definition 3.1. (ε-learner for SCO) Fix an SCO problem
(Θ, Z, f) and ε > 0. We say A = {An}n≥1 ε-learns
(Θ, Z, f) with sample complexity of N : R × R → N if
the following holds: for every δ ∈ (0, 1], given number of
samples n ≥ N(ε, δ), we have that for every D ∈ M1(Z),
with probability at least 1 − δ over Sn ∼ D⊗n and internal
randomness of A,

FD(An(Sn)) − min
θ∈Θ

FD(θ) ≤ ε.

We also refer to N(·, ·) as sample complexity of A.

We consider two important subclasses of SCO problems that
impose different conditions over the loss function and the
parameter space [SB14; SSSS09].

1. Convex-Lipschitz-Bounded (CLB): SCO with convex

and L-Lipschitz loss function defined over a bounded
domain with diameter R, namely, for any θ ∈ Θ we
have ∥θ∥ ≤ R. We say a loss function is L-Lipschitz
if and only if ∀z ∈ Z , ∀θ1, θ2 ∈ Θ : |f(θ1, z) −
f(θ2, z)| ≤ L ∥θ2 − θ1∥. We refer to this subclass as
CL,R.

2. SCO with L-Lipschitz and λ-strongly convex loss
(CSL): We say a loss function is λ-strongly convex
for all θ1, θ2 ∈ Θ and z ∈ Z we have f(θ2, z) ≥
f(θ1, z) + ⟨∂f(θ1, z), θ2 − θ1⟩ + λ

2 ∥θ2 − θ1∥2 where
∂f(θ1, z) is the subgradient of f(·, z) at w. The def-
inition of Lipschitzness is the same as in the CLB
subclass. We refer to this subclass as CL,λ.

3.2. Measure of Information Complexity

Next, we formally introduce the framework proposed by
Steinke and Zakynthinou [SZ20] which aims to quantify the
information complexity of a learning algorithm.

Definition 3.2. Let D be a data distribution, and A =
(An)n≥1 a learning algorithm. For every n ∈ N, let Z̃ZZ =
(Zi,j)i∈{0,1},j∈[n] be an array of i.i.d samples drawn from D,
and U = (U1, . . . , Un) ∼ Ber

( 1
2
)⊗n

, where U and Z̃ZZ are
independent. Define a training set Sn = (ZUi,i)i∈[n]. The
conditional mutual information (CMI) of An with respect
to D is

CMID(An) ≜ I(An(Sn); U |Z̃ZZ).

4. Main Results
In this section we formally state our main results. First in
Section 4.1, we give an overview of CMI-accuracy tradeoff
for ε-learners. Then, in Section 4.2, we precisely define the
memorization game and present our results on the necessity
of memorization.

4.1. CMI-Accuracy Tradeoff

We begin with a lower bound on the CMI for the CLB
subclass.

Theorem 4.1. There exists a loss function f(·, z) that is
O(1)-Lipschitz, for every z such that: For every ε ≤ 1 and
for every algorithm A = {An}n∈N that ε-learns with the
sample complexity N(·, ·) the following holds: for every
δ ≤ ε, n ≥ N(ε, δ), and d ≥ Ω(n4 log(n)), there exists
a data distribution D ∈ M1(Z) such that CMID(An) =
Ω
( 1

ε2

)
.

In particular, we obtain that for every algorithm, in suf-
ficiently large dimension, there exists a problem instance
where the CMI-generalization bound in [SZ20] becomes
vacuous for every algorithm with sample complexity n =
O(1/ε2).
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Notice that the bound above is tight, namely, there ex-
ists an ε-learner with CMI at most O(1/ε2). Consider
a base algorithm with the sample complexity N(ε, δ) =
O
(
log (1/δ) /ε2) (e.g. regularized ERM [BE02] or sta-

bilized Gradient Descent [BFGT20]). Then, given n ≥
Ω
(
log (1/δ) /ε2), we may consider an algorithm that sub-

samples O(log (1/δ) /ε2) examples and feed it into the base
algorithm. By the definition of the CMI, it is bounded by
the size of the subsample used for learning. This argument
shows that there exists an algorithm with CMID(An) =
O(1/ε2). Formal statement of the described upperbound
appears in Theorem 6.5.

Under further structural assumptions, though, the sample
complexity in SCO can be improved. It is a question then
if CMI bounds can also be further tightened under such
structural assumptions such as, for example strong convexity.
Our next result shows that this is indeed the case:

Theorem 4.2. There exists a function f(·, z) that is O(1)-
Lipschitz, and O(1)-strongly convex, for every z such that:
For every ε < 1/24 and δ < 1/48 and for every ε-learner
(A = {An}n∈N), with sample complexity N(·, ·) the fol-
lowing holds: for every n ≥ N(ε, δ), δ < O(1/n2),
and d ≥ O(n4 log(n)), there exists a data distribution
D ∈ M1(Z) such that CMID(An) ≥ Ω

( 1
ε

)
.

As in the general case, the above bound is tight. As dis-
cussed in [SSSS09], any ERM is stable, hence generalizes
over a strongly convex objective with sample complexity of
N(ε, δ) = O(log(1/δ)/ε). Therefore, as before, we obtain
that the above bound is tight for this setup. Formal statement
of the upperbound appears in Theorem 7.4.

We finish this section by introducing a memorization game
that helps us formalize in what sense a learner must memo-
rize the data in SCO.

4.2. Memorization Game

Intuitively, we can think of CMI as measuring the number of
examples we can identify from the training set by observing
the model. However, formally there is a gap between this
interpretation and the definition of CMI. For example, one
could think of a learner that spreads the information by
using many samples, where we have that CMID(An) ≥
Ω(1/ε2), but for each specified example, the information
over Ui is small (see Definition 3.2.). In other words, there
is a formal gap between large CMI and intuitive notions
of memorization. In this subsection, we aim to close this
gap by showing that, in fact, this is not the case, and the
information the learner carries on U can be used to actually
identify examples from the training set. The proofs will be
appeared in Appendix F.

Definition 4.3 (Recall Game for i-th example). Let A =
{An}n≥1 be a learning algorithm, Sn = (Z1, . . . , Zn) ∼

D⊗n be a training set, and θ̂ = An(Sn). Let Q : Rd × Z ×
M1(Z) → {0, 1} be an adversary. Consider the following
game. For i ∈ [n], we sample a fresh data point Z̃i ∼ D,
independent of θ̂ and Zi. Let Z1,i = Zi and Z0,i = Z̃i.
Then, we flip a fair coin bi ∼ Unif({0, 1}). Finally, the
adversary outputs b̂i ≜ Q

(
θ̂, Zbi,i, D

)
.

The next definition formalizes the measures used for evalu-
ating an adversary.

Definition 4.4 (soundness and recall). Consider the setup
described in Definition 4.3. Assume that the adversary plays
the game for each of the data points in the training set, i.e.,
n rounds. Then,

1. We say the adversary is ξ-sound if
P
(

∃i ∈ [n] :Q
(

θ̂, Z0,i, D
)

= 1
)

≤ ξ where
ξ ∈ [0, 1] is a constant.

2. We say the adversary certifies the recall of m samples
if P

(∑n
i=1 Q

(
θ̂, Z1,i, D

)
≥ m

)
≥ 1/3.

Intuitively, soundness condition implies that if the adversary
identifies a sample as part of the training set, its prediction
needs to be accurate. Then, the recall condition makes sure
the adversary can identify many training points, which is
quantified by m. Next, we present the main results:

Theorem 4.5. Fix ξ ∈ (0, 1]. There exists a SCO problem
with O(1) convex Lipschitz loss defined over the ball of
radius one in Rd, and there exists an efficient adversary
such that the following is true. For every ε < 1, δ < ε, and
for every ε-learner (A), with sample complexity N(ε, δ) =
Θ(log(1/δ)/ε2) the following holds: for n = N(ε, δ) and
d ≥ O(n4 log(n/ξ)), there exists a data distribution D ∈
M1(Z) such that the adversary is ξ-sound and certifies a
recall of Ω(1/ε2) samples.

Theorem 4.6. Fix ξ ∈ (0, 1]. There exists a SCO problem
with O(1) strongly convex and O(1) Lipschitz loss, and
there exists an efficient adversary such that the following is
true. For every ε < 1/24, δ < 1/48, and for every ε-learner
(A), with sample complexity N the following holds: for ev-
ery n ≥ N(ε, δ), δ < O(1/n2), and d ≥ O(n4 log(n/ξ)),
there exists a data distribution D ∈ M1(Z) such that the
adversary is ξ-sound and certifies a recall of Ω(1/ε) sam-
ples.

Remark 4.7. Notice that the adversary only requires access
to the the output of the algorithm. Moreover, in Defini-
tion 4.3, we assume that the adversary has access to the
data distribution. This assumption is only for convenience
and can be easily relaxed by assuming the adversary has a
constant number of fresh samples from the unknown data
distribution. As can be seen in the proof, the adversary only
requires an estimate of µ = EZ∼D[Z]. ◁
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5. Implications
5.1. Limitation of CMI-Based Generalization Bounds

for SCO

CMI is proposed by Steinke and Zakynthinou [SZ20] as
an information-theoretic measure for studying the gener-
alization properties of learning algorithms. An important
question regarding CMI framework is that for which learn-
ing problems and learning algorithms is the CMI framework
expressive enough to accurately estimate the optimal worst-
case generalization error? This question has been studied
extensively for the the setting of binary classification and
0–1 valued loss. In [SZ20; GSZ21; HDMR21; HRVG21;
HD22], the authors show that CMI framework can be used
to establish optimal worst-case excess error bounds in the
realizable setting. Despite these successful applications,
much less is known about the optimality or limitations of
CMI framework beyond the setting of binary classification
and 0–1 valued loss. In this section, our main result is
that for every learning algorithm for SCO with an optimal
sample complexity, the generalization bound using CMI
framework is vacuous. First, we start by quoting a result
from [HRTSR+23] which extends the generalization bounds
based on CMI to SCO problems.

Theorem 5.1 ([HRTSR+23]). Let n ∈ N, D ∈ M1(Z)
be a data distribution, and S ∼ D⊗n. Consider an SCO
problem (f, Θ, Z) ∈ CL,R. Then, for every learning al-
gorithm An such that An(Sn) ∈ Θ a.s., EGED(An) ≤
LR
√

8CMID(An)/n.

Consider an SCO problem (Θ, Z, f) ∈ CL,R. To control the
excess population error for an algorithm, a common strategy
is bounding it using generalization and optimization error:

E [FD(An(Sn))] − min
θ∈Θ

FD(θ)

≤ EGED(An) + E
[
F̂Sn(An(Sn)) − min

θ∈Θ
F̂Sn(θ)

]
.

For a proof see [HRTSR+23; BFGT20]. Since we are inter-
ested in controlling the EGED(An) using CMI, we can use
Theorem 5.1 to further upper-bound the excess error as

E [FD(An(Sn))] − min
θ∈Θ

FD(θ)

≤ LR

√
8CMID(An)

n
+ E

[
F̂Sn

(An(Sn)) − min
θ∈Θ

F̂Sn
(θ)
]
.

(1)
It has been known for every learning algorithm that ε-learn
the subclass CL,R of SCOs, the optimal sample complexity

is Θ
((

LR
ε

)2
)

[SSSS09]. A natural question to ask is: Can
the excess error decomposition using CMI accurately cap-
ture the worst-case excess error of optimal algorithms for
SCOs? Our next result provides a negative answer to this
question.

Theorem 5.2. For every L ∈ R and R ∈ R, there exists
an SCO problem (Θ, Z, f) ∈ CL,R such that the follow-
ing holds: for every learning algorithm A = {An}n∈N
with sample complexity N : R → N such that for every
ε > 0, N(ε, δ) = Θ̃

((
LR
ε

)2
)

, there exists a data distribu-

tion such that LR
√

8CMID(An)/n = Θ (LR), while the
excess error is at most ε.

Remark 5.3. In [HRTSR+23], the authors show that for a
particular algorithm of Gradient Descent (GD) there exists
a distribution such that, the upperbound based on CMI is
vacuous. With the correct choice of learning rate GD can,
with an optimal sample complexity, learn the subclass CLB
of SCOs. Notice that our result in Theorem 5.2 signifi-
cantly extends the limitations proved in [HRTSR+23], by
showing that for every learning algorithm with an optimal
sample complexity, the generalization bound based on CMI
is vacuous. ◁

5.2. Non-Existence of Sample Compression Schemes

Many learning algorithms share the property that their out-
put is constructed using a small subset of the training exam-
ple. For example, in support vector machines, only the set of
support vectors is needed to construct the separating hyper-
plane in the realizable setting. Sample compression schemes,
proposed by Littlestone and Warmuth [LW86], provide a for-
mal meaning for this algorithmic property. Formally, we say
a learning algorithm An is a sample compression scheme
of size k ∈ N if there exists a pair (κ, ρ) of maps such that,
for all samples s = (zi)n

i=1 of size n ≥ k, the map κ com-
presses the sample into a length-k subsequence κ(s) ⊆ s
which the map ρ uses to reconstruct the output of the al-
gorithm, i.e., An(s) = ρ(κ(s)) . Steinke and Zakynthinou
prove that for n ≥ k, if An is a sample compression scheme
(κ, ρ) of size k. Then for every D, CMID(An) ≤ k log(2n)
where An(·) = ρ(κ(·)).

A natural question to ask is: Can we learn CLB or CSL
subclasses of SCOs using sample compression schemes? In
particular, we are interested in sample compression schemes
in which k is independent of the dimension and n so that the
algorithm has a dimension-independent sample complexity.
Using the results presented in the previous sections, we
provide a negative answer.

Corollary 5.4. Let P(d)
cvx be the problem instance described

in Section 6.1.1. For every ε ≤ 1 and δ ≤ ε and for every
algorithm A = {An}n∈N which is a sample compression
of size k that ε-learns P(d)

cvx with the sample complexity
Θ
(
1/ε2) the following holds: for every n = Θ(1/ε2), and

d ≥ Ω(n4 log(n)), there exists a data distribution D ∈
M1(Z) such that k ≥ Ω(n).

Corollary 5.5. Let P(d)
scvx be the problem instance described

in Section 7.1.1. For every ε < 1/24 and δ < 1/48 and

6
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for every algorithm A = {An}n∈N which is a sample com-
pression of size k that ε-learns P(d)

scvx with the sample com-
plexity Θ (1/ε) the following holds: for every n = Θ(1/ε),
δ < O(1/n2), and d ≥ Ω(n4 log(n)), there exists a data
distribution D ∈ M1(Z) such that k ≥ Ω(n).

5.3. Extensions to Individual Sample CMI

One drawback of CMI is for that many natural deterministic
algorithm it can be Ω(n). This limitation can be attributed
to the conditioning term in CMI which tends to reveal too
much information. One notable approach to address this
issue is the development of individual sample CMI (ISCMI)
in [RBTS20; ZTL22]. Consider the structure introduced in
Definition 3.2. Then, define

ISCMID(An) ≜
n∑

i=1
I(An(S); Ui|Z0,i, Z1,i)

In [RBTS20; ZTL22], it has been shown for every learn-
ing algorithm and every data distribution ISCMID(An) ≤
CMID(An). Moreover, similar to CMI, small ISCMI
implies generalization. Therefore, it is natural to ask:
Can we circumvent the lowerbounds proved for CMI by
measuring the information complexity of ε-learners using
ISCMID(An)? Our main result in this part provides a nega-
tive answer to this question. We show that exactly the same
lowerbound stated in Theorem 4.1 and Theorem 4.2 hold
for ISCMI. The proof is appeared on Appendix G.

Corollary 5.6. Let P(d)
cvx be the problem instance described

in Section 6.1.1. For every ε ≤ 1 and δ ≤ ε and for
every proper algorithm A = {An}n∈N that ε-learns P(d)

cvx

with the sample complexity N(·, ·) the following holds: for
every n ≥ N(ε, δ), and d ≥ Ω(n4 log(n)), there exists a
data distribution D ∈ M1(Z) such that ISCMID(An) ≥
Ω
( 1

ε2

)
.

Corollary 5.7. Let P(d)
scvx be the problem instance described

in Section 7.1.1. For every ε < 1/24 and δ < 1/48 and
for ε-learns A for P(d)

scvx with the sample complexity N(·, ·)
the following holds: for every n ≥ N(ε, δ), δ < O(1/n2),
and d ≥ O(n4 log(n)), there exists a data distribution D ∈
M1(Z) such that ISCMID(An) ≥ Ω

( 1
ε

)
6. Characterization of CMI for the CLB SCOs
In this section and Section 7, we discuss the key steps of the
proof of CMI lowerbounds. We begin with a characteriza-
tion of CMI of ε-learners for CLB subclasses of SCOs (All
the proofs appear in Appendix C).

For the general case that we do not impose any condition on
the output of the learner, the proof turns out to be slightly
more subtle. In particular, there is a technical difference
between proving the result for improper (unconstrained)

learners and proper (constrained) learners. This issue does
not appear in the strongly convex case as discussed in Re-
mark 7.2. Therefore, we begin by first proving an interme-
diate result for proper learners.
Remark 6.1. Notice that by simply scaling the problem, we
can reduce the lowerbound for CL,R with an arbitrary L, R
to C1,1. Therefore, for the rest of this section, we focus on
C1,1. Also, without loss of generality, we can assume the
parameter space is given by Bd(1). ◁

6.1. Lower Bound for Proper Learners

6.1.1. CONSTRUCTION OF A HARD PROBLEM INSTANCE
FOR PROPER LEARNERS

Let d ∈ N. Let Z = {±1/
√

d}d and Θ = Bd(1). Define
the loss function f : Θ × Z → R as f(θ, z) = − ⟨θ, z⟩. It
is immediate to see that f(·, z) is 1-Lipschitz. Let P(d)

cvx ≜
(Θ, Z, f) be the described SCO problem.

6.1.2. PROPERTIES OF ε-LEARNERS

In this section, we prove several properties that are shared
between every ε-learners for P(d)

cvx .

Lemma 6.2. Fix ε > 0. Let A be an ε-learner for P(d)
cvx

with the sample complexity of N(·, ·). Then, for every δ > 0,
n ≥ N(ε, δ) and every D ∈ M1(Z), with probability at

least 1−δ, we have ∥µ∥−ε ≤
〈

θ̂, µ
〉

, and, ∥µ∥−ε−2δ ≤

E
[〈

θ̂, µ
〉]

where θ̂ = An(Sn) and µ = EZ∼D [Z].

The main implication of Lemma 6.2 is that the output of an
accurate learner has a significant correlation to the mean of
the data distribution. As the learner does not know the data
distribution, in the next result we show that the correlation
to the mean of an unknown data distribution translates to
a correlation between the output and the samples in the
training set. The construction of the data distribution is
based on the techniques developed by Kamath, Li, Singhal,
and Ullman [KLSU19].

Lemma 6.3. Fix ε > 0. For every ε-learner A for P(d)
cvx

with sample complexity N(·, ·), there exists D ∈ M1(Z),
such that for every δ > 0

E

[
n∑

i=1

d∑
k=1

(
144ε2 − d(µ(k))2

1 − d(µ(k))2

)(
θ̂(k)

)(
Z

(k)
i − µ(k)

)]
≥ 2ε − 4δ,

where n ≥ N(ε, δ), Sn = (Z1, . . . , Zn) ∼ D⊗n, and
µ = EZ∼D[Z].

6.1.3. CMI-ACCURACY TRADEOFF FOR CLB

Theorem (Restatement of Theorem 4.1). Let P(d)
cvx be the

problem instance described in Section 6.1.1. For every

7
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ε ≤ 1 and δ ≤ ε and for every proper algorithm A =
{An}n∈N that ε-learns P(d)

cvx with the sample complexity
N(·, ·) the following holds: for every n ≥ N(ε, δ), and d ≥
Ω(n4 log(n)), there exists a data distribution D ∈ M1(Z)
such that CMID(An) ≥ Ω

( 1
ε2

)
.

Proof Sketch. Let P(d)
cvx be the problem instance described

in Section 6.1.1. Fix an ε-learner A for P(d)
cvx , and let the data

distribution be such that it satisfies Lemma 6.3. Consider
the structure introduced in the definition of CMI in Def-
inition 3.2 and define diagonal matrix A ∈ Rd×d where

A = diag
[{

144ε2−d(µ(k))2

1−d(µ(k))2

}d

k=1

]
. For every i ∈ [n],

T0,i =
〈

θ̂, A (Z0,i − µ)
〉

and T1,i =
〈

θ̂, A (Z1,i − µ)
〉

.

Let Ūi = 1 − Ui. Notice that ZŪi,i ⊥⊥ θ̂ given Ui

by the definition of CMI. Then, we show that TŪi,i is
a sub-Gaussian random variable with variance proxy of
O(1/

√
d). Therefore, with a high probability, for ev-

ery i ∈ [n],
∣∣TŪi,i

∣∣ = O(ε/
√

d) = O(ε/n2), since
d ≥ Ω(n4 log(n)). This observation motivates us to de-
fine the set I ⊆ [n] as follows: i ∈ I if and only if
max{T1,i, T0,i} > τ and min{T1,i, T0,i} < τ , where
τ = Θ(ε/n). We show that the expected cardinality of
I is a lower bound on CMID(An). The next step of the
proof is using fingerprinting lemma in Lemma 7.3 to fur-
ther lower bound |I|. We show in Lemma B.4 that we
can lowerbound |I| using the sample-wise correlation ran-
dom variables. More precisely, we show that with a high
probability, |I| = Ω

(
(
∑n

i=1 TUi,i)
2

/
∑n

i=1 T 2
Ui,i

)
. Using

Lemma 7.3, we show (
∑n

i=1 TUi,i)2 = Ω(ε2). Also, using
Lemma B.7, we show that

∑n
i=1 T 2

Ui,i = O(ε4). Combin-
ing these two pieces concludes the proof. For a detailed
proof see Appendix C.

6.2. Lower Bound for Improper (Unconstrained)
Learners

The output of proper learners are constrained into the ball
of radius one in Rd. In this section, we prove that the lower-
bound for improper (unconstrained) learners is reducible
to the lowerbound for proper (constrained) learners. Con-
sider P(d)

cvx = (Θ, Z, f) described in Section 6.1.1. Using
f , we define a new loss function that is supported on Rd as
follows: for every z ∈ Z , f̃ : Rd × Z → R is given by

f̃(θ, z) = inf
w∈Bd(1)

{f(w, z) + ∥θ − w∥}. (2)

Let P(d)
cvx,improper = (Θ, Z, f̃). From Lemma B.2, we know

that f̃(·, z) is a 1-Lipschitz and convex function which
means P(d)

cvx,improper ∈ C1,1.

Theorem 6.4. Fix ε > 0 and let P(d)
cvx,improper be as described

in Section 6.2. For every ε ≤ 1 and δ ≤ ε and for every

algorithm A = {An}n∈N that ε-learns P(d)
cvx,improper with the

sample complexity N(·, ·) the following holds: for every
n ≥ N(ε, δ), and d ≥ Ω(n4 log(n)), there exists a data
distribution D ∈ M1(Z) such that

CMID(An) = Ω
(

1
ε2

)
.

Proof. Let A = {An}n≥1 be a possibly improper learn-
ing algorithm, i.e., An is not restricted to output an ele-
ment of Bd(1). Also, let Π(A) = {Π(A)n}n≥1 as a new
learning algorithm that is defined as follows: for a training
set Sn ∈ Zn, we have Π(An)(Sn) = Π(An(Sn)) where
Π(·) : Rd → Bd(1) is the orthogonal projection matrix onto
Bd(1). Informally, Π(An) is based on projecting the out-
put An to Bd(1). Define F̃D(θ) = EZ∼D[f̃(θ, Z)]. From
Lemma D.1, we know that θ̂ = An(Sn) with probability
one satisfies

F̃D(θ̂) − min
θ∈Bd(1)

F̃(θ) ≥ FD(Π(θ̂)) − min
θ∈Bd(1)

FD(θ).

The implication of this equation is the following: if A is an
ε-learner for P(d)

cvx,improper, then, Π (A) is an ε-learner with

respect to P(d)
cvx .

Notice that Π (An) is a proper learning algorithm. There-
fore, by Theorem 4.1, we have that there exists D ∈
M1(Z) such that CMID (Π (An)) ≥ Ω

( 1
ε2

)
. Also, by

Lemma D.2 (data processing inequality), CMID(An) ≥
CMID (Π (An)). Ergo, for distribution D we also have
CMID(An) ≥ Ω

( 1
ε2

)
.

6.3. Matching Upper Bound

Theorem 6.5. For every L ∈ R, R ∈ R, there exists
a proper ε-learner with sample complexity N(ε, δ) =
128(LR)2

ε2 log(2/δ) such that the following holds: for ev-
ery 0 < δ ≤ 1, every n ≥ N(ε, δ), every (Θ, Z, f) ∈
CL,R and every D ∈ M1(Z) the following holds: 1)
FD(A(Sn)) − minθ∈Θ FD(θ) ≤ ε with probability at least

1 − δ and 2) CMID(An) ≤ 128(LR)2

ε2 log(2/δ).

7. Characterization of CMI for the CSL SCOs
In this section, we discuss the characterization of CMI of
ε-learners for CSL subclasses of SCOs. (All proofs appear
in Appendix E.)

7.1. Lower Bound

7.1.1. CONSTRUCTION OF A HARD PROBLEM INSTANCE

Towards proving Theorem 4.2, we develop the following
construction: Let d ∈ N. Let Z =

{
± 1/

√
d
}d

and
Θ = Rd. Define the loss function f : Θ × Z → R as

8
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f(θ, z) = − ⟨θ, z⟩ + 1
2 ∥θ∥2. Let P(d)

scvx ≜ (Θ, Z, f) be the
described problem instance.

7.1.2. PROPERTIES OF ε-LEARNERS FOR CLS

In the next lemma, we show some properties that are shared
between every ε-learner of P(d)

scvx.

Lemma 7.1. Fix ε > 0. Let A be an ε-learner for P(d)
scvx with

the sample complexity of N(·, ·) such that its output is an
element of Bd(1). Then, for every δ > 0, n ≥ N(ε, δ) and
every D ∈ M1(Z), with probability at least 1 − δ, we have∥∥∥θ̂ − µ

∥∥∥2
≤ 2ε, 1

2 ∥µ∥2 − ε ≤
〈

θ̂, µ
〉

, and E
[〈

θ̂, µ
〉]

≥
1
2 ∥µ∥2 − ε − 3δ

2 . , where θ̂ = A(Sn) and µ = EZ∼D [Z].
Remark 7.2. For learners of P(d)

scvx, without loss of generality,
we assume that the output of learning algorithm lies in
Bd(1) where Bd(1) is the ball of radius one in Rd. It is
because, for every θ̂ ∈ Rd, FD(θ̂) − minθ∈Rd FD(θ) =
1
2

∥∥∥θ̂ − µ
∥∥∥2

. By Pythagorean theorem,
∥∥∥Π
(

θ̂
)

− µ
∥∥∥2

≤∥∥∥θ̂ − µ
∥∥∥2

since µ ∈ Bd(1) which shows that by projecting
the output of any algorithm to Bd(1), the excess error does
not increase. Notice that projection never increases CMI due
to data processing inequality [CT12]. Therefore, it suffices
to consider the algorithms whose output lies in Bd(1). ◁

The next lemma is a variant of fingerprinting lemma by
Steinke [Ste16] which shows for a sufficiently accurate
learner, there exists a distribution such that the correlation
of the output and the training samples are bounded below
by a constant.

Lemma 7.3. Fix ε > 0. For every ε-learner A for P(d)
scvx with

sample complexity N(·, ·), there exists a data distribution
D ∈ M1(Z) such that the following holds: for every δ > 0
and n ≥ N(ε, δ), let Sn = (Z1, . . . , Zn) ∼ D⊗n, θ̂ =
An(Sn) and µ = EZ∼D[Z]. Then, we have

E

[
n∑

i=1

〈
θ̂ − µ, Zi − µ

〉]
≥ 1

3 − 2ε − 3δ.

7.1.3. CMI-ACCURACY TRADEOFF FOR CSL

Theorem (Restatement of Theorem 4.2). Let P(d)
scvx be the

problem instance described in Section 7.1.1. For every
ε < 1/24 and δ < 1/48 and for every ε-learner (A =
{An}n∈N), with sample complexity N(·, ·) the following
holds: for every n ≥ N(ε, δ), δ < O(1/n2), and d ≥
O(n4 log(n)), there exists a data distribution D ∈ M1(Z)
such that

CMID(An) ≥ Ω
(

1
ε

)
.

Proof Sketch. Let P(d)
scvx be the problem instance described

in Section 7.1.1. Fix an ε-learner A for P(d)
scvx, and let

the data distribution be such that it satisfies Lemma 7.3.
Consider the structure introduced in the definition of CMI
in Definition 3.2 and define for every i ∈ [n], T0,i =〈

θ̂ − µ, Z0,i − µ
〉

and T1,i =
〈

θ̂ − µ, Z1,i − µ
〉

. Let

Ūi = 1 − Ui. An important observation is that ZŪi,i ⊥⊥ θ̂
given Ui. We show that TŪi,i is a sub-Gaussian random
variable with variance proxy of O(1/

√
d). Therefore, with

a high probability, for every i ∈ [n],
∣∣TŪi,i

∣∣ = O(1/
√

d) =
O(1/n2), since d ≥ Ω(n4 log(n)). This observation mo-
tivates us to define the set I ⊆ [n] as follows: i ∈ I if
and only if max{T1,i, T0,i} > τ and min{T1,i, T0,i} < τ ,
where τ = Θ(1/n). We show that the expected cardinality
of I is a lower bound on CMID(An). The next step of the
proof is using fingerprinting lemma in Lemma 7.3 to further
lower bound |I|. Using Lemma B.4, we show that with
a high probability, |I| = Ω

(
(
∑n

i=1 TUi,i)2/
∑n

i=1 T 2
Ui,i

)
.

Using Lemma 7.3, we show (
∑n

i=1 TUi,i)2 = Ω(1). Also,
using Lemma B.7, we show

∑n
i=1 T 2

Ui,i = O(ε). Combin-
ing these two pieces concludes the proof. For a detailed
proof see Appendix E.

7.2. Matching Upperbound

Theorem 7.4. For every L ∈ R, µ ∈ R, and ε > 0, there
exists an algorithm such that the following holds: for ev-
ery (Θ, Z, f) ∈ CL,λ and for every n ≥ 2L2

µε , we have
E[FD(A(Sn))] − minθ∈Θ FD(θ) ≤ ε, and CMID(An) ≤
4L2

µε .
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methodologies and applications of machine learning and
AI.

Acknowledgments
The authors would like to thank Jonathan Ullman for illus-
trating discussions on Fingerprinting codes, Konstantina
Bairaktari and Jad Silbak for helpful feedback on the drafts
of this work. DMR is supported by a Canada CIFAR AI
Chair and an NSERC Discovery Grant. Also, the authors
would like to thank Jeffrey Negrea for his valuable sugges-
tions during the preparation of this paper.

Disclosure of Funding
IA is supported by the Vatat Scholarship from the Israeli
Council for Higher Education. MH is supported by the
Khoury college distinguished postdoctoral fellowship. RL

9



Information Complexity of Stochastic Convex Optimization

is supported by a Google fellowship, and this research has
been funded, in parts, by an ERC grant (FoG - 101116258).
DMR is supported by an NSERC Discovery Grant and fund-
ing through his Canada CIFAR AI Chair at the Vector Insti-
tute.

References
[Alq21] P. Alquier. User-friendly introduction to PAC-

Bayes bounds. 2021. arXiv: 2110.11216.

[ACKL21] I. Amir, Y. Carmon, T. Koren, and R. Livni.
“Never go full batch (in stochastic convex opti-
mization)”. Advances in Neural Information Pro-
cessing Systems 34 (2021), pp. 25033–25043.

[AKL21] I. Amir, T. Koren, and R. Livni. “SGD generalizes
better than GD (and regularization doesn’t help)”.
In: Conference on Learning Theory. PMLR. 2021,
pp. 63–92.

[BFGT20] R. Bassily, V. Feldman, C. Guzmán, and K. Tal-
war. “Stability of stochastic gradient descent on
nonsmooth convex losses”. Advances in Neu-
ral Information Processing Systems 33 (2020),
pp. 4381–4391.

[BMNSY18] R. Bassily, S. Moran, I. Nachum, J. Shafer, and
A. Yehudayoff. “Learners that Use Little Infor-
mation”. In: Algorithmic Learning Theory. 2018,
pp. 25–55.

[BS95] D. Boneh and J. Shaw. “Collusion-secure finger-
printing for digital data”. In: Annual International
Cryptology Conference. Springer. 1995, pp. 452–
465.

[BE02] O. Bousquet and A. Elisseeff. “Stability and gen-
eralization”. The Journal of Machine Learning
Research 2 (2002), pp. 499–526.

[BBFST21] G. Brown, M. Bun, V. Feldman, A. Smith, and
K. Talwar. “When is memorization of irrele-
vant training data necessary for high-accuracy
learning?” In: Proceedings of the 53rd annual
ACM SIGACT symposium on theory of computing.
2021, pp. 123–132.

[BBS22] G. Brown, M. Bun, and A. Smith. “Strong mem-
ory lower bounds for learning natural models”. In:
Conference on Learning Theory. PMLR. 2022,
pp. 4989–5029.

[BUV14] M. Bun, J. Ullman, and S. Vadhan. “Fingerprint-
ing codes and the price of approximate differen-
tial privacy”. In: Proceedings of the forty-sixth
annual ACM symposium on Theory of computing.
2014, pp. 1–10.

[CCNST+22] N. Carlini, S. Chien, M. Nasr, S. Song, A. Terzis,
and F. Tramer. “Membership inference attacks
from first principles”. In: 2022 IEEE Sympo-
sium on Security and Privacy (SP). IEEE. 2022,
pp. 1897–1914.

[CIJLT+22] N. Carlini, D. Ippolito, M. Jagielski, K. Lee, F.
Tramer, and C. Zhang. Quantifying memoriza-
tion across neural language models. 2022. arXiv:
2202.07646.

[CLEKS19] N. Carlini, C. Liu, Ú. Erlingsson, J. Kos, and D.
Song. “The secret sharer: Evaluating and testing
unintended memorization in neural networks”. In:
28th USENIX Security Symposium (USENIX Se-
curity 19). 2019, pp. 267–284.

[CTWJH+21] N. Carlini, F. Tramer, E. Wallace, M. Jagielski,
A. Herbert-Voss, K. Lee, A. Roberts, T. Brown,
D. Song, U. Erlingsson, et al. “Extracting train-
ing data from large language models”. In: 30th
USENIX Security Symposium (USENIX Security
21). 2021, pp. 2633–2650.

[CLY23] D. Carmon, R. Livni, and A. Yehudayoff. The
Sample Complexity Of ERMs In Stochastic Con-
vex Optimization. 2023. arXiv: 2311.05398.

[CM78] S. Cobzas and C. Mustata. “Norm preserving ex-
tension of convex Lipschitz functions”. J. Approx.
theory 24.3 (1978), pp. 236–244.

[CT12] T. M. Cover and J. A. Thomas. Elements of infor-
mation theory. John Wiley & Sons, 2012.

[DFKL20] A. Dauber, M. Feder, T. Koren, and R. Livni.
“Can implicit bias explain generalization? stochas-
tic convex optimization as a case study”. Ad-
vances in Neural Information Processing Systems
33 (2020), pp. 7743–7753.

[DSSUV15] C. Dwork, A. Smith, T. Steinke, J. Ullman,
and S. Vadhan. “Robust Traceability from Trace
Amounts”. In: 2015 IEEE 56th Annual Sympo-
sium on Foundations of Computer Science. 2015,
pp. 650–669.

[Fel16] V. Feldman. “Generalization of ERM in Stochas-
tic Convex Optimization: The Dimension Strikes
Back”. In: Advances in Neural Information Pro-
cessing Systems. Ed. by D. Lee, M. Sugiyama,
U. Luxburg, I. Guyon, and R. Garnett. Vol. 29.
Curran Associates, Inc., 2016.

[Fel20] V. Feldman. “Does learning require memoriza-
tion? a short tale about a long tail”. In: Proceed-
ings of the 52nd Annual ACM SIGACT Sympo-
sium on Theory of Computing. 2020, pp. 954–
959.

[FV19] V. Feldman and J. Vondrak. “High probability
generalization bounds for uniformly stable algo-
rithms with nearly optimal rate”. In: Conference
on Learning Theory. PMLR. 2019, pp. 1270–
1279.

[FZ20] V. Feldman and C. Zhang. “What neural networks
memorize and why: Discovering the long tail via
influence estimation”. Advances in Neural Infor-
mation Processing Systems 33 (2020), pp. 2881–
2891.

[GSZ21] P. Grunwald, T. Steinke, and L. Zakynthinou.
“PAC-Bayes, MAC-Bayes and Conditional Mu-
tual Information: Fast rate bounds that handle
general VC classes”. In: Conference on Learning
Theory. PMLR. 2021, pp. 2217–2247.

[HDMR21] M. Haghifam, G. K. Dziugaite, S. Moran, and
D. M. Roy. “Towards a Unified Information-
Theoretic Framework for Generalization”. Ad-
vances in Neural Information Processing Systems
34 (2021).

10

https://arxiv.org/abs/2110.11216
https://arxiv.org/abs/2202.07646
https://arxiv.org/abs/2311.05398


Information Complexity of Stochastic Convex Optimization

[HMRK22] M. Haghifam, S. Moran, D. M. Roy, and G.
Karolina Dziugaite. “Understanding Generaliza-
tion via Leave-One-Out Conditional Mutual Infor-
mation”. In: 2022 IEEE International Symposium
on Information Theory (ISIT). 2022, pp. 2487–
2492.

[HNKRD20] M. Haghifam, J. Negrea, A. Khisti, D. M. Roy,
and G. K. Dziugaite. “Sharpened generalization
bounds based on conditional mutual information
and an application to noisy, iterative algorithms”.
Advances in Neural Information Processing Sys-
tems 33 (2020), pp. 9925–9935.

[HRTSR+23] M. Haghifam, B. Rodriguez-Galvez, R. Thoba-
ben, M. Skoglund, D. M. Roy, and G. K. Dziu-
gaite. “Limitations of information-theoretic gen-
eralization bounds for gradient descent methods
in stochastic convex optimization”. In: Interna-
tional Conference on Algorithmic Learning The-
ory. PMLR. 2023, pp. 663–706.

[HVYSI22] N. Haim, G. Vardi, G. Yehudai, O. Shamir, and M.
Irani. “Reconstructing training data from trained
neural networks”. Advances in Neural Informa-
tion Processing Systems 35 (2022), pp. 22911–
22924.

[HRVG21] H. Harutyunyan, M. Raginsky, G. Ver Steeg, and
A. Galstyan. “Information-theoretic generaliza-
tion bounds for black-box learning algorithms”.
Advances in Neural Information Processing Sys-
tems 34 (2021).

[HD22] F. Hellström and G. Durisi. “Evaluated CMI
bounds for meta learning: Tightness and expres-
siveness”. Advances in Neural Information Pro-
cessing Systems 35 (2022), pp. 20648–20660.

[HDGR23] F. Hellström, G. Durisi, B. Guedj, and M. Ra-
ginsky. Generalization bounds: Perspectives from
information theory and PAC-Bayes. 2023. arXiv:
2309.04381.

[JNGKJ19] C. Jin, P. Netrapalli, R. Ge, S. M. Kakade,
and M. I. Jordan. A Short Note on Concentra-
tion Inequalities for Random Vectors with Sub-
Gaussian Norm. 2019. arXiv: 1902 . 03736
[math.PR].

[KLSU19] G. Kamath, J. Li, V. Singhal, and J. Ullman. “Pri-
vately learning high-dimensional distributions”.
In: Conference on Learning Theory. PMLR. 2019,
pp. 1853–1902.

[KLMS22] T. Koren, R. Livni, Y. Mansour, and U. Sher-
man. “Benign underfitting of stochastic gradient
descent”. Advances in Neural Information Pro-
cessing Systems 35 (2022), pp. 19605–19617.

[LW86] N. Littlestone and M. Warmuth. “Relating data
compression and learnability” (1986).

[Liv23] R. Livni. “Information Theoretic Lower Bounds
for Information Theoretic Upper Bounds” (2023).
arXiv: 2302.04925.

[LM20] R. Livni and S. Moran. “A Limitation of the
PAC-Bayes Framework”. In: Advances in Neural
Information Processing Systems. Vol. 33. 2020,
pp. 20543–20553.

[MY16] S. Moran and A. Yehudayoff. “Sample compres-
sion schemes for VC classes”. Journal of the ACM
(JACM) 63.3 (2016), pp. 1–10.

[NSY18] I. Nachum, J. Shafer, and A. Yehudayoff. “A di-
rect sum result for the information complexity of
learning”. In: Conference On Learning Theory.
PMLR. 2018, pp. 1547–1568.

[NHDKR19] J. Negrea, M. Haghifam, G. K. Dziugaite, A.
Khisti, and D. M. Roy. “Information-Theoretic
Generalization Bounds for SGLD via Data-
Dependent Estimates”. In: Advances in Neural In-
formation Processing Systems. 2019, pp. 11013–
11023.

[Ora19] F. Orabona. A modern introduction to online
learning. 2019. arXiv: 1912.13213.

[RBTS20] B. Rodríguez-Gálvez, G. Bassi, R. Thobaben, and
M. Skoglund. “On Random Subset Generaliza-
tion Error Bounds and the Stochastic Gradient
Langevin Dynamics Algorithm”. In: IEEE Infor-
mation Theory Workshop (ITW). IEEE. 2020.

[RZ15] D. Russo and J. Zou. How much does your data
exploration overfit? Controlling bias via informa-
tion usage. 2015. arXiv: 1511.05219.

[RZ16] D. Russo and J. Zou. “Controlling Bias in Adap-
tive Data Analysis Using Information Theory”.
In: Proceedings of the 19th International Con-
ference on Artificial Intelligence and Statistics.
Ed. by A. Gretton and C. C. Robert. Vol. 51. Pro-
ceedings of Machine Learning Research. Cadiz,
Spain: PMLR, 2016, pp. 1232–1240.

[SB14] S. Shalev-Shwartz and S. Ben-David. Understand-
ing machine learning: From theory to algorithms.
Cambridge university press, 2014.

[SSSS09] S. Shalev-Shwartz, O. Shamir, N. Srebro, and K.
Sridharan. “Stochastic Convex Optimization.” In:
COLT. Vol. 2. 4. 2009, p. 5.

[SSSS17] R. Shokri, M. Stronati, C. Song, and V.
Shmatikov. “Membership inference attacks
against machine learning models”. In: 2017 IEEE
symposium on security and privacy (SP). IEEE.
2017, pp. 3–18.

[SZ20] T. Steinke and L. Zakynthinou. “Reasoning about
generalization via conditional mutual informa-
tion”. In: Conference on Learning Theory. PMLR.
2020, pp. 3437–3452.

[Ste16] T. A. Steinke. “Upper and Lower Bounds for Pri-
vacy and Adaptivity in Algorithmic Data Analy-
sis”. PhD thesis. 2016.

[Tar08] G. Tardos. “Optimal probabilistic fingerprint
codes”. Journal of the ACM (JACM) 55.2 (2008),
pp. 1–24.

[WM23] Z. Wang and Y. Mao. “Sample-Conditioned
Hypothesis Stability Sharpens Information-
Theoretic Generalization Bounds”. In: Thirty-
seventh Conference on Neural Information Pro-
cessing Systems. 2023.

[XR17] A. Xu and M. Raginsky. “Information-theoretic
analysis of generalization capability of learning
algorithms”. In: Advances in Neural Information
Processing Systems. 2017, pp. 2524–2533.

11

https://arxiv.org/abs/2309.04381
https://arxiv.org/abs/1902.03736
https://arxiv.org/abs/1902.03736
https://arxiv.org/abs/2302.04925
https://arxiv.org/abs/1912.13213
https://arxiv.org/abs/1511.05219


Information Complexity of Stochastic Convex Optimization

[ZBHRV17] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O.
Vinyals. “Understanding deep learning requires
rethinking generalization”. In: International Con-
ference on Representation Learning (ICLR). 2017.
arXiv: 1611.03530v2 [cs.LG].

[ZTL22] R. Zhou, C. Tian, and T. Liu. “Individually Con-
ditional Individual Mutual Information Bound on
Generalization Error”. IEEE Transactions on In-
formation Theory 68.5 (2022), pp. 3304–3316.

[Zin03] M. Zinkevich. “Online convex programming and
generalized infinitesimal gradient ascent”. In: Pro-
ceedings of the 20th international conference on
machine learning (icml-03). 2003, pp. 928–936.

12

https://arxiv.org/abs/1611.03530v2


Information Complexity of Stochastic Convex Optimization

A. Preliminaries
Notations Let d ∈ N. For x ∈ Rd, ∥x∥ denotes ℓ2 norm of x, and ⟨·, ·⟩ denotes the standard inner product in Rd. We
denote the k-th coordinate of a d-dimensional vector x by the superscript x(k). For a matrix A ∈ Rn×m, ∥A∥2 is the
operator norm of A. Bd(1) denote the ball of radius one in Rd. For a (measurable) space R, M1(R) denotes the set of all
probability measures on R. Finally, let 1 [·] denote the indicator function: 1 [p] = 1 if predicate p is true, and 1 [p] = 0
otherwise.

A.1. Background on Information Theory

Let P, Q be probability measures on a measurable space. When Q is absolutely continuous with respect to P , denoted
Q ≪ P , we write dQ

dP for (an arbitrary version of) the Radon–Nikodym derivative (or density) of Q with respect to P . The
KL divergence (or relative entropy) of Q with respect to P , denoted KL(Q ∥ P ), equals

∫
log dQ

dP dQ when Q ≪ P , and is
infinity otherwise. The mutual information between X and Y is

I(X; Y ) = KL(P[(X, Y )] ∥P[X] ⊗ P[Y ]),

where ⊗ forms the product measure. The disintegrated mutual information between X and Y given Z is

IZ(X; Y ) = KL(P
(
(X, Y )

∣∣Z) ∥P
(
X
∣∣Z)⊗ P

(
Y
∣∣Z)),

where P
(
Y
∣∣Z) is the conditional distribution of Y given Z. Then, the conditional mutual information is

I(X; Y |Z) = E[IZ(X; Y )].

If X concentrates on a countable set V with counting measure ν, the (Shannon) entropy of X is H(X) =
−
∑

x∈V P(X = x) logP(X = x). The disintegrated entropy of X given Y is defined by HY (X) =
−
∑

x∈V P
(
X = x

∣∣Y ) logP
(
X = x

∣∣Y ) , while the conditional entropy of X given Y is H(X|Y ) = E[HY (X)].

B. Technical Lemmas
Lemma B.1 ([CT12]). Let X and Y be discrete random variables. Then

H(X|Y ) ≤ Hb(Pe) + PeH(X) ≤ 1 + PeH(X),

where Pe = P(Ψ(Y ) ̸= X) for any (possibly randomized) estimator Ψ of X using Y .

Lemma B.2 (Cobzas and Mustata [CM78]). Let K be a closed and convex subset of Rd. Let h : K → R be a convex and
L-Lipschitz function. Define h̃ : Rd → R as

h̃(x) ≜ inf
y∈K

{h(y) + L ∥x − y∥}.

Then, we have, 1) h̃ is a convex and L-Lipschitz function, 2) for every x ∈ K, h̃(x) = h(x).

Lemma B.3. Let X be a random variable supported on R with a bounded second moment. Then, for every θ ∈ R,

P (X ≥ θ) ≥ (max{E[X] − θ, 0})2

E[X2]

Proof. This is a non-standard variant of Paley-Zygmund inequality. With probability one,

X = X1 [X < θ] + X1 [X ≥ θ]
≤ θ + X1 [X ≥ θ] .

Taking an expectation and using Cauchy–Schwarz inequality, we obtain

E[X] ≤ θ +
√

E[X2]
√
P (X ≥ θ) ⇒ max{E[X] − θ, 0} ≤

√
E[X2]

√
P (X ≥ θ),

which was to be shown.
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Lemma B.4. Fix n ∈ N and (a1, . . . , an) ∈ Rn. Let
∑

i∈[n] ai = A1 and
∑

i∈[n](ai)2 = A2. Then, for every β ∈ R,

∣∣{i ∈ [n] : ai ≥ β/n}
∣∣ ≥ (max{A1 − β, 0})2

A2
.

Proof. Define random variable X with the distribution Unif({a1, . . . , an}). By assumptions, E [X] = A1/n and E
[
X2] =

A2/n. Notice that ∣∣{i ∈ [n] : ai ≥ β/n}
∣∣ = nP (X ≥ β/n) .

By Lemma B.3, we have

P (X ≥ β/n) ≥ (max{nE[X] − β, 0})2

n2E[X2] .

Therefore, ∣∣{i ∈ [n] : ai ≥ β/n}
∣∣ ≥ (max{nE[X] − β, 0})2

nE[X2]

= (max{A1 − β, 0})2

A2
,

as was to be shown.

Lemma B.5. Let d ∈ N. Let D ∈ M1

({
±1/

√
d
}d
)

be a product distribution. Let µ = EZ∼D[Z]. Also, let

(X1, . . . , Xn) ∼ D⊗n. Then, 1
n

∑n
i=1 (Xi − µ) is a

√
1/(dn) subguassian random vector. Moreover,

P

∥∥∥∥∥ 1
n

n∑
i=1

Xi − µ

∥∥∥∥∥
2

≥ ε

 ≤ 2 exp
(

−εn

2

)

Proof. Let v ∈ Rd be a fixed vector and λ ∈ R be a constant. Then,

E

[
exp

(
λ

n

n∑
i=1

⟨(Xi − µ), v⟩

)]
= E

[
n∏

i=1

d∏
k=1

exp
(

λ

n

(
Z

(k)
i − µ(k)

)
· v(k)

)]

≤
n∏

i=1

d∏
k=1

exp
(

λ2(v(k))2

2dn2

)

= exp
(

λ2 ∥v∥2

2dn

)
,

where the second step follows from Hoeffeding’s Lemma. Therefore, by definition, we have the stated result. The statement
regarding the concentration of the norm follows from [JNGKJ19, Lemma. 1].

Lemma B.6. Fix β ∈ [0, 1]. Let µ = 1√
d

(
p1, . . . , pd

)
∈ Rd where p =

(
p1, . . . , pd

)
is drawn from π = (Unif[−β, β])⊗d.

Then,

E [∥µ∥] ≥ β

3 .

Proof. We have E[(pi)2] = β2

3 for every i ∈ [d]. Notice that ∥µ∥ = 1√
d

√∑d
i=1(pi)2 and for every i ∈ [d], (pi)2 ∈ [0, β2]

with probability one. We can write
∥p∥2 = ∥p∥ ∥p∥ ≤ β

√
d ∥p∥ .

Therefore, we have

E[∥p∥2] ≤ β
√

dE[∥p∥] ⇒ E[∥p∥] ≥ 1
β

√
d

d∑
i=1

E[(p(i))2] = β

3
√

d.

The stated result follows from E[∥µ∥] = 1√
d
E[∥p∥].
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Lemma B.7. Let Z =
{

± 1√
d

}d

and D ∈ M1(Z) be a product distribution and µ = EZ∼D[Z]. Let (Z1, . . . , Zn) ∼ D⊗n

be n i.i.d. samples. Then, for every β > 0 if d ≥ max{32 log (2n/β) , 32n4 log
(
4n2/β

)
} with probability at least 1 − β

for every y ∈ Rd,
n∑

i=1
(⟨y, Zi − µ⟩)2 ≤ 6 ∥y∥2

.

Proof. For i ∈ [n], define vi = Zi − µ. Notice that ∥vi∥ = ∥Zi − µ∥ ≤ 2 since ∥Zi∥ ≤ 1 and ∥µ∥ ≤ 1. A simple
calculation shows that∥∥∥∥∥y −

n∑
i=1

⟨y, vi⟩ vi

∥∥∥∥∥
2

= ∥y∥2 +
n∑

i=1
(⟨y, vi⟩)2

(
∥vi∥2 − 2

)
+
∑
i̸=j

⟨y, vi⟩ ⟨y, vj⟩ ⟨vi, vj⟩ .

Therefore,
n∑

i=1
(⟨y, vi⟩)2

(
2 − ∥vi∥2

)
≤ ∥y∥2 +

∑
i̸=j

⟨y, vi⟩ ⟨y, vj⟩ ⟨vi, vj⟩

≤ ∥y∥2 + |
∑
i̸=j

⟨y, vi⟩ ⟨y, vj⟩ ⟨vi, vj⟩ |

≤ ∥y∥2

1 + 4
∑
i̸=j

| ⟨vi, vj⟩ |

 ,

where the last step follows from Cauchy-Schwarz inequality. Consider the following events. For i ∈ [n], define

E(1)
i = {∥vi∥2 ≤ 1 + α}.

Also, for i, j ∈ [n] such that i ̸= j, define the following events

E(2)
i,j = {| ⟨vi, vj⟩ | ≤ α/n2}.

For the first event, we have

1 − P
(

E(1)
i

)
= P

(
d∑

k=1

(
Z

(k)
i − µ(k)

)2
> 1 + α

)

= P

(
d∑

k=1

(
Z

(k)
i − µ(k)

)2
− E

[
d∑

k=1

(
Z

(k)
i − µ(k)

)2
]

> 1 + α − E

[
d∑

k=1

(
Z

(k)
i − µ(k)

)2
])

≤ P

(
d∑

k=1

(
Z

(k)
i − µ(k)

)2
− E

[
d∑

k=1

(
Z

(k)
i − µ(k)

)2
]

> α

)
,

where the last line follows from the fact that E
[∑d

k=1

(
Z

(k)
i − µ(k)

)2
]

≤ 1 since Z
(k)
i ∈ {± 1√

d
}. Then, by Hoeffding’s

inequality and the fact that
(

Z
(k)
i − µ(k)

)2
∈ [0, 4/d],

P

(
d∑

k=1

(
Z

(k)
i − µ(k)

)2
− E

[
d∑

k=1

(
Z

(k)
i − µ(k)

)2
]

> α

)
≤ exp

(
−dα2

8

)
.

For the second type of events, since vi ⊥⊥ vj , ∥vi∥ ≤ 2, and ∥vj∥ ≤ 2 by Lemma B.8,

1 − P
(

E(2)
i,j

)
≤ 2 exp

(
−dα2

8n4

)
.
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The last step is using union bound. Set α = 1/2 and assume P
(⋃

i∈[n]

(
E(1)

i

)c)
≤ nP

((
E(1)

1

)c)
≤ β/2. Also,

P
(⋃

i∈[n] ̸=j∈[n]

(
E(2)

i,j

)c)
≤ n2P

((
E(2)

1,2

)c)
≤ β/2. Under this event,

n∑
i=1

(⟨y, vi⟩)2 (1 − α) ≤ ∥y∥2 (1 + 4α) ⇒
n∑

i=1
(⟨y, vi⟩)2 ≤ 6 ∥y∥2

,

which was to be shown.

Lemma B.8. Let Z = {± 1√
d
}d and D ∈ M1(Z) be a product measure. Define µ = EZ∼D[Z]. Then, for every fixed

y ∈ Rd and n ∈ N,

P(Z1,...,Zn)∼D⊗n

(
max
i∈[n]

{⟨y, Zi − µ⟩} ≥ α

)
≤ n exp

(
− α2d

2 ∥y∥2

)
.

Proof. By union bound, P

(
max
i∈[n]

{⟨y, Zi − µ⟩} ≥ α

)
≤ nPZ∼D (⟨y, Z − µ⟩ ≥ α). Let λ > 0 and consider

E[exp (λ ⟨y, Z − µ⟩)] = E

[
exp

(
λ

d∑
k=1

y(k)
(

Z(k) − µ(k)
))]

=
d∏

k=1
E
[
exp

(
λy(k)

(
Z(k) − µ(k)

))]
≤

d∏
k=1

exp
(

λ2(y(k))2 1
2d

)
(Hoeffeding’s lemma since Z(k) ∈ {±1/

√
d})

= exp
(

λ2 ∥y∥2 1
2d

)
.

Then, using standard arguments, the stated claim can be proved.

Lemma B.9. [SB14, Lemma B.1] Let X ba a non-negative random variable supported on R and P (X ≤ a) = 1. Then,

P (X > β) ≥ E[X] − β

a − β
.

C. Proofs for Characterization of CMI of the CLB Subclass
C.1. Proof of Lemma 6.2

Notice that FD(θ) = − ⟨θ, µ⟩ and min
θ∈Θ

FD(θ) = − ∥µ∥, where the minimum is achieved by setting θ⋆ = µ
∥µ∥ . Therefore,

by the excess risk guarantee, with probability at least 1 − δ,

FD(θ̂) + ∥µ∥ ≤ ε ⇒ ∥µ∥ − ε ≤
〈

θ̂, µ
〉

.

Notice that
〈

θ̂, µ
〉

≥ −1, ∥µ∥ ≤ 1, and ε > 0,

E
[〈

θ̂, µ
〉]

≥ (∥µ∥ − ε)P
(〈

θ̂, µ
〉

≥ (∥µ∥ − ε)
)

− P
(〈

θ̂, µ
〉

< (∥µ∥ − ε)
)

= (∥µ∥ − ε)
(

1 − P
(〈

θ̂, µ
〉

< (∥µ∥ − ε)
))

− P
(〈

θ̂, µ
〉

< (∥µ∥ − ε)
)

= (∥µ∥ − ε) − P
(〈

θ̂, µ
〉

< (∥µ∥ − ε)
)

(∥µ∥ − ε + 1)

≥ (∥µ∥ − ε) − 2δ,

where the last step follows because ∥µ∥ − ε + 1 ≤ 2 and P
(〈

θ̂, µ
〉

< (∥µ∥ − ε)
)

≤ δ by the first part of the lemma.
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C.2. Proof of Lemma 6.3

The proof is based on defining a family of data distribution, and a prior over the family. Then, we show that in-expectation
over the prior, the stated claim holds. Thus, there exists a distribution with the desired property.

The data distribution is parameterized by a vector p =
(
p(1), . . . , p(d)) ∈ [−1, 1]d where for every z = (z(1), . . . , z(d)) ∈

{± 1√
d
}d,

Dp(z = (z(1), . . . , z(d))) =
d∏

k=1

(
1 +

√
dz(k)p(k)

2

)
.

Let µp = EX∼Dp [X] where µ
(k)
p = p(k)/

√
d for k ∈ [d].

Then we define a prior distribution π ∈ M1([−1, 1]d) over p denoted by π and is given by

π = Unif([−12ε, 12ε])⊗d.

Let Sn = (Z1, . . . , Zn) ∼ D⊗n, and θ̂ = An(Sn). By the same proof as presented in [KLSU19] (see Equation 16 therein),
we have that

Ep∼πESn∼D⊗n
p

[
n∑

i=1

d∑
k=1

(
144ε2 − d(µ(k)

p )2

1 − d(µ(k)
p )2

)(
θ̂(k)

)(
Z

(k)
i − µ(k)

p

)]
= 2Ep∼π

[〈
ESn∼D⊗n

p
[θ̂], µp

〉]
. (3)

By Lemma 6.2, we know that for every p ∈ [−1, 1]d〈
ESn∼D⊗n

p
[θ̂], µp

〉
≥ ∥µp∥ − ε − 2δ. (4)

Also, by Lemma B.6, we have
Ep∼π [∥µp∥] ≥ 4ε. (5)

Therefore, by Equations (3) to (5), we have

Ep∼πESn∼D⊗n
p

[
n∑

i=1

d∑
k=1

(
144ε2 − d(µ(k)

p )2

1 − d(µ(k)
p )2

)(
θ̂(k)

)(
Z

(k)
i − µ(k)

p

)]
≥ 2ε − 4δ,

which was to be shown.

C.3. Proof of Theorem 4.1

Fix a learning algorithm A and let D be a distribution satisfies Lemma 6.3. Also, consider the structure used in the
definition of CMI in Definition 3.2 and let Z̃ZZ = {Zj,i}j∈{0,1},i∈[n] ∼ D⊗(2×n). For every j ∈ {0, 1} and i ∈ [n], define
vj,i = (v(1)

j,i , . . . , v
(d)
j,i ) ∈ Rd as follows. For every k ∈ [d], let

v
(k)
j,i ≜

144ε2 − d(µ(k))2

1 − d(µ(k))2

(
Z

(k)
j,i − µ(k)

)
.

In the first step, we make the following observations. From the construction in Lemma 6.3, we know that µ(k) ∈
[−12ε/

√
d, 12ε/

√
d]. Simple calculations show,

144ε2 − d(µ(k))2

1 − d(µ(k))2 ≤ 144ε2. (6)

Let β ≜ ε be a constant. Define the following set

I =
{

(i, j) ∈ [n] × {0, 1}
∣∣∣ 〈θ̂, vj,i

〉
≥ β/n and

〈
θ̂, v1−j,i

〉
< β/n

}
.
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Intuitively, I includes the subset of columns of supersample such that one of the samples has a large correlation with the
output of the algorithm and the other one has small correlation with the output of the algorithm. Also, define the following
event

G =
{

∀i ∈ [n] :
〈

θ̂, vŪi,i

〉
< β/n

}
,

where Ūi = 1 − Ui. Intuitively, under the event G the correlation of the output and the heldout samples are insignificant.

We can write
CMID(An) = H(U |Z̃ZZ) − H(U |Z̃ZZ, θ̂)

= H(U) − H(U |Z̃ZZ, θ̂)
= n − H(U |Z̃ZZ, θ̂).

Notice that I is a (θ̂, Z̃ZZ)-measurable random variable, thus, H(U |Z̃ZZ, θ̂) = H(U |Z̃ZZ, θ̂, I). Define I(1) as follows: i ∈ I(1) iff
∃j ∈ {0, 1} such that (i, j) ∈ I. Using this notation, we can write

H(U |Z̃ZZ, θ̂, I) = H(UI(1) , U(I(1))c |Z̃ZZ, θ̂, I)

≤ H(UI(1)

∣∣Z̃ZZ, θ̂, I) + H(U(I(1))c |Z̃ZZ, θ̂, I), (7)

where the last step follows from sub-additivity of Entropy. The second term in Equation (7) can be bounded by

H(U(I(1))c |Z̃ZZ, θ̂, I) ≤ E [(n − |I|)] .

Define the random variable Û ∈ {0, 1}n as follows: for every (i, j) ∈ I, let Ûi = j. For the remaining coordinates set
Ûi = 0. Notice that Û is a I-measurable random variable. Therefore, H(UI(1)

∣∣Z̃ZZ, θ̂, I) = H(UI(1)

∣∣Z̃ZZ, θ̂, I, Û). Then, we
invoke Fano’s inequality from Lemma B.1 to write

H(UI(1)

∣∣Z̃ZZ, θ̂, I, Û) ≤ H(UI(1)

∣∣Û)
≤ 1 + H(UIc)P ({∃(i, j) ∈ I : Ui ̸= j})
≤ 1 + nP ({∃(i, j) ∈ I : Ui ̸= j}) .

We claim that P ({∃(i, j) ∈ I : Ui ̸= j}) ≤ P (Gc). The proof is as follows: If there exists (i, j) ∈ I such that Ui ̸= j, then,
we have 〈

θ̂, vŪi,i

〉
≥ β/n,

by the definition of I. Therefore, we conclude H(UI(1)

∣∣Z̃ZZ, θ̂, I) ≤ 1 + nP (Gc). The conditional entropy can be upper-
bounded by

H(U
∣∣Z̃ZZ, θ̂) ≤ n − E [|I|] + 1 + nP (Gc) .

By the definition of mutual information, we can lower bound CMID(An) as follows

CMID(An) = n − H(U |Z̃ZZ, θ̂)
≥ E [|I|] − 1 − nP (Gc) .

(8)

In the next part of the proof we will show that P (Gc) = O(1/n2).

In the next step of the proof, we provide a lowerbound on |I|. Under the event G, using Lemma B.4 we can lower bound |I|
as follows

E [|I|] ≥ E [|I|1 [G]]

≥ E
[∣∣∣∣ {i ∈ [n] :

〈
θ̂, vUi,i

〉
≥ β

n

} ∣∣∣∣1 [G]
]

≥ E


(

max
{∑

i∈[n]

〈
θ̂, vUi,i

〉
− β, 0

})2

∑
i∈[n]

〈
θ̂, vUi,i

〉2 1 [G]

 .
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Define the following event

E ≜ G ∩

∑
i∈[n]

〈
θ̂, vUi,i

〉2
≤ 6ε4

 .

Since E ⊆ G, we have

E


(

max{
∑

i∈[n]

〈
θ̂, vUi,i

〉
− β, 0}

)2

∑
i∈[n]

〈
θ̂, vUi,i

〉2 1 [G]

 ≥ E


(

max{
∑

i∈[n]

〈
θ̂, vUi,i

〉
− β, 0}

)2

∑
i∈[n]

〈
θ̂, vUi,i

〉2 1 [E ]


≥ E


(

max{
∑

i∈[n]

〈
θ̂, vUi,i

〉
− β, 0}

)2

6ε4 1 [E ]

 ,

where the last step follows because under the event E ,
∑

i∈[n]

〈
θ̂, vUi,i

〉2
≤ 6ε4. Then, consider

E


(

max{
∑

i∈[n]

〈
θ̂, vUi,i

〉
− β, 0}

)2

6ε4 1 [E ]

 = E


(

max{
∑

i∈[n]

〈
θ̂, vUi,i

〉
− β, 0}

)2

3ε4


− E


(

max{
∑

i∈[n]

〈
θ̂, vUi,i

〉
− β, 0}

)2

6ε4 1 [Ec]

 .

(9)

The first term in Equation (9) can be lower bounded as

E


(

max{
∑

i∈[n]

〈
θ̂, vUi,i

〉
− β, 0}

)2

6ε4

 ≥

(
max{E

[∑
i∈[n]

〈
θ̂, vUi,i

〉]
− β, 0}

)2

6ε4

≥ (max{6ε − 4δ − β, 0})2

6ε4 .

(10)

where the first step follows from convexity of h1(x) = x2 and h2(x) = max{x, 0} and applying Jensen’s inequality. The
second step follows from Lemma 6.3. Since δ < ε and β = ε,

E


(

max{
∑

i∈[n]

〈
θ̂, vUi,i

〉
− β, 0}

)2

6ε4

 ≥ 1
6ε2 .

The second term in Equation (9) can be upperbounded by

2E


(

max{
∑

i∈[n]

〈
θ̂, vUi,i

〉
− β, 0}

)2

3ε4 1 [Ec]

 ≤ 16ε4n2 + 4β2

3ε4 · P (Ec) ,

where the last step follows frommax

∑
i∈[n]

〈
θ̂, vUi,i

〉
− β, 0


2

≤ 2
∥∥∥θ̂
∥∥∥2
∥∥∥∥∥∥
∑
i∈[n]

vUi,i

∥∥∥∥∥∥
2

+ 2β2

≤ 8ε4n2 + 2β2

= 8ε4n2 + 2ε2.
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Here, we use ∥vUi,i∥ ≤ 2ε2 due to Equation (6). Therefore, we need to show that for sufficiently small γ, P (Ec) ≤ γ
n2 . We

can use union bound to write P (Ec) ≤ P (Gc) + P

∑
i∈[n]

〈
θ̂, vUi,i

〉
> 3/2ε4

. Notice that

P (Gc) = P

(
max
i∈[n]

{〈
θ̂, vŪi,i

〉}
≥ β/n

)

= E

[
P

(
max
i∈[n]

{〈
θ̂, vŪi,i

〉}
≥ β/n

∣∣∣∣U, θ̂

)]
.

Note that conditioned on U , θ̂ and vŪi,i are independent by the construction of CMI in Definition 3.2. This observation lets

us use Lemma B.8 to upperbound the probability inside the expectation. Since
∥∥∥θ̂
∥∥∥ ≤ 1, if d ≥ O(n2 log(n3)), we have

P (Gc) ≤ O

(
1
n2

)
. (11)

Let us define diagonal matrix A ∈ Rd×d as

A = diag
[{

144ε2 − d(µ(k))2

1 − d(µ(k))2

}d

k=1

]
.

By Equation (6) ∥A∥2 ≤ ε2 due to Equation (6). By the fact that A is a symmetric matrix, we can write∑
i∈[n]

〈
θ̂, A (Zi − µ)

〉
=
∑
i∈[n]

〈
Aθ̂, (Zi − µ)

〉
.

Since
∥∥∥Aθ̂

∥∥∥2
≤ ∥A∥2

∥∥∥θ̂
∥∥∥2

≤ 1442ε4, we can write

P

(
n∑

i=1

〈
θ̂, vUi,i

〉2
≥ 6ε2

)
= P

(
n∑

i=1

〈
Aθ̂, ZUi,i − µ

〉2
≥ 6/1442ε2

)

≤ P

(
n∑

i=1

〈
Aθ̂, ZUi,i − µ

〉2
≥ 6/1442

∥∥∥Aθ̂
∥∥∥2
)

≤ E

[
P

(
n∑

i=1

〈
Aθ̂, ZUi,i − µ

〉2
≥ 6

∥∥∥Aθ̂
∥∥∥2
∣∣∣∣U
)]

.

Using this representation, we can use Lemma B.7 to conclude that if d > O
(
n4 log(n5)

)
P

(
n∑

i=1

〈
Aθ̂, ZUi,i − µ

〉2
≥
∥∥∥Aθ̂

∥∥∥2
∣∣∣∣U
)

≤ O

(
1
n2

)
. (12)

To conclude the proof, Equation (11) and Equation (12) show

P (Ec) ≤ O

(
1
n2

)
.

C.4. Proof of Theorem 6.5

Given that the Euclidean radius of Θ is bounded by R, we will presume that the loss function lies within [−LR, LR]. Let
0 < m ≤ n and η > 0 be constants which are determined later. The algorithm An is based on early-stopped online gradient
descent. More precisely, let the training set Sn = (Z1, . . . , Zn) and θ1 = 0. For t ∈ [m], let

θt+1 = ΠΘ (θt − η∂f(θt, Zt)) ,
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where ∂f(θt, Zt) denotes the sub-gradient of ∂f(·, Zt) at θt. Then, the output of the algorithm will be An(Sn) =
1
m

∑m
t=1 θt.

By the standard result on the regret analysis of the online gradient descent and the online-to-batch conversion in [Zin03;
SSSS09; Ora19], we have with probability at least 1 − δ,

FD(An(Sn)) − min
θ∈Θ

FD(θ) ≤ R2

2mη
+ η

2L2 + 2LR

√
8 log(2/δ)

m

By setting m = 128(LR)2

ε2 log(2/δ) and η = R

L

1√
m

, An achieves ε excess risk of ε with probability at least 1 − δ. Next,

we provide the analysis of CMI of An. Then, using chain rule for mutual information, we have

CMID(An) = I(An(Sn); U |Z̃ZZ)
= I(An(Sn); U1, . . . , Un|Z̃ZZ)
= I(An(Sn); U1, . . . , Um|Z̃ZZ)
+ I(An(Sn); Um+1, . . . , Un|Z̃ZZ, U1, . . . , Um).

Since An(Sn) depends only on the first m examples in the training set, I(An(Sn); Um+1, . . . , Un|Z̃ZZ, U1, . . . , Um) = 0.
Therefore,

CMID(An) = I(An(S); U1, . . . , Um|Z̃ZZ)
≤ H(U1, . . . , Um|Z̃ZZ)
= H(U1, . . . , Um)
≤ m.

(13)

Therefore its CMI is less than m as was to be shown.

C.5. Corollaries of Proof of Theorem 4.1

Corollary C.1. Let P(d)
cvx be the problem instance described in Section 6.1.1. Fix ε < 1. For every δ ≤ ε and for every

algorithm A = {An}n∈N that ε-learns P(d)
cvx with the sample complexity N(·, ·) the following holds: for every n ≥ N(ε, δ),

and d ≥ Ω(n4 log(n)), there exists a data distribution D ∈ M1(Z) such that

E
[∣∣∣ {i ∈ [n] :

〈
θ̂, A (Zi − µ)

〉}
≥ ε

n

∣∣∣] = Ω
(

1
ε2

)
,

where Sn = (Z1, . . . , Zn) ∼ D⊗n, θ̂ = A(Sn), and µ = EZ∼D [Z], and

A = diag
[{

ε2 − (µ(k))2

1 − (µ(k))2

}d

k=1

]
.

Corollary C.2. Fix ε > 0. Consider the structure introduced in the definition of CMI in Definition 3.2. Then, define the
random variable

I =
{

(i, j) ∈ [n] × {0, 1}
∣∣∣ ⟨An(Sn), A (Zj,i − µ)⟩ ≥ ε/n and ⟨An(Sn), A (Z1−j,i − µ)⟩ < ε/n

}
,

where

A = diag
[{

ε2 − (µ(k))2

1 − (µ(k))2

}d

k=1

]
.

Let P(d)
cvx be the problem instance described in Section 6.1.1. Fix ε < 1. For every δ ≤ ε and for every algorithm

A = {An}n∈N that ε-learns P(d)
cvx with the sample complexity N(·, ·) the following holds: for every n ≥ N(ε, δ), and

d ≥ Ω(n4 log(n)), there exists a data distribution D ∈ M1(Z) such that

E [|I|] = Ω
(

1
ε

)
.
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D. Auxiliary Lemma for Improper Learning of the CLB Subclass
Lemma D.1. Let Bd(1) denote the ball of radius one in Rd. Let f : Bd(1) × Z → R be a convex and 1-Lipschitz loss
function defined over Bd(1). Then, there exists a convex and 1-Lipschitz f̃ : Rd × Z → R such that for every θ̂ ∈ Rd and
every D, we have

EZ∼D

[
f̃(θ̂, Z)

]
− min

θ∈Bd(1)
EZ∼D

[
f̃(θ, Z)

]
≥ EZ∼D

[
f(Π

(
θ̂
)

, Z)
]

− min
θ∈Bd(1)

EZ∼D [f(θ, Z)] ,

where Π(·) : Rd → Bd(1) is the orthogonal projection operator on Bd(1).

Proof. Let f : Bd(1) × Z → R be a convex and 1-Lipschitz loss function. For every z ∈ Z , define

f̃(θ, z) = inf
w∈Bd(1)

{f(w, z) + ∥θ − w∥}.

By Lemma B.2, we know that for every z ∈ Z , f̃(·, z) is convex and 1−Lipschitz. Our first claim is that

min
θ∈Bd(1)

EZ∼D
[
f̃(θ, Z)

]
= min

θ∈Bd(1)
EZ∼D [f(θ, Z)] .

It follows from the fact that for every θ ∈ Bd(1) and every z ∈ Z , f̃(θ, z) = f(θ, z) by Lemma B.2. Let Π : Rd → Bd(1)
be the projection operator. Our second claim is that for every θ ∈ Rd, we have

EZ∼D
[
f̃(Π (θ) , Z)

]
≤ EZ∼D

[
f̃(θ, Z)

]
. (14)

The proof is as follows. For every z ∈ Z , we can write

f̃ (θ, z) = inf
w∈Bd(1)

{f(w, z) + ∥θ − w∥}

≥ inf
w∈Bd(1)

{f(w, z) + ∥Π (θ) − w∥},

where the last step follows from
∥θ − w∥ ≥ ∥Π(θ) − Π(w)∥ = ∥Π(θ) − w∥

where the first step is by contraction property of the projection and the second step is due to Π(w) = w since w ∈ Bd(1).
Then, notice that

inf
w∈Bd(1)

{f(w, z) + ∥Π (θ) − w∥} = f̃(Π (θ) , z)

= f(Π (θ) , z).

The last step follows from Π(θ) ∈ Bd(1) and by Lemma B.2, f̃(., z) and f(., z) agree on Bd(1).

Combining these two claims we obtain, for every θ̂ ∈ Rd, we have

EZ∼D

[
f̃(θ̂, Z)

]
− min

θ∈Bd(1)
EZ∼D

[
f̃(θ, Z)

]
≥ EZ∼D

[
f(Π

(
θ̂
)

, Z)
]

− min
θ∈Bd(1)

EZ∼D [f(θ, Z)] ,

as was to be shown.

Lemma D.2. Let An be a learning algorithm. Define Π(An) as a learning algorithm that obtains by projecting the output
of An into Bd(1). Then,

CMID(An) ≥ CMID(Π(An))

Proof. This result is a direct corollary of the data processing inequality [CT12].
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E. Proofs for Characterization of CMI of the CSL Subclass
E.1. Proof of Lemma 7.1

For every θ ∈ Rd, we have FD(θ) = − ⟨θ, µ⟩ + 1
2 ∥θ∥2 , and min

θ∈Θ
FD(θ) = −1

2 ∥µ∥2 where the minimum is achieved by

setting θ⋆ = µ. Therefore, simple calculation shows that

FD(θ) − FD(θ⋆) = 1
2 ∥θ − µ∥2

= 1
2 ∥θ∥2 − ⟨θ, µ⟩ + 1

2 ∥µ∥2

≥ 1
2 ∥µ∥2 − ⟨θ, µ⟩ .

Thus, if θ̂ achieves excess error ε with probability at least 1 − δ, we have 1
2 ∥µ∥2 −

〈
θ̂, µ
〉

≤ ε and ∥θ − µ∥2 ≤ 2ε.

For the in-expectation result, notice that without loss of generality, we can assume that θ̂ ∈ Bd(1).

E.2. Proof of Lemma 7.3

The proof is based on defining a family of data distribution, and a prior over the family. Then, we show that in-expectation
over the prior, the stated claim holds.

The data distribution is parameterized by a vector p =
(
p(1), . . . , p(d)) ∈ [−1, 1]d where for every z = (z(1), . . . , z(d)) ∈

{± 1√
d
}d,

Dp(z = (z(1), . . . , z(d))) =
d∏

k=1

(
1 +

√
dz(k)p(k)

2

)
.

Let µp = EZ∼Dp [Z] where µ
(k)
p = p(k)/

√
d. We define a prior distribution π ∈ M1([−1, 1]d) over p denoted by π and is

given by

π = Unif([−1, 1])⊗d.

Let Sn = (Z1, . . . , Zn) ∼ D⊗n
p , and θ̂ = An(Sn). From Lemmas 4.3.7 and 4.3.8 of [Ste16], we have the following result

known as finerprinting lemma:

Ep∼πESn∼D⊗n

〈θ̂,
∑
i∈[n]

(Zi − µp)
〉

= 2Ep∼π

[〈
ESn∼D⊗n [θ̂], µp

〉]
.

By Lemma 7.1, for every p 〈
ESn∼D⊗n

p
[θ̂], µp

〉
≥ ∥µp∥2

2 − ε − 3
2δ.

Therefore,

Ep∼π

〈
ESn∼D⊗n

p
[θ̂], µp

〉
≥ Ep∼π

[
∥µp∥2

2

]
− ε − 3

2δ

= 1
6 − ε − 3

2δ,

where the last step follows from

Ep∼π

[
∥µp∥2

]
=

d∑
k=1

1
d
Ep∼π

[
(p(k))2

]
= 1

3 .
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Therefore,

Ep∼πESn∼D⊗n
p

〈θ̂,
∑
i∈[n]

(Zi − µp)
〉 = 2Ep∼π

[〈
ESn∼D⊗n

p
[θ̂], µp

〉]
≥ 1

3 − 2ε − 3δ,

as was to be shown.

E.3. Proof of Theorem 4.2

Fix a learning algorithm A, and let D be a distribution satisfies Lemma 7.3. Also, consider the structure introduced in the
definition of CMI in Definition 3.2 and let Z̃ZZ = (Zj,i)j∈{0,1},i∈[n] ∼ D⊗(2×n). Let β = 1/12 be a constant. Define the
following set

I =
{

(i, j) ∈ [n] × {0, 1}
∣∣∣ 〈θ̂ − µ, Zj,i − µ

〉
≥ β/n and

〈
θ̂ − µ, Z1−j,i − µ

〉
< β/n

}
.

Intuitively, I includes the subset of columns of supersample such that one of the samples has a large correlation to the output
of the algorithm and the other one has small correlation to the output of the algorithm. Also, define the following event

G =
{

∀i ∈ [n] :
〈

θ̂ − µ, ZŪi,i − µ
〉

< β/n
}

,

where Ūi = 1 − Ui. Intuitively, under the event G the correlation of the output and the heldout samples are insignificant. We
can write

CMID(An) = H(U |Z̃ZZ) − H(U |Z̃ZZ, θ̂)
= H(U) − H(U |Z̃ZZ, θ̂)
= n − H(U |Z̃ZZ, θ̂).

where the last two steps follows from U ⊥⊥ Z̃ZZ and H(U) = n. Notice that I is a (θ̂, Z̃ZZ)-measurable random variable, thus,
H(U |Z̃ZZ, θ̂) = H(U |Z̃ZZ, θ̂, I). Define I(1) as follows: i ∈ I(1) iff ∃j ∈ {0, 1} such that (i, j) ∈ I. Using this notation, we
can write

H(U |Z̃ZZ, θ̂, I) = H(UI(1) , U(I(1))c |Z̃ZZ, θ̂, I)

≤ H(UI(1)

∣∣Z̃ZZ, θ̂, I) + H(U(I(1))c |Z̃ZZ, θ̂, I), (15)

where the last step follows from sub-additivity of Entropy. The second term in Equation (15) can be bounded by

H(U(I(1))c |Z̃ZZ, θ̂, I) ≤ E [(n − |I|)] .

Define the random variable Û ∈ {0, 1}n as follows: for every (i, j) ∈ I, let Ûi = j. For the remaining coordinates set
Ûi = 0. Notice that Û is a I measurable random variable. Therefore, H(UI(1)

∣∣Z̃ZZ, θ̂, I) = H(UI(1)

∣∣Z̃ZZ, θ̂, I, Û). Then, we
invoke Fano’s inequality from Lemma B.1 to write

H(UI(1)

∣∣Z̃ZZ, θ̂, I, Û) ≤ H(UI(1)

∣∣Û)
≤ 1 + H(UIc)P ({∃(i, j) ∈ I : Ui ̸= j})
≤ 1 + nP ({∃(i, j) ∈ I : Ui ̸= j}) .

We claim that P ({∃(i, j) ∈ I : Ui ̸= j}) ≤ P (Gc). The proof is as follows: If there exists (i, j) ∈ I such that Ui ̸= j, then,
we have 〈

θ̂ − µ, ZŪi,i − µ
〉

≥ β

n
,

by the definition of I. Therefore, we conclude H(UI(1)

∣∣Z̃ZZ, θ̂, I) ≤ 1 + nP (Gc). The conditional entropy can be upper-
bounded by

H(U
∣∣Z̃ZZ, θ̂) ≤ n − E [|I|] + 1 + nP (Gc) .
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By the definition of mutual information, we can lower bound CMID(An) as follows

CMID(An) = n − H(U |Z̃ZZ, θ̂)
= E [|I|] − 1 − nP (Gc) .

(16)

In the next step of the proof, we provide a lower bound on E [|I|]. Let us define a random variable that measures the
correlation between the output and the i-th training samples:

ci ≜
〈

θ̂ − µ, ZUi,i − µ
〉

.

Under the event G, using Lemma B.4 we can lower bound E[|I|] as follows

E[|I|] ≥ E [|I|1 [G]]

≥ E
[∣∣∣∣ {i ∈ [n] : ci ≥ β

n

} ∣∣∣∣1 [G]
]

≥ E


(

max{
∑

i∈[n] ci − β, 0}
)2

∑
i∈[n] c2

i

1 [G]

 .

(17)

Also, define the following event

E ≜ G ∩
{∥∥∥θ̂ − µ

∥∥∥2
≤ ε

}
∩

∑
i∈[n]

c2
i ≤ 6

∥∥∥θ̂ − µ
∥∥∥2
 .

Since E ⊆ G, we have

E


(

max{
∑

i∈[n] ci − β, 0}
)2

∑
i∈[n] c2

i

1 [G]

 ≥ E


(

max{
∑

i∈[n] ci − β, 0}
)2

∑
i∈[n] c2

i

1 [E ]


≥ E


(

max{
∑

i∈[n] ci − β, 0}
)2

6ε
1 [E ]


= E


(

max{
∑

i∈[n] ci − β, 0}
)2

6ε

− E


(

max{
∑

i∈[n] ci − β, 0}
)2

6ε
1 [Ec]

 ,

(18)

where the second step follows because under event G,
∑

i∈[n] c2
i ≤ 6

∥∥∥θ̂ − µ
∥∥∥2

and
∥∥∥θ̂ − µ

∥∥∥2
≤ ε. By convexity of

h1(x) = x2 and h2(x) = max{x, 0}, we can use Jensen’s inequality to obtain

E


(

max
{∑

i∈[n] ci − β, 0
})2

ε

 ≥

(
max

{
E
[∑

i∈[n] ci

]
− β, 0

})2

6ε

≥
( 1

3 − 2ε − 3δ − β
)2

6ε
,

where the last step follows from Lemma 7.3. Notice that by setting ε < 1/24 and δ < 1/48, we have
( 1

3 − 2ε − 3δ − β
)2 ≥

1/36.
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To upperbound the second term in Equation (18), first, notice that the following holds with probability one(
max{

∑
i∈[n] ci − β, 0}

)2

3ε
≤

(∑
i∈[n] ci

)2
+ 2β2

6ε

≤ 2β2 + 16n2

6ε
,

where the last step follows from ∥∥∥∥∥∥
∑
i∈[n]

ci

∥∥∥∥∥∥ =

∥∥∥∥∥
〈

θ̂ − µ,

n∑
i=1

(ZUi,i − µ)
〉∥∥∥∥∥

≤
∥∥∥θ̂ − µ

∥∥∥∥∥∥∥∥
n∑

i=1
(ZUi,i − µ)

∥∥∥∥∥
≤ 4n.

Then, in the next step we provide an upperbound on P(Ec). Union bound implies that

P (Ec) ≤ P (Gc) + P
(∥∥∥θ̂ − µ

∥∥∥2
> ε

)
+ P

∑
i∈[n]

c2
i > 6

∥∥∥θ̂ − µ
∥∥∥2
 .

We want to set the parameters so that for a sufficiently small γ the following hold

P (Gc) ≤ γ/n2,P
(∥∥∥θ̂ − µ

∥∥∥2
> ε

)
≤ γ/n2,P

∑
i∈[n]

c2
i > 6

∥∥∥θ̂ − µ
∥∥∥2
 ≤ γ/n2. (19)

Notice that

P (Gc) = P

(
max
i∈[n]

{〈
θ̂ − µ, ZŪi,i − µ

〉}
≥ β/n

)

= E
[
P
(〈

θ̂ − µ, ZŪi,i − µ
〉

≥ β/n

∣∣∣∣U, θ̂

)]
.

By the construction of CMI in Definition 3.2, conditioned on U , θ̂, ZŪi,i is i.i.d.from D for i ∈ [n]. Therefore, we can use
Lemma B.8,

P (Gc) ≤ nP
(〈

θ̂ − µ, ZŪi,i − µ
〉

≥ β/n
)

≤ n exp
(

− d

8n2

)
,

We can see setting d ≥ O(n2 log(n2)), we have P (Gc) ≤ γ/n2 in Equation (19). Then, by the fact that A ε-learns P(d)
scvx

and Lemma 7.1 we have

P
(∥∥∥θ̂ − µ

∥∥∥2
> ε

)
≤ δ = O

(
1/n2) .

Also, by Lemma B.7, given that d > O
(
n4 log(n)

)
P

∑
i∈[n]

c2
i > 6

∥∥∥θ̂ − µ
∥∥∥
 = P

∑
i∈[n]

〈
θ̂ − µ, ZUi,i − µ

〉2
> 6

∥∥∥θ̂ − µ
∥∥∥


= E

P
∑

i∈[n]

〈
θ̂ − µ, ZUi,i − µ

〉2
> 6

∥∥∥θ̂ − µ
∥∥∥ ∣∣∣∣U


≤ O

(
1/n2) .
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In summary, we conclude that we can set the parameters such that in Equation (18)

E


(

max{
∑

i∈[n] ci − β, 0}
)2

3ε
1 [Ec]

 ≤ 2β2 + 16n2

3ε
P (Gc) ≤ O

(
1
ε

)
.

Ergo, we have

E [|I|1 [G]] ≥ Ω
(

1
ε

)
.

E.4. Proof of Theorem 7.4

The algorithm is based on subsampling a subset of training samples to create a new dataset and feeding it into an empirical
risk minimizer. Let 0 < m ≤ n be constants to be determined later. Let the training set Sn = (Z1, . . . , Zn). The output of
the algorithm θ̂ = An(S) is

θ̂ = arg min
θ∈Θ

{∑
i∈[m]

f(θ, Zi)
}

.

Notice that θ̂ is unique since f(·, z) is a strongly convex function. By [SSSS09, Thm. 6], we have

E[FD(θ̂)] − min
θ∈Θ

FD(θ̂) ≤ 4L2

µm
.

Since A is a function of the first m samples only, using the same argument as in the proof of Theorem 6.5, we can show that
CMID(An) ≤ m. Finally, setting m = 4L2

µε concludes the proof.

E.5. Corollaries of Proof of Theorem 4.2

Corollary E.1. Let P(d)
scvx be the problem instance described in Section 7.1.1. For every ε < 1/24 and δ < 1/48 and for

every ε-learner (A = {An}n∈N), with sample complexity N(·, ·) the following holds: for every n ≥ N(ε, δ), δ < O(1/n2),
and d ≥ O(n4 log(n)), there exists a data distribution D ∈ M1(Z) such that

E
[∣∣∣ {i ∈ [n] :

〈
θ̂ − µ, Zi − µ

〉}
≥ 1

12n

∣∣∣] = Ω
(

1
ε

)
,

where Sn = (Z1, . . . , Zn) ∼ D⊗n, θ̂ = A(Sn), and µ = EZ∼D [Z].
Corollary E.2. Consider the structure introduced in the definition of CMI in Definition 3.2. Then, define the random
variable

I =
{

(i, j) ∈ [n] × {0, 1}
∣∣∣ ⟨An(Sn) − µ, Zj,i − µ⟩ ≥ 1/(12n) and ⟨An(Sn) − µ, Z1−j,i − µ⟩ < 1/(12n)

}
.

Let P(d)
scvx be the problem instance described in Section 7.1.1. For every ε < 1/24 and δ < 1/48 and for every ε-

learner (A = {An}n∈N), with sample complexity N(·, ·) the following holds: for every n ≥ N(ε, δ), δ < O(1/n2), and
d ≥ O(n4 log(n)), there exists a data distribution D ∈ M1(Z) such that

E
[∣∣I∣∣] = Ω

(
1
ε

)
.

F. Proof of Memorization Results
F.1. Adversary Strategy

We describe the proposed strategy for the adversary in Algorithm 1 and Algorithm 2.
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Algorithm 1 Qcvx: Attacker for Convex Losses

1: Inputs: θ̂ ∈ Θ, Z ∈ Z , D ∈ M1(Z).
2: µ = (µ(1), . . . , µ(k)) = EZ∼D [Z].

3: A = diag
[{

144ε2−d(µ(k))2

1−d(µ(k))2

}d

k=1

]
.

4: β = ε.
5: if

〈
θ̂, A (Z − µ)

〉
≥ β/n then

6: b̂ = 1
7: else
8: b̂ = 0
9: Output b̂

Algorithm 2 Qscvx: Adversary for Strongly Convex Losses

1: Inputs: θ̂ ∈ Θ, Z ∈ Z , D ∈ M1(Z).
2: µ = EZ∼D[Z]
3: β = 1/12.

4: if
〈

θ̂ − µ, Z − µ
〉

≥ β

4n
then

5: b̂ = 1
6: else
7: b̂ = 0
8: Output b̂

Algorithm 3 FPscvx: Fingerprint detector for Strongly Convex Losses

1: Inputs: θ̂ ∈ Θ, (Z0, . . . , Zn) ∈ Zn+1, D ∈ M1(Z).
2: µ = EZ∼D[Z]
3: β = 1/12.
4: BFP = ∅
5: for i ∈ {0, . . . , n} do:

6: if
〈

θ̂ − µ, Zi − µ
〉

≥ β

n
then

7: BFP = BFP ∪ {i}
8: Output BFP

Algorithm 4 CRscvx: Correlation-Reduction for Strongly Convex Losses

1: Inputs: θ̂ ∈ Θ, (Z1, . . . , Zn) ∈ Zn, Z0 ∼ D
2: µ̃ = Z0
3: β = 1/12.
4: Bcorr-red = ∅
5: w = θ̂
6: for i ∈ [n] do:

7: if
〈

θ̂, Zi − µ̃
〉

≥ β

2n
then

8: Bcorr-red = Bcorr-red ∪ {i}
9: if

∣∣Bcorr-red
∣∣ = 2

ε log
( 1

δ

)
then

10: Sample R ⊆ [n] a uniform random subset of size 2
ε log( 1

δ ) from [n]
11: w = µemp (R)
12: Break
13: Output w, Bcorr-red
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F.2. Proof of Theorem 4.5

Let b = (b1, . . . , bn) denote the outcome of fair coin at each round of the game described in Definition 4.3. Then, let
b̂i = Qcvx

(
θ̂, Zbi,i, D

)
for each round i ∈ [n] and let us denote the output of the adversary as (b̂1, . . . , b̂n) ∈ {0, 1}n.

F.2.1. SOUNDNESS ANALYSIS

Define the following event
G =

{
∀i ∈ [n] :

〈
θ̂, A(Z0,i − µ)

〉
< β/n

}
.

Notice that

P
(

∃i ∈ [n] :Qcvx

(
θ̂, Z0,i, D

)
= 1
)

= P ({ ∃i ∈ [n] :Qcvx

(
θ̂, Z0,i, D

)
= 1 } ∩ G) + P ({ ∃i ∈ [n] :Qcvx

(
θ̂, Z0,i, D

)
= 1 } ∩ Gc)

≤ P ({ ∃i ∈ [n] :Qcvx

(
θ̂, Z0,i, D

)
= 1 } ∩ G) + P (Gc) .

We claim that P ({ ∃i ∈ [n] : Qcvx

(
θ̂, Z0,i, D

)
= 1 } ∩ G) = 0. It follows from the following observation: ∃i ∈ [n] :

Qcvx

(
θ̂, Z0,i, D

)
= 1 can happen if and only if there exists i ∈ [n] such that

〈
θ̂, A (Z0,i − µ)

〉
≥ β/n. However, the

intersection of this event with G is empty by the definition of G. Therefore, we can write

P
(

∃i ∈ [n] :Qcvx

(
θ̂, Z0,i, D

)
= 1
)

≤ P (Gc) .

To upperbound P (Gc), notice

P (Gc) = P
(

∃i ∈ [n] :
〈

θ̂, A(Z0,i − µ)
〉

≥ β/n
)

.

By the fact that θ̂ ⊥⊥ Z0,i for every i ∈ [n], we can use Lemma B.8 and the fact that
∥∥∥θ̂
∥∥∥ ≤ 1, to write

P
(

∃i ∈ [n] :
〈

Aθ̂, Z0,i − µ
〉

≥ β/n
)

≤ n exp
(

− d

2n2ε2

)
≤ ξ,

given d ≥ Ω(n2 log(n/ξ)). Notice that by assumption ε < 1. This concludes the soundness analysis.

F.2.2. RECALL ANALYSIS

The construction of hard problem instance is given in Section 6.1.1. Let A be an arbitrary ε-learner and let D be a distribution
satisfies Lemma 6.3. Let us define

I = {i ∈ [n] :
〈

θ̂, A(Z1,i − µ)
〉

≥ β/n}

where β is given in Algorithm 1. As seen in Equation (17) in the proof of Theorem 4.1, we have

E [|I|] = Ω(1/ε2).

An important observation is that
∑n

i=1 1
[
Q
(

θ̂, Z1,i, D
)]

= |I|. Then, notice the total number of samples is Õ(1/ε2).
Therefore, using reverse Markov’s inequality in Lemma B.9, we obtain

P(|I| ≥ Ω(1/ε2)) ≥ p0,

where p0 is a constant independent of n and ε.

F.3. Proof of Theorem 4.6

Let b = (b1, . . . , bn) denote the outcome of fair coin at each round of the game described in Definition 4.3. Then, let
b̂i = Qscvx

(
θ̂, Zbi,i, D

)
for each round i ∈ [n] and let us denote the output of the adversary as (b̂1, . . . , b̂n) ∈ {0, 1}n.
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F.3.1. SOUNDNESS ANALYSIS

Define the following event
G =

{
∀i ∈ [n] :

〈
θ̂ − µ, Z0,i − µ

〉
< β/n

}
.

Notice that

P
(

∃i ∈ [n] :Qscvx

(
θ̂, Z0,i, D

)
= 1
)

= P ({ ∃i ∈ [n] :Qscvx

(
θ̂, Z0,i, D

)
= 1 } ∩ G) + P ({ ∃i ∈ [n] :Qscvx

(
θ̂, Z0,i, D

)
= 1 } ∩ Gc)

≤ P ({ ∃i ∈ [n] :Qscvx

(
θ̂, Z0,i, D

)
= 1 } ∩ G) + P (Gc) .

We claim that P ({ ∃i ∈ [n] : Qscvx

(
θ̂, Z0,i, D

)
= 1 } ∩ G) = 0. It follows from the following observation:

Qscvx

(
θ̂, Z0,i, D

)
= 1 can happen if and only if

〈
θ̂ − µ, Z0,i − µ

〉
≥ β/n. However, the intersection of this event

with G is empty by the definition of G. Therefore, we can write

P
(

∃i ∈ [n] :Qscvx

(
θ̂, Z0,i, D

)
= 1
)

≤ P (Gc) .

Since Z0,i ⊥⊥ θ̂, we can use Lemma B.8 to write

P (Gc) ≤ n exp
(

− d

4n2

)
.

By setting d ≥ Ω(n2 log(n/ξ)), we obtain that

P
(

∃i ∈ [n] :Qscvx

(
θ̂, Z0,i, D

)
= 1
)

≤ ξ.

This concludes the soundness analysis.

F.3.2. RECALL ANALYSIS

The construction of the hard problem instance is given in Section 7.1.1. Let A be an arbitrary ε-learner and let D be a
distribution that satisfies Lemma 7.3. Consider the algorithms given in Algorithms 2 to 4 and using them define the following
random variables:

(Z0, Z1, . . . , Zn) ∼ D⊗(n+1),

θ̂ = An(Z1, . . . , Zn),
Badversary = {i ∈ [n] : b̂i = 1},

w, Bcorr-red = CRscvx

(
θ̂, (Z1, . . . , Zn), Z0

)
,

BFP = FPscvx (w, (Z0, . . . , Zn), D) .

In particular, Z0 is a sample drawn from D which is independent of the training set, i.e., (Z1, . . . , Zn).

Recall that our goal is to show that P
(∣∣Badversary

∣∣ = Ω(1/ε)
)

is greater than a universal constant. Our approach is as follows:
In the first step, we show that, with a high probability, Bcorr-red ⊆ Badversary. Then, in the second step, we will show that
with a high probability |BFP| ≤ |Bcorr-red| + 1. In the third step, we will show that E

[∣∣BFP
∣∣] = Ω(1/ε) which gives us

E
[∣∣Bcorr-red

∣∣] = Ω(1/ε). Finally, by the fact that Bcorr-red = O (1/ε) with probability one and reverse Markov’s inequality,
we obtain that P(

∣∣Bcorr-red
∣∣ ≥ Ω(1/ε)) is greater than a universal constant. Combining this result with Step 1, concludes the

proof.

Step 1: with a high probability, Bcorr-red ⊆ Badversary. Simple calculations show that〈
θ̂, Zi − µ̃

〉
=
〈

θ̂ − µ, Zi − µ
〉

+
〈

θ̂, µ − µ̃
〉

+ ⟨µ, Zi − µ⟩ .
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Then, we can write

P (Bcorr-red ̸⊆ Badversary) ≤ P
(

∃i ∈ [n] :
〈

θ̂, Zi − µ̃
〉

≥ β

2n
∧
〈

θ̂ − µ, Zi − µ
〉

<
β

4n

)
≤ P

(
∃i ∈ [n] :

〈
θ̂, µ − µ̃

〉
+ ⟨µ, Zi − µ⟩ ≥ β

4n

)
≤ P

(〈
θ̂, µ − µ̃

〉
≥ β

4n

)
+ P

(
∃i ∈ [n] : ⟨µ, Zi − µ⟩ ≥ β

4n

)
≤ exp

(
− d · β2

32n2 ∥µ∥2

)
+ n exp

(
− dβ2

32n2 ∥µ∥2

)

≤ (n + 1) exp
(

−d · β2

32n2

)
,

where the second step follows from union bound and the third step follows from Lemma B.8. This shows that setting
d = Ω

(
n2 log(n2)

)
, we obtain

P
(

∃i ∈ [n] :
〈

θ̂, Zi − µ̃
〉

≥ β

2n
∧
〈

θ̂ − µ, Zi − µ
〉

<
β

4n

)
≤ O

(
1
n

)
.

This is equivalent to

P (Bcorr-red ⊆ Badversary) ≥ 1 − O

(
1
n

)
.

Step 2: with a high probability, |BFP| ≤ |Bcorr-red| + 1. Notice that
∣∣BFP

∣∣ =
∣∣BFP ∩ {1, . . . , n}

∣∣+
∣∣BFP ∩ {0}

∣∣. We can
write

P
(∣∣BFP ∩ {1, . . . , n}

∣∣ >
∣∣Bcorr-red

∣∣) = P
({∣∣BFP ∩ {1, . . . , n}

∣∣ >
∣∣Bcorr-red

∣∣} ∧ {w = θ̂}
)

+ P
({∣∣BFP ∩ {1, . . . , n}

∣∣ >
∣∣Bcorr-red

∣∣} ∧ {w = θ0}
)

.
(20)

For the first term in Equation (20),

P
({∣∣BFP ∩ {1, . . . , n}

∣∣ >
∣∣Bcorr-red

∣∣} ∧ {w = θ̂}
)

≤ P
(

{∃i ∈ {1, . . . , n} : i ∈ BFP ∧ i /∈ Bcorr-red} ∧ {w = θ̂}
)

= P
({

∃i ∈ {1, . . . , n} :
〈

θ̂ − µ, Zi − µ
〉

≥ β

n
∧
〈

θ̂, Zi − µ̃
〉

<
β

2n

}
∧ {w = θ̂}

)
≤ P

({
∃i ∈ {1, . . . , n} :

〈
θ̂ − µ, Zi − µ

〉
≥ β

n
∧
〈

θ̂, Zi − µ̃
〉

<
β

2n

})
≤ O

(
1
n

)
,

where the last step follows from Lemma B.8. Then, for the second term in Equation (20),

P
(
{
∣∣BFP ∩ {1, . . . , n}

∣∣ >
∣∣Bcorr-red

∣∣} ∧ {w = µemp (R)}
)

= P
(

{
∣∣BFP ∩ {1, . . . , n}

∣∣ >
2
ε

log(1/δ)} ∧ {w = µemp (R)}
)

,

where the last line follows because under the event w = µemp (R),
∣∣Bcorr-red

∣∣ = 2
ε log (1/δ). Notice that |R| = 2

ε log(1/δ)
and R is independent of every other random variable. Therefore, the event

∣∣BFP ∩ {1, . . . , n}
∣∣ > 2

ε log(1/δ) is a subset
of the event that there exists i /∈ R such that ⟨w − µ, Zi − µ⟩ > β

n . However, notice that w ⊥⊥ Zi by the description of
Algorithm 4. Therefore, we can write

P
(

{
∣∣BFP ∩ {1, . . . , n}

∣∣ >
2
ε

log(1/δ)} ∧ {w = µemp (R)}
)

≤ E
[
P
(

∃i /∈ R : ⟨µemp(R) − µ, Zi − µ⟩ ≥ β

n

∣∣∣∣R)] .
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By an application of Lemma B.8, we have

P
(

∃i /∈ R : ⟨µemp(R) − µ, Zi − µ⟩ ≥ β

n

∣∣∣∣R) ≤ n · exp
(

− dβ2

32n2

)
.

It can be seen by setting d = Ω(n2 log(n2), we obtain that this probability is at most O(1/n). Therefore, combining these
two upperbounds with Equation (20) shows that with probability at least 1 − O(1/n), we have∣∣BFP

∣∣ =
∣∣BFP ∩ {1, . . . , n}

∣∣+
∣∣BFP ∩ {0}

∣∣
≤
∣∣Bcorr-red

∣∣+ 1,

as was to be shown.

Step 3: E [BFP] = Ω(1/ε) We claim that w (output of Algorithm 4) satisfies the definition of ε-learner. The reason is as
follows: w can be either θ̂ = An(Sn) and µemp (R). Notice that An is an ε-learner by assumption. Consider the case that
w = µemp (R). Then, consider

P
(

∥µemp (R) − µ∥2
> ε
)

= E
[
P
(

∥µemp (R) − µ∥2
> ε
∣∣R)]

≤ δ,

where the last step follows from Lemma B.5. Therefore, by a union bound we see that the output of Algorithm 4 has an
excess error of ε, with probability at least 1 − 2δ with the sample complexity of N(ε, δ) where N is the sample complexity
of A. In Corollary E.1 we showed that for every ε-learner, we have

E
[∣∣BFP

∣∣] = Ω
(

1
ε

)
.

Step 4: Conclusion. First, we provide a lowerbound on the E[|Bcorr-red|] as follows

E
[∣∣Bcorr-red

∣∣] = E
[∣∣Bcorr-red

∣∣ · 1 [|Bcorr-red| + 1 ≥ |BFP|]
]

+ E
[∣∣Bcorr-red

∣∣ · 1 [|Bcorr-red| + 1 < |BFP|]
]

≥ E
[∣∣BFP

∣∣ · 1 [|Bcorr-red| + 1 ≥ |BFP|]
]

− 1 + E
[∣∣Bcorr-red

∣∣ · 1 [|Bcorr-red| + 1 < |BFP|]
]

≥ E
[∣∣BFP

∣∣]− 1 + E
[(∣∣Bcorr-red

∣∣−
∣∣BFL

∣∣) · 1 [|Bcorr-red| + 1 < |BFP|]
]

≥ E
[∣∣BFP

∣∣]− 1 − nP (|Bcorr-red| + 1 < |BFP|)

≥ Ω
(

1
ε

)
,

where the last line follows from Step 2 and Step 3. Since with probability one
∣∣Bcorr-red

∣∣ ≤ 2
ε log

( 1
δ

)
, reverse Markov’s

inequality from Lemma B.9 gives

P
(∣∣Bcorr-red

∣∣ = Ω
(

1
ε

))
≥ p0,

where p0 is a universal constant. Also, we showed in Step 1 that

P
(∣∣Badversary

∣∣ ≥
∣∣Bcorr-red

∣∣) ≥ 1 − O( 1
n

).

Combining these two facts using union bound concludes the proof.

G. Proofs of Lowerbound for Individual-Sample CMI
In this part, we show that our proof techniques for Theorem 4.1 and Theorem 4.2 easily extend to ISCMI. First, we begin
with the strong convex case. Let β = 1/12 and define

I =
{

(i, j) ∈ [n] × {0, 1}
∣∣∣ 〈θ̂ − µ, Zj,i − µ

〉
≥ β/n and

〈
θ̂ − µ, Z1−j,i − µ

〉
< β/n

}
.
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Also, define I(1) as follows: i ∈ I(1) iff ∃j ∈ {0, 1} such that (i, j) ∈ I. We also introduce the following events

Gi =
{〈

θ̂ − µ, ZŪi,i − µ
〉

< β/n
}

, Mi =
{

i ∈ I(1)
}

,

where Ūi = 1 − Ui. Then, we can write
n∑

i=1
I(θ̂, Ui

∣∣Z0,i, Z1,i) = n −
n∑

i=1
H(Ui

∣∣θ̂, Z0,i, Z1,i).

In the next step, for every i ∈ [n], we provide an upperbound on H(Ui

∣∣θ̂, Z0,i, Z1,i). First, notice that 1 [Mi] is a(
θ̂, Z0,i, Z1,i

)
-measurable random variable. Therefore,

H(Ui

∣∣θ̂, Z0,i, Z1,i) = H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Mi]). (21)

Using the monotonicity and chain rule of entropy, we can write

H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Mi]) ≤ H(Ui,1 [Gi]
∣∣θ̂, Z0,i, Z1,i,1 [Mi])

= H(1 [Gi]
∣∣θ̂, Z0,i, Z1,i,1 [Mi]) + H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Mi] ,1 [Gi])
≤ H(1 [Gi]) + H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Mi] ,1 [Gi])
= Hb (P (Gc

i )) + H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Mi] ,1 [Gi]),

where the third step follows because conditioning does not increase entropy and the last step follows because 1 [Gi] is a
binary random variable. Then, we can write

H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Mi] ,1 [Gi]) = H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Gi] ,1 [Mi] = 0)P (1 [Mi] = 0)
+ H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Gi] = 1,1 [Mi] = 1)P (1 [Mi] = 1 ∧ 1 [Gi] = 1)
+ H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Gi] = 0,1 [Mi] = 1)P (1 [Mi] = 1 ∧ 1 [Gi] = 0) .

We use the following estimates for each term. Since Ui is a bianry random variable, we have

H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Gi] ,1 [Mi] = 0)P (1 [Mi] = 0) ≤ P (1 [Mi] = 0) .

Then, conditioned on 1 [Gi] = 1 [Mi] = 1, Ui is given by j where (i, j) ∈ I since

{(i, j) ∈ I} ∩ Gi ⇒
{〈

θ̂ − µ, Zj,i − µ
〉

≥ β/n and
〈

θ̂ − µ, Z1−j,i − µ
〉

< β/n
}

∩
{〈

θ̂ − µ, ZŪi,i − µ
〉

< β/n
}

⇒ {j = Ui}.

Therefore,
H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Gi] = 1,1 [Mi] = 0) = 0.

For the last term, since Ui is a binary random variable, we can write

H(Ui

∣∣θ̂, Z0,i, Z1,i,1 [Gi] = 0,1 [Mi] = 0)P (1 [Mi] = 1 ∧ 1 [Gi] = 0) ≤ P (1 [Gi] = 0) .

In summary, we showed that

H(Ui

∣∣θ̂, Z0,i, Z1,i) ≤ P (1 [Gi] = 0) + Hb (P (Gc
i )) + P (1 [Mi] = 0) .

Using it, we can upperbound the sum of the conditional entropy as
n∑

i=1
H(Ui

∣∣θ̂, Z0,i, Z1,i) ≤
n∑

i=1
Hb (P (Gc

i )) + P (Gc
i ) + P (1 [Mi] = 0)

=
n∑

i=1
E [1 [1 [Mi] = 0]] + P (Gc

i ) + Hb (P (Gc
i ))

= E
[
(n −

∣∣I∣∣)]+
n∑

i=1
P (Gc

i ) +
n∑

i=1
Hb (P (Gc

i )) .
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Next, we provide an estimate for P (Gc
i )

P (Gc
i ) = P

(〈
θ̂ − µ, ZŪi,i − µ

〉
≥ β/n

)
= E

[
P
(〈

θ̂ − µ, ZŪi,i − µ
〉

≥ β/n

∣∣∣∣θ̂, Ui

)]
.

Since conditioned on Ui and θ̂, ZŪi,i ∼ D and D is a product measure, using Lemma B.8, we have

P
(〈

θ̂ − µ, ZŪi,i − µ
〉

≥ β/n
)

≤ O

(
1
n2

)
.

Also, by the well-known inequality, Hb(x) ≤ −x log(x) + x for x ∈ [0, 1], we have

Hb (P (Gc
i )) ≤ O

(
log(n)

n2

)
.

Therefore,
n∑

i=1
H(Ui

∣∣θ̂, Z0,i, Z1,i) ≤ n − E[|I|] + O

(
log(n)

n

)
.

Plugging this upperbound into Equation (21),

n∑
i=1

I(θ̂, Ui

∣∣Z0,i, Z1,i) = n −
n∑

i=1
H(Ui

∣∣θ̂, Z0,i, Z1,i)

≥ E[|I|] − O

(
log(n)

n

)
.

Finally, we use Corollary E.2, to conclude that

n∑
i=1

I(θ̂, Ui

∣∣Z0,i, Z1,i) ≥ E[|I|] − O

(
log(n)

n

)
≥ Ω

(
1
ε

)
− O

(
log(n)

n

)
≥ Ω

(
1
ε

)
,

where the last step follows since the minimum number of samples to ε-learn P(d)
scvx is n ≥ Ω(1/ε).

The proof of CLB subclass of SCOs is the same: using the same techniques we can lowerbound ISCMI by E[|I|] and then
by Corollary C.2 the result follows.
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