
Frozen Layers: Memory-efficient Many-fidelity
Hyperparameter Optimization

Timur Carstensen∗1,2 Neeratyoy Mallik∗2,3 Frank Hutter1,2,5 Martin Rapp4

∗
Equal contribution

1
ELLIS Institute Tübingen

2
Department of Computer Science, University of Freiburg, Germany

3
Zuse School ELIZA

4
Bosch Center for Artificial Intelligence (BCAI)

5
Prior Labs

Abstract As model sizes increase, finding efficient and cost-effective hyperparameter optimization

(HPO) methods becomes crucial for deep learning pipelines. Multi-fidelity HPO (MF-HPO)

balances the computational resources needed for deep learning training with lower fidelity

estimations. However, existing fidelity sources often struggle under lower compute and

memory constraints. We propose a novel fidelity source: the number of layers trained or

frozen during training. This approach offers significant savings in compute and memory

for deep networks while maintaining rank correlations between hyperparameters at low

fidelities compared to full model training. We demonstrate this in our empirical evaluation

of ResNets and Transformers, analyzing the utility of frozen layers as a fidelity source in

HPO and for a combined MF-HPO with other fidelity sources. This contribution opens

new applications for principled MF-HPO using hardware resources as a fidelity and creates

opportunities for improved algorithms that navigate joint fidelity spaces.

1 Introduction

In the last decade, we have observed considerable advances in deep learning (DL), which

consequently has spread into nearly all domains of modern life. Several works have shown that the

design of the training pipeline is the most important ingredient for obtaining high-performing

DL models (Bello et al., 2021; Wightman et al., 2021). Typically, several hyperparameters (HPs)

characterize the behavior of the training pipeline and are thus important to be tuned (Ruffinelli

et al., 2020; Porian et al., 2024). Such HPs include optimizer parameters (e.g., learning rate,

scheduler), regularization (e.g., weight decay), data augmentation, etc. However, optimal HPs

depend on the specific setting (model, data, task) and need to be tuned separately for each (Snoek

et al., 2012). The corresponding search spaces can be vast, as they grow combinatorially with the

number of involved HPs. Therefore, efficient methods for hyper-parameter optimization (HPO) are

needed.

The most resource-intensive step in HPO is the evaluation of an HP configuration, as this involves

training a DL model, which can take hours or even days of GPU compute and require accelerators

with a large VRAM (Cherti et al., 2023). Multi-fidelity HPO (MF-HPO) aims at reducing the resource

requirements of such evaluations by leveraging cheap approximations of the training result

(e.g., early validation loss or error). The core idea is that many HP configurations are evaluated

at low fidelity (cheap), and only promising ones are further evaluated at higher fidelity (more

resource-intensive) to find the optimal one (Jamieson and Talwalkar, 2016; Li et al., 2017; Falkner

et al., 2018; Mallik et al., 2023). Thereby, the MF-HPO focuses resource usage on the most promising

HP configurations. Existing multi-fidelity estimation techniques leverage the training duration (Li

AutoML 2025 © 2025 the authors, released under CC BY 4.0

mailto:timurcarstensen@gmail.com
mailto:neeratyoy@gmail.com
mailto:
mailto:
https://creativecommons.org/licenses/by/4.0/

L
a
y
e
r
1

L
a
y
e
r
2

L
a
y
e
r
𝑛
−
𝑧

L
a
y
e
r
𝑛
−
𝑧
+
1

L
a
y
e
r
𝑛
−
1

L
a
y
e
r
𝑛

Frozen Trained

.

Loss

Forward pass

Backward pass

. . .

Intermediate Activations

Figure 1: Training of a partially frozen neural network requires fewer resources: 1) lower compute

due to a shorter backward path, 2) lower memory because the activations of the first 𝑧 layers

are not kept in memory for the backward pass, and 3) lower memory due to no optimizer

states for the first 𝑧 layers. The resources requirements are adjustable via 𝑧.

et al., 2018), dataset size (Klein et al., 2017), or model size (Falkner et al., 2018; Swersky et al., 2014).

However, they cannot effectively reduce all involved resources, i.e., GPU compute and memory.

Kandasamy et al. (2017, 2020) presented a Multi-fidelity Bayesian Optimization algorithm that

can handle multiple sources of fidelity, however, their experiments only focus on compute resources.

In this work, we present a novel fidelity that is based on varying the number of trainable layers

in a DL model and freezing others, as illustrated in Figure 1. This allows us to partially evaluate

a model, moving away from the typical black-box nature of model training in HPO. Freezing

significantly reduces the resource requirements for training, both in terms of GPU compute and

GPU memory, reducing each by ≥ 2×, depending on the model configuration and batch size (see

Fig. 2).

These savings come at the cost of noisier estimates of the performance of HP configurations

since frozen layers stay at random initialization throughout training. However, it has been shown

that randomly-initialized DL models can extract powerful features even without training and

exhibit similar inductive bias as the fully trained network (Saxe et al., 2011; Gaier and Ha, 2019;

Zhong and Andreas, 2024). We observe that, given a fixed set of frozen layers, and thus random

features to finetune the later layers to, the relative performance of different HPs correlate strongly.

For example, training with only the final half of the layers already yields a reliable indicator of

relative hyperparameter performance, when compared to training the full model. We also show

that this threshold can be improved for architectures with strong inductive biases. These reliable

approximations can strongly reduce the required GPU compute and memory for estimating the

performance of HP configurations. The frozen layer count can either server as an alternative

fidelity source in multi-fidelity hyperparameter optimization (HPO) or be used in conjunction with

existing fidelity measures.

In summary, we make the following novel contributions in this work:

• We introduce layer freezing as a novel source of fidelity for HPO of deep learning models. We

demonstrate both its eligibility as an effective fidelity and its unique capability to offer memory

savings for low fidelity evaluations. This is the first multi-fidelity source that opens the DL model

training process itself, i.e., it modifies gradient computation and weight update steps.

• We demonstrate that common deep learning architectures, with some or most layers frozen,

exhibit strong HP rank correlations compared to the full model training, making layer freezing a

strong source of approximations in MF-HPO.

• We empirically show that layer freezing as fidelity along with the training budget, offers oppor-

tunities for novel search algorithms for improved cost and memory savings in MF-HPO.

2

2 Related Work
The broad scope of this paper is HPO, which falls under the AutoML umbrella (Feurer and Hutter,

2019). However, given the scope of our contribution, we specifically consider HPO for large-scale

DL, which requires careful design for compute resource management.

Hyperparameter Optimization. HPO for DL can be seen as a bilevel optimization where the inner

loop is the actual task to be solved using stochastic gradient descent, and the outer loop is designed

to optimize the variables that impact the inner task and how the task is solved. This is an iterative

optimization loop with usually a global budget for the entire optimization process. When this inner

task is a complete black-box and can only receive inputs (its hyperparameter configuration and

training budget) and return a corresponding performance metric, the outer-HPO loop can be solved

using black-box optimization.
Bayesian Optimization (BO) (Snoek et al., 2015; Frazier, 2018; Cowen-Rivers et al., 2022; Garnett,

2023) and Evolutionary algorithms (EA) (Real et al., 2019; Awad et al., 2020) are strong global

optimizers that handle black-box optimization reasonably well. However, the nature of the task

can yield different behaviors and BO and EA methods could require many evaluations to reach

good performance.

Given the current growth in model sizes commonly used in practice (Kaplan et al., 2020;

Hoffmann et al., 2022), online-HPO is still expensive, especially when treating the DL task as a

black-box. This assumption can be relaxed when the HPO algorithm can query or control the inner
DL task for cheaper, approximated evaluations. Most commonly one trains a DL model on only a

subset of the training data to approximate performance. Since the DL task can now be intervened in

and queried before full training convergence, this is known as the gray-box view of the inner task in

the bilevel HPO loop (Feurer and Hutter, 2019; Astudillo and Frazier, 2021). This is more commonly

known as multi-fidelity HPO and can be seen as a direct extension of the usual black-box methods

with different fidelity sources. Systems have been developed to manage these multi-fidelity trials

by dynamically allocating computational resources in cloud settings to maximize model accuracy

under strict time and monetary budgets (Dunlap et al., 2021). In this work, we introduce additional

fidelity dimensions that enable efficient approximation of full training costs and model evaluation

metrics.

Even though a single fidelity source can offer significant compute trade-offs during HPO,

combining multiple fidelity sources does not necessarily compound the cost savings and is likely to

have diminishing returns. Further, not many works in the literature have reported studies using

multiple sources of fidelity together, especially for modern large-scale DL (Kandasamy et al., 2017,

2020; Siems et al., 2020; Bansal et al., 2022). However, gray-box approaches still intervene at the

level of the training routine and not the model directly. One must look inside the black- or gray-box

to make it a glass-box and thus take better HPO decisions. Dynamic Algorithm Control (Adriaensen

and Nowé, 2016; Adriaensen et al., 2022) is a field which aims to look inside the optimization

process, but is yet to effectively handle large-scale DL applications. Similarly, gradient-based HPO

treats the entire bilevel HPO problem as an end-to-end task to be optimized (Franceschi et al., 2017;

MacKay et al., 2019; Lorraine et al., 2020). While these methods are efficient in terms of the number

of unique model trainings required, they face a critical limitation: they demand significantly more

memory and compute, with requirements that grow proportionally with model size.

Our contribution directly addresses this scalability gap by introducing a novel fidelity for

cheaper tuning of DL models. Specifically, we show that by strategically determining which

layers are frozen or trained during optimization, we open up the black-box in a computationally

efficient manner. This approach provides strong, reliable signals to the outer-level HPO task while

substantially reducing computational costs.

Model-growing. Architectural approximations are not a new approach for efficient tuning and

training of DL models (Brock et al., 2017; Dong et al., 2018; Liu et al., 2018; Hu et al., 2019). Weight-

3

sharing based super-net training can also be seen as effectively training a smaller subset of the

parameters (Liu et al., 2019; Cha et al., 2022). Similarly, there may be parallels with why certain

models can be pruned post-training while retaining the learned function. However, this sub-field of

Neural Architecture Search (NAS) is specific to finding new architectural designs, with or without

additional constraints, usually given a set of training HPs. Our work focuses on the task of tuning

HPs (and potentially architectural components) given a predetermined target model architecture.

Thus, the scope of our work is different from these prior works. In principle, individual models, at

any scale, can even be tuned using our fidelity, and can then be grown as desired (Gong et al., 2019;

Shen et al., 2022; Wang et al., 2023; Du et al., 2024; Samragh et al., 2024; Yao et al., 2024; Mallik et al.,

2024). Our work is thus orthogonal and can jointly be applied with these techniques.

3 Layers as Fidelity
In this section, we describe the problem scope and formulation and introduce our main contribution.

3.1 The HPO Problem
The HPO algorithm aims at minimizing an expensive function 𝑓 (𝝀), i.e., finding 𝝀∗ = argmin𝜆 𝑓 (𝝀).
Here, 𝜆 ∈ Λ is a HP configuration from a search space of HPs Λ, that control and determine the

behavior of 𝑓 (·), the DL task at hand. This is especially the black-box view, where the search for

𝜆∗ is agnostic to the inner-task 𝑓 (·). More concretely, if 𝑓 (·) represents training a deep neural

network, instantiated with HPs 𝜆 (learning rate, weight decay, etc.), then 𝑓 (𝜆) represents the
evaluation measure, for instance, the validation loss given a fixed training budget. The HPO

searches for the 𝜆 with the lowest validation loss, given a larger, global HPO budget.

When this inner task allows intermediate queries, early-stopping, and resuming of the evaluations,

the optimization of the inner task is treated as a gray-box. This can be denoted as, 𝑓 (·) ≈ ˆ𝑓 (·, 𝑧),
where 𝑧 represents the fidelity variable, and

ˆ𝑓 (·) represents the approximation of the true

task given a fidelity. Such HPO formulations are called Multi-fidelity HPO, as
ˆ𝑓 (𝜆, 𝑧 < 𝑧max)

approximates the target evaluation of
ˆ𝑓 (𝜆, 𝑧 = 𝑧max) −→ 𝑓 (𝜆), for a much lower cost for the

evaluation: 𝑐𝑜𝑠𝑡 (ˆ𝑓 (𝜆, 𝑧 < 𝑧max)) ≪ 𝑐𝑜𝑠𝑡 (ˆ𝑓 (𝜆, 𝑧 = 𝑧max)). Here the 𝑐𝑜𝑠𝑡 (·) could be any function

returning a compute estimate which has a monotonic relation with 𝑧. Note, typical fidelities are

bounded, 𝑧 ∈ [𝑧min, 𝑧max] and are a feature of the task or application at hand. With our layer

freezing, 𝑧max ∈ N corresponds to the full number of layers. Therefore,
ˆ𝑓 (𝜆, 𝑧 = 𝑧max) −→ 𝑓 (𝜆)

represents training all layers, instantiated and trained based on 𝜆. In this work, we design fidelity

approximations 𝑧 for DL tasks that satisfy the assumptions underlying MF-HPO.

To the best of our knowledge, we are the first to open the DL model or the task 𝑓 (·) to access an
explicit source of fidelity, 𝑧layers, for MF-HPO. Next, we define key properties that constitute valid

fidelity approximations for MF-HPO in DL contexts.

Fidelity Formalism. For a variable to serve as a valid fidelity parameter in DL tasks, it must satisfy

the following essential properties:

1. Cost monotonicity: for 𝜆 and 𝑧1 < 𝑧2 ≤ 𝑧max, then 𝑐𝑜𝑠𝑡 (ˆ𝑓 (𝜆, 𝑧1)) < 𝑐𝑜𝑠𝑡 (ˆ𝑓 (𝜆, 𝑧2))
2. Mutual Information monotonicity: evaluation on a higher fidelity should inform more, as

I (𝑓 (·); ˆ𝑓 (·, 𝑧1)) < I (𝑓 (·); ˆ𝑓 (·, 𝑧2)) for ∀ 𝑧𝑖, 𝑗 ∈ [𝑧min, 𝑧max], and 𝑖 < 𝑗 1
. In practical ap-

plications, rank correlation is used as a proxy metric: for two HPs 𝜆1, 𝜆2 where 𝑓 (𝜆1) < 𝑓 (𝜆2),
and fidelity 𝑧 < 𝑧max, rank correlation holds if

ˆ𝑓 (𝜆1, 𝑧) < ˆ𝑓 (𝜆2, 𝑧) with high probability 𝑝 > 1−𝛿𝑧 ,
with 𝛿𝑧 ≪ 1. Higher fidelity increases rank correlation: 𝛿𝑧1 > 𝛿𝑧2 for 𝑧1 < 𝑧2.

We now detail how our layer-based fidelity approach satisfies these formal requirements.

1
Relaxed assumption, since in practice, I (𝑓 (·); ˆ𝑓 (·, 𝑧)) may not be symmetric for multi-fidelity evaluations.

4

0 10 20
Trainable Layers

0

100

200

300

400

T
im

e
(m

s)

Pythia (1.4B) (bs=1)

0

5000

10000

15000

M
em

or
y

(M
B

)

0 20 40 60 80 100

Trainable Layers (%)

0

20

40

60

80

100

T
ra

in
ab

le
P

ar
am

.
(%

)

ResNet-18

ResNet-101

GPT-2 (112M)

Figure 2: (Left) Hardware resource requirements for Pythia 1.4B (Biderman et al., 2023) with batch size

1 at each fidelity. Time refers to the time taken per step (forward, backward, and optimizer

step). At the lowest fidelity, our method reduces memory requirements by a factor of ≥ 3×
and speeds-up runtimes by a factor of ≥ 4×. (Right) Comparison of trainable parameters

under layer freezing as fidelity. Different architectures distribute parameters unevenly across

layers, resulting in varying computational costs as fidelity increases.

3.2 Freezing layers for Multi-fidelity HPO

The main idea of this work is to use the number of frozen or trainable layers in a network to adjust

the fidelity. Given a neural network𝑀 with 𝑛 layers and the desired number of trained layers 𝑧, we

want to freeze the first 𝑛 − 𝑧 layers and train the remaining 𝑧 ones, as shown in Figure 1. Below, we

explain why layers as fidelity satisfies the monotonicity requirements and the likelihood of strong

rank correlation of HPs.

Impact on resource requirements. Partial freezing comes with major resource savings:

• No backward pass (weight gradients) needs to be computed for the frozen layers, reducing the

required computational resources.

• Intermediate activations in the frozen layers do not need to be kept in memory for the backward

pass, reducing the required memory resources.

• No optimizer state needs to be kept in memory for frozen weights, further reducing the memory

requirements. This becomes especially effective for optimizers such as Adam(W) (Kingma and

Ba, 2015; Loshchilov and Hutter, 2019) which track two running estimates per model parameter.

These properties makes the number of frozen layers as a fidelity unique in its resource efficiency.

Given that such a setup directly tunes HPs for the full target model, training lower fidelities of a

large model on smaller hardware is now possible (see Fig. 6a). The resource savings or compute

cost is strictly monotonic under trainable layers as fidelity (see Fig. 3).

Impact on performance. The first 𝑛 − 𝑧 layers remain at their random initialization, providing

random features for the later layers to learn from. We expect that, given a particular number of

frozen layers, the network’s capacity to express a function is bounded. With more trainable layers,

we expect this capacity to increase. Therefore, given a fixed HP, trained for a similar budget, training

more layers will likely not produce a worse loss than training fewer layers. Thereby, performance

across fidelity is likely to be monotonic. However, in MF-HPO we are interested in the low fidelity

evaluations being informative signals or proxy for the full evaluation (Section 3.2). Depending

on the task, a certain proportion of frozen layers, random features, and trainable last layers, is

adequate to express the network capacity, especially for a relative ranking of HP performance. This

is what allows layer-freezing to be used for multi-fidelity HPO.

Continuation changes task. Unlike other black- or gray-box fidelity sources, such as epochs or

data subsets that can easily restore or continue training a saved checkpoint for higher fidelity (more

5

epochs or data), the same cannot be achieved for the number of trainable layers without using

heuristics that may not generalize well. Layer-freezing with continuations would be equivalent to

training a network with a schedule for unfreezing or freezing layers. Naturally, the meaning of

good HPs for the DL task may change given that such schedules will likely interact with other HPs

influencing training such as learning rate schedule. Therefore, we consciously do not pursue this

direction of continuing over layers as fidelities and dedicate it to its own focused future work.

3.3 How to choose Layers

There are a few practical considerations to make when discretizing an architecture into separate

layers or blocks. We generally follow the following rules-of-thumb which can be applied to most

architectures without loss of generality, to split architectures into layers suitable for use as fidelity
parameters:

(i) First, decompose the architecture into all sequential sub-components, ignoring skip connec-

tions. This establishes the maximum granularity of layers possible as a fidelity.

(ii) If literature exists for the architecture, leverage established groupings of these sequential

sub-components to define meaningful layer indices (see Fig. 13 for Transformer example).

(iii) In the absence of prior information, establish layer group boundaries at non-linear activations,

ensuring each layer either begins after or ends with such an activation.

(iv) For excessively deep networks, consolidate identified layers into larger functional blocks

(e.g., ResNet residual blocks). Ensure that each discrete fidelity increment corresponds to a

substantial change in parameter count and training cost.

We note that every architecture design will have its nuance in how to split and there may be an

optimal splitting per architecture. However, in this work, we only aim to explore if layers as

fidelity can be practical, and the optimal algorithm for layer splitting is left for future work. We

refer to Appendix F for more details on how we split the architectures considered in this paper. In

the next section, we apply the above rule-set to split the architectures in our experimental setup,

for a general approach. We demonstrate through empirical validation that it is feasible to split

architectures into layers that serve as effective fidelity approximations for HPO.

4 Experimental Evaluation
In this section, we experimentally validate our proposed layer-freezing approach across two

architectural families. Through comprehensive HP sweeps, we evaluate whether layer freezing

satisfies the formal requirements of a fidelity measure (see Section 4.2) and quantify its practical

benefits for multi-fidelity HPO. Our experiments address three key questions: (1) Does layer freezing

provide significant cost savings? (2) Does it maintain strong rank correlations with full-model

performance? and (3) How effectively can it be combined with other fidelity sources?

4.1 Setup

We use models from two architectural families: GPT-2-style Transformers (Radford et al., 2019;

Vaswani et al., 2017) and ResNet (He et al., 2016), using the implementations from LitGPT (AI, 2023)

and torchvision (TorchVision maintainers and contributors, 2016), respectively.

Experimental details for each architecture type can be found in Appendix B. The hyperparameter

search space for our parameter sweeps is reported in Table 1. We evaluate performance using

Spearman’s rank correlation across the entire hyperparameter grid. In our experiments, full-

fidelity performance is obtained by training models with all layers trainable until convergence. For

hardware metrics, we measure both GPU memory and runtime under different configurations of

trainable layers and batch sizes (see Appendix E for detailed measurement methodology).

6

2.5 5.0 7.5 10.0
Trainable Layers

4.5

5.0

5.5

V
al

id
at

io
n

L
os

s

60

80

100

R
u

n
ti

m
e

(%
of

fu
ll

m
o
d

el
)

GPT-2 (14M) on SlimPajama

2.5 5.0 7.5 10.0
Trainable Layers

0.6

0.7

0.8

0.9

V
al

id
at

io
n

E
rr

or

60

80

100

R
u

n
ti

m
e

(%
of

fu
ll

m
o
d

el
)

ResNet-18 on CIFAR-100

Figure 3: The 𝑥-axis shows the discrete number of layers being trained, starting from the output

moving backwards. The highest number of trainable layers represent full model training,

therefore, best performance and most cost incurred. Runtime is how long a single step

(forward + backward + optimizer step) takes at each fidelity when compared to the fully

trainable model. (Left) 14M parameter GPT-2 model trained for 20 tokens per parameter at

each fidelity. (Right) ResNet-18 trained on CIFAR-100 for 20 epochs at each fidelity.

4.2 Layers as a fidelity

Here, we evaluate frozen layers as fidelity following the formalism established in Section 3.2.

For Figure 3, we randomly select a configuration from our sweep and observe the validation

loss obtained under the same training budget but with varying numbers of frozen layers after

random initialization. We note that each architecture exhibits a distinct distribution of cost savings

and performance variations, representing different approximation noise characteristics. However,

crucially, both performance, compute cost, and rank-correlation (see Fig. 4) follow a monotonic

trend across all architectures, satisfying a fundamental requirement for frozen layers to serve as a

valid approximation for full model training. This monotonic relationship holds consistently across

architectures. In Appendix E we show other cost metrics to show the monotonic cost gain with

frozen layer fidelity. We also perform an ablation on the direction of (un-) freezing (Appendix F.2).

The results show that one must unfreeze starting from the output layers to benefit from practically

any compute savings at lower fidelities.

20 40 60 80 100

% Trainable Layers

0.6

0.8

1.0

S
p

ea
rm

an
’s
ρ

Rank Correlation vs. Fidelity

ResNet-18

GPT-2 (14M)

Figure 4: Rank correlation with full-fidelity validation performance for a 14M parameter GPT-2 and

ResNet-18. Each hyperparameter configuration received the same training budget. Refer

to Table 1 for the search space of configurations. Each evaluation is treated as a black-box
evaluation given trainable layers as fidelity.

4.3 Layers as fidelity in MF-HPO

Similarly, to the previous section, each run received the same training budget in terms of the

number of update steps given a hyperparameter, across all discrete fidelity levels. At each fidelity,

7

we compare the final performance for all hyperparameter configurations in the respective grids for

each architecture. Figure 4 shows the rank correlation at each fidelity, compared to the rankings for

the full model training (100%). Remarkably, for the search spaces in discussion, training up to 40%

of the layers is adequate for a rank correlation ≈ 1. Comparing this with numbers from Figure 3

shows, that the degree of gains will be varied but significant, if a hyperparameter can be reliably

zero-shot transferred by training less than half the layers.

0% 25
%

50
%

75
%

10
0%

0
1

2
3

4
5

6
7

8
9#

 T
ra

in
ab

le
 L

ay
er

s

Spearman Rank Correlation

0% 25
%

50
%

75
%

10
0%

FLOPs [1016]

0% 25
%

50
%

75
%

10
0%

Wallclock time [in 104 s]

0.0

0.2

0.4

0.6

0.8

1.0

1

2

1e16

1

2

3

1e4

0% 25
%

50
%

75
%

10
0%

% Tokens

0
1

2
3

4
5

6
7

8
9#

 T
ra

in
ab

le
 L

ay
er

s

Rank Correlation (>=0.6)

0% 25
%

50
%

75
%

10
0%

% Tokens

Rank Correlation (>=0.85)

0% 25
%

50
%

75
%

10
0%

% Tokens

Rank Correlation (>=0.95)

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Hyperparameter rank correlation landscape across the joint fidelity space of trainable layers

(y-axis) and training tokens (x-axis) for a 14M GPT-2 model (hyperparameter details in Ta-

ble 1). Two black traces represent potential Successive Halving (SH) runs with 𝜂 = 2: the

dashed line shows traditional SH using only data as fidelity, while the solid line demonstrates

our proposed approach using both layers and data as fidelities. Markers indicate SH query

points, with joint fidelity queries at (1 layer, 12% tokens), (2 layers, 25% tokens), (5 layers, 50%

tokens), and single fidelity queries at (all layers, {12, 25, 50}% tokens). The three bottom-row
plots visualize rank correlation thresholds of {0.6, 0.85, 0.95} respectively. Notably, except
at the lowest fidelity where additional layers provide stronger correlations, a joint fidelity

approach achieves better correlation with reduced computational cost in both wall-clock

time and FLOPs (see Table 3 for quantitative comparisons).

Many-fidelity HPO. Layer-freezing offers itself as an orthogonal fidelity type and can thus be used

in conjunction with other usual fidelity sources. For sub-epoch language model training, where

data doesn’t repeat, the notion of epochs and data sub-samples blend into one fidelity. We use our

frozen layers as a fidelity, along with training budget in the form of tokens seen in Figure 5. We

plot the hyperparameter rank correlation landscape across the joint fidelity space, with discrete

layers and uniformly discretized training steps, and the cost landscape for wall-clock time and

FLOPs consumed. The top row in Figure 5 shows the rank correlation and cost landscapes in the

joint fidelity space for the given parameter sweep. The solid and dashed lines represent two traces

for Successive Halving with two and single fidelity variables respectively, under 𝜂 = 2 (Jamieson

and Talwalkar, 2016). The bottom row in Figure 5 shows the rank correlation landscape but only

those above a given threshold.

8

Time (Compute Resources)

M
e
m
.
R
e
s
o
u
r
c
e
s

A B C D B C B

Time (Compute Resources)

M
e
m
.
R
e
s
o
u
r
c
e
s

(b) Left: Classical successive halving with existing low-fidelity estimation.

Right: Memory-parallel successive halving with partial freezing (ours)

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

C

E

H

O

C

1 6 11 16 21 26
#Trainable Layers

0

2

8

11
B

at
ch

 s
iz

e
on

 1
 G

PU

L40S
2080 Ti

(a) Layer freezing enables training

DL models on weak hardware.

X NN Training with HP Conf. X

Figure 6: (a) Batch size comparison for a 600M parameter GPT2 model (24 hidden layers) The embed-

ding and un-embedding layers are tied (shared weights) and hence the full fidelity and the

(full fidelity - 1) are effectively the same runs (marked with dots). Freezing layers naturally
saves memory, which can allow successful HPO for a large model on much cheaper hard-
ware. (b) Freezing-based multi-fidelity estimation can be integrated into successive halving

by leveraging memory-parallel training.

The key observation is that for a low number of trainable layers, given adequate data, we can have

extremely high-rank correlations (Fig. 5, bottom, right). Especially when looking at columns 2 and

3 together, we see that there is potential to be in high rank correlation regions for much lower

compute and wall-clock time, by training much fewer layers. This also has the practical benefit

of requiring far less memory to tune low fidelity models. Alternatively, run more low fidelity

evaluations utilizing the memory savings (see next, Section 4.4).

These findings have significant implications for HPO of large-scale models. Our layer-freezing

approach enables tuning on memory-constrained hardware that would otherwise be infeasible

while maintaining strong rank correlations even at low fidelities. This suggests that specialized

HPO algorithms designed to navigate this joint fidelity space could achieve substantial efficiency

gains, opening new possibilities for cost-effective tuning of increasingly complex architectures.

4.4 Leveraging Reduced Memory Consumption in MF-HPO

Our experiments focus on demonstrating the efficacy of using frozen layers as fidelity in Multi-
fidelity HPO. The empirical gains of using this fidelity source is in its memory savings and that can

be realized in two ways. In Figure 6a we show an example where using frozen layers as fidelity

can effectively allow using GPU resources as fidelity. This has important practical implications as

computing clusters with a mix of hardware resources tend to follow a pyramidal structure of more

nodes of low, cheaper resources and fewer of the high memory and bandwidth GPUs. Successive
Halving-like algorithms follow a similar design to trade off the number of configurations and the

fidelity at which to evaluate them.

Alternatively, given high-end hardware, the low memory requirement under training with frozen

layers implies that more memory is available to run more of such low fidelity evaluations. Modern

GPUs allow for sharding and slicing
2
, which can in principle be used to simulate more GPU

resources (see Fig. 6b). Frozen layers as fidelity offer a ready solution to adapt Multi-fidelity HPO

to such hardware-specific DL tuning.

5 Conclusion

We introduced layer freezing as a novel fidelity source for HPO, formalizing the requirements

for valid fidelities in deep learning contexts—the first such rigorous analysis for MF-HPO in deep

2
Recent versions of NVIDIA GPUs allow to use a variable number of independent GPU slices with MIG mode. This

effectively allows evaluation of multiple HP configurations at a low fidelity in parallel without resource contention.

9

https://docs.nvidia.com/datacenter/tesla/mig-user-guide/

learning. Our approach satisfies these formal criteria while offering unique memory savings and

maintaining strong rank correlations with full-model performance. Experimental results across

two architecture families demonstrate that even with a significant portion of layers frozen, the

relative performance of HP configurations is preserved, enabling the tuning of large models on

memory-constrained hardware. This opens new directions for memory-efficient multi-fidelity HPO

algorithms that can effectively navigate joint fidelity spaces.

Limitations. Despite the promising results on commonplace architectural choices, there could be

practical limits. The optimal layer discretization strategy is architecture-dependent and requires

domain knowledge or heuristics to implement effectively, especially for a new or specialized

architecture. The effect of layer-specific HPs on frozen layers as fidelity should be studied along

with a wider benchmarking. Our approach currently lacks a principled continuationmechanism that

is crucial to enable freeze-thaw MF-HPO. This leaves room for compute savings since each fidelity

evaluation with frozen layers requires a new training from scratch. However, new specialized

architectures could have strong inductive biases that further improve low fidelity rank correlations

with frozen layers, ameliorating the need for continuation.

6 Broader Impact Statement

Our layer-freezing approach democratizes access to deep learning by enablingmodel tuning onmore

affordable hardware, lowering barriers to entry for researchers with limited computing resources.

The improved compute- and memory-efficiency also contribute to reduced environmental impact

through lower energy consumption.

Acknowledgements. This research was partially supported by the following sources: EU Project

ELSA under grant agreement No. 101070617. TAILOR, a project funded by EU Horizon 2020

research and innovation programme under GA No 952215; the Deutsche Forschungsgemeinschaft

(DFG, German Research Foundation) under grant number 417962828; the European Research

Council (ERC) Consolidator Grant ’Deep Learning 2.0’ (grant no. 10). This research was partially

funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under grant

number 539134284, through EFRE (FEIH 2698644) and the state of Baden-Württemberg. Neeratyoy

Mallik is supported by the Konrad Zuse School of Excellence in Learning and Intelligent Systems

(ELIZA) through the DAAD programme Konrad Zuse Schools of Excellence in Artificial Intelligence,

sponsored by the Federal Ministry of Education and Research. Frank Hutter acknowledges financial

support by the Hector Foundation. The authors acknowledge support from ELLIS and ELIZA.

Funded by the European Union. Views and opinions expressed are however those of the author(s)

only and do not necessarily reflect those of the European Union or the ERC. Neither the European

Union nor the ERC can be held responsible for them.

10

References

Adriaensen, S., Biedenkapp, A., Shala, G., Awad, N., Eimer, T., Lindauer, M., and Hutter, F. (2022).

Automated dynamic algorithm configuration. Journal of Artificial Intelligence Research (JAIR),
75:1633–1699.

Adriaensen, S. and Nowé, A. (2016). Towards a white box approach to automated algorithm design.

In Kambhampati, S., editor, Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI’16), pages 554–560.

AI, L. (2023). Litgpt. https://github.com/Lightning-AI/litgpt.

Astudillo, R. and Frazier, P. I. (2021). Thinking inside the box: A tutorial on grey-box bayesian

optimization. In Kim, S., Feng, B., Smith, K., Masoud, S., Zheng, Z., Szabo, C., , and Loper, M.,

editors, Winter Simulation Conference, pages 1–15. IEEE.

Awad, N., Mallik, N., and Hutter, F. (2020). Differential evolution for Neural Architecture Search. In

Hutter, F., Klein, A., L.Li, Metzen, J., Naik, N., and Zela, A., editors, Proceedings of the 1st workshop
on neural architecture search@ICLR’20.

Bansal, A., Stoll, D., Janowski, M., Zela, A., and Hutter, F. (2022). JAHS-bench-201: A foundation for

research on joint architecture and hyperparameter search. In Koyejo, S., Mohamed, S., Agarwal,

A., Belgrave, D., Cho, K., and Oh, A., editors, Proceedings of the 35th International Conference on
Advances in Neural Information Processing Systems (NeurIPS’22).

Bello, I., Fedus, W., Du, X., Cubuk, E., Srinivas, A., Lin, T.-Y., Shlens, J., and Zoph, B. (2021). Revisiting

ResNets: Improved training and scaling strategies. In Ranzato, M., Beygelzimer, A., Nguyen, K.,

Liang, P., Vaughan, J., and Dauphin, Y., editors, Proceedings of the 34th International Conference
on Advances in Neural Information Processing Systems (NeurIPS’21).

Biderman, S., Schoelkopf, H., Anthony, Q., Bradley, H., O’Brien, K., Hallahan, E., Khan, M., Purohit,

S., Prashanth, S., Raff, E., Skowron, A., Sutawika, L., and van der Wal, O. (2023). Pythia: A suite

for analyzing large language models across training and scaling. arXiv:2304.01373 [cs.CL].

Brock, A., Lim, T., Ritchie, J., and Weston, N. (2017). FreezeOut: Accelerate training by progressively

freezing layers. arXiv:1706.04983 [stat.ML].

Cha, S., Kim, T., Lee, H., and Yun, S. (2022). Supernet in neural architecture search: A taxonomic

survey. arXiv:2204.03916 [cs.CV].

Cherti, M., Beaumont, R., Wightman, R., Wortsman, M., Ilharco, G., Gordon, C., Schuhmann,

C., Schmidt, L., and Jitsev, J. (2023). Reproducible scaling laws for contrastive language-image

learning. In Proceedings of the International Conference on Computer Vision and Pattern Recognition
(CVPR’23).

Cowen-Rivers, A., Lyu, W., Tutunov, R., Wang, Z., Grosnit, A., Griffiths, R., Maraval, A., Jianye,

H., Wang, J., Peters, J., and Ammar, H. (2022). HEBO: Pushing the limits of sample-efficient

hyper-parameter optimisation. Journal of Artificial Intelligence Research, 74:1269–1349.

Dong, J.-D., Cheng, A.-C., Juan, D.-C., Wei, W., and Sun, M. (2018). Ppp-net: Platform-aware

progressive search for pareto-optimal neural architectures. In International Conference on Learning
Representations Workshop track.

11

https://github.com/Lightning-AI/litgpt

Du, W., Luo, T., Qiu, Z., Huang, Z., Shen, Y., Cheng, R., Guo, Y., and Fu, J. (2024). Stacking your

transformers: A closer look at model growth for efficient llm pre-training. In Globerson, A.,

Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C., editors, Proceedings of the
37th International Conference on Advances in Neural Information Processing Systems (NeurIPS’24).

Dunlap, L., Kandasamy, K., Misra, U., Liaw, R., Jordan, M., Stoica, I., and Gonzalez, J. (2021). Elastic

hyperparameter tuning on the cloud. In Proceedings of the ACM Symposium on Cloud Computing,
SoCC ’21, page 33–46, New York, NY, USA. Association for Computing Machinery.

Falkner, S., Klein, A., andHutter, F. (2018). BOHB: Robust and efficient Hyperparameter Optimization

at scale. In Dy, J. and Krause, A., editors, Proceedings of the 35th International Conference on
Machine Learning (ICML’18), volume 80, pages 1437–1446. Proceedings of Machine Learning

Research.

Feurer, M. and Hutter, F. (2019). Hyperparameter Optimization. In Hutter, F., Kotthoff, L., and

Vanschoren, J., editors, Automated Machine Learning: Methods, Systems, Challenges, chapter 1,
pages 3 – 38. Springer. Available for free at http://automl.org/book.

Franceschi, L., Donini, M., Frasconi, P., and Pontil, M. (2017). Forward and Reverse Gradient-

Based Hyperparameter Optimization. In Precup, D. and Teh, Y., editors, Proceedings of the 34th
International Conference onMachine Learning (ICML’17), volume 70, pages 1165–1173. Proceedings

of Machine Learning Research.

Frazier, P. (2018). A tutorial on Bayesian optimization. arXiv:1807.02811 [stat.ML].

Gaier, D. and Ha, D. (2019). Weight agnostic neural networks. In Wallach, H., Larochelle, H.,

Beygelzimer, A., d’Alche Buc, F., Fox, E., and Garnett, R., editors, Proceedings of the 32nd Inter-
national Conference on Advances in Neural Information Processing Systems (NeurIPS’19), pages
5364–5378.

Garnett, R. (2023). Bayesian Optimization. Cambridge University Press. Available for free at

https://bayesoptbook.com/.

Gong, L., He, D., Li, Z., Qin, T., Wang, L., and Liu, T. (2019). Efficient training of BERT by

progressively stacking. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the 36th
International Conference onMachine Learning (ICML’19), volume 97, pages 2337–2346. Proceedings

of Machine Learning Research.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image recognition. In

Proceedings of the International Conference on Computer Vision and Pattern Recognition (CVPR’16),
pages 770–778.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E., Cai, T., Rutherford, E., de Las Casas, D.,

Hendricks, L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E., Millican, K., van den Driessche,

G., Damoc, B., Guy, A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W., Vinyals, O., and Sifre, L.

(2022). Training compute-optimal large language models. In Koyejo, S., Mohamed, S., Agarwal,

A., Belgrave, D., Cho, K., and Oh, A., editors, Proceedings of the 35th International Conference on
Advances in Neural Information Processing Systems (NeurIPS’22).

Hu, H., Langford, J., Caruana, R., Mukherjee, S., Horvitz, E., and Dey, D. (2019). Efficient forward

architecture search. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alche Buc, F., Fox, E.,

and Garnett, R., editors, Proceedings of the 32nd International Conference on Advances in Neural
Information Processing Systems (NeurIPS’19).

12

http://automl.org/book
https://bayesoptbook.com/

Jamieson, K. and Talwalkar, A. (2016). Non-stochastic best arm identification and Hyperparameter

Optimization. In Gretton, A. and Robert, C., editors, Proceedings of the Seventeenth International
Conference on Artificial Intelligence and Statistics (AISTATS’16), volume 51. Proceedings of Machine

Learning Research.

Kandasamy, K., Dasarathy, G., Schneider, J., and Póczos, B. (2017). Multi-fidelity Bayesian Opti-

misation with Continuous Approximations. In Precup, D. and Teh, Y., editors, Proceedings of
the 34th International Conference on Machine Learning (ICML’17), volume 70, pages 1799–1808.

Proceedings of Machine Learning Research.

Kandasamy, K., Vysyaraju, K., Neiswanger, W., Paria, B., Collins, C., Schneider, J., Poczos, B., and

Xing, E. (2020). Tuning hyperparameters without grad students: Scalable and robust Bayesian

optimisation with dragonfly. Journal of Machine Learning Research, 21:81:1–81:27.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T., Chess, B., Child, R., Gray, S., Radford, A., Wu, J.,

and Amodei, D. (2020). Scaling laws for neural language models. arXiv:2001.08361 [cs.LG].

Kingma, D. and Ba, J. (2015). Adam: A method for stochastic optimization. In The Third International
Conference on Learning Representations (ICLR’15). ICLR.

Klein, A., Falkner, S., Bartels, S., Hennig, P., and Hutter, F. (2017). Fast Bayesian optimization of

machine learning hyperparameters on large datasets. In Singh, A. and Zhu, J., editors, Proceedings
of the Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS’17),
volume 54. Proceedings of Machine Learning Research.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2017). Hyperband: Bandit-

based configuration evaluation for Hyperparameter Optimization. In The Fifth International
Conference on Learning Representations (ICLR’17). ICLR.

Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., and Talwalkar, A. (2018). Hyperband: A novel

bandit-based approach to Hyperparameter Optimization. 18(185):1–52.

Liu, C., Zoph, B., Neumann, M., Shlens, J., Hua, W., Li, L., Fei-Fei, L., Yuille, A., Huang, J., andMurphy,

K. (2018). Progressive neural architecture search. In Ferrari, V., Herbert, M., Sminchisescu, C.,

and Weiss, Y., editors, 14th European Conference on Computer Vision (ECCV’18), pages 19–35.

Liu, H., Simonyan, K., and Yang, Y. (2019). DARTS: Differentiable architecture search. In The
Seventh International Conference on Learning Representations (ICLR’19). ICLR.

Lorraine, J., Vicol, P., and Duvenaud, D. (2020). Optimizing millions of hyperparameters by implicit

differentiation. In Chiappa, S. and Calandra, R., editors, Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics (AISTATS’20), volume 108, pages 1540–1552.

Proceedings of Machine Learning Research.

Loshchilov, I. and Hutter, F. (2019). Decoupled weight decay regularization. In The Seventh
International Conference on Learning Representations (ICLR’19). ICLR.

MacKay, M., Vicol, P., Lorraine, J., Duvenaud, D., and Grosse, R. (2019). Self-tuning networks:

Bilevel optimization of hyperparameters using structured best-response functions. In The Seventh
International Conference on Learning Representations (ICLR’19). ICLR.

Mallik, N., Hvarfner, C., Bergman, E., Stoll, D., Janowski, M., Lindauer, M., Nardi, L., and Hutter, F.

(2023). PriorBand: Practical hyperparameter optimization in the age of deep learning. In Oh, A.,

Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S., editors, Proceedings of the 36th
International Conference on Advances in Neural Information Processing Systems (NeurIPS’23).

13

Mallik, N., Janowski, M., Hog, J., Rakotoarison, H., Klein, A., Grabocka, J., and Hutter, F. (2024).

Warmstarting for scaling language models. In NeurIPS 2024 Workshop on Adaptive Foundation
Models.

Porian, T., Wortsman, M., Jitsev, J., Schmidt, L., and Carmon, Y. (2024). Resolving discrepancies in

compute-optimal scaling of language models. In Globerson, A., Mackey, L., Belgrave, D., Fan, A.,

Paquet, U., Tomczak, J., and Zhang, C., editors, Proceedings of the 37th International Conference
on Advances in Neural Information Processing Systems (NeurIPS’24), pages 100535–100570.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., and Sutskever, I. (2019). Language models are

unsupervised multitask learners. OpenAI blog, 1(8):9.

Real, E., Aggarwal, A., Huang, Y., and Le, Q. (2019). Regularized Evolution for Image Classifier

Architecture Search. In Hentenryck, P. V. and Zhou, Z., editors, Proceedings of the Thirty-Third
Conference on Artificial Intelligence (AAAI’19), volume 33, pages 4780–4789. AAAI Press.

Ruffinelli, D., Broscheit, S., and Gemulla, R. (2020). You CAN teach an old dog new tricks! on training

knowledge graph embeddings. In The Eigth International Conference on Learning Representations
(ICLR’20). ICLR.

Samragh, M., Mirzadeh, I., Vahid, K. A., Faghri, F., Cho, M., Nabi, M., Naik, D., and Farajtabar,

M. (2024). Scaling Smart: Accelerating large language model pre-training with small model

initialization. arXiv:2409.12903 [cs.CL].

Saxe, A., Koh, P., Chen, Z., Bhand, M., Suresh, B., and Ng, A. (2011). On random weights and

unsupervised feature learning. In Getoor, L. and Scheffer, T., editors, Proceedings of the 28th
International Conference on Machine Learning (ICML’11). Omnipress.

Shen, S., Walsh, P., Keutzer, K., Dodge, J., Peters, M., and Beltagy, I. (2022). Staged training for

transformer language models. In Chaudhuri, K., Jegelka, S., Song, L., Szepesvári, C., Niu, G., and

Sabato, S., editors, Proceedings of the 39th International Conference on Machine Learning (ICML’22),
volume 162 of Proceedings of Machine Learning Research, pages 19893–19908. PMLR.

Siems, J., Zimmer, L., Zela, A., Lukasik, J., Keuper, M., and Hutter, F. (2020). NAS-bench-301 and the

case for surrogate benchmarks for Neural Architecture Search. arXiv:2008.09777v4 [cs.LG].

Snoek, J., Larochelle, H., and Adams, R. (2012). Practical Bayesian optimization of machine learning

algorithms. In Bartlett, P., Pereira, F., Burges, C., Bottou, L., and Weinberger, K., editors, Proceed-
ings of the 26th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’12), pages 2960–2968.

Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Prabhat, and

Adams, R. (2015). Scalable Bayesian optimization using deep neural networks. In Bach, F. and

Blei, D., editors, Proceedings of the 32nd International Conference on Machine Learning (ICML’15),
volume 37, pages 2171–2180. Omnipress.

Swersky, K., Snoek, J., and Adams, R. (2014). Freeze-thaw Bayesian optimization. arXiv:1406.3896
[stats.ML].

TorchVision maintainers and contributors (2016). Torchvision: Pytorch’s computer vision library.

https://github.com/pytorch/vision.

14

https://github.com/pytorch/vision

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A., Kaiser, L., and Polosukhin, I.

(2017). Attention is all you need. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H., Fergus,

R., Vishwanathan, S., and Garnett, R., editors, Proceedings of the 31st International Conference on
Advances in Neural Information Processing Systems (NeurIPS’17). Curran Associates, Inc.

Wang, P., Panda, R., and Wang, Z. (2023). Data efficient neural scaling law via model reusing. In

Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato, S., and Scarlett, J., editors, Proceedings of
the 40th International Conference on Machine Learning (ICML’23), volume 202 of Proceedings of
Machine Learning Research, pages 36193–36204. PMLR.

Wightman, R., Touvron, H., and Jégou, H. (2021). ResNet strikes back: An improved training

procedure in timm. arXiv:2110.00476 [cs.CV].

Yao, Y., Zhang, Z., Li, J., and Wang, Y. (2024). Masked structural growth for 2x faster language

model pre-training. In The Twelfth International Conference on Learning Representations (ICLR’24).
ICLR.

Zhong, Z. and Andreas, J. (2024). Algorithmic capabilities of random transformers. In Globerson, A.,

Mackey, L., Belgrave, D., Fan, A., Paquet, U., Tomczak, J., and Zhang, C., editors, Proceedings of the
37th International Conference on Advances in Neural Information Processing Systems (NeurIPS’24).

15

Submission Checklist

1. For all authors. . .

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] Yes, see section Section 5

(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Section 6

(d) Did you read the ethics review guidelines and ensure that your paper conforms to them?

https://2022.automl.cc/ethics-accessibility/ [Yes]

2. If you ran experiments. . .

(a) Did you use the same evaluation protocol for all methods being compared (e.g., same

benchmarks, data (sub)sets, available resources)? [Yes] We used the same evaluation

protocol across all considered architectures. When comparing to other fidelities, we always

did so under the same evaluation setup.

(b) Did you specify all the necessary details of your evaluation (e.g., data splits, pre-processing,

search spaces, hyperparameter tuning)? [Yes] Yes, in the Appendix. We also provide code

to reproduce all of our experiments in the OpenReview reproducibility supplement.

(c) Did you repeat your experiments (e.g., across multiple random seeds or splits) to account

for the impact of randomness in your methods or data? [No] We did not run multiple seeds

due to the prohibitive cost associated with the nature of our HPO experiments.

(d) Did you report the uncertainty of your results (e.g., the variance across random seeds or

splits)? [N/A] See above.

(e) Did you report the statistical significance of your results? [N/A] See above.

(f) Did you use tabular or surrogate benchmarks for in-depth evaluations? [N/A]

(g) Did you compare performance over time and describe how you selected the maximum

duration? [Yes] We ensured that the models trained at the full fidelity had converged given

the pre-defined full-fidelity budget.

(h) Did you include the total amount of compute and the type of resources used (e.g., type

of gpus, internal cluster, or cloud provider)? [Yes] We do not include the total amount of

compute used but we specify which resources we used.

(i) Did you run ablation studies to assess the impact of different components of your approach?

[No] We did not run ablations and leave the exploration of different variations of how to

freeze/unfreeze an architecture up to future work.

3. With respect to the code used to obtain your results. . .

(a) Did you include the code, data, and instructions needed to reproduce the main experimental

results, including all requirements (e.g., requirements.txt with explicit versions), random

seeds, an instructive README with installation, and execution commands (either in the

supplemental material or as a url)? [Yes] We provide the code as part of the reproducibility

supplement.

(b) Did you include a minimal example to replicate results on a small subset of the experiments

or on toy data? [N/A] We provide the code to reproduce the experiments directly. The

16

https://2022.automl.cc/ethics-accessibility/

datasets we considered are relatively small, except for the language modeling part, making

them easy to reproduce.

(c) Did you ensure sufficient code quality and documentation so that someone else can execute

and understand your code? [Yes]

(d) Did you include the raw results of running your experiments with the given code, data, and

instructions? [No] We provide the code and SLURM scripts to reproduce our experiments

exactly.

(e) Did you include the code, additional data, and instructions needed to generate the figures

and tables in your paper based on the raw results? [Yes] We include all plotting code.

4. If you used existing assets (e.g., code, data, models). . .

(a) Did you cite the creators of used assets? [Yes]

(b) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating if the license requires it? [N/A]

(c) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]

5. If you created/released new assets (e.g., code, data, models). . .

(a) Did you mention the license of the new assets (e.g., as part of your code submission)? [Yes]

The source code will be released under the Apache 2.0 license.

(b) Did you include the new assets either in the supplemental material or as a url (to, e.g.,

GitHub or Hugging Face)? [Yes]

6. If you used crowdsourcing or conducted research with human subjects. . .

(a) Did you include the full text of instructions given to participants and screenshots, if appli-

cable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board

(irb) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent

on participant compensation? [N/A]

7. If you included theoretical results. . .

(a) Did you state the full set of assumptions of all theoretical results? [N/A]

(b) Did you include complete proofs of all theoretical results? [N/A]

17

A Search Spaces
Additional information about search spaces are shown in Table 1.

Table 1: Considered hyperparameter search spaces for ResNet and Transformer in Section 4.

Hyperparameter Range/Options Architecture

Optimization
Learning Rate {10

−4
, 10
−3
, 10
−2
} ResNet

Weight Decay {10
−5
, 10
−4
, 10
−3
, 10
−2
} ResNet

Weight Decay {0, 10
−6
, 10
−4
, 10
−2
} Transformer (14M)

Optimizer {Adam, SGD} ResNet

𝛽1 {0.9, 0.95, 0.99} ResNet

𝛽2 {0.9, 0.95, 0.99} ResNet

𝛽1 {0.9, 0.95} Transformer (14M)

𝛽2 {0.95, 0.99} Transformer (14M)

Learning Rate Schedule
Warmup Fraction {0.05, 0.1, 0.25} Transformer (14M)

Cooldown Fraction {0.1, 0.25, 0.5} Transformer (14M)

B Model details
Since the ResNet implementation that we used was the one provided in torchvision (TorchVision
maintainers and contributors, 2016), we only provide details on our language model implementation

here. We build on the implementation by LitGPT (AI, 2023) and only extend the model definition

by adding more logging utilities. The architectural parameters for the models used are shown

in Table 2.

Table 2: Architectural parameters of the language models that were used in our experiments.

Parameter 14M Model 600M Model Pythia 1.4B

Embedding Dimension 128 1280 2048

Number of Layers 8 24 24

Number of Heads 2 20 16

Context Length 1024 1024 2048

Vocabulary Size 50257 50257 50257

Normalization LayerNorm LayerNorm LayerNorm

Apart from the parameters mentioned in Table 2, we use the default parameters in LitGPT.

C Additional results on rank correlation
D Additional results on performance monotonicity

Additional results on performance monotonicity are shown in Fig. 8.

E Hardware Metrics

Data collection setup. We collect both runtime and memory metrics for various combinations of

batch sizes and architectures. For all considered combinations, we collect metrics for all fidelities (i.e.,

from one trainable layer to the fully trainable architecture). Measurements are taken on compute

nodes with NVIDIA L40S GPUs with 48GB of VRAM. To account for variability in measurements

we perform a number of warm-up passes before recording metrics. We typically perform 100

warm-up and another 100 measurement passes at the specified batch size and report the mean.

Results are shown in Fig. 9.

18

0.6

0.7

0.8

0.9

1.0

Fu
ll

Fi
de

lit
y

E
rr

or

n=1
=0.852

n=2
=0.866

n=3
=0.913

n=4
=0.900

n=5
=0.906

0.6 0.8 1.0
Low Fidelity Error

0.6

0.7

0.8

0.9

1.0

Fu
ll

Fi
de

lit
y

E
rr

or

n=6
=0.922

0.6 0.8 1.0
Low Fidelity Error

n=7
=0.955

0.6 0.8 1.0
Low Fidelity Error

n=8
=0.960

0.6 0.8 1.0
Low Fidelity Error

n=9
=0.962

0.6 0.8 1.0
Low Fidelity Error

n=10
=0.965

ResNet-18 (CIFAR-100) Rank correlation between trainable layers

Figure 7: Low-fidelity validation errors for ResNet-18 trained on CIFAR-100 for 20 epochs vs. the full

fidelity validation error. Even at the lowest fidelity, rank correlation is quite high. 𝑛 is the

number of trainable layers with 𝑛 = 11 being the full fidelity.

10 20
Epoch

0.5

0.6

0.7

0.8

0.9

Va
lid

at
io

n
E

rr
or

Config 81

10 20
Epoch

0.875

0.900

0.925

0.950

0.975

Config 14

10 20
Epoch

0.6

0.7

0.8

0.9

1.0
Config 3

10 20
Epoch

0.6

0.7

0.8

0.9

Config 94
1
2
3
4
5
6
7
8
9
10
11

Figure 8: Validation error trajectories for ResNet-18 on CIFAR-100 across trainable layers and epochs.

Each subplot depicts the validation loss trajectory of a randomly sampled HP configuration.

Performance is highly monotonic in the number of trainable layers over the epochs consid-

ered.

F Layer-freezing Technique

Our layer-freezing technique is described in Algorithm 1. To make our algorithm work with

as many neural architectures as possible, we make few assumptions about the structure of the

model’s forward pass. In particular, we assume that the top-level forward-pass of the architecture

is sequential, i.e., that inputs are processed sequentially by each layer. However, each layer may

itself contain various sub-layers which may have a different forward-pass structure (e.g., skip

connections). Hence, by default, we only split layers in the architecture that are contained in

a nn.Sequential container. We leave it up to the user to pass further sub-layer classes to our

algorithm that are supposed to be split via the 𝑈 argument of Algorithm 1. This allows the user to

define the granularity of the layer-splitting and freezing.

Given the simplicity of our algorithm, the implementation is very high-level and has no external

dependencies apart from PyTorch. The user-facing API is very minimal and allows the use of our

fidelity with a simple one-line code change.

F.1 Details on architecture splitting

For the two considered architectures, Transformers and ResNets, we draw parallels to how the

models are defined in PyTorch code to discretize. That is, the larger functional blocks in each

architecture’s definition (in code) also provide us with our discretization granularity.

19

https://pytorch.org/docs/stable/generated/torch.nn.Sequential.html#torch.nn.Sequential
pytorch.org

0 10 20 30
0

10

20

30

Ti
m

e
(m

s)

ResNet-101 (bs=1)

0 10 20
0

20

40

60

80

GPT-2 (127M) (bs=1)

0 10 20
0

100

200

300

400

Pythia (1.4B) (bs=1)

0

100

200

300

400

500

0

250

500

750

1000

1250

0

5000

10000

15000

M
em

or
y

(M
B

)

2.5 5.0 7.5 10.0
0

1

2

3

4

5

Ti
m

e
(m

s)
Resnet18 (bs=1)

0 10 20 30
0

5

10

15

20

25

30

ResNet-101 (bs=1)

0 20 40
0

10

20

30

40

Resnet152 (bs=1)

0

25

50

75

100

125

150

0

100

200

300

400

500

0

200

400

600

M
em

or
y

(M
B

)

2.5 5.0 7.5 10.0
0

2

4

6

8

10

12

Ti
m

e
(m

s)

Resnet18 (bs=32)

0 10 20 30
0

10

20

30

40

50

60

ResNet-101 (bs=32)

0 20 40
0

20

40

60

80

Resnet152 (bs=32)

0

25

50

75

100

125

150

0

100

200

300

400

500

0

200

400

600

M
em

or
y

(M
B

)

2.5 5.0 7.5 10.0
Trainable Layers

0

10

20

30

40

50

Ti
m

e
(m

s)

Resnet18 (bs=128)

0 10 20 30
Trainable Layers

0

100

200

300

ResNet-101 (bs=128)

0 20 40
Trainable Layers

0

100

200

300

400

Resnet152 (bs=128)

0

50

100

150

200

0

200

400

600

0

200

400

600

800

M
em

or
y

(M
B

)

Total Runtime Memory

Figure 9: Hardware-performancemetrics across different numbers of trainable layers (shown replicated

vertically). Memory is the amount VRAM allocated to the respective Python process on the

GPU (see Appendix E for more details). Total runtime refers to the time taken to complete

one iteration (forward pass + backward pass + optimizer step).

Transformer. We discretize the architecture into input embeddings, Transformer Encoder blocks,

and output embeddings. In small models (shallow and/or narrow) with large vocabularies, the

input- and output embeddings constitute a large part of total parameters. In particular, our 14M

parameter GPT-2 model, used throughout most of our experiments, has about 6M parameters

solely in the embeddings. Hence, the lowest fidelity incurs a relatively high cost to train with the

intermediate fidelities providing a more gradual increase in cost (see Fig. 2). The oversized effect of

the embeddings decreases as one increases the model width and depth.

ResNet. We discretize all ResNet-style architectures by the output projection as well as inverted

bottleneck blocks. As ResNets have a large amount of their parameters in the last few layers, the

first few fidelities lead to quite high jumps in the cost associated with training at these fidelities but

this evens out relatively soon, depending on the depth of the architecture (see Fig. 9).

20

Algorithm 1 Layer-splitting and freezing technique

Require: model𝑀 , number of trainable layers 𝑛𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 , optional unwrap class types𝑈

1: 𝑎𝑙𝑙_𝑙𝑎𝑦𝑒𝑟𝑠 ← [] ⊲ Initialize empty list to store all layers

2: function RecursiveTraversal(𝑚𝑜𝑑𝑢𝑙𝑒 ,𝑈)

3: if 𝑚𝑜𝑑𝑢𝑙𝑒 is instance of𝑈 or Sequential then
4: for each 𝑐ℎ𝑖𝑙𝑑 in𝑚𝑜𝑑𝑢𝑙𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛() do
5: RecursiveTraversal(𝑐ℎ𝑖𝑙𝑑 ,𝑈)

6: end for
7: else
8: append𝑚𝑜𝑑𝑢𝑙𝑒 to 𝑎𝑙𝑙_𝑙𝑎𝑦𝑒𝑟𝑠

9: end if
10: end function
11: RecursiveTraversal(𝑀 ,𝑈)

12: 𝑝𝑎𝑟𝑎𝑚_𝑙𝑎𝑦𝑒𝑟𝑠 ← filter 𝑎𝑙𝑙_𝑙𝑎𝑦𝑒𝑟𝑠 to only include those with parameters

13: 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 ← last 𝑛𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 layers from 𝑝𝑎𝑟𝑎𝑚_𝑙𝑎𝑦𝑒𝑟𝑠

14: 𝑓 𝑟𝑜𝑧𝑒𝑛 ← all layers from 𝑝𝑎𝑟𝑎𝑚_𝑙𝑎𝑦𝑒𝑟𝑠 except those in 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒

15: FreezeParameters(𝑓 𝑟𝑜𝑧𝑒𝑛)

16: UnfreezeParameters(𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒)

17: return 𝑓 𝑟𝑜𝑧𝑒𝑛, 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒

F.2 Freezing order
We conducted an ablation to test whether our intuition that the freezing order matters greatly is

correct. In Figure 10 we show the difference in the per-iteration runtime for training a 127M GPT2

Transformer model when the unfreezing direction is either from the output (our method) vs. the

input layers of the network.

10 20
Trainable Layers

400

600

800

T
im

e
(m

s)

GPT-2 (127M) (bs=10)

Freezing order

Frozen front Frozen end

Figure 10: Runtime (one training step) for a 127M GPT2 Transformer when freezing starting from the

input layers vs. starting from the output layers.

The results corroborate our hypothesis. When making the layers closest to the input trainable,

the backward pass has to propagate all the way to the front of the network, effectively eliminating

most of the compute savings. We see a slight decrease in runtime even when unfreezing from the

input layers which is attributable to the reduced number of parameters and parameter groups that

need to be updated by and in the optimizer. The memory requirements (not show) are also larger

21

1 2 3 4 5 6 7 8 9 10 11
Trainable Layers

1
2

3
4

5
6

7
8

9
10

11
#

 E
po

ch
s

0.63 0.92 0.90 0.85 0.85 0.84 0.84 0.86 0.81 0.82 0.79

0.66 0.91 0.94 0.91 0.92 0.91 0.89 0.91 0.87 0.87 0.85

0.70 0.93 0.95 0.92 0.95 0.93 0.93 0.92 0.90 0.89 0.87

0.71 0.93 0.96 0.96 0.95 0.94 0.95 0.95 0.94 0.94 0.91

0.72 0.94 0.95 0.96 0.96 0.96 0.96 0.96 0.94 0.94 0.93

0.75 0.94 0.96 0.97 0.96 0.96 0.96 0.96 0.94 0.95 0.93

0.72 0.95 0.95 0.96 0.97 0.97 0.97 0.97 0.95 0.96 0.95

0.72 0.96 0.97 0.97 0.97 0.96 0.96 0.95 0.95 0.96 0.95

0.74 0.96 0.96 0.97 0.98 0.97 0.98 0.98 0.98 0.97 0.97

0.77 0.97 0.96 0.97 0.97 0.97 0.98 0.97 0.97 0.97 0.96

0.80 0.97 0.97 0.98 0.98 0.98 0.97 0.97 0.98 0.98 0.97

ResNet-18 on CIFAR-100

0.0

0.2

0.4

0.6

0.8

1.0

Sp
ea

rm
an

's

Figure 11: Rank correlation with the full fidelity (11 trainable layers, 20 epochs on CIFAR-10 [not

shown here]). Each cell shows the rank correlation for a particular setting of epochs and

trainable layers.

when unfreezing from the front since the activation maps of later, frozen layers, need to be kept to

be able to compute the gradients of the unfrozen layers closer to the input.

G Multi-multi Fidelity

To perform our analysis of a multi-multi-fidelity HPO setting, we study the combination of layers

and epochs as fidelities. Table 3 shows the wall-clock time and FLOPs speed-ups / savings for a

diagonal schedule for both fidelities (increasing both fidelities together by the same amount) vs

running only the epoch fidelity.

Figure 11 follows a similar structure as the heatmaps in Figure 5 but for ResNet-18 on CIFAR-100.

We can draw similar conclusions as in Section 4.3 as we can achieve very high rank correlations

with only a few trainable layers.

Setup. The setup mostly follows our previous experiments. For both fidelities we define the fidelity

step size for layers (i.e., the discretization of the architectures) as described in Appendix F.1. For

ResNet we set the step size for data as CIFAR-100 epochs with 20 being the full fidelity. For

Transformers we set the maximum fidelity as 20 tokens per parameter following Hoffmann et al.

(2022). To arrive at the data for Figure 5 and Figure 11, we log cost metrics and validation loss/error

after each step or epoch for Transformers and ResNet, respectively.

22

9.15% Tokens
Configuration Rank Correlation FLOPs [1016] Cost [in s]

Layer 1 (diagonal SH) 0.26 0.22 2185.52

Layer 10 (single SH) 0.44 0.26 3467.48

19.21% Tokens
Configuration Rank Correlation FLOPs [1016] Cost [in s]

Layer 2 (diagonal SH) 0.82 0.48 4843.13

Layer 10 (single SH) 0.84 0.55 7281.70

29.28% Tokens
Configuration Rank Correlation FLOPs [1016] Cost [in s]

Layer 3 (diagonal SH) 0.82 0.75 8018.68

Layer 10 (single SH) 0.87 0.85 11095.92

39.43% Tokens
Configuration Rank Correlation FLOPs [1016] Cost [in s]

Layer 4 (diagonal SH) 0.86 1.03 11392.41

Layer 10 (single SH) 0.87 1.14 14944.82

49.50% Tokens
Configuration Rank Correlation FLOPs [1016] Cost [in s]

Layer 5 (diagonal SH) 0.87 1.32 15135.40

Layer 10 (single SH) 0.89 1.43 18759.04

59.56% Tokens
Configuration Rank Correlation FLOPs [1016] Cost [in s]

Layer 6 (diagonal SH) 0.87 1.63 18892.12

Layer 10 (single SH) 0.88 1.72 22573.26

69.72% Tokens
Configuration Rank Correlation FLOPs [1016] Cost [in s]

Layer 7 (diagonal SH) 0.87 1.94 23422.64

Layer 10 (single SH) 0.91 2.02 26422.16

79.78% Tokens
Configuration Rank Correlation FLOPs [1016] Cost [in s]

Layer 8 (diagonal SH) 0.90 2.26 28088.84

Layer 10 (single SH) 0.93 2.31 30236.38

89.84% Tokens
Configuration Rank Correlation FLOPs [1016] Cost [in s]

Layer 9 (diagonal SH) 0.92 2.60 32902.34

Layer 10 (single SH) 0.92 2.60 34050.61

100.00% Tokens
Configuration Rank Correlation FLOPs [1016] Cost [in s]

Layer 10 (diagonal SH) 1.00 2.89 37899.50

Table 3: Quantifying markers from Figure 5 (14M GPT-2 model). The single SH represents a vanilla-SH

run with epochs or update steps as the fidelity. For the diagonal SH run, we discretize the

available layers in the same geometric pattern as recommended by SH. Thereby, we obtain

a geometric progression of fidelity sources along both variables. At similar fidelity levels

(layers-tokens), we see that both approaches provide similar rank correlations. However,

training with fewer layers saves memory and that is seen in significant wall-clock time saving.

23

1 2 3 4 5 6 7 8 9 10
Number of Trainable Layers

4.5

5.0

5.5

6.0

6.5

Va
lid

at
io

n
Lo

ss

Distribution of Loss from Grid Search at each fidelity (14M GPT2)

Figure 12: Loss distribution for the 14M GPT-2 across different number of trainable layers, given the

search spaces from Table 1.

0 2 4 6 8 10
Number of layers to train (fidelity)

0.00

0.25

0.50

0.75

1.00

Sp
ea

rm
an

 c
or

re
la

tio
n

Rank Correlation of ALL Hyperparameters (14M)

vanilla
tied embeddings

Figure 13: 14M parameter GPT-2 style Transformer comparison when embeddings are not shared

(vanilla) or shared (tied). We follow previous results from the literature and conduct the

majority of our experiments with tied embeddings (Zhong and Andreas, 2024). We detach

the output tensor of the input embedding to retain the compute savings at low fidelities.

24

	Introduction
	Related Work
	Layers as Fidelity
	The HPO Problem
	Freezing layers for Multi-fidelity HPO
	How to choose Layers

	Experimental Evaluation
	Setup
	Layers as a fidelity
	Layers as fidelity in MF-HPO
	Leveraging Reduced Memory Consumption in MF-HPO

	Conclusion
	Broader Impact Statement
	Search Spaces
	Model details
	Additional results on rank correlation
	Additional results on performance monotonicity
	Hardware Metrics
	Layer-freezing Technique
	Details on architecture splitting
	Freezing order

	Multi-multi Fidelity

