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Abstract

We introduce a cumulant-expansion framework for quantifying how large language models (LLMs)
internalize higher-order statistical structure during next-token prediction. By treating the softmax
entropy of each layer’s logit distribution as a perturbation around its “center” distribution, we derive
closed-form cumulant observables that isolate successively higher-order correlations. Empirically,
we track these cumulants in GPT-2 and Pythia models on Pile-10K prompts. (i) Structured prompts
exhibit a characteristic rise—and—plateau profile across layers, whereas token-shuffled prompts re-
main flat, revealing the dependence of the cumulant profile on meaningful context. (ii) During
training, all cumulants increase monotonically before saturating, directly visualizing the model’s
progression from capturing variance to learning skew, kurtosis, and higher-order statistical struc-
tures. (iii) Mathematical prompts show distinct cumulant signatures compared to general text,
quantifying how models employ fundamentally different processing mechanisms for mathemati-
cal versus linguistic content. Together, these results establish cumulant analysis as a lightweight,
mathematically grounded probe of feature-learning dynamics in high-dimensional neural networks.

1. Introduction

Growing evidence suggests that Large Language Models (LLMs) based on transformer architectures
process information in distinct stages [7, 16, 23]. By tracking statistical quantities of latent predic-
tion probabilities [3] such as mean, KL-divergence, and entropy across layers, as well as geometric
properties of internal representations like intrinsic dimension [26] and curvature [23], researchers
can investigate the emergent representations within these models.

We introduce a novel method for examining information evolution within different LLM layers
using the cumulant expansion of the entropy from softmax-generated probability distributions (here-
after referred to as ’softmax entropy’). In both training and inference of LLMs, the softmax function
serves as a critical bridge translating between internal model representations and next-token predic-
tion. By analyzing LLM through the lens of information theory, particularly through cumulants,
we formalize how information is learned during each training step and how next token predictions
are refined across layers. In this paper, we propose that cumulants of softmax entropy effectively
capture the emergence of higher-order moments and demonstrate their efficacy in the study of off-
the-shelf LLMs through i) experiments with structured and shuffled prompts, and ii) studying the
evolution of cumulants during training. We believe that our new observable provides mathematical
language for explicitly demonstrating neural network learning higher-order correlations within data.
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Figure 1: Schematic of Logit Geometry Across Layers. Each triangle represents the probability
simplex at a given layer, where colored dots correspond to token logits mapped to prob-
abilities. The red circle labeled ‘c’ indicates the probability of the center of logits. The
histograms illustrate the distribution of token-wise deviations from the center.

2. Related Work

Several recent studies have investigated the evolution of LLM representations through their layers,
examining information refinement and emergent behaviors within these architectures [7, 16, 23].
Mean field theoretical approaches offer complementary insight into the dynamics in neural net-
work [6, 10, 12, 14, 17, 22, 24]. Analyzing internal representations points to distributional sim-
plicity bias, wherein neural networks learn lower-order statistics of input data before progressing to
higher-order statistics [4, 20, 21].

Information theory has emerged as a valuable tool for understanding different phenomena in
large language models, as demonstrated in previous works [1, 8, 9, 25]. The cumulant expansion, a
well-established method in statistical physics, has found applications across diverse fields, including
astrophysics [5] and chemical physics [15]. In particular, [2] expresses KL divergence as an expan-
sion in cumulants for intractable distributions. Complementary to our approach, [27] establishes a
relationship between intrinsic dimension and softmax entropy in internal representations, while [13]
examines skew and kurtosis of token activations to understand universal neuron properties.

3. Cumulants as Observables

We propose cumulants from the expansion of the softmax entropy as variables to probe the internal
representation of the tokens. Let X = {X7, Xs,...Xxn} be the collection of logits for N tokens,
and let p be the “center” of the logits defined as the point minimizing the sum of distances to the
sample points X, where the distance is the KL-divergence from the minimizing point to the sample
points,

N
p = argmin 3 D (p(X)[p(V) = plo) = 7 Y- pla) 1)
; =1

2

Eq. 1 shows that the next token prediction corresponding to the center is the average of the next
token prediction of the collection of logits.
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Let S(X;) be the softmax entropy of the token X, defined as the entropy of the discrete dis-
tribution over the vocabulary after applying the softmax function. Let (S(X)) be the arithmetic
mean of the softmax entropy of all the tokens in a prompt. Then we can perform the perturbative
expansion of S(X) around the softmax entropy of the center S(p).

N
(5(X)) = S() ~ 1 D Drcw willpy) @

i=1
where p; = softmax(X;) denotes the softmax probability distribution over the vocabulary for token
1, and p,, the softmax probability distribution for the center of logits, as defined in Eq. 1. Using
Eq. 2, we can motivate + Zfi 1 Dk (pi || pu) as a measure of interaction between logits and the
center. The underlying intuition is that the entropy of the prompt is obtained by subtracting this
interaction term from the entropy of the center. This view is supported by experimental results in
Section 4. By expanding the KL-divergence, the second term in the sum of the right-hand side of

Eq. 2 can be expressed as cumulants of the softmax probability distribution of X.

Dt (p3(X0)lps (e @m’ff (~6X)) 3

Eq. 3 shows concretely how the KL dlvergence can be expressed in terms of cumulants using
cumulant generating functions, where §.X; is a random variable associated with the i™ token in a
prompt, constructed by sampling a vocabulary token j from the softmax probability distribution
pp(X;) and assigning it the value 6.X;; = X;; — pj. B = % T is the temperature. The superscript
pp(X;) denotes the underlying distribution of the random variables X; used in §.X;.

Plugging this back into Eq. 2, we finally obtain the relation in Eq. 4.

1 B" ps(X) Y
(S(X)) = S(p) — N E St - E 0X; 4

Eq. 4 demonstrates that by observing cumulants, we effectively measure the distribution of
logits—specifically, how token logits are distributed relative to the center logit. Furthermore, this
equation reveals that token-wise average cumulants correspond to the cumulants of the aggregated
random variable 6.X = Y | §.X;. We verify this with Monte-Carlo simulation in Appendix B.2.

This implies that prompts with different 6 X distributions produce distinct cumulants; con-
versely, identical 6 X distributions yield the same cumulants. In theory, the average cumulants
contain the same information as the distribution p3(d.X'), and this equivalence offers insight into
what our observables capture. However, accurately estimating pg(d.X) directly from §.X; requires
many simulations. Hence, computing the average of token-wise cumulants provides a more compu-
tationally efficient and reliable way of probing ps(d.X) in practice.

We could also make an analogy to the perturbative Taylor series expansion, where we are per-
forming the perturbative expansion of the entropy, and by calculating higher-order cumulants, we
consider successively higher-order correlations within token logits. The cumulant summary statis-
tics we introduce probe the geometry of the latent probabilities that reside in the probability simplex.
In particular, different sets of logits that yield the same set of probabilities post-softmax will pro-
duce identical cumulants. We show the full derivation of each equation, and how we calculate each
cumulant in practice in Appendix A and C.
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Figure 2: Cumulants in Structured and Shuffled Prompts. Left: Cumulants across layers for
a single structured prompt (3218 from Pile 10K) in GPT-2 Large. Middle: Cumulants
for the shuffled version of the same prompt. Right: Comparing mean softmax entropy
(solid lines) and the entropy of the center (dotted lines) for both structured and shuffled
prompts.

4. Results

We use the Pile-10K dataset [19], a subset of the Pile dataset [11], as a representative sample of
diverse textual data. We first show the result with the 3218™ prompt from the Pile-10K dataset, with
the Pile set name: ArXiv. We then compare the results for two different types of prompts: general
text and mathematics prompts. We also show that the results generalize to other prompts in the
dataset, as well as different models in Appendix B.

4.1. Cumulants in Structured and Shuffled Prompts

We refer to the original prompts as “’structured” prompts, while prompts with randomly permuted
token orders are called ’shuffled” prompts. To obtain latent predictions from the intermediate layers,
we employ TunedLens [3]. For all results, We normalize the nth cumulant by dividing it by n! to
reflect its contribution to the softmax entropy as seen in Eq. 4.

We compare the cumulant profiles of a structured prompt (left) and its shuffled counterpart
(middle), noting that the second cumulant remains consistently near 1.0 in both cases. The struc-
tured prompt exhibits a clear depth-dependent trend for the higher-order cumulants: they increase
through intermediate layers, plateau, and then slightly decline near the final layers. In contrast, the
cumulants for the shuffled prompt (middle plot) remain relatively constant around zero for higher
cumulants, with significantly less variation than those of the structured prompt. We conclude that
when the model captures patterns within data, token logit deviations from the center develop a
characteristic pattern across layers.

A more striking result appears in the right panel, which compares the mean softmax entropy
with the softmax entropy of the center. For structured prompts (blue lines), the gap between the
center’s softmax entropy (dotted line) and the mean softmax entropy of all tokens (solid line) in-
creases with the layers. The result indicates stronger higher-order relations in deeper layers for
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Figure 3: Evolution of Cumulants During Training. Left: Cumulants across layers of the Pythia-
160M model tracked over training epochs. Right: mean softmax entropy (solid line) and
softmax entropy of the center (dotted line) as a function of training.

structured prompts, with stronger interaction between the center and the logits. In contrast, for
shuffled prompts (yellow lines), the higher-order cumulants remain mostly constant.

To test for the dependency on prompts and models, we rerun the experiment on different prompts
from the Pile dataset and different size models from the GPT-2 family. The pattern we observe is
almost identical across all prompts and models, and can be seen in Appendix B.1.

4.2. Evolution of Cumulants during Training

We further investigate the evolution of cumulants during training and what they reveal about neural
network learning dynamics. The left panel of Fig 3 shows that all cumulants increase before plateau-
ing as training progresses. This indicates that the logit distribution—specifically, the distribution of
deviations from the center—becomes increasingly complex. We observe larger spread (variance),
greater asymmetry (skewness, related to the third moment), heavier tails (kurtosis, from the fourth
moment), and other higher-order statistical properties.

The right panel of Fig 3 demonstrates that as training progresses, the discrepancy between the
center’s softmax entropy and the mean softmax entropy of all token logits increases. This grow-
ing gap indicates that the center becomes less capable of explaining the total entropy, requiring
higher-order information to accurately characterize the logit distribution. This pattern explicitly
demonstrates that models progressively learn higher-order correlations within data during training.

4.3. DM Mathematics vs Pile-CC: A Cumulant Perspective

Prior research [18, 28] has established that contexts involving logic and language produce distinct
geometric properties in neural network representations. To compare how code/math prompts are
processed differently from general text processing in language models, we analyze the cumulant-
based statistical properties of next-token prediction as it evolves across layers. We compare prompts
from DM Mathematics against Pile-CC, representing general web text from the Pile-10k [19] dataset
in Figure 4, where we notice distinct statistical signatures between mathematical and general text
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Figure 4: Cumulants in DM Mathematics and Pile-CC Prompts. Comparison of normalized
cumulants (k2 through x7) and entropy measures across model layers for mathematical
prompts (DM Mathematics topic with 99 prompts) versus general web text (Pile-CC topic
with 570 prompts) in GPT-2 Large. Each plot shows the mean (solid line) and standard
deviation (shaded region) computed across multiple prompts from each dataset. Mathe-
matical prompts exhibit distinct cumulant profiles compared to general text.

processing through cumulant analysis. Mathematical prompts show lower entropy than Pile-CC
prompts across layers, though the separability between distributions remains modest. We observe
clearer differences in the entropy of the center S(u) and lower-order cumulants k9 and k3 across
layers, with mathematical prompts exhibiting lower values than Pile-CC. The higher-order cumu-
lants k¢ and k7 reveal a qualitative shift in the middle layers: mathematical prompts show higher
values than Pile-CC in these layers. Together, these statistical signatures quantify how the model
employs fundamentally different mechanisms for mathematical versus general text processing.

5. Conclusion

We propose cumulants as a probe for examining emergent statistical properties within LLMs and
demonstrate their effectiveness in revealing representational patterns across model layers. Our new
observables provide a mathematical framework for explicitly showing how neural networks learn
higher-order correlations within data. Our experiments reveal that in later LLM layers, higher-order
cumulants increase and vary significantly for structured prompts but much less for shuffled prompts.
We also show during training, the model progressively learn higher-order correlations within data
during training. Future research could explore the correlation between loss and cumulants, as well
as the causal effects of directly manipulating cumulants.
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6. Reproducibility

All the results contained in this work are reproducible by means of a GitHub repository that can be
found at https://github.com/karthikviswanathn/cumulant-expansion-1lm.
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Appendix A. Derivations

We use the definition of the mean, the softmax function, and the KL-divergence.
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Therefore we can obtain Eq. 2

N
(S(X)) = (1) ~ > Diwillna) @

=1

Now, using the definition of the KL-divergence, and plugging in the distribution of the distribu-
tion of tokens from the softmax function, where the “partition function” Zz(X) = 25:1 efa and
the definition of the cumulant generating function,
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Therefore we can obtain Eq. 3
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Now, we use several properties of cumulants to express the deviation of the mean softmax
entropy from entropy of the center as a function of cumulants of the sum of the logits’ deviation
from the center.
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Figure 5: Cumulants Across Prompts. Cumulants of structured and shuffled versions of four
randomly selected prompts from the Pile-10k dataset [19]. Each panel corresponds to
a different prompt, and the numbers on the axis title represent the prompt number in
the Pile-10K dataset. Structured prompts consistently show richer and more structured
cumulant profiles compared to their shuffled counterparts.

Appendix B. Supplementary Figures
B.1. Cumulants for the prompts in the Pile dataset, on GPT2-Large

Fig.4 show the cumulants of structured and shuffled prompts for four different randomly selected
prompts within the Pile-10k dataset [19], and Fig.5 show the result of a structured and shuffled
prompt for different size models from the GPT?2 family.

B.2. Verification of Cumulants

In this section we verify that the cumulants of X = )" | 6.X; are indeed equal to the sum of the
per-token cumulants ¢ X; following the discussion in Section 3. We fix a prompt and focus on a
single layer L. For each of N Monte Carlo trials, we:

1. For each token ¢, sample a vocabulary index ¢; according to the pg(X;).

2. Calculate how “far” X; is from the center along the direction t;, by measuring 0.X;; =
Xi,ti — Mty

3. Sum over tokens to obtain a single realization of the aggregate deviation: 0.X =) . 6.X; 4,
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Figure 6: Cumulants and Entropy Across Model Sizes. Left three panels: cumulants of struc-
tured prompts across layers for three models from the GPT-2 family of increasing size
(small, large, xI). Right panel: comparing the mean softmax entropy and the softmax
entropy of the center across the same models. The structured prompts exhibit more pro-
nounced cumulant variation and a larger entropy gap, consistent across model size.
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Figure 7: Histogram of § X. We use N = 2 x 10® Monte Carlo simulations for prompt 3218 at
layer 20 of GPT2-Large for the structured (blue) and the shuffled (orange) prompts.

We plot the histogram of § X obtained from N = 2 x 10% Monte Carlo simulations for both the
structured and shuffled versions of prompt 3218 from the Pile-10K dataset, using the GPT2-Large
model at layer 20 (Figure 7). We compare the cumulant values from the two methods in Table 1.

Type 2nd Cumulant 3rd Cumulant 4th Cumulant
Monte Carlo | Average | Monte Carlo | Average | Monte Carlo | Average

Structured 1.432 1.432 0.986 0.981 0.623 0.616

Shuffled 1.351 1.430 0.238 0.294 —0.015 —0.128

Table 1: Monte Carlo vs. Token-Wise Averaged Cumulants. Comparison of cumulant estimates
obtained via Monte Carlo sampling and averaging cumulants over tokens for structured
and shuffled prompts. The columns correspond to the (2nd, 3rd, 4th) cumulants.
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Appendix C. Cumulant calculation

Algorithm 1: Layer-wise Cumulant Computation for a Text Prompt

Input: Language Model f with L layers, prompt P with 7" tokens, max cumulant order K.

Output: Cumulants m(f) forn=1,...,Kand/=1,...,L.

Tokenize P into wy.r and run forward pass of f on wy.7;

Extract for each layer £ = 1,..., L the logits from TunedLens Xt(g) € RV at each position t;
for / < 1to L do
fort < 1toT do

‘ pge) — softmax(Xt([));

end
1 Z
pg)e—i;Ejpg); // Compute center distribution p,
t=1
)« logp{l;
fort < 1toT do
| X x - 40,
end
// Compute token-wise moments and cumulants
fort < 1toT do
forn < 1to K do
l 1% l / n
mi ()« Loyt () X0 )]s
// Obtaining cumulants from moments where B, are
incomplete Bell polynomials.

(1) = S ()R R = 1)1 B (m (1), om (0);
end

end
// Average cumulants across tokens
for n < 1to K do

1
J4 § : l t):
HSL) « 7T 1E1(1)< )’

~

end
end

return {m(f)},g 1.L;
n=1

L
K
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