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Abstract
We introduce a cumulant-expansion framework for quantifying how large language models (LLMs)
internalize higher-order statistical structure during next-token prediction. By treating the softmax
entropy of each layer’s logit distribution as a perturbation around its “center” distribution, we derive
closed-form cumulant observables that isolate successively higher-order correlations. Empirically,
we track these cumulants in GPT-2 and Pythia models on Pile-10K prompts. (i) Structured prompts
exhibit a characteristic rise–and–plateau profile across layers, whereas token-shuffled prompts re-
main flat, revealing the dependence of cumulant growth on meaningful context. (ii) During training,
all cumulants increase monotonically before saturating, directly visualizing the model’s progres-
sion from capturing variance to learning skew, kurtosis, and higher-order statistical structures. To-
gether, these results establish cumulant analysis as a lightweight, mathematically grounded probe
of feature-learning dynamics in high-dimensional neural networks.

1. Introduction

Growing evidence suggests that Large Language Models (LLMs) based on transformer architectures
process information in distinct stages [7, 16, 22]. By tracking statistical quantities of latent predic-
tion probabilities [3] such as mean, KL-divergence, and entropy across layers, as well as geometric
properties of internal representations like intrinsic dimension [25] and curvature [22], researchers
can investigate the emergent representations within these models.

We introduce a novel method for examining information evolution within different LLM layers
using the cumulant expansion of the entropy from softmax-generated probability distributions (here-
after referred to as ’softmax entropy’). In both training and inference of LLMs, the softmax function
serves as a critical bridge translating between internal model representations and next-token predic-
tion. By analyzing LLM through the lens of information theory, particularly through cumulants, we
formalize how information is learned during each training step and how next token predictions are
refined across layers.

In this paper, we propose that cumulants of softmax entropy effectively capture the emergence
of higher-order moments and demonstrate their efficacy in the study of off-the-shelf LLMs through
i) experiments with structured and shuffled prompts, and ii) studying the evolution of cumulants
during training. We believe that our new observable provides mathematical language for explicitly
demonstrating neural network learning higher-order correlations within data.
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Figure 1: Schematic of Logit Geometry Across Layers. Each triangle represents the probability
simplex at a given layer, where colored dots correspond to token logits mapped to prob-
abilities. The red circle labeled ‘c’ indicates the probability of the center of logits. The
histograms illustrate the distribution of token-wise deviations from the center.

2. Related Work

Several recent studies have investigated the evolution of LLM representations through their layers,
examining information refinement and emergent behaviors within these architectures [7, 16, 22].
Mean field theoretical approaches offer complementary insight into the dynamics in neural net-
work [6, 10, 12, 14, 17, 21, 23]. Analyzing internal representations points to distributional sim-
plicity bias, wherein neural networks learn lower-order statistics of input data before progressing to
higher-order statistics [4, 19, 20].

Information theory has emerged as a valuable tool for understanding different phenomena in
large language models, as demonstrated in previous works [1, 8, 9, 24]. The cumulant expansion, a
well-established method in statistical physics, has found applications across diverse fields, including
astrophysics [5] and chemical physics [15]. In particular, [2] expresses KL divergence as an expan-
sion in cumulants for intractable distributions. Complementary to our approach, [26] establishes a
relationship between intrinsic dimension and softmax entropy in internal representations, while [13]
examines skew and kurtosis of token activations to understand universal neuron properties.

3. Cumulants as Observables

We propose cumulants from the expansion of the softmax entropy as variables to probe the internal
representation of the tokens. Let X be the collection of logits, and let µ be the ”center” of the logits
defined as the geometric median, the point minimizing the sum of distances to the sample points,
where the distance is the KL-divergence from the minimizing point to the sample points,

µ = argmin
Y

∑
i

DKL(Xi||Y ) ⇒ p(µ) =
1

N

n∑
i=1

p(xi) (1)

Eq. 1 shows that the next token prediction corresponding to the center is the average of the next
token prediction of the collection of logits.
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Let S(Xi) be the softmax entropy of the token Xi, defined as the entropy of the discrete dis-
tribution over the vocabulary after applying the softmax function. Let ⟨S(X)⟩ be the arithmetic
mean of the softmax entropy of all the tokens in a prompt. Then we can perform the perturbative
expansion of S(X) around the softmax entropy of the center S(µ).

⟨S(X)⟩ = S(µ)− 1

N

N∑
i=1

DKL(pi||pµ) (2)

where pi denotes the softmax probability distribution over the vocabulary for token i, and pµ the
softmax probability distribution for the center of logits, as defined in Eq. 1. Using Eq. 2, we can
motivate 1

N

∑N
i=1DKL(pi ∥ pµ) as a measure of interaction between logits and the center. The

underlying intuition is that the entropy of the prompt is obtained by subtracting this interaction term
from the entropy of the center. This view is supported by experimental results in Section 4.

By expanding the KL-divergence, the second term in the sum of the right-hand side of Eq. 2 can
be expressed as cumulants of the softmax probability distribution of X.

DKL(pβ(Xi)∥pβ(µ)) =
∞∑
n=2

βn

n!
κ
pβ(Xi)
n (−δXi) (3)

Eq. 3 shows concretely how the KL divergence can be expressed in terms of cumulants using
cumulant generating functions, where δXi is a random variable associated with the ith token in a
prompt, constructed by sampling a vocabulary token j from the softmax probability distribution
pβ(Xi) and assigning it the value δXij = Xij − µj . β = 1

T , T is the temperature. The superscript
pβ(Xi) denotes the underlying distribution of the random variables Xi used in δXi.

Plugging this back into Eq. 2, we finally obtain the relation in Eq. 4.

⟨S(X)⟩ = S(µ)− 1

N

∞∑
n=2

βn

n!
κ
pβ(X)
n

(
−

N∑
i=1

δXi

)
(4)

Eq. 4 demonstrates that by observing cumulants, we effectively measure the distribution of
logits—specifically, how token logits are distributed relative to the center logit. Furthermore, this
equation reveals that token-wise average cumulants correspond to the cumulants of the aggregated
random variable δX =

∑n
i=1 δXi. We verify this with Monte-Carlo simulation in Appendix B.2.

This implies that prompts with different δX distributions produce distinct cumulants; con-
versely, identical δX distributions yield the same cumulants. In theory, the average cumulants
contain the same information as the distribution pβ(δX), and this equivalence offers insight into
what our observables capture. However, accurately estimating pβ(δX) directly from δXi requires
many simulations. Hence, computing the average of token-wise cumulants provides a more compu-
tationally efficient and reliable way of probing pβ(δX) in practice.

We could also make an analogy to the perturbative Taylor series expansion, where we are per-
forming the perturbative expansion of the entropy, and by calculating higher-order cumulants, we
consider successively higher-order correlations within token logits. The cumulant summary statis-
tics we introduce probe the geometry of the latent probabilities that reside in the probability simplex.
In particular, different sets of logits that yield the same set of probabilities post-softmax will produce
identical cumulants.

We show the full derivation of each equation, and how we calculate each cumulant in practice
in Appendix A and C.
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Figure 2: Cumulants in Structured and Shuffled Prompts. Left: Cumulants across layers for a
single structured prompt (3218 from Pile 10K) in GPT2 Large. Middle: Cumulants for
the shuffled version of the same prompt. Right: Comparing mean softmax entropy (solid
lines) and the entropy of the center (dotted lines) for both structured and shuffled prompts.

4. Results

We use the Pile-10K dataset [18], a subset of the Pile dataset [11], as a representative sample of
diverse textual data. The experiments in the main text use the 3218th prompt from the Pile-10K
dataset, with the Pile set name: ArXiv. The results generalize to other prompts as verified in B.1.

4.1. Cumulants in Structured and Shuffled Prompts

We refer to the original prompts as ”structured” prompts, while prompts with randomly permuted
token orders are called ”shuffled” prompts. To obtain latent predictions from the intermediate layers,
we employ TunedLens [3]. For all results, We normalize the nth cumulant by dividing it by n! to
reflect its contribution to the softmax entropy as seen in Eq. 4.

We compare the cumulant profiles of a structured prompt (left) and its shuffled counterpart
(middle), noting that the second cumulant remains consistently near 1.0 in both cases. The struc-
tured prompt exhibits a clear depth-dependent trend for the higher-order cumulants: they increase
through intermediate layers, plateau, and then slightly decline near the final layers. In contrast, the
cumulants for the shuffled prompt (middle plot) remain relatively constant around zero for higher
cumulants, with significantly less variation than those of the structured prompt. We conclude that
when the model captures patterns within data, token logit deviations from the center develop a
characteristic pattern across layers.

A more striking result appears in the right panel, which compares the mean softmax entropy
with the softmax entropy of the center. For structured prompts (blue lines), the gap between the
center’s softmax entropy (dotted line) and the mean softmax entropy of all tokens (solid line) in-
creases with the layers. The result indicates stronger higher-order relations in deeper layers for
structured prompts, with stronger interaction between the center and the logits. In contrast, for
shuffled prompts (yellow lines), the higher-order relation and the strength of interaction remain
mostly constant.
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Figure 3: Evolution of Cumulants During Training. Left: Cumulants across layers of the Pythia-
160M model tracked over training epochs. Right: mean softmax entropy (solid line) and
softmax entropy of the center (dotted line) as a function of training.

To test for the dependency on prompts and models, we rerun the experiment on different prompts
from the Pile dataset and different size models from the GPT-2 family. The pattern we observe is
almost identical across all prompts and models, and can be seen in Appendix B.1.

4.2. Evolution of Cumulants during Training

We further investigate the evolution of cumulants during training and what they reveal about neural
network learning dynamics. The left panel of Fig 3 shows that all cumulants increase before plateau-
ing as training progresses. This indicates that the logit distribution—specifically, the distribution of
deviations from the center—becomes increasingly complex. We observe larger spread (variance),
greater asymmetry (skewness, related to the third moment), heavier tails (kurtosis, from the fourth
moment), and other higher-order statistical properties.

The right panel of Fig 3 demonstrates that as training progresses, the discrepancy between the
center’s softmax entropy and the mean softmax entropy of all token logits increases. This grow-
ing gap indicates that the center becomes less capable of explaining the total entropy, requiring
higher-order information to accurately characterize the logit distribution. This pattern explicitly
demonstrates that models progressively learn higher-order correlations within data during training.

5. Conclusion

We propose cumulants as a probe for examining emergent statistical properties within LLMs and
demonstrate their effectiveness in revealing representational patterns across model layers. Our new
observables provide a mathematical framework for explicitly showing how neural networks learn
higher-order correlations within data. Our experiments reveal that in later LLM layers, higher-order
cumulants increase and vary significantly for structured prompts but much less for shuffled prompts.
We also show during training the model progressively learn higher-order correlations within data
during training. Future research could explore the correlation between loss and cumulants, as well
as the causal effects of directly manipulating cumulants.
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6. Reproducibility

All the results contained in this work are reproducible by means of an anonymized repository that
can be found at https://anonymous.4open.science/r/cumulant-expansion-llm-3482/.
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Appendix A. Derivations

We use the definition of the mean, the softmax function, and the KL-divergence.

⟨S(X)⟩ = 1

N

N∑
i=1

S(Xi)

= − 1

N

N∑
i=1

V∑
α=1

piα log piα

= − 1

N

N∑
i=1

V∑
α=1

piα log piα − piα log pµα −
1

N

N∑
i=1

V∑
α=1

piα log pµα

= −
V∑

α=1

log pµα

(
1

N

N∑
i=1

piα

)
− 1

N

N∑
i=1

D(pi||pµ)

= −
V∑

α=1

pµα log pµα −
1

N

N∑
i=1

D(pi||pµ)

= S(µ)− 1

N

N∑
i=1

D(pi||pµ)

Therefore we can obtain Eq. 2

⟨S(X)⟩ = S(µ)− 1

N

N∑
i=1

D(pi||pµ) (2)

Now, using the definition of the KL-divergence, and plugging in the distribution of the distribu-
tion of tokens from the softmax function, where the ”partition function” Zβ(X) =

∑V
α=1 e

βxα , and
the definition of the cumulant generating function,

DKL(pβ(X)∥pβ(µ)) =
V∑

α=1

eβxα

Zβ(X)
log

eβxα

Zβ(X)

eβµα

Zβ(µ)

=

V∑
α=1

eβxα

Zβ(X)

(
β(xα − µα) + log

Zβ(µ)

Zβ(X)

)

=

V∑
α=1

eβxα

Zβ(X)
βδxα + log

V∑
α=1

eβxα

Zβ(X)
e−βδxα

= Epβ(X) [βδx] + logEpβ(X)

[
e−βδx

]
=

∞∑
n=2

βn

n!
κ
pβ(X)
n (−δx) (∵ definition of cumulant generating function)

Therefore we can obtain Eq. 3
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DKL(pβ(X)∥pβ(µ)) =
∞∑
n=2

βn

n!
κ
pβ(X)
n (−δX) (3)

Now, we use several properties of cumulants to express the deviation of the mean softmax
entropy from entropy of the center as a function of cumulants of the sum of the logits’ deviation
from the center.

⟨S(X)⟩ = S(µ)− 1

N

N∑
i=1

D(pi||pµ)

= S(µ)− 1

N

N∑
i=1

∞∑
n=2

βn

n!
κ
pβ(Xi)
n (−δXi)

= S(µ)−
∞∑
n=2

βn

n!
⟨κpβ(Xi)

n (−δXi)⟩

= S(µ)− 1

N

∞∑
n=2

N∑
i=1

βn

n!
κ
pβ(Xi)
n (−δXi)

= S(µ)− 1

N

∞∑
n=2

βn

n!
κ
pβ(X)
n

(
−

N∑
i=1

δXi

)
(∵ additive property of cumulants)

Therefore we obtain Eq. 4

⟨S(X)⟩ = S(µ)− 1

N

∞∑
n=2

βn

n!
κ
pβ(X)
n

(
−

N∑
i=1

δXi

)
(4)
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Figure 4: Cumulants Across Prompts. Cumulants of structured and shuffled versions of four
randomly selected prompts from the Pile-10k dataset [18]. Each panel corresponds to
a different prompt, and the numbers on the axis title represent the prompt number in
the Pile-10K dataset. Structured prompts consistently show richer and more structured
cumulant profiles compared to their shuffled counterparts.

Appendix B. Supplementary Figures

B.1. Cumulants for the prompts in the Pile dataset, on GPT2-Large

Fig.4 show the cumulants of structured and shuffled prompts for four different randomly selected
prompts within the Pile-10k dataset [18], and Fig.5 show the result of a structured and shuffled
prompt for different size models from the GPT2 family.

B.2. Verification of Cumulants

In this section we verify that the cumulants of δX =
∑n

i=1 δXi are indeed equal to the sum of the
per-token cumulants δXi following the discussion in Section 3. We fix a prompt and focus on a
single layer L. For each of N Monte Carlo trials, we:

1. For each token i, sample a vocabulary index ti according to the pβ(Xi).

2. Calculate how ”far” Xi is from the center along the direction ti, by measuring δXi,ti =
Xi,ti − µti .

3. Sum over tokens to obtain a single realization of the aggregate deviation: δX =
∑

i δXi,ti
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Figure 5: Cumulants and Entropy Across Model Sizes. Left three panels: cumulants of struc-
tured prompts across layers for three models from the GPT-2 family of increasing size
(small, large, xl). Right panel: comparing the mean softmax entropy and the softmax
entropy of the center across the same models. The structured prompts exhibit more pro-
nounced cumulant variation and a larger entropy gap, consistent across model size.

Figure 6: Histogram of δX . We use N = 2 × 108 Monte Carlo simulations for prompt 3218 at
layer 20 of GPT2-Large for the structured (blue) and the shuffled (orange) prompts.

We plot the histogram of δX obtained from N = 2× 108 Monte Carlo simulations for both the
structured and shuffled versions of prompt 3218 from the Pile-10K dataset, using the GPT2-Large
model at layer 20 (Figure 6). We compare the cumulant values from the two methods in Table 1.

Type 2nd Cumulant 3rd Cumulant 4th Cumulant
Monte Carlo Average Monte Carlo Average Monte Carlo Average

Structured 1.432 1.432 0.986 0.981 0.623 0.616
Shuffled 1.351 1.430 0.238 0.294 −0.015 −0.128

Table 1: Monte Carlo vs. Token-Wise Averaged Cumulants. Comparison of cumulant estimates
obtained via Monte Carlo sampling and averaging cumulants over tokens for structured
and shuffled prompts. The columns correspond to the (2nd, 3rd, 4th) cumulants.
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Appendix C. Cumulant calculation

Algorithm 1: Layer-wise Cumulant Computation for a Text Prompt
Input: Language Model f with L layers, prompt P with T tokens, max cumulant order K.
Output: Cumulants κ(ℓ)n for n = 1, . . . ,K and ℓ = 1, . . . , L.
Tokenize P into w1:T and run forward pass of f on w1:T ;

Extract for each layer ℓ = 1, . . . , L the logits from TunedLens X(ℓ)
t ∈ RV at each position t;

for ℓ← 1 to L do
for t← 1 to T do

p
(ℓ)
t ← softmax

(
X

(ℓ)
t

)
;

end

p(ℓ)µ ←
1

T

T∑
t=1

p
(ℓ)
t ; // Compute center distribution pµ

µ(ℓ) ← log p(ℓ)µ ;
for t← 1 to T do

δX
(ℓ)
t ← X

(ℓ)
t − µ(ℓ);

end
// Compute token-wise moments and cumulants
for t← 1 to T do

for n← 1 to K do
m

(ℓ)
n (t)←

∑V
v=1 p

(ℓ)
t (v)

[
δX

(ℓ)
t (v)

]n;
// Obtaining cumulants from moments where Bn,k are

incomplete Bell polynomials.

κ
(ℓ)
n (t) =

∑n
k=1(−1)k−1(k − 1)!Bn,k

(
m

(ℓ)
1 (t), . . . ,m

(ℓ)
n (t)

)
;

end
end
// Average cumulants across tokens
for n← 1 to K do

κ(ℓ)n ←
1

T

T∑
t=1

κ(ℓ)n (t);

end
end
return {κ(ℓ)n } ℓ=1..L

n=1..K
;
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