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Abstract

The goal of 3D human motion prediction is to forecast future 3D poses of the hu-
man body based on historical motion data. Existing methods often face limitations in
achieving a balance between prediction accuracy and computational efficiency. In this
paper, we present LUKAN, an effective model based on Kolmogorov-Arnold Networks
(KANs) with Lucas polynomial activations. Our model first applies the discrete wavelet
transform to encode temporal information in the input motion sequence. Then, a spatial
projection layer is used to capture inter-joint dependencies, ensuring structural consis-
tency of the human body. At the core of LuKAN is the Temporal Dependency Learner,
which employs a KAN layer parameterized by Lucas polynomials for efficient function
approximation. These polynomials provide computational efficiency and an enhanced
capability to handle oscillatory behaviors. Finally, the inverse discrete wavelet trans-
form reconstructs motion sequences in the time domain, generating temporally coherent
predictions. Extensive experiments on three benchmark datasets demonstrate the com-
petitive performance of our model compared to strong baselines, as evidenced by both
quantitative and qualitative evaluations. Moreover, its compact architecture coupled with
the linear recurrence of Lucas polynomials, ensures computational efficiency. Code is
available at: https://github.com/zadidhasan/LuKAN

1 Introduction

The task of 3D human motion prediction is to forecast the future 3D poses of a human
body over a specified time horizon based on historical motion data. It empowers diverse
applications requiring dynamic and responsive interaction with human movements, includ-
ing human-object interaction [7], animation [2], and autonomous driving [8, 32]. In recent
years, substantial progress has been made in 3D human motion prediction [3, 6, 11, 17, 19,
21, 28, 31], yet accurately forecasting future motion remains a major challenge due to the
intrinsic complexity and variability of human movements. The spatio-temporal nature of
human motion further compounds these challenges, requiring models to effectively capture
both spatial inter-joint relationships and temporal dynamics across sequential frames.
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State-of-the-art methods have embraced diverse neural network architectures tailored to
the spatio-temporal nature of motion data, including Recurrent Neural Networks (RNNs) [10,
13, 23], Graph Convolutional Networks (GCNG5) [6, 19, 21, 22, 33], Transformers [1, 5, 22],
and Multi-Layer Perceptrons (MLPs) [3, 11]. RNNs excel at modeling sequential dependen-
cies but struggle with long-term sequences. GCN-based approaches capture spatial relation-
ships through graph convolutions, but are prone to oversmoothing. Transformers, leveraging
the self-attention mechanism, have quadratic computational complexity with respect to se-
quence length, requiring substantial computation for effective training. MLP-based models
achieve reduced computational overhead, but use fixed activation functions and require deep
architectures to model complex relationships. More recently, Kolmogorov-Arnold networks
(KANS) have emerged as a compelling alternative to MLPs, demonstrating superior perfor-
mance in function representation across various tasks, including regression [18], while mit-
igating spectral bias [30]. Unlike MLPs, KANs leverage learnable activation functions on
the edges. Existing GCN- and MLP-based approaches employ the discrete cosine transform
(DCT) to encode motion in the frequency domain [11, 21]. However, the reliance on DCT
may limit their flexibility in capturing localized motion patterns. Moreover, most GCN- and
Transformer-based models incorporate MLPs as their core components for feature learning,
inheriting a fundamental drawback of MLPs, namely spectral bias [26].

Proposed Work and Contributions. In this paper, we propose LuKAN, a robust model
for 3D human motion prediction based on KANSs. It integrates a KAN layer that learns
univariate functions parameterized by Lucas polynomials to capture interactions between
temporal patterns across joints, and spatial projections that model inter-joint relationships.
We summarize our contributions as follows: (1) We propose a novel architecture, leveraging
KANSs and the discrete wavelet transform to encode temporal information in the motion se-
quence by decomposing the trajectory of each body joint into low-frequency (coarse-scale)
components and high-frequency components (fine-scale). Wavelet functions excel at captur-
ing transient and rapidly changing features in a signal, offering a significant advantage over
DCT, particularly for motion data where localized variations and dynamic changes are cru-
cial. For instance, rapid hand gestures (high-frequency components) can be captured at fine
scales, while slower, more gradual movements like walking (low-frequency components) can
be captured at coarser scales; (2) We design a Temporal Dependency Learner to model both
localized motion variations and global trends in human motion; (3) We conduct extensive ex-
periments on benchmark datasets, showing that LuKAN achieves competitive performance
with minimal computational overhead.

2 Related Work

RNN-based Methods. RNNs have been extensively used in the early stages of human
motion prediction research due to their ability to model temporal dependencies in sequential
data [10, 13, 15, 23]. These models excel at capturing temporal patterns, making them suit-
able for tasks where the sequence order and history play a vital role. However, RNN-based
methods are often limited by their inability to effectively capture long-term dependencies and
are prone to gradient instability during training, particularly for complex motion sequences.

GCN- and MLP-based Methods. GCNs represent human poses as graphs, with joints
as nodes and bones as edges. This graph structure enables GCN-based methods to encode
inter-joint dependencies naturally. Mao et al. [21] proposed a spatio-temporal network that
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applies DCT to input motion sequences to encode the temporal dynamics of joint coordi-
nates in the trajectory space. The network uses GCNs with learnable adjacency matrices to
capture spatial dependencies between body joints. Guo ef al. [11] introduced an effective
approach using MLPs on the spatial and temporal dimensions of the DCT-transformed in-
put. However, relying on DCT may constrain the flexibility of these models in capturing
localized motion patterns effectively. Moreover, MLPs use fixed activation functions at their
nodes, limiting their flexibility to adapt to diverse data patterns. Feng et al. [9] introduced
MotionWavelet, leveraging 2D wavelet transforms to model human motion patterns in the
spatial-frequency domain. However, its reliance on diffusion models with guidance mech-
anisms to control prediction refinement results in higher computational cost. Our proposed
LuKAN framework differs from existing methods in that it employs learnable 1D functions
on its edges, allowing the network to adaptively model complex temporal dependencies in
motion data. It also employs DWT to encode temporal dependencies in the joint trajectory,
allowing the model to capture both coarse and fine-grained motion patterns. While both our
model and MotionWavelet leverage wavelet transforms for human motion prediction, they
differ significantly in terms of their architectural design and learning methodology. Unlike
MotionWavelet [9], which modifies motion signals repeatedly through the diffusion process,
LuKAN retains high-frequency details. Moreover, using a KAN layer parameterized with
Lucas polynomials provides flexibility and computational efficiency, as they are more effi-
cient to evaluate than the piecewise construction of B-splines used in standard KANs.

3 Method

In this section, we first describe the task at hand. Next, we provide a preliminary background
on KANSs [18, 30]. Then, we introduce the key building blocks of our network architecture.

Problem Description. Let X;.7 = (xq,...,x7)T € RE*K be a history motion sequence of
L consecutive 3D human poses, where L is the look-back window, K = 3J in the feature
dimension, and J is the total number of body joints. At each time step ¢, each pose x, € R!*X
is a flattened vector formed by concatenating the 3D coordinates of all joints in a single
frame. The objective is to construct a predictive model that estimates a motion sequence
)A(H];HT =Rp+1,-.-,%47) € RT*K for the subsequent 7" timesteps. To this end, we design
an efficient model based on Kolmogorov-Arnold networks [18].

Kolmogorov-Arnold Networks. KANs are inspired by the Kolmogorov-Arnold represen-
tation theorem [4, 27], which states that any continuous multivariate function on a bounded
domain can be represented as a finite composition of continuous univariate functions of the
input variables and the binary operation of addition. A KAN layer is a fundamental building
block of KANs [18], and is defined as a matrix of 1D functions ® = (¢, ), where each train-
able activation function ¢, , is defined as a weighted combination, with learnable weights,
of a sigmoid linear unit (SiLU) function and a spline function. Given an input vector X, the
output of an L-layer KAN is given by

KAN(x) = (d Vo 0dl) 0 @©))x, (1)

where @) is a matrix of learnable functions associated with the ¢-th KAN layer.

Model Architecture. The overall framework of our network architecture is depicted in
Figure 1. LuKAN is designed to efficiently predict 3D human motion by modeling both
spatial relationships and temporal dependencies in motion data.
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Figure 1: Overview of Model Architecture. LuKAN processes input 3D motion data by
applying DWT to encode temporal information. A spatial projection is applied both before
and after the Temporal Dependency Learner block (repeated B times). Each block consists
of a KAN layer, LayerNorm, and a residual skip connection. The inverse DWT (IDWT)
reconstructs the motion in the time domain, outputting a sequence of predicted 3D poses.

3.1 Temporal Encoding

Joint Trajectory. The ith column of the history motion sequence X;.;, denoted as x() =
(i)

(xgi), ,x;")T, represents the trajectory of the i-th skeleton joint over the L consecutive

(i)

frames in the sequence. The coordinates x,” at each time step £ represent the position of the
i-th joint in 3D space at that specific moment. This representation allows for capturing the
motion of each joint individually over the observed time window.

Discrete Wavelet Transform Encoding. To encode temporal information of the human
motion in the trajectory, we employ DWT, which decomposes a signal into its approximate
and detail components using wavelets, ensuring that localized temporal variations in the
motion sequence are captured effectively. Specifically, given a wavelet (e.g., Daubechies
wavelet), applying a three-level DWT to the i-th joint trajectory x() yields

) =pwT(x1), )

where ¢') = (a),d®)T is an (L, + Ly)-dimensional vector of wavelet coefficients that de-
scribe the signal’s approximation and detail components. The approximation coefficients
al) ¢ Rl represent the low-frequency (coarse-scale) components of the trajectory, while the
detail coefficients ) € REa represent the high-frequency (fine-scale) variations in the trajec-
tory. Unlike cosine waves, which oscillate indefinitely, wavelet functions are compact, with
oscillations that diminish over time, enabling them to localize effectively and capture tran-
sient or rapidly changing features in a trajectory, which DCT cannot address as efficiently.
The original trajectory can be reconstructed from its wavelet coefficients using the Inverse
Discrete Wavelet Transform (IDWT) as follows:

£ = IDWT(a®,d"), 3)

which takes as input an (L, + L;)-dimensional vector of wavelet coefficients and returns
an L-dimensional reconstructed trajectory, ensuring that essential motion characteristics are
preserved while enabling a more localized representation of human motion sequences.
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3.2 Spatial Projection

The spatial projection maps the DWT-transformed history motion sequence into an embed-
ding space of dimension D, capturing inter-joint dependencies and providing an expressive
representation of the spatial structure of the human body. Its output is an (L, + Ly) x D
matrix given by

Z, =DWT(X;.)W; )

where W € RX*PD s a learnable weight matrix, which defines a linear projection along the
spatial (i.e., joint) dimension, and D is the embedding dimension. For notational simplicity,
the bias term is omitted here and throughout the following subsections.

3.3 Temporal Dependency Learner

The Temporal Dependency Learner is a core component of LuKAN, designed to capture
temporal relationships within the motion sequence data. It operates as a sequence modeling
block, emphasizing both local and global temporal dependencies to effectively predict fu-
ture motion, while maintaining computational efficiency. This component consists of three
key elements: a single KAN layer, LayerNorm, and a residual skip connection. The design
choices are motivated as follows: (1) unlike MLPs, our proposed KAN effectively cap-
tures dependencies with its Lucas polynomials as learnable activation functions, providing
flexibility in modeling both localized variations (such as fast changes in pose) and global
trends (like slow transitions in motion), while reducing the need for excessively deep ar-
chitectures; (2) LayerNorm helps stabilize training and ensures feature consistency across
different motion sequences; and (3) a residual skip connection enhances gradient flow and
prevents information loss, mitigating the limitations of purely feedforward architectures.

KAN Layer. We employ a single KAN layer, with associated matrix ® = (¢, ,) whose
(g, p)-th entry is a function with learnable parameters. Each trainable function ¢, , is pa-
rameterized by a weighted linear combination of Lucas polynomials

R
Ogp(xp) = Y YaprPr(xp), (5)
r=0

where x,, represents the p-th element of the joint trajectory vector, and Y, - is the learnable
coefficient of the r-th Lucas polynomial P,(x,) for the g-th output element. These learnable
parameters are adjusted during training to optimize the network’s performance with the aim
of improving the accuracy of the function approximation. In it important to mention that
Lucas polynomials are defined recursively, making them computationally efficient to evalu-
ate [25]. Specifically, Lucas polynomials P,(x) are defined by the linear recurrence relation

Pr(x) = xPr—1(x) + Pr—2(x), (6)
with initial conditions Py(x) = 2 and P, (x) = x. The degree of P,(x) is equal to r.

Layer Normalization (LN). LN is applied immediately after the KAN layer to standardize
the output by normalizing feature activations.

Residual Skip Connection. This skip connection links the input of KAN directly to its
output, creating a residual pathway. Specifically, the output of the Temporal Dependency
Learner is an (L, + L) x D matrix given by

Z) = LN(KAN(Zy)) +Z4, (7
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where KAN and LN are applied along the temporal dimension.

3.4 Spatial Projection and Inverse Discrete Wavelet Transform

The spatial projection, applied after the Temporal Dependency Learner, refines the spatial
relationships between human body joints, ensuring structural consistency in the predicted
poses. It models inter-joint dependencies, complementing the initial spatial projection. On
the other hand, IDWT maps the temporally processed data back to the time domain. To-
gether, the spatial projection and IDWT refine joint relationships and reconstruct the motion
sequence in the time domain, resulting in an L x K output expressed as:

Z; = IDWT(Z,W,), 3

where W, € RP*K is a learnable weight matrix. As pointed out in Subsection 3.1, IDWT
restores the temporal length from L, + L; to the original L, thereby generating an L x K
output Z3. The spatial projection corrects and reinforces joint relationships after KAN has
processed the temporal dependencies, while IDWT ensures that these relationships are trans-
lated back into the time domain for motion reconstruction.

Model Prediction. The predicted sequence is a 7 x K matrix given by
X iier =23+ Xy, ©))

where T is the prediction horizon, 23 consists of the first 7 rows of Zs3, and X; € RT*K ig
constructed by replicating the final pose x; of the historical motion sequence 7' times.

Model Training. We train our model using the following loss function

1 L+T
L=+ Y (e =%l + [[ve = ¥il2), (10)
=L+1
where || - || denotes the ¢;-norm, %, and x, are the predicted and ground truth poses for the

t-th predicted frame, v, and ¥, are the associated velocities, respectively.

4 Experiments

4.1 Experimental Setup

Datasets. We conduct experimental evaluations on three standard datasets: Human3.6M [12],
Archive of Motion Capture as Surface Shapes (AMASS) [20], and 3D Pose in the Wild
dataset (3DPW) [29]. We follow standard protocols [22] for data preprocessing and split-
ting. Additional results and ablation studies are provided in the supplementary material.

Evaluation Metric and Baselines. We assess the model’s performance using the Mean
Per Joint Position Error (MPJPE), measured in millimeters, where lower values correspond
to better prediction performance. We benchmark LuKAN against several state-of-the-art
approaches for 3D human motion prediction, including ConvSeq2Seq [15], Learning Tra-
jectory Dependencies (LTD) [21], History repeats (Hisrep) [22], Dynamic Multiscale Graph
Neural Networks (DMGNN) [16], MultiScale Residual Graph Convolution Network (MSR-
GCN) [6], Spatial and Temporal Dense Graph Convolutional Network (ST-DGCN) [19],
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Context-based Interpretable Spatio-Temporal Graph Convolutional Network (CIST-GCN) [24],
MotionMixer [3], Skeleton-Parted Graph Scattering Networks (SPGSN) [17], and Simple
Multi-Layer Perceptron (SiMLPe) [11].

Implementation Details.  All experiments are performed on a single NVIDIA RTX 3070
GPU with 8GB of memory using PyTorch. Our model is trained for S0K epochs on Hu-
man3.6M and 115K epochs on AMASS, using a batch size of 128. We use Adam opti-
mizer [14] with a weight decay of 10~*. The learning rate is initialized at 3 x 10~ and
decayed to 107> after 30K epochs. The look-back window is set to L = 50, with a predic-
tion horizon of T = 10 for Human3.6M, and T = 25 for AMASS and 3DPW. We employ
Daubechies wavelets with 4 vanishing moments in both DWT and IDWT, and we set the
number of levels of decomposition to 3. We also set the number of temporal dependency
learner blocks to B = 48.

4.2 Results and Analysis

Results on Human3.6M. We report the MPJPE errors averaged across all time steps in
Table 1 for both short-term (80ms - 400ms) and long-term (560ms - 1000ms) predictions.
The results demonstrate the effectiveness of LuKAN compared to the best-performing base-
line, SIMLPe. LuKAN consistently achieves lower MPJPE errors across all time steps, with
notable relative error reductions. For instance, at the 720ms prediction horizon, LuKAN
achieves an MPJPE of 89.9mm compared to 90.1mm for SiMLPe, yielding a relative er-
ror reduction of approximately 0.22%. Similarly, at the 1000ms horizon, LuKAN reduces
the MPJPE to 109.3mm from SiMLPe’s 109.4mm, resulting in a relative error reduction
of approximately 0.09%. These results highlight LuKAN’s capability to improve upon the
state-of-the-art, while maintaining its simple and efficient architecture.

Table 1: Average MPJPE results of our model and baseline methods on Human3.6M for
different prediction time steps in milliseconds (ms) ranging from 80ms to 1000ms. These
MPIJPE errors, measured in millimeters (mm), are averaged across all different actions in the
dataset. The best results are shown in bold, and the second best results are underlined.

MPIPE (mm)]
80 160 320 400 560 720 880 1000

ConvSeq2Seq [15] 16.6 33.3 614 727 90.7 1047 116.7 1242
LTD-10-10[21] 112 234 479 589 783 933 1060 114.0
Hisrep [22] 104 226 47.1 583 773 91.8 104.1 112.1
DMGNN [16] 170 336 659 79.7 103 - - 1372
MSR-GCN [6] 113 243 508 61.9 800 - - 1129
ST-DGCN [19] 10.6 23.1 47.1 579 763 907 1024 109.7
SPGSN [17] 104 223 47 582 774 - - 1096
CIST-GCN [24] 105 232 479 590 772 - - 1103
MotionMixer [3] 11 23.6 47.8 59.3 77.8 914 106 111
SiMLPe [11] 9.6 217 463 57.3 757 90.1 101.8 109.4

LuKAN (ours) 94 215 46.2 57.2 757 899 101.6 109.3

Results on AMASS and 3DPW. We train our model on the AMASS dataset and test it
on on the AMASS-BMLrub and 3DPW datasets, adhering to the standard evaluation pro-
tocol outlined in [22]. The results in Table 2 provide a comprehensive comparison of our
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model against strong baseline methods on the AMASS-BMLrub and 3DPW datasets, evalu-
ated in terms of MPJPE across different prediction horizons. On AMASS-BMLrub, LuKAN
achieves competitive results, particularly excelling in short-term predictions. At 80ms and
160ms, LuKAN matches the best-performing LTD-10-10 with MPJPEs of 10.6mm and
19.3mm, respectively. For longer horizons, LuKAN consistently demonstrates robust per-
formance, achieving the second-best MPJPE scores, such as 34.4mm at 320ms and 66.4mm
at 1000ms. Compared to SiMLPe at 320ms, for example, LuKAN yields comparable per-
formance, highlighting its ability to stay on par with state-of-the-art models. On the more
challenging 3DPW dataset, which evaluates the generalization ability of prediction models,
LuKAN consistently outperforms all baselines across all prediction horizons. For instance,
at 320ms, LuKAN achieves an MPJPE of 37.9mm, outperforming SiMLPe’s 38.1mm with
a relative error reduction of 0.52%. At 1000ms, LuKAN achieves an MPJPE of 72.2mm,
matching SiMLPe and further underscoring its robustness in generalization. Overall, the
combination of competitive performance in short-term predictions and robust results in long-
term horizons highlights LuKAN’s versatility and ability to balance prediction accuracy and
efficiency across different time horizons.

Table 2: Performance comparison of our model and baselines on AMASS-BMLrub and
3DPW for various prediction horizons.

3DPW

80 160 320 400 560 720 880 1000
18.8 32.9 52.0 58.8 69.4 77.0 83.6 87.8
12.0 22.0 38.9 46.2 59.1 69.1 76.5 81.1

AMASS-BMLrub

80 160 320 400 560 720 880 1000
ConvSeq2Seq [15] 20.6 36.9 59.7 67.6 79.0 87.0 91.5 93.5
LTD-10-10 [21]  10.319.3 36.6 44.6 61.575.9 86.2 91.2

LTD-10-25 [21]
Hisrep [22]
SiMLPe [11]

11.020.7 37.8 45.3 57.265.771.3 75.2
11.320.7 35.7 42.0 51.7 58.6 63.4 67.2
10.8 19.6 34.3 40.5 50.5 57.3 62.4 65.7

12.6 23.2 39.7 46.6 57.9 65.8 71.5 75.5
12.6 23.1 39.0 45.4 56.0 63.6 69.7 73.7
12.1 22.1 38.1 44.5 54.9 62.4 68.2 72.2

Ours 11.9 21.8 37.9 44.4 54.9 62.2 68.1 72.2

Qualitative Results. In Figure 2, we present a comparison of our predicted poses with
those generated by SiMLPe for the Directions and Eating actions from Human3.6M. To fa-
cilitate visual assessment, the predicted frames are overlaid on the ground truth poses, high-
lighting any deviations. For both actions, our model demonstrates superior alignment with
the ground truth, particularly for the Directions action. Notably, the predicted leg positions
from our model are closer to the ground truth compared to those predicted by SiMLPe.

4.3 Ablation Study

Effect of Temporal Encoding. The results in Table 3 compare the performance of DWT
and DCT for temporal encoding across Human3.6M, AMASS, and 3DPW datasets in terms
of MPJPE. On Human3.6Mt, DWT achieves an MPJPE of 89.9mm at 720ms, outperform-
ing DCT’s 90.2mm with a relative error reduction of 0.33%. Similarly, at 1000ms, DWT
achieves a lower MPJPE of 109.3mm compared to DCT’s 109.5mm, yielding a relative er-
ror reduction of 0.18%. On AMASS, DWT consistently outperforms DCT across all time
steps. For instance, at 400ms, DWT achieves an MPJPE of 40.8mm compared to 41.5mm for
DCT, resulting in a relative error reduction of 1.69%. At 1000ms, DWT reduces the MPJPE
to 66.4mm compared to DCT’s 66.9mm, with a relative error reduction of 0.75%. On 3DPW,
the difference between DWT and DCT is less pronounced, but DWT achieves slightly better
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Figure 2: Visual comparison results of our model and the SiMLPe baseline on two ac-
tions: Directions (top) and Eating (bottom). Predicted poses from our model are depicted in
red and blue, while those from SiMLPe are shown in yellow and green. Ground truth poses,
represented by dashed lines, are overlaid with the predictions to highlight deviations.

results for most time steps. At 320ms, DWT achieves an MPJPE of 37.9mm compared to
38.4mm for DCT, yielding a relative error reduction of 1.3%. Overall, DWT demonstrates
consistent improvements over DCT across all datasets, particularly in short-term predictions.

Table 3: Ablation study on the choice of temporal encoding: DWT vs. DCT across all
datasets for various prediction horizons. DWT consistently outperforms DCT.

MPJPE (mm)|
80 160 320 400 560 720 880 1000

Humaggy DCT 94 214 458 568 757 902 1018 109.5
uman>oM DWT 9.4 215 462 572 757 89.9 101.6 109.3
DCT 109 197 349 415 51.6 587 63.6 669

DWT 10.6 19.3 344 408 509 57.6 62.7 664

DCT 122 222 384 449 551 623 681 722
DWT 119 21.8 379 444 549 622 68.1 72.2

AMASS

3DPW

Effect of Polynomial Basis. = The results in Table 4 highlight the superior performance
of Lucas polynomials compared to B-splines, used in standard KANs, and other polynomial
bases. At400ms, Lucas polynomials outperform the next best basis, Hermite, yielding a rela-
tive error reduction of 0.17%. Similarly, at 1000ms, Lucas polynomials achieve an MPJPE of
109.3mm, outperforming Hermite’s 110.1mm by a relative reduction of 0.73%. In compari-
son to B-splines, the improvements are more pronounced, yielding a relative error reduction
of 2.5%. At 320ms, Lucas polynomials achieve an MPJPE of 46.2mm compared to 49.0mm
for B-splines, resulting in a relative error reduction of 5.71%. These results demonstrate
that Lucas polynomials yield significant improvements over B-splines and other polynomial
bases, for both short- and long-term predictions.
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Table 4: Ablation study on the choice of the polynomial basis in KAN for various prediction
horizons. Lucas polynomials yield significant improvements over B-splines.

MPJPE (mm)/
80 160 320 400 560 720 880 1000

B-Splines 10.3 233 49.0 60.1 78.7 92.7 1045 112.1
Chebyshev 9.7 22.1 47.2 583 77.1 91.7 103.7 111.6
Legendre 9.6 21.8 46.8 579 763 904 1024 110.1
Hermite 9.5 21.6 463 573 76.0 90.3 102.2 110.1
Lucas 94 21.5 46.2 57.2 75.7 89.9 101.6 109.3

Polynomials

4.4 Model Complexity Analysis

In this section, we analyze the time and memory complexity of LuKAN by considering its
main architectural components: spatial projections, DWT and its IDWT, and the Temporal
Dependency Learner based on KAN with Lucas polynomial activations.

Time Complexity. Each spatial projection involves a matrix multiplication of complexity
O(DJL), where J is the number of joints, D is the embedding dimension, and L is the length
of the input sequence. DWT and its inverse are applied along the temporal dimension. As
these are linear-time operations per sequence and per feature, their total complexity is O(JL).
The core component of LuKAN is a B-layer KAN with Lucas polynomial activations, where
B is the total number of blocks. Its time complexity is O(BDRL?), where R is the degree of
the Lucas polynomial. Hence, the time complexity of LuKAN is O(DJL + BDRL?).

Memory Complexity. In terms of memory complexity, the model maintains a lightweight
parameter count. Each spatial projection require O(JD) parameters, while the B-layer KAN
contributes O(BRL?) parameters, giving a total parameter complexity of O(JD + BRL?).
During runtime, memory is also allocated for storing intermediate activations and for eval-
uating the polynomial basis, yielding a total runtime memory complexity of O(DL + JL).
Overall, LuKAN achieves a compelling balance between expressive power and computa-
tional efficiency.

5 Conclusion

In this work, we proposed LuKAN, an effective model for predicting 3D human motion,
inspired by Kolmogorov-Arnold networks. Our model captures both localized temporal
dependencies and complex motion dynamics effectively. The model’s spatial projections
ensure that LuKAN maintains structural consistency while remaining computationally effi-
cient. Through extensive experiments on three benchmark datasets, we demonstrated that
our model achieves competitive or superior prediction performance compared to state-of-
the-art methods, with significantly fewer parameters and lower computational cost. Notably,
LuKAN strikes a good balance between prediction accuracy, efficiency, and model simplic-
ity. For future work, we will explore extending LuKAN to handle multi-person scenarios,
and further optimizing its architecture for broader applicability.
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