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Abstract

We propose a new automated evaluation metric
for machine-generated radiology reports using
the successful COMET architecture adapted
for the radiology domain. We train and publish
four medically-oriented model checkpoints, in-
cluding one trained on RadGraph, a radiology
knowledge graph. Our results show that our
metric correlates moderately to high with es-
tablished metrics such as BERTscore, BLEU,
and CheXbert scores. Furthermore, we demon-
strate that one of our checkpoints exhibits a
high correlation with human judgment, as as-
sessed using the publicly available annotations
of six board-certified radiologists, using a set
of 200 reports. We also performed our analysis
gathering annotations with two radiologists on
a collection of 100 reports. The results indicate
the potential effectiveness of our method as a
radiology-specific evaluation metric.'

1 Introduction

Evaluation metrics are essential to assess the per-
formance of Natural Language Generation (NLG)
systems. Although traditional metrics are widely
used due to their simplicity, they have limitations in
their correlation with human judgments, leading to
the need for newer evaluation metrics (Blagec et al.,
2022; Sai et al., 2022; Novikova et al., 2017). How-
ever, newer metrics have not been widely adopted
in the literature due to poor explainability and lack
of benchmarking (Leiter et al., 2022). In the med-
ical image report generation domain, several new
metrics have been developed, including medical
abnormality terminology detection (Li et al., 2018),
MeSH accuracy (Huang et al., 2019), medical im-
age report quality index (Zhang et al., 2020b), and
anatomical relevance score (Alsharid et al., 2019).
These metrics aim to establish more relevant eval-
uation measures than traditional metrics such as

'The code, data, and model checkpoints to reproduce our
findings will be publicly available.

MeSH

major: Diaphragm/right/elevated
major: Cicatrix/right/chronic
major: Opacity/right

Findings (Report)

Stable appearing right-sided XXXX the
opacities.

There is persistent elevation of the right
hemidiaphragm.

The cardiac silhouette and mediastinal
contours are within normal limits.

There is no pneumothorax.

Impression

Stable right-sided chronic lung scarring
otherwise no acute cardiopulmonary dis-
ease.

Figure 1: An example report showing the two images
and the MeSH, findings and impression columns.
Image constructed by the authors with the data from Demner-
Fushman et al. (2016).

BLEU. However, despite their existence, newer
publications still rely on traditional metrics, lead-
ing to less meaningful evaluations of specialized
tasks (Messina et al., 2022).

Radiology reports are narratives that should ac-
curately reflect important properties of the enti-
ties depicted in the scan. These reports consist
of multiple sentences, including the position and
severity of abnormalities and concluding remarks
summarizing the most prominent observations (see
Figure 1 for an example report). The task of gen-
erating radiological reports is challenging due to
their unique characteristics and the need for accu-
rate clinical descriptions (Langlotz, 2015). How-
ever, current metrics like BLEU do not capture
these specific properties, highlighting the need for
domain-specific metrics that consider the unique re-
quirements of radiology reports (Chen et al., 2020).
At a high level of abstraction, we attempt to an-
swer the following main research questions in this
work: (1) Can an existing successful metric model
architecture be adapted and optimized to develop a
novel radiology-specific metric for evaluating the
quality and accuracy of automatically generated
radiology reports? and (2) To what extent does the
integration of radiology-aware knowledge, impact
the precision and dependability of the assessment



metric in evaluating the efficacy and accuracy of
automatically generated radiology reports?

To this end, we suggest an automated measure-
ment for assessing radiology report generation
models. It aims to enhance existing metrics de-
signed for different domains, including both au-
tomated metrics like COMET (Crosslingual Opti-
mized Metric for Evaluation of Translation) (Rei
et al., 2020) and traditional metrics like SPIDEr
(Semantic Propositional Image Description Evalu-
ation) (Liu et al., 2017) or BLEU (Papineni et al.,
2002). This improvement involves incorporating a
radiology-specific knowledge graph known as Rad-
Graph (Jain et al., 2021). Our contributions are as
follows: (i) We design an evaluation model (RadE-
val) tailored explicitly for assessing radiology re-
ports generated by generative models. By incorpo-
rating domain-specific knowledge from RadGraph,
we aim to enhance the accuracy and relevance of
the assessment., (ii) We evaluate the proposed strat-
egy by applying it to a set of radiology reports gen-
erated by two models. We use the IU X-Ray dataset
of ground truth radiology reports and compare the
automated scores obtained using our framework
with the scores of other established metrics. and
(iii) We perform an error analysis study with radiol-
ogy experts that examine the discrepancies between
the generated and the ground truth reports. This
analysis allows us to further identify the quality of
our metric compared with human judgment.

2 Metric Architecture

We use COMET, an evaluation architecture frame-
work developed for machine translation scoring by
Unbabel AI (2020); Rei et al. (2020) and train our
own metric on radiology data, focusing on the tech-
nicalities of radiology reports as outlined before.
COMET offers training different types of architec-
tures: Estimator models and Translation Ranking
models. The fundamental difference between them
is the training objective. While the Estimator is
trained to regress directly on a quality score, the
Translation Ranking model is trained to minimize
the distance between a “better” hypothesis and both
its corresponding reference and its original source.
We use the referenceless mode of the Estimator
model as our input data consists of only two inputs -
one ground truth report (the source) and one model-
generated report (the hypothesis). The source s,
and hypothesis h are independently encoded using
a pretrained language encoder (here: XLM-R by
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Figure 2: Model architecture for the referenceless met-
ric in the COMET Estimator model (Image provided by
Unbabel Al (2020)). The source s, and hypothesis h are
independently encoded using a pretrained language en-
coder. The resulting embedding vectors are then passed
through a pooling layer to create a sentence embedding
for each input as h and 3. Finally, the resulting sentence
embeddings are combined and concatenated into one
single vector that is passed to a feed-forward regressor.
The entire model is trained by minimizing the Mean
Squared Error (Rei et al., 2020).

Conneau et al. (2020)). The resulting embedding
vectors are then passed through a pooling layer to
create a sentence embedding for each input. Given
a sentence embedding for the hypothesis h, and
the source 3, it extracts the following combined
features: (i) Element-wise source product: h s,
and (ii) Absolute element-wise source difference:
|h — §|. These combined features are then concate-
nated to the source embedding s and hypothesis
embedding  into a single vector [iL; 3, hx3; |fL — 3]
that serves as input to a feed-forward regressor. Fig-
ure 2 depicts the COMET Estimator model architec-
ture. The entire model is trained by minimizing the
Mean Squared Error (MSE) between the predicted
scores and quality assessments (target values) as a
loss function.

3 Dataset Curation

Because the COMET architecture is built for assess-
ing the quality of machine translation it requires
a parallel corpus of source (i.e. the original text),
hypothesis (i.e. the machine translation), and refer-
ence (i.e. the correct translation of the source) as in-
put to train the model. In the radiology domain, this
corresponds to the source being the ground truth re-
port and the hypothesis being the model-generated
one. We do not have the notion of a correct version
of a generated report in our case and are therefore



using the referenceless architecture. To ensure the
reliability of our model, we require a sufficiently
large number of reports for training. We construct
the training data for our metric, by creating a cor-
pus of similar reports using the IU X-Ray report
collection (Demner-Fushman et al., 2016), a widely
utilized dataset within the radiology domain. The
IU X-Ray dataset contains chest X-Ray images,
along with accompanying reports of actual find-
ings, brief summaries of these findings (referred to
as the impression), and assigned Medical Subject
Headings (MeSH) labels. MeSH is a controlled vo-
cabulary used by the National Library of Medicine
database to index and organize biomedical informa-
tion (National Library of Medicine, 2023). These
terms are used to categorize medical articles based
on their content and encompass a broad range of
medical topics, including anatomy, diseases, drugs,
and procedures.

We concatenated major MeSH labels and re-
moved irrelevant MeSH values (i.e. "no indexing"
and "technical quality of image unsatisfactory") for
each report and performed K-Means clustering on
the MeSH terms to group reports containing similar
topics. We achieved the best results with 6 clusters.
This clustering process allowed us to then take the
cross-product of each cluster individually to create
the report pairs. Figure 5 shows the final clusters.
The most prominent values for each cluster can be
seen in Appendix B and the scores to determine the
number of clusters in Appendix D.

Next, we scored the similarity of the reports in
relation to all other reports in the same cluster using
the RadCliQ Metric (Yu et al., 2023a), which is
a novel evaluation measure for the similarity of
clinical reports leveraging a combination of the
BLEU-2 score and the RadGraph F1 metric. The
latter "computes the overlap in clinical entities and
relations that RadGraph extracts from a machine-
and human-generated reports” (Yu et al., 2023a,
p-4).

We then generate two sets of comparative report
pairs. The first one (referred to as Best Match cor-
pus by selecting the top-scored (i.e. most similar)
match for each report (based on RadCliQ metric),
resulting in a set that encompasses all reports of
the cleaned IU X-Ray dataset at least once (i.e. the
set size is equal to the size of the cleaned IU X-
Ray dataset and each report in the dataset has one
corresponding report, which matches best in terms
of similarity). The secondary one (referred to as

Top 10% corpus allowed for multiple instances of
single reports in the set if they had multiple best
matches.

After having created two sets we divided them
into two distinct subsets, a training set and a test
set. We created a random split of 80/20 using to
extract 20% of the data into the test set and keep
the remaining 80% as the training set. This ensured
that our model can be trained and evaluated on
two distinct sets of data. With the training process
in mind, we also split the training data set further
into two subsets, the primary training set, and the
validation subset, using the same 80/20 split to
have the validation data out of the training set. This
validation set is provided to the model trainer to
fine-tune its hyper-parameters on each epoch.

During this process, we ensured an appropriate
share of normal and abnormal reports are included
in both train/validation/test datasets and to not bias
the data towards normal reports too much (see Ta-
ble 6).

4 Model training

During model training, we optimized the Kendall
Tau value between predicted and ground truth rank-
ings. Increasing the maximum number of training
epochs from 20 to 40 resulted in higher Kendall
Tau values. We also compared the performance of
using BioClinical BERT (Alsentzer et al., 2019)
instead of XLM-R and training on the RadCliQ
Score versus the RadGraph F1 score for the Top
10% corpus.

Our motivation for providing comparative report
pairs is to assist future researchers in training their
own metrics using a ’Source - Hypothesis’ model
architecture in their research. To ensure the quality
of our corpus, we have compared the exact over-
lap on MeSH labels among source and reference
reports (i.e. the number of overlapping tokens).
Our analysis of the Top 10% corpus revealed that
80.2% of the rows had overlap in their MeSH la-
bels, with 46.9% having one token overlapping and
33.3% having more than one. Only 19.83% of rows
had no exact overlaps in MeSH tokens. Similarly,
when we examined the extent of overlap between
MeSH labels in the complete corpus (i.e. among
all scores), we found that 34.20% of rows had no
overlap between their MeSH labels. In contrast,
31.69% of rows had only one overlap, and 34.11%
had more than one overlap between their MeSH
labels. We, therefore, see that the scores in the Top



Checkpoint Name ‘ Encoder Report pairs Training Target Value ‘ Max(Kendall,)
Match XLM-R RadCliQ |XLM-R Best Match  RadCliQ-score 0.696 (Epoch 3)

Match Clinic RadCliQ BioClinical BERT Best Match  RadCliQ-score 0.714 (Epoch 10)
Top Clinic RadCliQ BioClinical BERT Top 10% RadCliQ-score 0.830 (Epoch 24)
Top Clinic RadGraph BioClinical BERT Top 10% RadGraph F1-score 0.714 (Epoch 18)

Table 1: The specifications of final model checkpoints: Match XLM-R RadCliQ: Based on the Best Match
corpus, with XLLM-R as the encoder layer and RadCliQ as the quality assessments (target values). Match Clinic
RadCliQ: Based on the Best Match corpus, with BioClinical BERT as the encoder layer and RadCliQ as the quality
assessments (target values). Top Clinic RadCliQ: Based on the Top 10% corpus, with BioClinical BERT as the
encoder layer and RadCliQ as ts the quality assessments (target values). Top Clinic RadGraph: Based on the
Top 10% corpus, with BioClinical BERT as the encoder layer and RadGraph F1 as the quality assessments (target

values). Max (K endall;) is evaluated on the Validation set.

10% corpus reflect the contents of the reports well.

5 Final model checkpoints

During our experiments with different clustering
and similarity score methods, we have generated
many comparative report pairs and also already
trained several models to benchmark their perfor-
mance. Out of all models, we have decided to focus
on a couple of best-performing checkpoints (based
on the highest Kendall 7 value while training). We
used our two corpora (Best Match and Top 10%)
and combined them each once with the XLM-R
encoder layer and once with the medical-specific
BioClinical BERT (Alsentzer et al., 2019). Also,
we trained the models on two scores: Once on the
plain Radgraph F1 score, and once on the com-
bined RadCliQ metric score to compare how they
differ in correlation performance.

It is important to notice, that the RadCliQ score
is a measure of how many errors a report will con-
tain (i.e. lower is better) and RadGraph F1 is a mea-
sure of graph similarity (i.e. higher is better, Yu
et al. 2023a). Our model checkpoints will behave
accordingly when giving their predicted scores. For
all checkpoints the scores are unbounded but we
provide the typical range. The names of our check-
points are based on the type of corpus (best match
or Top 10%), the encoder (XLM-R or BioClinical
BERT), and the type of score they output (RadCliQ
or RadGraph F1).

We trained the following checkpoints (see also
Table 1): (i) Match XLM-R RadCliQ: Based on
the Best Match corpus, with XLM-R as the encoder
layer and RadCliQ as the quality assessments (tar-
get values). A lower score indicates a better report.
Scores typically fell within -3.5 and +0.5 in our

tests., (ii) Match Clinic RadCliQ: Based on the
Best Match corpus, with BioClinical BERT as the
encoder layer and RadCliQ as the quality assess-
ments (target values). A lower score indicates a
better report. Scores typically fell within -3.5 and
+0.5 in our tests., (iii) Top Clinic RadCliQ:Based
on the Top 10% corpus, with BioClinical BERT as
the encoder layer and RadCliQ as ts the quality as-
sessments (target values). A lower score indicates
a better report. Scores typically fell within -3.0 and
+1.5 in our tests., and (iv) Top Clinic RadGraph:
Based on the Top 10% corpus, with BioClinical
BERT as the encoder layer and RadGraph F1 as
the quality assessments (target values). A higher
score indicates a better report. Scores typically fell
within -0.2 and +1.5 in our test.

6 Model performance

We assessed the performance of our model’s metric
using our test dataset (see Section 3) and the [U
X-Ray dataset’s test set (i.e. 590 sets containing
the ground truth and generated reports by two state-
of-the-art radiology report generation methods?:
R2Gen (Chen et al., 2020) and M2Tr (Cornia et al.,
2020)). To provide a comprehensive comparison,
we calculated the performance of each radiology
generation method using five metrics. These in-
volve BLEU (Papineni et al., 2002), BERTScore
(Zhang et al., 2020a), CheXbert Similarity (Smit
et al., 2020), RadGraph F1 and RadCliQ (Yu et al.,
2023a).

BLEU and BERTScore have commonly used
metrics in natural language generation tasks to as-
sess the similarity between machine-generated and

We used the following implementations: M2Tr:

https://github.com/ysmiura/ifcc and R2Gen: https:
//github.com/cuhksz-nlp/R2Gen


https://github.com/ysmiura/ifcc
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https://github.com/cuhksz-nlp/R2Gen

Model | BLEU-4

BLEU-2 | BERTscore | CheXbert | RadGraph F1 RadCliQ

Our Top 10% test data set

Match XLM-R RadCliQ - 86.26 % 66.98% 27.75% 71.38%

Match Clinic RadCliQ - 87.99% 67.80% 27.80% 71.05%

Top Clinic RadCliQ - 88.76 % 67.03% 27.45% 67.22%

Top Clinic RadGraph - 41.35% 48.86% 24.45% 67.57%
R2Gen reports

Match XLM-R RadCliQ | 78.08% 86.85% 79.54% 52.69% 24.74% 66.37%

Match Clinic RadCliQ | 81.84% 88.94% 80.95% 51.95% 19.36% 63.03%

Top Clinic RadCliQ 77.17% 85.81% 76.63% 47.36% 14.52% 58.00%

Top Clinic RadGraph 61.37% 66.33% 65.09% 39.09% 5.17% 40.96%
M2Tr reports

Match XLM-R RadCliQ | 74.71%  84.88% 76.58% 47.66% 85.90% 95.28%

Match Clinic RadCliQ | 79.72% 87.60% 79.83% 45.54% 71.73% 87.70%

Top Clinic RadCliQ 73.50% 83.51% 74.55% 43.90% 60.46% 78.58%

Top Clinic RadGraph 58.12% 64.29% 64.01% 33.64% 65.60% 71.76 %

Table 2: Spearman rank correlation between the RadEval score of our model checkpoints and the other metrics
based on the generated reports by M2Tr and R2Gen. The highest correlation is marked in bold and the second
highest in italics. The score on which the specific model checkpoint was trained is printed in light grey.

human-generated texts. BLEU measures the over-
lap of n-grams and is representative of text overlap-
based metrics. On the other hand, BERTScore
captures contextual similarity beyond exact tex-
tual matches. It uses a pre-trained BERT (Bidirec-
tional Encoder Representations from Transformers)
model to encode the two pieces of text and mea-
sure their similarity based on their contextualized
embeddings.

CheXbert vector similarity and RadGraph F1 are
metrics specifically designed to evaluate the accu-
racy of clinical information. CheXbert vector simi-
larity calculates the cosine similarity between the
indicator vectors of 14 pathologies extracted from
machine-generated and human-generated radiology
reports using the CheXbert automatic labeler. This
metric focuses on evaluating radiology-specific in-
formation but is limited to pathologies. To address
this limitation, Yu et al. (2023a) propose the utiliza-
tion of the report’s knowledge graph to represent a
wide range of radiology-specific information. In-
troducing a novel metric called RadGraph F1, they
measure the overlap in clinical entities and rela-
tions extracted by RadGraph from both machine-
generated and human-generated reports.

RadCliQ is a combined metric introduced by
Yu et al. (2023a), which combines the BLEU and

RadGraph F1 metrics through a linear regression
model. The purpose is to estimate the total number
of errors that radiologists would assign to a gen-
erated report. This metric requires the BLEU and
RadGraph F1 scores computed for the generated
report as input. According to Yu et al. (2023a), Rad-
Graph F1 is the most comparable metric to human
judgment, followed by BERTScore, BLEU-2, and
CheXbert. We evaluated our model checkpoints
trained on RadCliQ and RadGraph F1 to explore
their performance difference. We performed the
inference using the model checkpoints to obtain the
predicted "RadEval" scores. We then calculated the
Spearman correlation value between our RadEval
Score and the other metrics’ scores for the different
checkpoints.

In the test dataset we constructed (Top 10%),
the data in Table 2 demonstrates that all RadCliQ-
trained models (Match Clinic RadCliQ, Match
XLM-R RadCliQ, and Top Clinic RadCliQ) ex-
hibited a high correlation of over 85% with the
BLEU-2 score, which was according to our an-
ticipation as described above. Additionally, these
model checkpoints showed the second-highest cor-
relation of approximately 69% with the RadGraph
F1 score, which was also in line with our initial
expectations.



Interestingly, we found that our RadCliQ-trained
models also displayed a reasonably high correlation
of approximately 67% with the BERTscore metric.
The RadGraph F1-trained checkpoint (Top Clinic
RadGraph) on the other hand showed the highest
correlation with the RadCliQ score at 67.57% and
the second highest correlation with BERTscore at
48.86%, with BLEU-2 following at 41.35%. It is
worth noting that none of our model checkpoints ex-
hibited a high correlation with the CheXbert score,
with correlations ranging between 24% and 28%.
Even though the correlation with BLEU-2 for the
RadGraph F1-trained checkpoint was much lower
compared to the RadCliQ-trained checkpoints (-
45 percentage points), the RadGraph F1-trained
checkpoint also showed a lower correlation with
BERTSscore (-19 percentage points) and CheXbert
score (-3 percentage points) at the same time, albeit
less drastic than the drop in BLEU-2 correlation.

When we analyzed the correlation scores of our
model on the two model-generated datasets. we ob-
served different correlation patterns than the report
pairs test dataset. The correlation values between
our model and both BLEU scores were high, rang-
ing from 73% to 86% on both R2Gen and M2Tr
reports for RadCliQ-trained checkpoints. However,
for the RadGraph F1-trained checkpoint, the cor-
relation was low, ranging from 14% to 25% for
R2Gen and 60% to 85% for M2Tr. R2Gen had the
lowest correlation (5.17%) with RadGraph F1. The
correlation with BERTscore and CheXbert scores
was generally higher than the parallel corpus test
dataset, ranging from 33% to 53% and 64% to 80%,
respectively.

We found that the RadGraph F1-trained check-
point for both generation models had better corre-
lation values than the other RadCliQ-trained model
checkpoints with BLEU-2 and BERTscore, being
at most 19 percentage points away from the high-
est value for BLEU-2 and at most 11 percentage
points for BERTscore. The maximal drop for the
CheXbert score was 10 percentage points, com-
pared to 3 percentage points for our corpus test
dataset.

7 Automated metric/radiologist alignment

7.1 Alignment analysis with ReXVal dataset

In our first experimental alignment study, we make
use of the Radiology Report Expert Evaluation

(ReXVal) Dataset (Yu et al., 2023b) 3. The ReX-
Val Dataset is a collection of assessments made
by radiologists regarding errors found in automat-
ically generated radiology reports. This dataset
includes evaluations from six board certified radiol-
ogists. The assessments cover clinically significant
and clinically insignificant errors, categorized into
six different error types. The reports being evalu-
ated are compared to ground-truth reports from the
MIMIC-CXR dataset (Johnson et al., 2019). Each
of the 50 studies in the dataset contains one ground-
truth report and four reasonably accurate generated
reports by selecting candidate reports that score
highly according to each of four automated metrics
(i.e. BLEU, BERTscore, CheXbert and RadGraph
F1), referred to as oracle-metric reports, resulting
in 200 pairs of candidate and ground-truth reports
that radiologists have annotated.

We utilized this dataset to assess the correla-
tion between our proposed metric and radiologists’
evaluations. To do so, we employed the approach
proposed by the authors to calculate the mean val-
ues of significant, insignificant, and total errors for
each oracle report, considering the input from their
six annotators. Then, we compute RadEval and
RadCliQ scores for each metric-oracle report and
determine the level of alignment between the radi-
ologists and the metrics (i.e.RadEval and RadCliQ)
using the Spearman rank correlation coefficient.
The results (Figure 3) demonstrate that our pro-
posed metrics perform better than the RadCliQ met-
ric compared on all oracle reports other than BLEU.
Our RadGraph Top Clinic RadGraph checkpoint
surpasses RadCliQ in terms of human correlation
up to 10 percentage points (in the BERTscore or-
acle reports). Also our other checkpoint Match
Clinic RadCliQ surpasses the RadCliQ Metric by
up to 5 percentage points.

To fairly compare and analyze whether the im-
provements in the human study are statistically
significant, we performed a significance test using
CoCor (Diedenhofen and Musch, 2015).

Following the CoCor method, we define the fol-
lowing groups in which the groups are dependent
and overlap. (i) JK (Correlation RadCliQ - Hu-
man),, (ii) JH ( Correlation RadEval - Human),
and (iii) KH (Correlation RadEval - RadCliQ). We
set Alpha = 5%, Confidence Level = 95%,
Null-Value = @ and Sample size = 50 samples

3The Dataset is available on PhysioNet (Goldberger

et al, 2000) at https://physionet.org/content/
rexval-dataset/1.0.0/
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Figure 3: Spearman rank correlation between the Rad-
CliQ (Yu et al., 2023a) and our RadEval model check-
points, and the human error scores assigned by radiolo-
gists in four oracle-metric reports datasets.

Dataset name Correlation p-value
Human-RadCliQ(%) ‘ Human-RadEval(%)

BertScore-Oracle set 68.2 78.6 0.0084

CheXbert-Oracle set 72.8 81.3 0.0131

Table 3: Statistically significant test using CoCor
(Diedenhofen and Musch, 2015) on the ReXVal dataset.
Showing that the high correlation measured by our Top
Clinic RadGraph Checkpoint compared to the original
RadCliQ metric is statistically significant.

per. We have collected the p-values for the depen-
dent, overlapping model according to Hendrickson
et al. (1970) and report the results for the following
set of datasets from ReXVal; where the predictions
(generated reports) have been selected based on one
of the following Oracle metrics: (1) BertScore-O-
racle: The null hypothesis can be rejected with p—
values 0.0084, and (2) CheXbert-Oracle: The null
hypothesis can be rejected with p-values 0.0131.
Confirming the alternative hypothesis: r.jk is less
than r.jh (one-sided) with r.jk being the correla-
tion of RadCliQ with the human and r.jh being the
correlation of RadEval (ours) with the human.

In these two datasets (50 examples each), the
correlations are shown in Table 3. The results show
that both RadEval and RadCliQ have a strong cor-
relation with human judgments (i.e., > 60%) on the
ReXval dataset.

7.2 Alignment analysis with internal dataset

To further investigate the alignment of the auto-
mated evaluation metrics with radiologists, we cre-
ated a balanced dataset of 100 reports for human an-
notation from an initial set of 590 reports generated
using M2Tr (Cornia et al., 2020; Nooralahzadeh

et al., 2021). The dataset balance was achieved
by categorizing the reports into low, average, and
high groups based on the 0.33 quantiles of the Rad-
CliQ metric score. Random sampling was then
performed to select 150 reports from each category.
The reports were further filtered to separate normal
and abnormal categories, excluding those labeled
as normal in the *'mesh-0" column and removing
reports with empty mesh-1’ values. The remaining
abnormal reports were then filtered based on the
"IMPRESSION’ column, removing those contain-
ing specific phrases associated with normal reports
4. The resulting dataset comprised 80 abnormal
and 20 normal reports.

In this regard, we are inspired by the work of Yu
et al. (2023a), in which the authors asked a radiol-
ogist to count the number of clinically significant
and insignificant errors observed in the predicted
report for each prediction pair and the ground truth
and categorize them into one of the following cat-
egories (Yu et al., 2023a, p.4-5) (the categories
with T are added by us). (1) False prediction of
finding, (2) Omission of finding, (3) Incorrect lo-
cation/position of finding, (4) Incorrect severity of
the finding, (5) Mention of comparison that is not
present in the reference impression, (6) Omission
of comparison describing a change from a previ-
ous study, (7) t Mention of uncertainty that is not
present in the reference, and (8)  Omission of un-
certainty that is present in the reference.

To accomplish the study, initially, two board cer-
tified radiologists independently identified and ex-
tracted the positive findings from the ground truth
reports. The positive findings were then classified
into significant and insignificant ones. A compari-
son was made between the findings extracted from
the ground truth reports and the generated reports.
Using the eight predefined error categories, the
number of errors for each category was counted
on the basis of the results of the comparison. Ul-
timately, both radiologists engaged in discussions
with each other and reached a consensus for each
report. After receiving the evaluations of two an-
notators, we evaluated the level of alignment be-
tween our metric and their evaluations employing
the Spearman rank correlation coefficient. This
allows us to quantify the relationship between the
metric scores and the count of errors identified by
radiologists in the reports. We establish the align-

*i.e., variations of the phrases no acute cardiopulmonary

abnormalities, no evidence of active disease, no acute findings.
The complete list of filters can be found in Appendix A.



ment between the metric and radiologists’ evalua-
tions for our checkpoints by conducting this anal-
ysis on a selected set of 100 studies. We examine
the total number of errors and specifically focus on
the number of errors that are clinically significant,
as indicated by the radiologists’ annotations. In
this analysis, Table 4, we found that the correlation
for the RadCliQ model is 33.49% for total errors
and 19.29% for significant mistakes. It shows a
slightly higher positive correlation than our two
models, indicating a more substantial alignment
between the model’s predictions and the human-
annotated errors in our dataset. The correlation
between Match XLLM-R RadCliQ and human an-
notation is 28.71% for total errors and 18.37% for
significant errors. These values suggest a moderate
positive correlation between the model’s predic-
tions and the human-annotated total and significant
errors. However, it performed up to 11% better
than the compared metrics (BLEU and RadGraph
F1) on the total sum of errors and up to 4% for the
significant errors.

To analyze the quality of our metric, we looked
at reports with a higher occurrence of errors (re-
ferred to as reports with "noisy generation", where
our annotators have identified more than 3 errors
in total). There are 30 such reports among our 100
studies®. When looking only at the noisy reports
we can see for the Match Roberta RadCliQ and
Top Clinic RadCliQ checkpoints, that we outper-
form the comparison metrics by up to 19% on the
sum of errors and up to 6% for the significant er-
rors. For this set of reports, we even perform better
than RadCliQ in both categories.

8 Conclusion

Our work focuses on developing a novel evalua-
tion metric to evaluate the quality and precision
of automatically generated radiology reports. We
propose an evaluation model called RadEval that
incorporates domain-specific knowledge from a
radiology-aware knowledge graph. We train the
RadEval model using two corpora, the Best Match
corpus and the Top 10% corpus, which contain
pairs of ground truth reports that are similar in
terms of their RadGraph representation. We eval-
uate the performance of the RadEval model on a
test set and compare it to other established met-

SWe provided the statistics of the error categories in these
30 examples Appendix E and two noisy examples of what our
dataset looks like and the corresponding error categories in
Appendix F

Model

Human Annotation Correlation

#total errors (%) | #sig. errors (%)

Complete Human Annotation Dataset: 100 Examples

BLEU 17.70 13.85
RadGraph F1 28.44 16.33
RadCliQ 33.49 19.29
Match XLM-R RadCliQ 28.71 18.37

Noisy generation (> 3 errors in the prediction) : 30 Examples

BLEU 27.36 1.39
RadGraph F1 19.10 0.91
RadCliQ 33.80 1.69
Match XLM-R RadCliQ 34.48 6.42
Top Clinic RadCliQ 37.35 7.97

Table 4: Spearman rank correlation between the RadE-
val score of our two best performing model checkpoints
and the human error scores assigned by radiologists.
As a comparison, we include BLEU and two recent
radiology-specific metrics and report their correlation
scores with our annotators. Correlations for RadGraph
F1 are multiplied with —1 as these scores estimate the
report quality (i.e., higher is better), and the human
annotators provide the error score (i.e., lower is better).

rics such as BLEU, BERTScore, CheXbert, Rad-
Graph F1, and RadCliQ. We find that the RadEval
model performs well and correlates highly with
these metrics. Additionally, when using the new
ReXVal dataset of human annotations to compare
our alignment with human judgment, we find a
high correlation that even surpasses RadCliQ for
most report pairs. When conducting our own hu-
man annotation study, we did not find a direct high
correlation with our human annotators. Still, when
comparing with the other metrics’ agreement with
the same human scores, we also performed better
in some cases. Furthermore, it should be noted that
although we have demonstrated relatively strong
correlations between automated evaluation metrics
and human judgment, additional research is still re-
quired to develop an appropriate evaluation metric
that aligns with radiologists’ expectations and has
clinical validity.

9 Limitations and Ethical Considerations

Our proposed method has certain limitations and
ethical considerations that merit discussion. One
limitation of our study is that different radiologists
evaluating the reports often gave different scores,
even though the effort was to make the evaluation
scheme objective and consistent. This variability



among radiologists is a common issue when using
subjective ratings from clinicians. It suggests that
our evaluation scheme may have limitations and it
might be challenging to evaluate radiology reports
objectively. Another limitation is that we only con-
sidered a specific set of metrics in our study. There
are other metrics available that could behave dif-
ferently than the ones we examined. This means
that there could be additional metrics that might
provide different insights into evaluating radiology
reports.

Regarding the datasets used in our study, we ex-
clusively utilized publicly available datasets that
are properly anonymized and de-identified, address-
ing privacy concerns. However, it is crucial to em-
phasize that if datasets containing comparison ex-
ams become available in the future, additional pre-
cautions must be taken to ensure that no personally
identifiable information is inadvertently disclosed
or used in a manner that could identify individual
patients The public MIMIC-CXR and IU-X-ray
datasets are employed in this work, in which all
protected health information was de-identified. De-
identification was performed in compliance with
Health Insurance Portability and Accountability
Act (HIPAA) standards in order to facilitate public
access to the datasets. Deletion of protected health
information (PHI) from structured data sources
(e.g., data fields that provide patient name or date
of birth) was straightforward. All necessary pa-
tient/participant consent has been obtained, and the
appropriate institutional forms have been archived.
We used the datasets for RadGraph and ReXVal,
which are under the PhysioNet license. Therefore,
as required, we will release our code and data to
PhysioNet.

By acknowledging these limitations and ethi-
cal considerations, we aim to encourage future
research and discussions in the field, driving ad-
vancements in radiology report generation while
prioritizing patient privacy, accuracy, and fairness.
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Appendix
A Filter phrases used to get only abnormal reports

While working on our metric model, we made sure that the input data is balanced in terms of abnormal
and normal reports using the following filters. In the first step, we removed all reports with a mesh-0
label of "normal". In addition, we employed a set of predefined phrases that indicate normal impressions
in the radiology reports. These phrases are: (i) "No acute cardiopulmonary abnormality"”, (ii) "No
acute cardiopulmonary abnormalities”, (iii) "Negative for acute abnormality", (iv) "No evidence of
active disease", (v) "No acute cardiopulmonary process", (vi) "No acute cardiopulmonary disease",
(vii) "No acute cardiopulmonary findings", (viii) "No acute pulmonary findings", (ix) "No acute findings",
(x) "No acute cardiopulmonary abnormality identified", (xi) "No acute cardiopulmonary abnormality
seen”, (xii) "No acute cardiopulmonary abnormality detected", (xiii) "No acute cardiopulmonary finding",
(xiv) "No active disease", and (xv) "No acute disease".

B Cluster Terms

Most prominent term

normal

lung/hypoinflation

granulomatous disease

thoracic vertebrae/degenerative/mild
calcified granuloma/lung/base/right
calcified granuloma/lung/upper lobe/left
Second most prominent term

No value

lung/hypoinflation markings/bronchovascular
cardiomegaly/mild

thoracic vertebrae/degenerative

calcified granuloma/lung/base/left
calcified granuloma/lung/upper lobe/right

N AW —=O

DW= O

Table 5: The most common and second most common terms for each MeSH cluster by numeric cluster Identifier
(ID). The principal component analysis of the clusters can be seen in Figure 5.

C Dataset distribution for report pair generation

Dataset | #reports total % abnormal
Top 10%
Training 47°162 63.19%
Testing 14’738 62.19%
Validation 11’791 63.21%
Best Match
Training 471’689 84.64%
Testing 147°403 84.59%
Validation 117°922 84.68%

Table 6: Size of the different dataset types for the two sets of comparative report pairs and their respective percentage
of abnormal reports (i.e. mesh-0 # normal)
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Figure 5: Visualization of the clusters generated by KMeans. The data has been reduced to two dimensions using
PCA and the clusters are color-coded. MeSH n = 6: The outlier (cluster 0) are the normal reports. Clusters 2
and 3 are well defined, 4 and 5 have a lot of overlap. The most prominent values for each cluster can be seen in
Appendix B.
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0.47 1 1750

046 1 k1500

r 1250

- 1000

Silhouette score
=]
»
by
ski-Harabasz score

Calin:

T T T T T T T y
5 10 15 20 25 30 35 40
Number of clusters: mesh

Figure 4: Silhouette score (red), Elbow score/inertia (blue), and Calinski-Harabasz score (green) for increasing
amounts of clusters on the MeSH column

E The statistics of the error categories in the 30 noisy examples

Error Type Errors
#Significant ‘ #Insignificant (%)
(1) False prediction of finding 10 7
(2) Omission of finding 64 36
(3) Incorrect location/position of finding 1 1
(4) Incorrect severity of the finding 1
(5) Mention of comparison 0 6
(6) Omission of comparison 17 7
(7) Mention of uncertainty 1 0
(8) Omission of uncertainty 3 0
Total 96 58
Table 7
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F Noisy Report Examples
Example 1.

¢ Ground Truth Report
the heart is enlarged. there is pulmonary vascular congestion with diffusely
increased interstitial and mild patchy airspace opacities. the <unk> xxxx
pulmonary edema. there is no pneumothorax or 1large pleural effusion. there
are no acute bony findings.

¢ Predcition
there is a right upper lobe opacity. cardiomediastinal silhouette is normal.
pulmonary vasculature and xxxx are normal. no pneumothorax or large pleural
effusion. osseous structures and soft tissues are normal.

Error Type Category |Instances of failure # Errors
(2) Omission of Findings Significant |heart size enlarged, vascular congestion, interstital, 5)
airspace opacities, pulmonary edema
(3) Incorrect location/position of finding | Insignificant|right upper lobe opacity 1
Example 2.

* Ground Truth Report
stable enlargement of the cardiac stable mediastinal contours. increased
interstitial markings in the central lungs and right greater than left. xxxx
opacity on the lateral view over the heart also present on the previous exam
suggesting chronic subsegmental atelectasis or scarring. no definite pleural
effusion seen.

¢ Predcition
the heart and cardiomediastinal silhouette are normal in size and contour. there
is no focal air space pleural or pneumothorax. the osseous structures are intact.

Error Type ‘Category ‘ Instances of failure # Errors

(2) Omission of Findings Significant |stable enlargement of the cardiac, stable mediastinal )
contour, increased interstital markings, xxx opacity -
chronic atelectasis or scarring

(6) Omission of comparison| Significant |increased interstitial markings in central lung and right, 3
on the previous exam ...
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