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Abstract

We propose a new automated evaluation metric001
for machine-generated radiology reports using002
the successful COMET architecture adapted003
for the radiology domain. We train and publish004
four medically-oriented model checkpoints, in-005
cluding one trained on RadGraph, a radiology006
knowledge graph. Our results show that our007
metric correlates moderately to high with es-008
tablished metrics such as BERTscore, BLEU,009
and CheXbert scores. Furthermore, we demon-010
strate that one of our checkpoints exhibits a011
high correlation with human judgment, as as-012
sessed using the publicly available annotations013
of six board-certified radiologists, using a set014
of 200 reports. We also performed our analysis015
gathering annotations with two radiologists on016
a collection of 100 reports. The results indicate017
the potential effectiveness of our method as a018
radiology-specific evaluation metric.1019

1 Introduction020

Evaluation metrics are essential to assess the per-021

formance of Natural Language Generation (NLG)022

systems. Although traditional metrics are widely023

used due to their simplicity, they have limitations in024

their correlation with human judgments, leading to025

the need for newer evaluation metrics (Blagec et al.,026

2022; Sai et al., 2022; Novikova et al., 2017). How-027

ever, newer metrics have not been widely adopted028

in the literature due to poor explainability and lack029

of benchmarking (Leiter et al., 2022). In the med-030

ical image report generation domain, several new031

metrics have been developed, including medical032

abnormality terminology detection (Li et al., 2018),033

MeSH accuracy (Huang et al., 2019), medical im-034

age report quality index (Zhang et al., 2020b), and035

anatomical relevance score (Alsharid et al., 2019).036

These metrics aim to establish more relevant eval-037

uation measures than traditional metrics such as038

1The code, data, and model checkpoints to reproduce our
findings will be publicly available.

Figure 1: An example report showing the two images
and the MeSH, findings and impression columns.
Image constructed by the authors with the data from Demner-
Fushman et al. (2016).

BLEU. However, despite their existence, newer 039

publications still rely on traditional metrics, lead- 040

ing to less meaningful evaluations of specialized 041

tasks (Messina et al., 2022). 042

Radiology reports are narratives that should ac- 043

curately reflect important properties of the enti- 044

ties depicted in the scan. These reports consist 045

of multiple sentences, including the position and 046

severity of abnormalities and concluding remarks 047

summarizing the most prominent observations (see 048

Figure 1 for an example report). The task of gen- 049

erating radiological reports is challenging due to 050

their unique characteristics and the need for accu- 051

rate clinical descriptions (Langlotz, 2015). How- 052

ever, current metrics like BLEU do not capture 053

these specific properties, highlighting the need for 054

domain-specific metrics that consider the unique re- 055

quirements of radiology reports (Chen et al., 2020). 056

At a high level of abstraction, we attempt to an- 057

swer the following main research questions in this 058

work: (1) Can an existing successful metric model 059

architecture be adapted and optimized to develop a 060

novel radiology-specific metric for evaluating the 061

quality and accuracy of automatically generated 062

radiology reports? and (2) To what extent does the 063

integration of radiology-aware knowledge, impact 064

the precision and dependability of the assessment 065
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metric in evaluating the efficacy and accuracy of066

automatically generated radiology reports?067

To this end, we suggest an automated measure-068

ment for assessing radiology report generation069

models. It aims to enhance existing metrics de-070

signed for different domains, including both au-071

tomated metrics like COMET (Crosslingual Opti-072

mized Metric for Evaluation of Translation) (Rei073

et al., 2020) and traditional metrics like SPIDEr074

(Semantic Propositional Image Description Evalu-075

ation) (Liu et al., 2017) or BLEU (Papineni et al.,076

2002). This improvement involves incorporating a077

radiology-specific knowledge graph known as Rad-078

Graph (Jain et al., 2021). Our contributions are as079

follows: (i) We design an evaluation model (RadE-080

val) tailored explicitly for assessing radiology re-081

ports generated by generative models. By incorpo-082

rating domain-specific knowledge from RadGraph,083

we aim to enhance the accuracy and relevance of084

the assessment., (ii) We evaluate the proposed strat-085

egy by applying it to a set of radiology reports gen-086

erated by two models. We use the IU X-Ray dataset087

of ground truth radiology reports and compare the088

automated scores obtained using our framework089

with the scores of other established metrics. and090

(iii) We perform an error analysis study with radiol-091

ogy experts that examine the discrepancies between092

the generated and the ground truth reports. This093

analysis allows us to further identify the quality of094

our metric compared with human judgment.095

2 Metric Architecture096

We use COMET, an evaluation architecture frame-097

work developed for machine translation scoring by098

Unbabel AI (2020); Rei et al. (2020) and train our099

own metric on radiology data, focusing on the tech-100

nicalities of radiology reports as outlined before.101

COMET offers training different types of architec-102

tures: Estimator models and Translation Ranking103

models. The fundamental difference between them104

is the training objective. While the Estimator is105

trained to regress directly on a quality score, the106

Translation Ranking model is trained to minimize107

the distance between a “better” hypothesis and both108

its corresponding reference and its original source.109

We use the referenceless mode of the Estimator110

model as our input data consists of only two inputs -111

one ground truth report (the source) and one model-112

generated report (the hypothesis). The source s,113

and hypothesis h are independently encoded using114

a pretrained language encoder (here: XLM-R by115

Figure 2: Model architecture for the referenceless met-
ric in the COMET Estimator model (Image provided by
Unbabel AI (2020)). The source s, and hypothesis h are
independently encoded using a pretrained language en-
coder. The resulting embedding vectors are then passed
through a pooling layer to create a sentence embedding
for each input as ĥ and ŝ. Finally, the resulting sentence
embeddings are combined and concatenated into one
single vector that is passed to a feed-forward regressor.
The entire model is trained by minimizing the Mean
Squared Error (Rei et al., 2020).

Conneau et al. (2020)). The resulting embedding 116

vectors are then passed through a pooling layer to 117

create a sentence embedding for each input. Given 118

a sentence embedding for the hypothesis ĥ, and 119

the source ŝ, it extracts the following combined 120

features: (i) Element-wise source product: ĥ ∗ ŝ, 121

and (ii) Absolute element-wise source difference: 122

|ĥ− ŝ|. These combined features are then concate- 123

nated to the source embedding ŝ and hypothesis 124

embedding ĥ into a single vector [ĥ; ŝ; ĥ∗ŝ; |ĥ−ŝ|] 125

that serves as input to a feed-forward regressor. Fig- 126

ure 2 depicts the COMET Estimator model architec- 127

ture. The entire model is trained by minimizing the 128

Mean Squared Error (MSE) between the predicted 129

scores and quality assessments (target values) as a 130

loss function. 131

3 Dataset Curation 132

Because the COMET architecture is built for assess- 133

ing the quality of machine translation it requires 134

a parallel corpus of source (i.e. the original text), 135

hypothesis (i.e. the machine translation), and refer- 136

ence (i.e. the correct translation of the source) as in- 137

put to train the model. In the radiology domain, this 138

corresponds to the source being the ground truth re- 139

port and the hypothesis being the model-generated 140

one. We do not have the notion of a correct version 141

of a generated report in our case and are therefore 142
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using the referenceless architecture. To ensure the143

reliability of our model, we require a sufficiently144

large number of reports for training. We construct145

the training data for our metric, by creating a cor-146

pus of similar reports using the IU X-Ray report147

collection (Demner-Fushman et al., 2016), a widely148

utilized dataset within the radiology domain. The149

IU X-Ray dataset contains chest X-Ray images,150

along with accompanying reports of actual find-151

ings, brief summaries of these findings (referred to152

as the impression), and assigned Medical Subject153

Headings (MeSH) labels. MeSH is a controlled vo-154

cabulary used by the National Library of Medicine155

database to index and organize biomedical informa-156

tion (National Library of Medicine, 2023). These157

terms are used to categorize medical articles based158

on their content and encompass a broad range of159

medical topics, including anatomy, diseases, drugs,160

and procedures.161

We concatenated major MeSH labels and re-162

moved irrelevant MeSH values (i.e. "no indexing"163

and "technical quality of image unsatisfactory") for164

each report and performed K-Means clustering on165

the MeSH terms to group reports containing similar166

topics. We achieved the best results with 6 clusters.167

This clustering process allowed us to then take the168

cross-product of each cluster individually to create169

the report pairs. Figure 5 shows the final clusters.170

The most prominent values for each cluster can be171

seen in Appendix B and the scores to determine the172

number of clusters in Appendix D.173

Next, we scored the similarity of the reports in174

relation to all other reports in the same cluster using175

the RadCliQ Metric (Yu et al., 2023a), which is176

a novel evaluation measure for the similarity of177

clinical reports leveraging a combination of the178

BLEU-2 score and the RadGraph F1 metric. The179

latter ”computes the overlap in clinical entities and180

relations that RadGraph extracts from a machine-181

and human-generated reports” (Yu et al., 2023a,182

p.4).183

We then generate two sets of comparative report184

pairs. The first one (referred to as Best Match cor-185

pus by selecting the top-scored (i.e. most similar)186

match for each report (based on RadCliQ metric),187

resulting in a set that encompasses all reports of188

the cleaned IU X-Ray dataset at least once (i.e. the189

set size is equal to the size of the cleaned IU X-190

Ray dataset and each report in the dataset has one191

corresponding report, which matches best in terms192

of similarity). The secondary one (referred to as193

Top 10% corpus allowed for multiple instances of 194

single reports in the set if they had multiple best 195

matches. 196

After having created two sets we divided them 197

into two distinct subsets, a training set and a test 198

set. We created a random split of 80/20 using to 199

extract 20% of the data into the test set and keep 200

the remaining 80% as the training set. This ensured 201

that our model can be trained and evaluated on 202

two distinct sets of data. With the training process 203

in mind, we also split the training data set further 204

into two subsets, the primary training set, and the 205

validation subset, using the same 80/20 split to 206

have the validation data out of the training set. This 207

validation set is provided to the model trainer to 208

fine-tune its hyper-parameters on each epoch. 209

During this process, we ensured an appropriate 210

share of normal and abnormal reports are included 211

in both train/validation/test datasets and to not bias 212

the data towards normal reports too much (see Ta- 213

ble 6). 214

4 Model training 215

During model training, we optimized the Kendall 216

Tau value between predicted and ground truth rank- 217

ings. Increasing the maximum number of training 218

epochs from 20 to 40 resulted in higher Kendall 219

Tau values. We also compared the performance of 220

using BioClinical BERT (Alsentzer et al., 2019) 221

instead of XLM-R and training on the RadCliQ 222

Score versus the RadGraph F1 score for the Top 223

10% corpus. 224

Our motivation for providing comparative report 225

pairs is to assist future researchers in training their 226

own metrics using a ’Source - Hypothesis’ model 227

architecture in their research. To ensure the quality 228

of our corpus, we have compared the exact over- 229

lap on MeSH labels among source and reference 230

reports (i.e. the number of overlapping tokens). 231

Our analysis of the Top 10% corpus revealed that 232

80.2% of the rows had overlap in their MeSH la- 233

bels, with 46.9% having one token overlapping and 234

33.3% having more than one. Only 19.83% of rows 235

had no exact overlaps in MeSH tokens. Similarly, 236

when we examined the extent of overlap between 237

MeSH labels in the complete corpus (i.e. among 238

all scores), we found that 34.20% of rows had no 239

overlap between their MeSH labels. In contrast, 240

31.69% of rows had only one overlap, and 34.11% 241

had more than one overlap between their MeSH 242

labels. We, therefore, see that the scores in the Top 243
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Checkpoint Name Encoder Report pairs Training Target Value Max(Kendallτ )

Match XLM-R RadCliQ XLM-R Best Match RadCliQ-score 0.696 (Epoch 3)
Match Clinic RadCliQ BioClinical BERT Best Match RadCliQ-score 0.714 (Epoch 10)

Top Clinic RadCliQ BioClinical BERT Top 10% RadCliQ-score 0.830 (Epoch 24)
Top Clinic RadGraph BioClinical BERT Top 10% RadGraph F1-score 0.714 (Epoch 18)

Table 1: The specifications of final model checkpoints: Match XLM-R RadCliQ: Based on the Best Match
corpus, with XLM-R as the encoder layer and RadCliQ as the quality assessments (target values). Match Clinic
RadCliQ: Based on the Best Match corpus, with BioClinical BERT as the encoder layer and RadCliQ as the quality
assessments (target values). Top Clinic RadCliQ: Based on the Top 10% corpus, with BioClinical BERT as the
encoder layer and RadCliQ as ts the quality assessments (target values). Top Clinic RadGraph: Based on the
Top 10% corpus, with BioClinical BERT as the encoder layer and RadGraph F1 as the quality assessments (target
values). Max (Kendallτ ) is evaluated on the Validation set.

10% corpus reflect the contents of the reports well.244

5 Final model checkpoints245

During our experiments with different clustering246

and similarity score methods, we have generated247

many comparative report pairs and also already248

trained several models to benchmark their perfor-249

mance. Out of all models, we have decided to focus250

on a couple of best-performing checkpoints (based251

on the highest Kendall τ value while training). We252

used our two corpora (Best Match and Top 10%)253

and combined them each once with the XLM-R254

encoder layer and once with the medical-specific255

BioClinical BERT (Alsentzer et al., 2019). Also,256

we trained the models on two scores: Once on the257

plain Radgraph F1 score, and once on the com-258

bined RadCliQ metric score to compare how they259

differ in correlation performance.260

It is important to notice, that the RadCliQ score261

is a measure of how many errors a report will con-262

tain (i.e. lower is better) and RadGraph F1 is a mea-263

sure of graph similarity (i.e. higher is better, Yu264

et al. 2023a). Our model checkpoints will behave265

accordingly when giving their predicted scores. For266

all checkpoints the scores are unbounded but we267

provide the typical range. The names of our check-268

points are based on the type of corpus (best match269

or Top 10%), the encoder (XLM-R or BioClinical270

BERT), and the type of score they output (RadCliQ271

or RadGraph F1).272

We trained the following checkpoints (see also273

Table 1): (i) Match XLM-R RadCliQ: Based on274

the Best Match corpus, with XLM-R as the encoder275

layer and RadCliQ as the quality assessments (tar-276

get values). A lower score indicates a better report.277

Scores typically fell within -3.5 and +0.5 in our278

tests., (ii) Match Clinic RadCliQ: Based on the 279

Best Match corpus, with BioClinical BERT as the 280

encoder layer and RadCliQ as the quality assess- 281

ments (target values). A lower score indicates a 282

better report. Scores typically fell within -3.5 and 283

+0.5 in our tests., (iii) Top Clinic RadCliQ:Based 284

on the Top 10% corpus, with BioClinical BERT as 285

the encoder layer and RadCliQ as ts the quality as- 286

sessments (target values). A lower score indicates 287

a better report. Scores typically fell within -3.0 and 288

+1.5 in our tests., and (iv) Top Clinic RadGraph: 289

Based on the Top 10% corpus, with BioClinical 290

BERT as the encoder layer and RadGraph F1 as 291

the quality assessments (target values). A higher 292

score indicates a better report. Scores typically fell 293

within -0.2 and +1.5 in our test. 294

6 Model performance 295

We assessed the performance of our model’s metric 296

using our test dataset (see Section 3) and the IU 297

X-Ray dataset’s test set (i.e. 590 sets containing 298

the ground truth and generated reports by two state- 299

of-the-art radiology report generation methods2: 300

R2Gen (Chen et al., 2020) and M2Tr (Cornia et al., 301

2020)). To provide a comprehensive comparison, 302

we calculated the performance of each radiology 303

generation method using five metrics. These in- 304

volve BLEU (Papineni et al., 2002), BERTScore 305

(Zhang et al., 2020a), CheXbert Similarity (Smit 306

et al., 2020), RadGraph F1 and RadCliQ (Yu et al., 307

2023a). 308

BLEU and BERTScore have commonly used 309

metrics in natural language generation tasks to as- 310

sess the similarity between machine-generated and 311

2We used the following implementations: M2Tr:
https://github.com/ysmiura/ifcc and R2Gen: https:
//github.com/cuhksz-nlp/R2Gen
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Model BLEU-4 BLEU-2 BERTscore CheXbert RadGraph F1 RadCliQ

Our Top 10% test data set

Match XLM-R RadCliQ - 86.26% 66.98% 27.75% 71.38% 95.37%
Match Clinic RadCliQ - 87.99% 67.80% 27.80% 71.05% 96.52%
Top Clinic RadCliQ - 88.76% 67.03% 27.45% 67.22% 95.51%
Top Clinic RadGraph - 41.35% 48.86% 24.45% 87.92% 67.57%

R2Gen reports

Match XLM-R RadCliQ 78.08% 86.85% 79.54% 52.69% 24.74% 66.37%
Match Clinic RadCliQ 81.84% 88.94% 80.95% 51.95% 19.36% 63.03%
Top Clinic RadCliQ 77.17% 85.81% 76.63% 47.36% 14.52% 58.00%
Top Clinic RadGraph 61.37% 66.33% 65.09% 39.09% 5.17% 40.96%

M2Tr reports

Match XLM-R RadCliQ 74.71% 84.88% 76.58% 47.66% 85.90% 95.28%
Match Clinic RadCliQ 79.72% 87.60% 79.83% 45.54% 71.73% 87.70%
Top Clinic RadCliQ 73.50% 83.51% 74.55% 43.90% 60.46% 78.58%
Top Clinic RadGraph 58.12% 64.29% 64.01% 33.64% 65.60% 71.76%

Table 2: Spearman rank correlation between the RadEval score of our model checkpoints and the other metrics
based on the generated reports by M2Tr and R2Gen. The highest correlation is marked in bold and the second
highest in italics. The score on which the specific model checkpoint was trained is printed in light grey.

human-generated texts. BLEU measures the over-312

lap of n-grams and is representative of text overlap-313

based metrics. On the other hand, BERTScore314

captures contextual similarity beyond exact tex-315

tual matches. It uses a pre-trained BERT (Bidirec-316

tional Encoder Representations from Transformers)317

model to encode the two pieces of text and mea-318

sure their similarity based on their contextualized319

embeddings.320

CheXbert vector similarity and RadGraph F1 are321

metrics specifically designed to evaluate the accu-322

racy of clinical information. CheXbert vector simi-323

larity calculates the cosine similarity between the324

indicator vectors of 14 pathologies extracted from325

machine-generated and human-generated radiology326

reports using the CheXbert automatic labeler. This327

metric focuses on evaluating radiology-specific in-328

formation but is limited to pathologies. To address329

this limitation, Yu et al. (2023a) propose the utiliza-330

tion of the report’s knowledge graph to represent a331

wide range of radiology-specific information. In-332

troducing a novel metric called RadGraph F1, they333

measure the overlap in clinical entities and rela-334

tions extracted by RadGraph from both machine-335

generated and human-generated reports.336

RadCliQ is a combined metric introduced by337

Yu et al. (2023a), which combines the BLEU and338

RadGraph F1 metrics through a linear regression 339

model. The purpose is to estimate the total number 340

of errors that radiologists would assign to a gen- 341

erated report. This metric requires the BLEU and 342

RadGraph F1 scores computed for the generated 343

report as input. According to Yu et al. (2023a), Rad- 344

Graph F1 is the most comparable metric to human 345

judgment, followed by BERTScore, BLEU-2, and 346

CheXbert. We evaluated our model checkpoints 347

trained on RadCliQ and RadGraph F1 to explore 348

their performance difference. We performed the 349

inference using the model checkpoints to obtain the 350

predicted "RadEval" scores. We then calculated the 351

Spearman correlation value between our RadEval 352

Score and the other metrics’ scores for the different 353

checkpoints. 354

In the test dataset we constructed (Top 10%), 355

the data in Table 2 demonstrates that all RadCliQ- 356

trained models (Match Clinic RadCliQ, Match 357

XLM-R RadCliQ, and Top Clinic RadCliQ) ex- 358

hibited a high correlation of over 85% with the 359

BLEU-2 score, which was according to our an- 360

ticipation as described above. Additionally, these 361

model checkpoints showed the second-highest cor- 362

relation of approximately 69% with the RadGraph 363

F1 score, which was also in line with our initial 364

expectations. 365
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Interestingly, we found that our RadCliQ-trained366

models also displayed a reasonably high correlation367

of approximately 67% with the BERTscore metric.368

The RadGraph F1-trained checkpoint (Top Clinic369

RadGraph) on the other hand showed the highest370

correlation with the RadCliQ score at 67.57% and371

the second highest correlation with BERTscore at372

48.86%, with BLEU-2 following at 41.35%. It is373

worth noting that none of our model checkpoints ex-374

hibited a high correlation with the CheXbert score,375

with correlations ranging between 24% and 28%.376

Even though the correlation with BLEU-2 for the377

RadGraph F1-trained checkpoint was much lower378

compared to the RadCliQ-trained checkpoints (-379

45 percentage points), the RadGraph F1-trained380

checkpoint also showed a lower correlation with381

BERTscore (-19 percentage points) and CheXbert382

score (-3 percentage points) at the same time, albeit383

less drastic than the drop in BLEU-2 correlation.384

When we analyzed the correlation scores of our385

model on the two model-generated datasets. we ob-386

served different correlation patterns than the report387

pairs test dataset. The correlation values between388

our model and both BLEU scores were high, rang-389

ing from 73% to 86% on both R2Gen and M2Tr390

reports for RadCliQ-trained checkpoints. However,391

for the RadGraph F1-trained checkpoint, the cor-392

relation was low, ranging from 14% to 25% for393

R2Gen and 60% to 85% for M2Tr. R2Gen had the394

lowest correlation (5.17%) with RadGraph F1. The395

correlation with BERTscore and CheXbert scores396

was generally higher than the parallel corpus test397

dataset, ranging from 33% to 53% and 64% to 80%,398

respectively.399

We found that the RadGraph F1-trained check-400

point for both generation models had better corre-401

lation values than the other RadCliQ-trained model402

checkpoints with BLEU-2 and BERTscore, being403

at most 19 percentage points away from the high-404

est value for BLEU-2 and at most 11 percentage405

points for BERTscore. The maximal drop for the406

CheXbert score was 10 percentage points, com-407

pared to 3 percentage points for our corpus test408

dataset.409

7 Automated metric/radiologist alignment410

7.1 Alignment analysis with ReXVal dataset411

In our first experimental alignment study, we make412

use of the Radiology Report Expert Evaluation413

(ReXVal) Dataset (Yu et al., 2023b) 3. The ReX- 414

Val Dataset is a collection of assessments made 415

by radiologists regarding errors found in automat- 416

ically generated radiology reports. This dataset 417

includes evaluations from six board certified radiol- 418

ogists. The assessments cover clinically significant 419

and clinically insignificant errors, categorized into 420

six different error types. The reports being evalu- 421

ated are compared to ground-truth reports from the 422

MIMIC-CXR dataset (Johnson et al., 2019). Each 423

of the 50 studies in the dataset contains one ground- 424

truth report and four reasonably accurate generated 425

reports by selecting candidate reports that score 426

highly according to each of four automated metrics 427

(i.e. BLEU, BERTscore, CheXbert and RadGraph 428

F1), referred to as oracle-metric reports, resulting 429

in 200 pairs of candidate and ground-truth reports 430

that radiologists have annotated. 431

We utilized this dataset to assess the correla- 432

tion between our proposed metric and radiologists’ 433

evaluations. To do so, we employed the approach 434

proposed by the authors to calculate the mean val- 435

ues of significant, insignificant, and total errors for 436

each oracle report, considering the input from their 437

six annotators. Then, we compute RadEval and 438

RadCliQ scores for each metric-oracle report and 439

determine the level of alignment between the radi- 440

ologists and the metrics (i.e.RadEval and RadCliQ) 441

using the Spearman rank correlation coefficient. 442

The results (Figure 3) demonstrate that our pro- 443

posed metrics perform better than the RadCliQ met- 444

ric compared on all oracle reports other than BLEU. 445

Our RadGraph Top Clinic RadGraph checkpoint 446

surpasses RadCliQ in terms of human correlation 447

up to 10 percentage points (in the BERTscore or- 448

acle reports). Also our other checkpoint Match 449

Clinic RadCliQ surpasses the RadCliQ Metric by 450

up to 5 percentage points. 451

To fairly compare and analyze whether the im- 452

provements in the human study are statistically 453

significant, we performed a significance test using 454

CoCor (Diedenhofen and Musch, 2015). 455

Following the CoCor method, we define the fol- 456

lowing groups in which the groups are dependent 457

and overlap. (i) JK (Correlation RadCliQ - Hu- 458

man),, (ii) JH ( Correlation RadEval - Human), 459

and (iii) KH (Correlation RadEval - RadCliQ). We 460

set Alpha = 5%, Confidence Level = 95%, 461

Null-Value = 0 and Sample size = 50 samples 462

3The Dataset is available on PhysioNet (Goldberger
et al., 2000) at https://physionet.org/content/
rexval-dataset/1.0.0/
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Figure 3: Spearman rank correlation between the Rad-
CliQ (Yu et al., 2023a) and our RadEval model check-
points, and the human error scores assigned by radiolo-
gists in four oracle-metric reports datasets.

Dataset name Correlation p-value
Human-RadCliQ(%) Human-RadEval(%)

BertScore-Oracle set 68.2 78.6 0.0084
CheXbert-Oracle set 72.8 81.3 0.0131

Table 3: Statistically significant test using CoCor
(Diedenhofen and Musch, 2015) on the ReXVal dataset.
Showing that the high correlation measured by our Top
Clinic RadGraph Checkpoint compared to the original
RadCliQ metric is statistically significant.

per. We have collected the p-values for the depen-463

dent, overlapping model according to Hendrickson464

et al. (1970) and report the results for the following465

set of datasets from ReXVal; where the predictions466

(generated reports) have been selected based on one467

of the following Oracle metrics: (1) BertScore-O-468

racle: The null hypothesis can be rejected with p–469

values 0.0084, and (2) CheXbert-Oracle: The null470

hypothesis can be rejected with p-values 0.0131.471

Confirming the alternative hypothesis: r.jk is less472

than r.jh (one-sided) with r.jk being the correla-473

tion of RadCliQ with the human and r.jh being the474

correlation of RadEval (ours) with the human.475

In these two datasets (50 examples each), the476

correlations are shown in Table 3. The results show477

that both RadEval and RadCliQ have a strong cor-478

relation with human judgments (i.e., > 60%) on the479

ReXval dataset.480

7.2 Alignment analysis with internal dataset481

To further investigate the alignment of the auto-482

mated evaluation metrics with radiologists, we cre-483

ated a balanced dataset of 100 reports for human an-484

notation from an initial set of 590 reports generated485

using M2Tr (Cornia et al., 2020; Nooralahzadeh486

et al., 2021). The dataset balance was achieved 487

by categorizing the reports into low, average, and 488

high groups based on the 0.33 quantiles of the Rad- 489

CliQ metric score. Random sampling was then 490

performed to select 150 reports from each category. 491

The reports were further filtered to separate normal 492

and abnormal categories, excluding those labeled 493

as normal in the ’mesh-0’ column and removing 494

reports with empty ’mesh-1’ values. The remaining 495

abnormal reports were then filtered based on the 496

’IMPRESSION’ column, removing those contain- 497

ing specific phrases associated with normal reports 498
4. The resulting dataset comprised 80 abnormal 499

and 20 normal reports. 500

In this regard, we are inspired by the work of Yu 501

et al. (2023a), in which the authors asked a radiol- 502

ogist to count the number of clinically significant 503

and insignificant errors observed in the predicted 504

report for each prediction pair and the ground truth 505

and categorize them into one of the following cat- 506

egories (Yu et al., 2023a, p.4-5) (the categories 507

with † are added by us). (1) False prediction of 508

finding, (2) Omission of finding, (3) Incorrect lo- 509

cation/position of finding, (4) Incorrect severity of 510

the finding, (5) Mention of comparison that is not 511

present in the reference impression, (6) Omission 512

of comparison describing a change from a previ- 513

ous study, (7) † Mention of uncertainty that is not 514

present in the reference, and (8) † Omission of un- 515

certainty that is present in the reference. 516

To accomplish the study, initially, two board cer- 517

tified radiologists independently identified and ex- 518

tracted the positive findings from the ground truth 519

reports. The positive findings were then classified 520

into significant and insignificant ones. A compari- 521

son was made between the findings extracted from 522

the ground truth reports and the generated reports. 523

Using the eight predefined error categories, the 524

number of errors for each category was counted 525

on the basis of the results of the comparison. Ul- 526

timately, both radiologists engaged in discussions 527

with each other and reached a consensus for each 528

report. After receiving the evaluations of two an- 529

notators, we evaluated the level of alignment be- 530

tween our metric and their evaluations employing 531

the Spearman rank correlation coefficient. This 532

allows us to quantify the relationship between the 533

metric scores and the count of errors identified by 534

radiologists in the reports. We establish the align- 535

4i.e., variations of the phrases no acute cardiopulmonary
abnormalities, no evidence of active disease, no acute findings.
The complete list of filters can be found in Appendix A.
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ment between the metric and radiologists’ evalua-536

tions for our checkpoints by conducting this anal-537

ysis on a selected set of 100 studies. We examine538

the total number of errors and specifically focus on539

the number of errors that are clinically significant,540

as indicated by the radiologists’ annotations. In541

this analysis, Table 4, we found that the correlation542

for the RadCliQ model is 33.49% for total errors543

and 19.29% for significant mistakes. It shows a544

slightly higher positive correlation than our two545

models, indicating a more substantial alignment546

between the model’s predictions and the human-547

annotated errors in our dataset. The correlation548

between Match XLM-R RadCliQ and human an-549

notation is 28.71% for total errors and 18.37% for550

significant errors. These values suggest a moderate551

positive correlation between the model’s predic-552

tions and the human-annotated total and significant553

errors. However, it performed up to 11% better554

than the compared metrics (BLEU and RadGraph555

F1) on the total sum of errors and up to 4% for the556

significant errors.557

To analyze the quality of our metric, we looked558

at reports with a higher occurrence of errors (re-559

ferred to as reports with "noisy generation", where560

our annotators have identified more than 3 errors561

in total). There are 30 such reports among our 100562

studies5. When looking only at the noisy reports563

we can see for the Match Roberta RadCliQ and564

Top Clinic RadCliQ checkpoints, that we outper-565

form the comparison metrics by up to 19% on the566

sum of errors and up to 6% for the significant er-567

rors. For this set of reports, we even perform better568

than RadCliQ in both categories.569

8 Conclusion570

Our work focuses on developing a novel evalua-571

tion metric to evaluate the quality and precision572

of automatically generated radiology reports. We573

propose an evaluation model called RadEval that574

incorporates domain-specific knowledge from a575

radiology-aware knowledge graph. We train the576

RadEval model using two corpora, the Best Match577

corpus and the Top 10% corpus, which contain578

pairs of ground truth reports that are similar in579

terms of their RadGraph representation. We eval-580

uate the performance of the RadEval model on a581

test set and compare it to other established met-582

5We provided the statistics of the error categories in these
30 examples Appendix E and two noisy examples of what our
dataset looks like and the corresponding error categories in
Appendix F

Model Human Annotation Correlation
#total errors (%) #sig. errors (%)

Complete Human Annotation Dataset: 100 Examples

BLEU 17.70 13.85
RadGraph F1 28.44 16.33
RadCliQ 33.49 19.29

Match XLM-R RadCliQ 28.71 18.37

Noisy generation (> 3 errors in the prediction) : 30 Examples

BLEU 27.36 1.39
RadGraph F1 19.10 0.91
RadCliQ 33.80 1.69

Match XLM-R RadCliQ 34.48 6.42
Top Clinic RadCliQ 37.35 7.97

Table 4: Spearman rank correlation between the RadE-
val score of our two best performing model checkpoints
and the human error scores assigned by radiologists.
As a comparison, we include BLEU and two recent
radiology-specific metrics and report their correlation
scores with our annotators. Correlations for RadGraph
F1 are multiplied with −1 as these scores estimate the
report quality (i.e., higher is better), and the human
annotators provide the error score (i.e., lower is better).

rics such as BLEU, BERTScore, CheXbert, Rad- 583

Graph F1, and RadCliQ. We find that the RadEval 584

model performs well and correlates highly with 585

these metrics. Additionally, when using the new 586

ReXVal dataset of human annotations to compare 587

our alignment with human judgment, we find a 588

high correlation that even surpasses RadCliQ for 589

most report pairs. When conducting our own hu- 590

man annotation study, we did not find a direct high 591

correlation with our human annotators. Still, when 592

comparing with the other metrics’ agreement with 593

the same human scores, we also performed better 594

in some cases. Furthermore, it should be noted that 595

although we have demonstrated relatively strong 596

correlations between automated evaluation metrics 597

and human judgment, additional research is still re- 598

quired to develop an appropriate evaluation metric 599

that aligns with radiologists’ expectations and has 600

clinical validity. 601

9 Limitations and Ethical Considerations 602

Our proposed method has certain limitations and 603

ethical considerations that merit discussion. One 604

limitation of our study is that different radiologists 605

evaluating the reports often gave different scores, 606

even though the effort was to make the evaluation 607

scheme objective and consistent. This variability 608

8



among radiologists is a common issue when using609

subjective ratings from clinicians. It suggests that610

our evaluation scheme may have limitations and it611

might be challenging to evaluate radiology reports612

objectively. Another limitation is that we only con-613

sidered a specific set of metrics in our study. There614

are other metrics available that could behave dif-615

ferently than the ones we examined. This means616

that there could be additional metrics that might617

provide different insights into evaluating radiology618

reports.619

Regarding the datasets used in our study, we ex-620

clusively utilized publicly available datasets that621

are properly anonymized and de-identified, address-622

ing privacy concerns. However, it is crucial to em-623

phasize that if datasets containing comparison ex-624

ams become available in the future, additional pre-625

cautions must be taken to ensure that no personally626

identifiable information is inadvertently disclosed627

or used in a manner that could identify individual628

patients The public MIMIC-CXR and IU-X-ray629

datasets are employed in this work, in which all630

protected health information was de-identified. De-631

identification was performed in compliance with632

Health Insurance Portability and Accountability633

Act (HIPAA) standards in order to facilitate public634

access to the datasets. Deletion of protected health635

information (PHI) from structured data sources636

(e.g., data fields that provide patient name or date637

of birth) was straightforward. All necessary pa-638

tient/participant consent has been obtained, and the639

appropriate institutional forms have been archived.640

We used the datasets for RadGraph and ReXVal,641

which are under the PhysioNet license. Therefore,642

as required, we will release our code and data to643

PhysioNet.644

By acknowledging these limitations and ethi-645

cal considerations, we aim to encourage future646

research and discussions in the field, driving ad-647

vancements in radiology report generation while648

prioritizing patient privacy, accuracy, and fairness.649
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Appendix 824

A Filter phrases used to get only abnormal reports 825

While working on our metric model, we made sure that the input data is balanced in terms of abnormal 826

and normal reports using the following filters. In the first step, we removed all reports with a mesh-0 827

label of "normal". In addition, we employed a set of predefined phrases that indicate normal impressions 828

in the radiology reports. These phrases are: (i) "No acute cardiopulmonary abnormality", (ii) "No 829

acute cardiopulmonary abnormalities", (iii) "Negative for acute abnormality", (iv) "No evidence of 830

active disease", (v) "No acute cardiopulmonary process", (vi) "No acute cardiopulmonary disease", 831

(vii) "No acute cardiopulmonary findings", (viii) "No acute pulmonary findings", (ix) "No acute findings", 832

(x) "No acute cardiopulmonary abnormality identified", (xi) "No acute cardiopulmonary abnormality 833

seen", (xii) "No acute cardiopulmonary abnormality detected", (xiii) "No acute cardiopulmonary finding", 834

(xiv) "No active disease", and (xv) "No acute disease". 835

B Cluster Terms 836

Most prominent term
0 normal
1 lung/hypoinflation
2 granulomatous disease
3 thoracic vertebrae/degenerative/mild
4 calcified granuloma/lung/base/right
5 calcified granuloma/lung/upper lobe/left

Second most prominent term
0 No value
1 lung/hypoinflation markings/bronchovascular
2 cardiomegaly/mild
3 thoracic vertebrae/degenerative
4 calcified granuloma/lung/base/left
5 calcified granuloma/lung/upper lobe/right

Table 5: The most common and second most common terms for each MeSH cluster by numeric cluster Identifier
(ID). The principal component analysis of the clusters can be seen in Figure 5.

C Dataset distribution for report pair generation 837

Dataset # reports total % abnormal

Top 10%

Training 47’162 63.19%
Testing 14’738 62.19%
Validation 11’791 63.21%

Best Match

Training 471’689 84.64%
Testing 147’403 84.59%
Validation 117’922 84.68%

Table 6: Size of the different dataset types for the two sets of comparative report pairs and their respective percentage
of abnormal reports (i.e. mesh-0 ̸= normal)
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Figure 5: Visualization of the clusters generated by KMeans. The data has been reduced to two dimensions using
PCA and the clusters are color-coded. MeSH n = 6: The outlier (cluster 0) are the normal reports. Clusters 2
and 3 are well defined, 4 and 5 have a lot of overlap. The most prominent values for each cluster can be seen in
Appendix B.

D Scores for the MeSH clusters838

Figure 4: Silhouette score (red), Elbow score/inertia (blue), and Calinski-Harabasz score (green) for increasing
amounts of clusters on the MeSH column

E The statistics of the error categories in the 30 noisy examples839

Error Type Errors
#Significant #Insignificant (%)

(1) False prediction of finding 10 7
(2) Omission of finding 64 36
(3) Incorrect location/position of finding 1 1
(4) Incorrect severity of the finding 0 1
(5) Mention of comparison 0 6
(6) Omission of comparison 17 7
(7) Mention of uncertainty 1 0
(8) Omission of uncertainty 3 0

Total 96 58

Table 7
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F Noisy Report Examples 840

Example 1. 841

• Ground Truth Report 842

the heart is enlarged. there is pulmonary vascular congestion with diffusely 843

increased interstitial and mild patchy airspace opacities. the <unk> xxxx 844

pulmonary edema. there is no pneumothorax or large pleural effusion. there 845

are no acute bony findings. 846

• Predcition 847

there is a right upper lobe opacity. cardiomediastinal silhouette is normal. 848

pulmonary vasculature and xxxx are normal. no pneumothorax or large pleural 849

effusion. osseous structures and soft tissues are normal. 850

Error Type Category Instances of failure # Errors

(2) Omission of Findings Significant heart size enlarged, vascular congestion, interstital,
airspace opacities, pulmonary edema

5

(3) Incorrect location/position of finding Insignificant right upper lobe opacity 1

Example 2. 851

• Ground Truth Report 852

stable enlargement of the cardiac stable mediastinal contours. increased 853

interstitial markings in the central lungs and right greater than left. xxxx 854

opacity on the lateral view over the heart also present on the previous exam 855

suggesting chronic subsegmental atelectasis or scarring. no definite pleural 856

effusion seen. 857

• Predcition 858

the heart and cardiomediastinal silhouette are normal in size and contour. there 859

is no focal air space pleural or pneumothorax. the osseous structures are intact. 860

Error Type Category Instances of failure # Errors

(2) Omission of Findings Significant stable enlargement of the cardiac, stable mediastinal
contour, increased interstital markings, xxx opacity -
chronic atelectasis or scarring

5

(6) Omission of comparison Significant increased interstitial markings in central lung and right,
on the previous exam ...

3
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