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ABSTRACT

This paper presents a novel approach to neural network compression that ad-
dresses redundancy at both the filter and architectural levels through a unified
framework grounded in information flow analysis. Building on the concept of ten-
sor flow divergence, which quantifies how information is transformed across net-
work layers, we develop a two-stage optimization process. The first stage employs
iterative divergence-aware pruning to identify and remove redundant filters while
preserving critical information pathways. The second stage extends this princi-
ple to higher-level architecture optimization by analyzing layer-wise contributions
to information propagation and selectively eliminating entire layers that demon-
strate minimal impact on network performance. The proposed method naturally
adapts to diverse architectures, including convolutional networks, transformers,
and hybrid designs, providing a consistent metric for comparing the structural
importance across different layer types. Experimental validation across multiple
modern architectures and datasets reveals that this combined approach achieves
substantial model compression while maintaining competitive accuracy. The pre-
sented approach achieves parameter reduction results that are globally comparable
to those of state-of-the-art solutions and outperforms them across a wide range of
modern neural network architectures, from convolutional models to transformers.
The results demonstrate how flow divergence serves as an effective guiding prin-
ciple for both filter-level and layer-level optimization, offering practical benefits
for deployment in resource-constrained environments.

1 INTRODUCTION

Modern artificial intelligence (Al) systems are rapidly transforming industries and high-tech prod-
ucts (Jumper et al., 2021; |Brown et al., [2020; McKinney et al.| |2020; Merchant et al., [2023}; [Team!
et al.| 2023 [Wong et al.| 2023)). Today, Al powers mobile devices (Liu et al.| 2024b; Ignatov et al.,
2023)), autonomous vehicles (Chen et al., 2024; Kim et al., 2021)), healthcare (Cameron et al., {2022}
Zarghamil 2024), finance (lacovides et al., 2024} |Rodriguez-Caballero & Villanueva-Dominguez,
2022), industry (Shiue et al) 2018} Jiang et al.l [2019), and scientific research (Miret et al., 2024;
‘Wang, |2025)). Most of these achievements rely on deep neural networks (DNNs) (Tan & Le, [2019a;
Tripp et al., [2024), which over the past decade have revolutionized computer vision (Ravi et al.,
2024; |Oquab et al., [2024; Zhang et al., |2025), natural language processing (OpenAl et al., 2023}
Jiang et al., 2024; [Team et al., 2024), generative models (Liu et al., [2024a; |Yang et al., 2023} |Shi
et al.}2023), and control systems (Salzmann et al.,2023; Mu et al., 2022} {Ullah et al.|[2024). Promi-
nent examples include GPT-4 (Peng et al.| [2023), Gemini (Team et al., 2025)), medical diagnostic
CNNs (Desai, 2024)), and image generation models such as DALL-E (Marcus et al.,|2022)) and Stable
Diffusion (Ho et al., [2020; Dhariwal & Nichol, [2021; Ramesh et al., [2022). These advances have
enabled unprecedented accuracy and adaptability.

Yet such progress has come with an exponential growth in model scale (Bernstein et al.,[2021)). State-
of-the-art architectures contain hundreds of millions or even billions of parameters, demanding vast
computational clusters (Lee et al.,|2023}; |Grattafiori et al.|[2024} Kindratenko et al.,[2010). The costs
include not only training time and energy but also deployment expenses (Baresi & Quattrocchil
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2022), from high data center electricity consumption to the difficulty of integrating models into
mobile (Cai et al.,|2022) or embedded devices (Peccia & Bringmann, 2024)).

Thus, model optimization has become a critical challenge (Kallimani et al., 2023} [Sanh et al., 2019
Kurtic et al.,[2022). Reducing computational requirements without sacrificing quality is essential for
accessibility, ecological sustainability, and practical deployment (Patterson et al., [2022; Wu et al.,
20215 |Shoukourian et al., 2017; |Osondu, [2025} [Vanu et al.l |2024; |Li et al.l |2023)). Proposed strate-
gies include quantization (Gholami et al.} 2022} [Liu et al.| [2021}; Lin et al., 2021} |Xiao et al.||2022),
weight factorization (Chin et al., 2020; Sainath et al., 2013} |[Hu et al.,|2021; Hao et al., [2024), low-
bitwidth representations (Wang et al., 2022; |Simons & Dah-Jyel 2019} [Dettmers & Zettlemoyer,
2022), and specialized hardware (Reuther et al.|[2021; |Burhanuddin| [2023}; [Tuli & Jha),2023)). How-
ever, many approaches face trade-offs in universality, complexity, or accuracy. Among the most
promising directions is pruning (Cheng et al.| [2024; Sundar & Dwaraknath| 2021} [Frantar & Alis-
tarh, 2023} |Gao et al.| 2022} [Li et al., 2016} [He et al., 2017} [Zafrir et al., 2021}, which simplifies
networks by removing redundant parameters. Beyond engineering gains, pruning provides insights
into network structure and has proven effective across image classification (Bai et al.| 2023 Tang
et al., 2022} Pan et al.| 2022), text processing (Ma et al., | 2023; |Kurtic et al.| 2023} |Shim et al.,|2021),
and generative models (Saxena et al.,|2024; |Brahim Belhaouari & Kraidia, [2025} Kafle et al., [2025)),
achieving significant efficiency improvements.

Despite its advantages, pruning still suffers from heuristic reliance, poor scalability, and limited
ability to capture information propagation dynamics (Cheng et al., [2024; |Sundar & Dwaraknath)
2021} [Frantar & Alistarhl 2023 |Gao et al.| 2022 |Li et al., 2016} He et al., 2017} [Zafrir et al., 2021§
Bai et al.| 2023 Tang et al., [2022} |Pan et al., [2022} |[Ma et al.,|2023}; |Kurtic et al., 2023} [Shim et al.,
2021; Saxena et al., 2024; Brahim Belhaouari & Kraidia, [2025; Kafle et al., 2025). To address
this, we propose a two-stage optimization framework based on the concept of information flow
divergence, a formal metric quantifying signal evolution through layers.

The first stage targets filter-level optimization: divergence measurements (Dineen|2014;|Tran,2018;
Perrella et all 2023} [Lopes & Ruggierol 2021} Kim et al., |2013; [Machenhauer & Rasmussen,
1972} Rezende & Mohamed, |2016) prune redundant parameters while preserving critical path-
ways (Shwartz-Ziv, [2022; |Saxe et al., 2018; ' Wu et al.,|2022; Munezero et al., 2021 Yu et al., 2025;
Greff et al.,[2015)). The second stage extends to layer-level compression, consolidating blocks based
on their contribution to overall information throughput. Unlike traditional methods that focus only
on parameter or layer counts, our framework jointly optimizes both while respecting information
dynamics.

We provide algorithmic specifications for various layer types and demonstrate that this holistic ap-
proach outperforms isolated strategies. Experiments across convolutional and transformer architec-
tures show substantial model size reductions without compromising functionality.

Ultimately, this framework is not only a compression tool but a new perspective on neural network
design, where measurable information flow guides architectural decisions, enabling models that are
smaller and computationally more efficient.

Thus, the main contributions of our work to neural network compression are as follows:

» Two-Stage Holistic Compression Framework. We propose the first pruning methodol-
ogy that systematically optimizes neural networks along both width (filter-level) and depth
(layer-level) dimensions through a unified flow-divergence criterion. The framework com-
bines:

— Stage 1: Divergence-Aware Filter Pruning (IDAP).
— Stage 2: Flow-Guided Layer Truncation.

* Theory of Information Flow Divergence. A mathematically rigorous formulation of neu-

ral network dynamics as continuous signal propagation systems, with:
— Integral-based divergence measures for discrete/continuous layers.
— Architecture-agnostic flow conservation principles.

¢ Computational Machinery:

— Efficient algorithms for flow computation in FC/Conv/Attention layers (O(L) com-
plexity).
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— Adaptive thresholding for joint filter-layer optimization.
* Empirical Validation:
— ~75-90% CNN pruning with <2% accuracy drop.
— >70% transformers pruning while maintaining ~98%-+ baseline accuracy.
— >40% faster inference post-compression.

2 PROBLEM STATEMENT

Modern neural networks are heavily overparameterized, with many operations contributing little to
performance and adding unnecessary complexity (Morcos et al., [2018)).

The key challenge is to reduce this complexity while preserving accuracy, robustness, generaliza-
tion, and adaptability across tasks such as classification, text generation, and image synthesis. This
is complicated by heterogeneous architectures, intricate internal dynamics, and the limited inter-
pretability of pruning effects. Scaling optimization methods to large models further demands high
efficiency.

These factors underscore the need for principled approaches that can reliably detect redundancy and
optimize structures while accounting for internal information processes. In this work, we address
this problem with a pruning framework grounded in information flow dynamics, which enables the
safe removal of non-essential components.

3 PROPOSED SOLUTION

3.1 INFORMATION FLOW DYNAMICS IN DEEP NEURAL NETWORKS

We present a comprehensive theoretical framework for analyzing information propagation through
deep neural networks by modeling them as dynamical systems that transform input data through
successive nonlinear transformations. The key insight is to characterize how information content
evolves as it flows through the network’s computational path.

3.1.1 CONTINUOUS FLOW REPRESENTATION

For a neural network fp : X — ) with parameters €, we represent its computations as a continuous
trajectory:
T(s) = fo(x,8), s€][0,1], (D

where:

* s = (0 corresponds to the input layer;
* s = 1 corresponds to the output layer;

* intermediate s values represent hidden transformations.

The differential change captures the instantaneous information flow:

o(s) = P () = 1im LA = T(s)

ds As—0 As

2

This formulation offers several important advantages. First, it establishes a connection to dynamical
systems theory, providing a solid mathematical foundation for analyzing information flow. Second,
it enables a unified treatment of both discrete and continuous architectures. Finally, it naturally
accommodates residual connections.

3.1.2 FLOw DIVERGENCE MEASURE

We define flow divergence to quantify information dissipation/concentration:

2= 00 (M) ®
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Figure 1: Visualization of information flow through network depth. Arrows represent derivative-
based flow measurements at different depth coordinates s.

For practical computation in discrete networks with L layers:
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where ¢ = 1076 prevents numerical instability. This approximation preserves derivative-based
interpretation and remains computationally tractable. It also captures both magnitude and directional
changes.

We also provide an extension of the flow divergence measure through variance-based normalization
(see Section [AT), which improves interpretability and robustness compared to exponential nor-
malization. Furthermore, we present a formal treatment of the key mathematical properties of the
introduced divergence measure (see Section[A.2), including scale invariance and additive composi-
tion.

Now we formalize a two-stage (the order and mechanics of the stages are determined empirically
according to our experiments) algorithm IDAP++. At the first stage, we eliminate insignificant fil-
ters, and at the second stage, we remove insignificant layers. In this case, the criteria of significance
are determined through the above-introduced concept of divergence of the information flow inside
the neural network (Fig. [I)).

3.2 COMPRESSION STAGE 1: FILTERS REDUCTION

Building upon the flow divergence framework established in Section [3.1} we now present the first
stage of our compression pipeline: structured filter pruning guided by information flow analysis.
This stage operates at the granularity of individual filters or attention heads, removing those that
contribute minimally to the network’s information throughput while preserving critical pathways.
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To begin with, we formalize the concept of divergence for the most fundamental types of layers in
neural networks (Section [B)).

For fully connected layers, we define divergence in terms of the Jacobian sensitivity, activation
norm, and weight norm, showing how their interaction reflects both the responsiveness and struc-
tural importance of the layer (Section [B.I)). For convolutional layers, we extend the formulation to
activation tensors and convolutional kernels, incorporating normalization by activation volume and
demonstrating adaptability to architectural variations (Section[B.2). For self-attention layers, we de-
rive both single-head and multi-head divergence measures, decomposing the role of query/key/value
projections and attention patterns, and proving additive composition across heads (Section [B.3).

Within the scope of this study, we formulate the principles of divergence computation for different
neural network architectures comprising various types of layers. All related materials are presented
in a dedicated section[C} which includes step-by-step algorithms for divergence computation, accom-
panied by an analysis of their algorithmic complexity and an assessment of computational overhead.
In particular, separate subsections address fully connected architectures (see |C.1)), convolutional
architectures (see[C.2), and attention-based architectures (see[C.3).

Now, let us introduce a generalized pruning methodology that systematically removes network
parameters while preserving information flow characteristics in the Iterative Divergence-Aware
Pruning (IDAP) technique. A step-by-step detailed procedure is presented in Section [D] (Algo-
rithm 3)).

The method exhibits several key features. First, it employs progressive sparsification, where the
pruning ratio pj increases non-linearly with iteration k&, controlled by a scaling parameter «.. Sec-
ond, the pruning process is guided by divergence, removing weights with the highest flow divergence
scores D. Additionally, the procedure incorporates a performance-aware termination criterion, ceas-
ing further pruning when the drop in validation accuracy exceeds a predefined threshold 7. Finally,
the algorithm is capable of automatically selecting the optimal pruning ratio p* from among the
tested configurations.

The implementation relies on layer-specific divergence computations as described in Sec-
tions Fine-tuning is performed using the original training schedule but with a reduced
learning rate to stabilize the pruned model. The pruning aggressiveness is governed by the parame-
ter o, which is typically selected from the range 0.5 to 2.0.

3.3 STAGE 2: FLOW-GUIDED LAYER TRUNCATION

After filter pruning, our method eliminates layers strategically via information flow analysis, remov-
ing those with minimal contribution to information propagation while maximizing error reduction.
The step-by-step procedure is outlined in the corresponding Section [E] (Algorithm|[6).

The proposed method relies on two core components: information flow scoring and an adaptive
replacement strategy.

Information Flow Scoring quantifies the relative contribution of each layer [ by computing its nor-
malized flow divergence across the validation set:

_ 1 [ Tig1(x) — Tu(x)|l2
|Dval| xEDy HTl(X)H2 +e

D,

where T, (x) denotes the output of layer [ for input x.

Adaptive Replacement Strategy ensures that structurally important components are preserved while
enabling architectural simplification. It combines identity and projection mappings to maintain di-
mensional compatibility (denoted as Identity* Mapping), applies local fine-tuning to adjacent layers
for stability, and uses error-driven selection to prioritize replacements that yield the greatest reduc-
tion in validation loss, denoted 0 E.

3.4 IDAP++: UNIFIED TWO-STAGE COMPRESSION FRAMEWORK

IDAP++ Algorithm[T]implements a two-stage compression methodology that progressively removes
redundant components while preserving information flow.
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The proposed framework exhibits several key features. It ensures a seamless transition from filter
pruning to layer removal by incorporating intermediate recomputation of information flow. Both
stages rely on a unified flow metric, using a consistent divergence measure:

D) = Byp [ Ti1(x) — Ti(x)ll2
e [Ti(x)]l2 + €

The method also introduces adaptive budget allocation, automatically distributing the total accuracy
degradation budget A« equally between the two pruning phases, with dynamic adjustment based
on actual performance outcomes. Finally, the framework employs compression-aware fine-tuning,
which includes local tuning of candidate layers during removal, intermediate rebalancing following
filter pruning, and global fine-tuning at the final stage to restore performance.

The theoretical validity of this method is supported by the theorem presented below.
Theorem 1. For any network Ny compressed with IDAP++, the compressed network N'* satisfies:

INox) A" ()l _
Amax v Dmv 5
VoG X € Dua ©)

while achieving maximal sparsity under the given constraints.

Algorithm 1 Integrated IDAP++ Compression Pipeline
Require:
1: * Initial network Ny with parameters ©
¢ Validation dataset D,y
* Target accuracy drop Apax

* Pruning hyperparameters «, 3
Ensure: Compressed network A/*
2: Initialize compression tracker: C < {}

3: Compute initial flow: D <+ ComputeFlowDivergence(Ny, Dya)

4: Phase 1: Adaptive Filter Pruning

5: for iteration ¢t < 1 Tgjier do

6: Determine pruning threshold: 7, < Percentile(D, po(1 + t/Thier)*)
7: Generate pruning mask: M; « I[D > 7]

8: Evaluate compressed network: AV; + N;_1 © M; Acc; < Validate(N;, Dya)
9: if Acco — Accy > Apax/2 then
10: Revert to N;_4
11: break
12: end if
13: Update compression tracker: C <— C U {(¢, || M¢|lo)}
14: end for

15: Phase Transition: Flow Rebalancing

16: Nipeer < IntermediateFineTune(N5)

17: Recompute flow: D’ +— RecomputeFlowDivergence(Npter, Dvar)

18: Phase 2: Strategic Layer Removal

19: for layer [ in SortLayersByFlow(D’) do

20: Create candidate network: Ng,ng < ReplaceLayer(Nper, [, Identity)

21: Local fine-tuning: M yna < AdaptiveFineTune (AN anq, Neighborhood(/))
22: if Acco — Validate(ANeand, Dval) < Amax then

23: Accept removal: Nipeer < Neand

24: Update tracker: C < C U {Removed [}
25: end if

26: if Acco — Validate(Nipter; Dyal) > Apmax then
27: break

28: end if

29: end for

30: return A'* < GlobalFineTune(Nyer, Dyar), C
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Figure 2: Comparison of pruning methods under 50-80% sparsity.

4 EXPERIMENTAL SETUP AND RESULTS

As part of this study, we developed a comprehensive experimental platform designed for an evalu-
ation of the proposed iterative pruning method for neural networks, incorporating information flow
characteristics into the optimization process. The platform provides a unified environment for ob-
jective comparison of optimization results across diverse model architectures and datasets and for
assessing the impact of progressive parameter removal on key performance indicators.

The experimental infrastructure consists of three interconnected functional components. The first
component is a module for calculating flow characteristics, which automatically determines the
contribution of each network layer to information transmission and transformation. This serves as
the basis for informed structural simplification decisions. The second component is an intelligent
optimization mechanism that implements stepwise reduction of neural network parameters with dy-
namic control over the impact of pruning on model accuracy. The third component is a standardized
testing module that ensures reproducibility and comparability of experiments across various neural
architectures, including classical convolutional networks and modern transformer-based models.

To comprehensively evaluate the proposed approach, we selected a range of widely used neu-
ral network architectures from computer vision. Our experiments included classification models

such as ResNet-50 (He et all, [2015)), EfficientNet-B4 (Tan & Le|, [2019b), ViT-Base/16 (Dosovit-

skiy et al [2021]), MobileNetV3-Large (Howard et al., [2019), DenseNet-121 (Huang et al, 2017),
ConvNeXt-Small (Liu et al., 2022), VGG19-BN (Simonyan & Zisserman| , and ShuffleNet

V2 x2.0 (Maet all 2018). We also used object detection and image segmentation models, including
Faster R-CNN (Ren et al., [2015), YOLOv4 (Bochkovskiy et al.,[2020), DETR (Carion et al.,[2020),

FCN [2015), U-Net (Ronneberger et al., 2015), and SegFormer (Xie et al., ). Fur-
thermore, we tested generative architectures such as DCGAN (Radford et all,[2015), VQGAN

2021)), and Stable Diffusion v1.5 (Rombach et al.| [2022).

To validate the generality of our pruning method, we extended the evaluation to other modalities,
specifically natural language processing (NLP), using BERT Base (Devlin et all, [2019), GPT-2
Base (Radford et al.l[2019), and T5 Base (Raffel et al., [2020).

Testing was performed on various benchmark datasets representing a diverse range of computer

vision and NLP tasks: ImageNet (Deng et al.| [2009), CIFAR-10 (Krizhevsky et al, 2009), CIFAR-
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100 (Krizhevsky et al.l [2009), Stanford Cars (Krause et al., [2013)), Flowers-102 (Nilsback & Zis-
serman, [2008)), iNaturalist (Van Horn et al.l 2018]), Food101 (Bossard et al., 2014}, Oxford-IIIT
Pet (Parkhi et al.,[2012), Fashion MNIST (Xiao et al.,[2017), FER2013 (Carrier & Courvillel 2013),
Pascal VOC (Everingham et al.| 2010), COCO 2017 (Lin et al.} 2014}, COCO-Stuff (Caesar et al.,
2018), MNLI-m (Wang et al., 2018), SQuAD 1.1 (Rajpurkar et al.,|2016)) and other datasets.

For each combination of architecture and dataset, the system automatically calculates layer-specific
flow metrics, followed by iterative pruning with a nonlinear increase in pruning intensity. This
approach allows precise control over the trade-off between model simplification and preservation of
functional performance. At each pruning step, the compressed model’s performance is validated, and
the process continues until the predefined threshold for acceptable accuracy degradation is reached.

Throughout the experiments, four key metrics are recorded: the percentage of removed weights
relative to the original parameter count, the remaining model accuracy on the test set, the abso-
lute accuracy drop compared to the baseline model, and the estimated reduction in computational
complexity, expressed through floating-point operation counts (FLOPs).

A detailed comparison of pruning results across different architectures and datasets is provided in
Table [T)and Fig.[2] The results demonstrate that IDAP++ achieves significant computational reduc-
tions, with FLOPs typically decreasing by 57-75% and model parameters by 67-69% for language
models. While accuracy drops were generally moderate for vision models (mostly within 1-4%),
generative models and language models exhibited more pronounced sensitivity, with FID scores
increasing by 7-9% and accuracy dropping by 4-5%. For example, on image classification tasks,
ViT-Base/16 on CIFAR-10 retained 97.0% accuracy with a 75% FLOPs reduction. In contrast, ar-
chitectures like ShuffleNetV2 and language models like BERT and GPT-2 showed greater sensitivity
to pruning.

Additionally, Fig. 2] provides a comparative analysis of the proposed pruning method against state-
of-the-art alternatives on different tasks and benchmarks. IDAP++ consistently outperformed the
most common state-of-the-art architectures, including LTH (Frankle & Carbinl 2019), RigL (Evci
et al., 2020), GraNet (Wang et al., [2023), PDP (Cho et al [2023), Retraining Free Pruning (Kwon
et al.,[2022), and MvP (Sanh et al., [2020) under 50-80% sparsity.

Table 1: Pruning results for different architectures using IDAP++

Architecture Dataset Metric Model Size
Name Base Pruned A% Name Base Pruned A%
ResNet-50 ImageNet Acc@1 76.1 74.6 -2.0 GFlops 4.1 1.5 -63

EfficientNet-B4 CIFAR-100 Acc@1 90.1 88.1 -2.3 GFlops 4.2 1.5 -65
ViT-Base/16 CIFAR-10 Acc@l 986 970 -1.6 GFlops 17.5 4.3 -75

Faster R-CNN
(ResNet-50) Pascal VOC mAP 78.4 76.7 -4.1 GFlops 150 62 -59

YOLOv4

(ShuffleNetV2) Pascal VOC mAP 77.5 75.8 -4.1 GFlops 52 22 -58
DETR

(ViT-Base/16) COCO 2017 mAP 420 40.5 -3.6 GFlops 87 36 -57
FCN .

(VGG19-BN) Cityscapes mloU  70.2 68.9 -1.9 GFlops 213 83 -61
U-Net

(ResNet-50) Pascal VOC mloU  75.8 74.2 -2.1 GFlops 170 62 -64
SegFormer

(ViT-Base/16) COCO 2017 mloU 47.0 45.1 -4.0 GFlops 163 63 -61
DCGAN CIFAR-10 FID 24.1 25.9 +6.9 GFlops 12.2 4.8 -61
VQGAN COCO-Stuff FID 18.5 20.1 +8.0 GFlops 18.3 7.5 -59
Stable

Diffusion v1.5 MS-COCO FID 12.3 13.5 +8.9 GFlops 86 34 -60
BERT Base MNLI-m Acc 84.5 82.5 -54 Params M) 110 37 -67
GPT-2 Base SQuAD 1.1 F1 86.3 82.6 -43 Params (M) 117 36 -69
TS5 Base MNLI-m Acc 87.1 83.7 -3.9  Params M) 220 71 -68
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We have also included some complementary experimental results in Section[F] Table[3|demonstrates
the dynamics of model compression applied to ResNet-50 over 35 pruning iterations on CIFAR-10.
The gradual pruning reduced GFLOPs from 4.09 to 1.14 (a nearly 72% decrease), while Top-1 accu-
racy decreased from 98.20% to 95.98%. The table highlights that accuracy remained above 97% for
more than 25 pruning steps, with sharper drops only in the final layer truncation stages. This high-
lights the robustness of IDAP++ in maintaining high performance under aggressive compression.

A separate comparison of inference time for the aforementioned architectures was conducted, with
the results presented in Table ] Pruning achieved notable acceleration across all models, with
speedups ranging from 1.50x (GPT-2 Base) to 2.16x (MobileNetV3-L). Lightweight architectures
such as ShuffleNetV2 and MobileNetV3 benefited the most, while heavier models like ViT and
ConvNeXt showed more modest gains.

It should also be noted that repeated application of the algorithm did not preserve acceptable accu-
racy while significantly reducing the number of model parameters.

We have made our implementation publicly available on GitHub (Author;, |2025) to ensure repro-
ducibility and facilitate further research. More detailed and comprehensive results of pruning vari-
ous architectures across different modalities and benchmarks using IDAP++ are also available in the
GitHub repository (Author, 2025)).

5 DISCUSSIONS AND CONCLUSION

The growing need to reduce parameters and simplify neural network topologies while preserving
information semantics has intensified interest in compression techniques. This work introduces a
theoretically grounded, two-stage framework addressing redundancy at both filter and architecture
levels. Central to our approach is the formalization of information flow dynamics, a metric quanti-
fying signal evolution across layers and bridging information theory with practical compression.

Our method builds on the tensor flow divergence concept, adapted from continuum mechanics for
discrete graphs. Experiments across a wide spectrum of models (from convolutional networks and
vision transformers to generative models and natural language processing architectures like BERT
and GPT-2) confirm that many parameters are redundant and can be safely removed. Notably, filter
pruning (Stage 1) and layer truncation (Stage 2) act complementarily: width reduction simplifies
depth optimization by eliminating noisy pathways. The flow divergence metric also shows task-
robust consistency across different modalities.

Beyond performance, the framework provides theoretical insight. The derivative-based flow formu-
lation (dT/ds) suggests neural networks behave as learnable PDEs, where transformation smoothness
outweighs parameter count. This explains why our method preserves information coherence where
conventional approaches degrade. Still, challenges remain: irregular topologies (e.g., neural ODEs,
hypernetworks) and dynamic inputs may require adaptive divergence measures and thresholds. De-
signing architectures with built-in compressibility emerges as a promising direction.

Practically, our method enables major efficiency gains. On CIFAR-10, ResNet-50 achieves ~80%
FLOPs reduction with only ~2% accuracy drop, reclaiming 70-85% of computational budgets typ-
ical for large models. For language models, the method achieved a parameter reduction of 67-69%,
demonstrating its significant potential for deploying large-scale NLP applications in resource-
constrained environments. Such results highlight that efficiency stems not from parameter volume
but from the organization of information pathways.

Looking ahead, two research paths are most promising: (i) integration of flow-aware pruning with
quantization, and (ii) hardware-sensitive divergence metrics for co-design.

In conclusion, reframing neural networks as information flow systems reveals their essential com-
putational skeletons. The successful application of our method to both vision and language tasks
underscores the broad applicability of the information flow principle. This work contributes not just
a compression tool but a conceptual framework where efficiency follows from fundamental laws of
signal propagation, paving the way for accessible, sustainable, and high-performance Al
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A FLOW DIVERGENCE MEASURE EXTENSIONS

A.1 NORMALIZATION VIA SAMPLE VARIANCE

We compute flow statistics using a validation set Dy, = {x;} i]\;1 with variance-based normalization:

N —1
D=4 > Dilxi)- (1 Ty ) - ©)
i=1

amax

where:

* Var(T)) is the activation variance across samples;
2

* 0% 18 the maximum observed variance (for scaling).

This approach offers three benefits over exponential normalization: it provides more interpretable
variance scaling, is robust to outlier activations, and preserves layer-wise sensitivity.

A.2 KEY PROPERTIES OF THE INTRODUCED DIVERGENCE MEASURE

The divergence measure satisfies two fundamental properties, which are formulated as correspond-
ing lemmas.

Lemma 2 (Scale Invariance). For any o > 0:
Dl(aTl,aTH_l) = DI(TZ,TZ+1). (7)
Lemma 3 (Additive Composition). For sequential transformations:

Disi42 = Dy - Dyt + O(JJAT|?). )
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B DETAILED DIVERGENCE FORMULATION FOR DIFFERENT LAYER TYPES

B.1 DIVERGENCE EXPLICIT REPRESENTATION FOR FULLY CONNECTED LAYERS

Let us first consider the mathematical formulation. For a fully connected layer [ with weight matrix
W, € R™>™~-1 and activation vector h; € R™, the layer-wise divergence D;Q is computed as:
l
DR = [Im)le - Jlz - [Wile ©)
—— —— ——
Activation sensitivity Activation magnitude Weight importance

We now proceed to examine the constituent components of the formulation in greater detail. Acti-
vation Jacobian J(h;) represents the local sensitivity of the activation function:
_ Oo(z)

J(hy) :
0z z;=Wih;_1+b;

(10)

For ReLU It takes the J(h;) = diag(I[z; > 0]) form. And the Frobenius norm || - || p aggregates all
partial derivatives.

Activation Norm |/h;||2 measures the Euclidean norm of post-activation outputs:

[z = (11
and it also captures the overall signal strength through the layer.
Weight Matrix Norm ||W,|| r computes the Frobenius norm of the weight matrix:
(12)

and it also serves as a structural importance measure for the layer.

We now turn to the Computation Process in more detail. The evaluation proceeds through the five
steps for each input x:

1. Forward Pass:
z; = Wih;_; + b;. (13)

2. Activation Computation:
hl :U(Zl). (14)

3. Jacobian Evaluation:

o'(z1) (element-wise)
J(h;) = 15
(ho) {H[zl > 0] (for ReLU). (15)
4. Norm Calculations:
[J(h)[|F = (16)
[hyl2 = /0 hy, 17
IWillr = 4 /tr(W] W) (18)
5. Layer Divergence:
l
DY = 13(0y) | - (]2 - [|Wel (19)
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The product form captures three critical aspects of information flow:

Dl(:lc) o Sensitivity x Signal Strength x Parameter Significance (20)
——
J h; w;

Let us also highlight some important properties. Firstly, the scale invariant: Dl(:lg (ahy) = Dgg (hy)

for @ > 0. Secondly, the non-negativity: Df(:lc) > 0 with equality only for zero activations. And
lastly, the composability. It states that total network divergence is the sum across layers:

Drc(x ZD”’ 2D

B.2 DIVERGENCE EXPLICIT REPRESENTATION FOR CONVOLUTIONAL LAYERS

Let us once again begin with the mathematical formulation. For convolutional layer ! with input
X € RFi-1xWi-1xCio1 the flow divergence is computed as:

DY

conv

X)= == Az - [IWiF, (22)
|Ql| ~—— ~——

~~~ Activation magnitude Weight significance
Normalization

where:

e )y = H; x W; x C] represents the activation volume with:

— H;, W;: Spatial dimensions of output feature maps;
— Cj: Number of output channels.

* A; = oc(W; x X + by) denotes the post-activation tensor where:

*: Convolution operation with padding and stride;
— o: Element-wise activation function;

- W, € RFXkxCi-1XCi: 4D convolution kernel;

— b; € R¢: Bias vector.

* || - || 7: Frobenius norm computing the root-sum-square of all elements.

We now proceed to the details of computational mechanics. The evaluation process involves Forward
Pass Calculation in the form: Z; = W, * X + by (pre-activation). It also includes the Activation
Transformation: A; = ¢(Z;) (where ¢ is ReLU, sigmoid, etc) and the Normalized Divergence
Computation:

HL WL Cz k Cl—l Cz

k
Dc((l)?w = |Ql ZZZ |aljk|2 Z Z Z Z |wmnpq‘2- (23)

1=1 j=1 k=1 1n=1 p=1 ¢g=1

Additional characteristics and clarifications for the Convolutional Divergence Computation Param-
eters are provided in Table 2]

Table 2: Convolutional divergence computation parameters

Symbol Dimension Interpretation

k Scalar Convolution kernel size

H; x W;  Spatial Output feature map dimensions
C Channels Number of output filters

W, kx kx Cj_1 x C; 4D weight tensor

A, H; x W; x () 3D activation tensor

The convolutional divergence measure possesses several important properties. It is scale-invariant,
meaning that uniform scaling of activations and weights does not affect the value of the divergence,
as expressed by

Digh (0 A1, SW1) = DG (AL, Wi) - Ve, § > 0. (24)

onv onv
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The measure is also adaptable to architectural variations, automatically accounting for factors such
as strided convolutions by adjusting output dimensions, dilated convolutions through the effective
receptive field, and grouped convolutions via per-group computation. Furthermore, it is memory-
efficient, as it requires only a single forward pass per layer to compute.

B.3 DIVERGENCE EXPLICIT REPRESENTATION FOR SELF-ATTENTION LAYERS

We now consider the case of Single-Head Attention Divergence. For a basic self-attention mecha-
nism, the divergence is computed as:

; 1
Dy(X) = —lAllF - (IWollr +IWkllr + [Wvllr), (25)
where:

e X € R?¥dmoal ig the input sequence matrix (n tokens, dpoqel dimensions);
s Wg, Wy, Wy € RImaaXdr are learned projection matrices;

.
A = softmax (W) XWy is the attention output;

I - || 7 denotes the Frobenius norm, measuring the “energy” of transformations;

e The % term normalizes by sequence length.

We now examine the extension to Multi-Head Attention. The multi-head formulation generalizes
this by considering H parallel attention heads:

H
multi 1 3 3
DR(X) = 0 A e (IWhlle + Wl + W) 26)
h=1

It is worth separately noting a few additional remarks. Firstly, each head h has independent projec-

tions W, Wi € Rifmserxdi "W, ¢ Réfmoser v Secondly,

XW%(XW}}()T
Vdy

represents head-specific attention. Lastly, the sum over heads captures total information transforma-
tion.

A" = softmax ( ) XW(‘/ 27

We consider the four steps of the Derivation Process:

1. Single-Head Basis. Start with the basic attention divergence:

ase Attention(X) || ¢

ppe — AteionX) ey (28)
n

where 6 contains all projection parameters.

2. Parameter Decomposition. Separate the Frobenius norms by projection type:
10l = [[Wallr + [Wkllr + [Wy | s (29)

3. Multi-Head Expansion. In the case of H heads, the measure becomes additive, as each
head operates on an independent subspace, the concatenated output preserves dimensional
scaling, and the % normalization remains valid for each head individually.

4. Residual Consideration. In practice, we account for

Dyt = Di + AMWollr, (30)

attn attn

where W, is the output projection and A balances terms.
The multi-head divergence measure has three key aspects:

1. Attention Pattern Term (||A”| ) measures how strongly inputs are transformed by the
attention weights.
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2. Projection Importance Term (> ||W?"|r) captures the magnitude of learned
query/key/value transformations.

3. Normalization Factor (%) ensures comparability across varying sequence lengths.

The following theorem serves as the theoretical justification for the formulation presented above.

Theorem 4 (Additive Composition). For independent attention heads, the total divergence equals
the sum of head-specific divergences:

H
Dpi(X) = > Dl (X). 31)
h=1

Proof. Follows from the linearity of the Frobenius norm and the block-diagonal structure of multi-
head projections. O
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C DIVERGENCE COMPUTATION FOR DIFFERENT LAYER TYPES

C.1 DIVERGENCE EVALUATION ALGORITHM FOR FULLY CONNECTED ARCHITECTURES

Let us consider the algorithms for calculating divergence using the above layer types as an example.
Firstly, let us take a look at fully connected networks. The information flow can be quantified using
Algorithm 2] which tracks how signal transformations evolve across successive layers.

Algorithm 2 Measuring Divergence of Information Flow in FC Networks

Require: Input vector x, weight matrices { W, }, biases {b;}
Ensure: Total information divergence Dgc

1: Initialize divergence accumulator: Dpc <— 0

2: Set initial activation: hgy <+ x

3: for each layer [ = 1to L do

4 Compute pre-activation: z; <— W;h;_; + by

5: Apply nonlinearity: h; « o(z;)

6 Measure layer transformation: §; < ||hy||2 - |Wi|lr
7 Accumulate divergence: Dgc < Dgc + 0;

8: end for

9: return Dgc

From a computational perspective, the time complexity is dominated by matrix-vector products and

scales as O (ZzL:1 nn— 1) , while the space complexity is determined by the need to store layer
activations, requiring O (Zlel m) memory.
It also should be mentioned that ReL.U activations simplify the divergence measure to:

oY = || max(0, )|z - [[ Wi F, (32)

while the Frobenius norm ||[W; || serves as an automatic importance weighting for each layer’s
contribution.

C.2 DIVERGENCE EVALUATION ALGORITHM FOR CONVOLUTIONAL ARCHITECTURES

For convolutional networks, Algorithm [3] measures how spatial feature representations transform
across the network depth.

Algorithm 3 Measuring Divergence of Information Flow in Convolutional Networks

Require: Input tensor X, convolution kernels { W}, biases {b;}
Ensure: Total spatial divergence D.qny
1: Initialize divergence measure: Degpy <— 0
: Set input features: Ay <+ X
: for each conv layer [ = 1to L do
Compute convolution: Z; <~ W;x A;_1 + by
Apply activation: A; + o(Z;)
Get tensor dimensions: (H;, W, C) < shape(A;)

Compute normalized divergence: d; < %
Update total: Deony <— Deony + 6
end for

A A A

—

return D,

The complexity analysis reveals that the time complexity for k& x k convolutions is
0] (Zle HW,C, C’l_lkz), while the memory requirements for storing feature maps amount to

0 (zle Hlchl).
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Implementation-wise, strided operations require appropriate dimension adjustments, while batch
normalization layers can be seamlessly integrated by modifying the pre-activation computation.
Pooling layers, although part of the computational path, contribute zero parameter divergence.

C.3 DIVERGENCE EVALUATION ALGORITHM FOR ATTENTION-BASED ARCHITECTURES

Self-attention mechanisms require specialized flow measurement as detailed in Algorithmf4] captur-
ing both feature transformation and attention pattern evolution.

Algorithm 4 Measuring Divergence of Information Flow in Attention-Based Networks

Require: Input sequence X € R™*mat projection weights {W7, Wi W&}
Ensure: Total attention divergence Dy,

1: Initialize divergence: Dy, < 0

2: for eachhead h = 1to H do

3:  Project queries: Q" + XWY(,

4:  Project keys: K" + XWh

5: Project values: V' « XW1

6:  Compute attention: S" <+ softmax(Q"(K")" /\/d},)

7: Transform features: O" < S"V*

8: Measure head divergence: dp, + w 2 Pe{Q. KV} WA
9: Accumulate: Dy < Dagn + Op,

10: end for

11: return Dy,

The computational requirements for the attention mechanism include a time complexity of
O(Hn?d), + Hnd?), which accounts for both attention score computation and value transforma-
tions, and a space complexity of O(Hnd,,) for storing the attention outputs.

The analysis reveals that multi-head processing requires per-head divergence computation, while
layer normalization and residual connections affect information flow and must be handled accord-
ingly. The measure captures both attention dynamics and value transformations, with total trans-
former block divergence decomposing into attention and feed-forward components:

Dblock = Dattn + fon- (33)
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D ITERATIVE DIVERGENCE-AWARE PRUNING ALGORITHM

Algorithm 5 Iterative Divergence-Aware Pruning (IDAP)

M: Initial trained model

V: Validation dataset

7: Maximum allowable performance degradation

K: Number of pruning iterations

po: Base pruning ratio

a: Aggressiveness coefficient

M*: Optimally pruned model

W*: Final weight configuration
1: Initialize:
2: D <+ ComputeDivergence(M,) > Sec.
3: w < SortWeights(M.params, D)
4: P+ {} > Pruning history archive
5: for k < 1 K do
6: Determine current pruning ratio:

pr 4 po- (L+k/K)"
7: Compute divergence threshold:
0. < Quantile(w, py,)

8: Generate pruning mask:
my, < H[D > ek]

9: Evaluate pruned model:
Perfy, < Evaluate(My ® my, V)

10: if Perfy — Perf;, > 7 then

11: Revert to mj_1

12: exit loop

13: else

14: P« P U (px, Perfy)
15: end if

16: end for

17: Select optimal configuration:
p* «+ max{p € P |Perfy — Perf(p) < 7}

18: Apply final mask:
M* <+ FineTune(My © m”*)

return M* W*
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E LAYER REMOVAL BASED ON INFORMATION FLOW DIVERGENCE
ANALYSIS

Algorithm 6 Layer Removal Based on Information Flow Divergence Analysis

Require:
1: e« Pruned network A/’ from Stage 1
e Validation set Dy,
* Target error reduction ratio ~y

* Maximum layer removal budget Rax
Ensure:
2: e« Optimally compressed network N *
* Set of removed layers Liemoved
3: Initialize removal candidate set: Lecandidates < SortLayersByFlow(AN”)
4: Initialize error reduction tracker: AE < 0
5: Initialize removal counter: r < 0
6: while r < Ry.x and AE < v do
7.
8

Select layer with minimal flow: [* < argmin;c, D
: Perform Layer Replacement:
9: Create temporary network: Niemp <— N’
10: Replace [* with identity mapping: Nemp.l* < Identity*()
11: Fine-tune replacement: Nemp <— FineTune(Nemp; Dyar)
12: Evaluate Impact:
13: Compute error reduction: 6E < E(N”) — E(Niemp)
14: if F > 0 then
15: Accept removal: N7 < Niemp
16: Update candidates: Lcandidates < Lecandidates \ {0* }
17: Record removal: Liemoved ¢ Lremoved U {1*}
18: Update metrics: AE < AE+0E, r«+r+1
19: else
20: Mark layer as essential: Leandidates <— Lcandidates \ {0*}
21: end if

22: end while
23: return A* < FinalFineTune(N”), L emoved
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F DETAILED RESULTS

Table 3: Model compression dynamics of ResNet-50 on CIFAR-10 using the two-stage IDAP++

framework
Pruning Step Stage Params (M) GFlops Top-1 Acc. (%) Top-5 Acc. (%) A Top-1 Acc.

1 Baseline 23.53 4.09 98.20 99.86 0.00
2 Filter Prune 22.27 3.89 97.66 99.85 -0.54
3 Filter Prune 21.20 3.66 97.23 99.84 -0.97
4 Filter Prune 19.89 3.46 96.99 99.73 -1.21
5 Filter Prune 18.78 3.31 97.11 99.89 -1.09
6 Filter Prune 17.54 3.13 97.74 99.89 -0.46
7 Filter Prune 16.45 2.90 97.62 99.84 -0.58
8 Filter Prune 15.50 2.73 97.93 99.87 -0.27
9 Filter Prune 14.62 2.61 98.09 99.76 -0.11
10 Filter Prune 14.14 2.52 98.05 99.75 -0.15
11 Filter Prune 13.50 2.37 97.87 99.77 -0.33
12 Filter Prune 12.98 2.26 97.85 99.81 -0.35
13 Filter Prune 12.37 2.15 97.84 99.77 -0.36
14 Filter Prune 11.82 2.08 97.77 99.79 -0.43
15 Filter Prune 11.26 1.98 97.70 99.76 -0.50
16 Filter Prune 11.02 1.94 97.85 99.80 -0.35
17 Filter Prune 10.77 1.89 97.56 99.81 -0.64
18 Filter Prune 10.53 1.85 97.50 99.79 -0.70
19 Filter Prune 10.28 1.81 97.42 99.80 -0.78
20 Filter Prune 10.04 1.77 97.35 99.78 -0.85
21 Filter Prune 9.79 1.73 97.28 99.75 -0.92
22 Filter Prune 9.55 1.68 97.50 99.77 -0.70
23 Filter Prune 9.30 1.49 97.52 99.78 -0.68
24 Filter Prune 9.05 1.45 97.08 99.77 -1.12
25 Filter Prune 8.81 1.40 97.50 99.80 -0.70
26 Filter Prune 8.56 1.34 97.40 99.81 -0.80
27 Filter Prune 8.32 1.30 96.91 99.79 -1.29
28 Filter Prune 8.07 1.26 97.25 99.78 -0.95
29 Filter Prune 7.83 1.22 97.52 99.80 -0.68
30 Filter Prune 7.57 1.19 97.63 99.81 -0.57
31 Layer Trunc 6.73 1.17 97.22 99.39 -0.98
32 Layer Trunc 6.67 1.16 96.78 98.94 -1.42
33 Layer Trunc 6.62 1.15 96.42 98.57 -1.78
34 Layer Trunc 6.56 1.14 95.57 98.03 -2.63
35 Final Fine-Tune 6.56 1.14 95.98 98.12 -2.22
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Table 4: Inference time summary by architecture (RTX 3060, batch size = 1, FP32)

Architecture Inference Time Speedup
Base (ms) Pruned (ms) X
ResNet-50 8.5 4.3 1.98
EfficientNet-B4 8.8 4.6 1.91
ViT-Base/16 33.2 20.3 1.64
MobileNetV3-L 4.1 1.9 2.16
DenseNet-121 6.2 3.3 1.88
ConvNeXt-Small 17.5 10.5 1.67
VGG19-BN 38.2 18.0 2.12
ShuffleNetV2 x2.0 3.5 1.8 1.94
Faster R-CNN (ResNet-50) 48.0 28.0 1.71
YOLOV4 (ShuffleNetV?2) 12.5 6.8 1.84
DETR (ViT-Base/16) 75.0 48.0 1.56
FCN (VGG19-BN) 52.0 26.5 1.96
U-Net (ResNet-50) 28.0 15.5 1.81
SegFormer (ViT-Base/16) 65.0 41.0 1.59
BERT Base 45.0 28.0 1.61
GPT-2 Base 120.0 80.0 1.50
T5 Base 95.0 62.0 1.53
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