
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

IDAP++: ADVANCING DIVERGENCE-BASED
PRUNING VIA FILTER-LEVEL AND LAYER-LEVEL
OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

This paper presents a novel approach to neural network compression that ad-
dresses redundancy at both the filter and architectural levels through a unified
framework grounded in information flow analysis. Building on the concept of ten-
sor flow divergence, which quantifies how information is transformed across net-
work layers, we develop a two-stage optimization process. The first stage employs
iterative divergence-aware pruning to identify and remove redundant filters while
preserving critical information pathways. The second stage extends this princi-
ple to higher-level architecture optimization by analyzing layer-wise contributions
to information propagation and selectively eliminating entire layers that demon-
strate minimal impact on network performance. The proposed method naturally
adapts to diverse architectures, including convolutional networks, transformers,
and hybrid designs, providing a consistent metric for comparing the structural
importance across different layer types. Experimental validation across multiple
modern architectures and datasets reveals that this combined approach achieves
substantial model compression while maintaining competitive accuracy. The pre-
sented approach achieves parameter reduction results that are globally comparable
to those of state-of-the-art solutions and outperforms them across a wide range of
modern neural network architectures, from convolutional models to transformers.
The results demonstrate how flow divergence serves as an effective guiding prin-
ciple for both filter-level and layer-level optimization, offering practical benefits
for deployment in resource-constrained environments.

1 INTRODUCTION

Modern artificial intelligence (AI) systems are rapidly transforming industries and high-tech prod-
ucts (Jumper et al., 2021; Brown et al., 2020; McKinney et al., 2020; Merchant et al., 2023; Team
et al., 2023; Wong et al., 2023). Today, AI powers mobile devices (Liu et al., 2024b; Ignatov et al.,
2023), autonomous vehicles (Chen et al., 2024; Kim et al., 2021), healthcare (Cameron et al., 2022;
Zarghami, 2024), finance (Iacovides et al., 2024; Rodriguez-Caballero & Villanueva-Domı́nguez,
2022), industry (Shiue et al., 2018; Jiang et al., 2019), and scientific research (Miret et al., 2024;
Wang, 2025). Most of these achievements rely on deep neural networks (DNNs) (Tan & Le, 2019a;
Tripp et al., 2024), which over the past decade have revolutionized computer vision (Ravi et al.,
2024; Oquab et al., 2024; Zhang et al., 2025), natural language processing (OpenAI et al., 2023;
Jiang et al., 2024; Team et al., 2024), generative models (Liu et al., 2024a; Yang et al., 2023; Shi
et al., 2023), and control systems (Salzmann et al., 2023; Mu et al., 2022; Ullah et al., 2024). Promi-
nent examples include GPT-4 (Peng et al., 2023), Gemini (Team et al., 2025), medical diagnostic
CNNs (Desai, 2024), and image generation models such as DALL·E (Marcus et al., 2022) and Stable
Diffusion (Ho et al., 2020; Dhariwal & Nichol, 2021; Ramesh et al., 2022). These advances have
enabled unprecedented accuracy and adaptability.

Yet such progress has come with an exponential growth in model scale (Bernstein et al., 2021). State-
of-the-art architectures contain hundreds of millions or even billions of parameters, demanding vast
computational clusters (Lee et al., 2023; Grattafiori et al., 2024; Kindratenko et al., 2010). The costs
include not only training time and energy but also deployment expenses (Baresi & Quattrocchi,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

2022), from high data center electricity consumption to the difficulty of integrating models into
mobile (Cai et al., 2022) or embedded devices (Peccia & Bringmann, 2024).

Thus, model optimization has become a critical challenge (Kallimani et al., 2023; Sanh et al., 2019;
Kurtic et al., 2022). Reducing computational requirements without sacrificing quality is essential for
accessibility, ecological sustainability, and practical deployment (Patterson et al., 2022; Wu et al.,
2021; Shoukourian et al., 2017; Osondu, 2025; Vanu et al., 2024; Li et al., 2023). Proposed strate-
gies include quantization (Gholami et al., 2022; Liu et al., 2021; Lin et al., 2021; Xiao et al., 2022),
weight factorization (Chin et al., 2020; Sainath et al., 2013; Hu et al., 2021; Hao et al., 2024), low-
bitwidth representations (Wang et al., 2022; Simons & Dah-Jye, 2019; Dettmers & Zettlemoyer,
2022), and specialized hardware (Reuther et al., 2021; Burhanuddin, 2023; Tuli & Jha, 2023). How-
ever, many approaches face trade-offs in universality, complexity, or accuracy. Among the most
promising directions is pruning (Cheng et al., 2024; Sundar & Dwaraknath, 2021; Frantar & Alis-
tarh, 2023; Gao et al., 2022; Li et al., 2016; He et al., 2017; Zafrir et al., 2021), which simplifies
networks by removing redundant parameters. Beyond engineering gains, pruning provides insights
into network structure and has proven effective across image classification (Bai et al., 2023; Tang
et al., 2022; Pan et al., 2022), text processing (Ma et al., 2023; Kurtic et al., 2023; Shim et al., 2021),
and generative models (Saxena et al., 2024; Brahim Belhaouari & Kraidia, 2025; Kafle et al., 2025),
achieving significant efficiency improvements.

Despite its advantages, pruning still suffers from heuristic reliance, poor scalability, and limited
ability to capture information propagation dynamics (Cheng et al., 2024; Sundar & Dwaraknath,
2021; Frantar & Alistarh, 2023; Gao et al., 2022; Li et al., 2016; He et al., 2017; Zafrir et al., 2021;
Bai et al., 2023; Tang et al., 2022; Pan et al., 2022; Ma et al., 2023; Kurtic et al., 2023; Shim et al.,
2021; Saxena et al., 2024; Brahim Belhaouari & Kraidia, 2025; Kafle et al., 2025). To address
this, we propose a two-stage optimization framework based on the concept of information flow
divergence, a formal metric quantifying signal evolution through layers.

The first stage targets filter-level optimization: divergence measurements (Dineen, 2014; Tran, 2018;
Perrella et al., 2023; Lopes & Ruggiero, 2021; Kim et al., 2013; Machenhauer & Rasmussen,
1972; Rezende & Mohamed, 2016) prune redundant parameters while preserving critical path-
ways (Shwartz-Ziv, 2022; Saxe et al., 2018; Wu et al., 2022; Munezero et al., 2021; Yu et al., 2025;
Greff et al., 2015). The second stage extends to layer-level compression, consolidating blocks based
on their contribution to overall information throughput. Unlike traditional methods that focus only
on parameter or layer counts, our framework jointly optimizes both while respecting information
dynamics.

We provide algorithmic specifications for various layer types and demonstrate that this holistic ap-
proach outperforms isolated strategies. Experiments across convolutional and transformer architec-
tures show substantial model size reductions without compromising functionality.

Ultimately, this framework is not only a compression tool but a new perspective on neural network
design, where measurable information flow guides architectural decisions, enabling models that are
smaller and computationally more efficient.

Thus, the main contributions of our work to neural network compression are as follows:

• Two-Stage Holistic Compression Framework. We propose the first pruning methodol-
ogy that systematically optimizes neural networks along both width (filter-level) and depth
(layer-level) dimensions through a unified flow-divergence criterion. The framework com-
bines:

– Stage 1: Divergence-Aware Filter Pruning (IDAP).
– Stage 2: Flow-Guided Layer Truncation.

• Theory of Information Flow Divergence. A mathematically rigorous formulation of neu-
ral network dynamics as continuous signal propagation systems, with:

– Integral-based divergence measures for discrete/continuous layers.
– Architecture-agnostic flow conservation principles.

• Computational Machinery:
– Efficient algorithms for flow computation in FC/Conv/Attention layers (O(L) com-

plexity).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

– Adaptive thresholding for joint filter-layer optimization.
• Empirical Validation:

– ∼75-90% CNN pruning with <2% accuracy drop.
– >70% transformers pruning while maintaining ∼98%+ baseline accuracy.
– >40% faster inference post-compression.

2 PROBLEM STATEMENT

Modern neural networks are heavily overparameterized, with many operations contributing little to
performance and adding unnecessary complexity (Morcos et al., 2018).

The key challenge is to reduce this complexity while preserving accuracy, robustness, generaliza-
tion, and adaptability across tasks such as classification, text generation, and image synthesis. This
is complicated by heterogeneous architectures, intricate internal dynamics, and the limited inter-
pretability of pruning effects. Scaling optimization methods to large models further demands high
efficiency.

These factors underscore the need for principled approaches that can reliably detect redundancy and
optimize structures while accounting for internal information processes. In this work, we address
this problem with a pruning framework grounded in information flow dynamics, which enables the
safe removal of non-essential components.

3 PROPOSED SOLUTION

3.1 INFORMATION FLOW DYNAMICS IN DEEP NEURAL NETWORKS

We present a comprehensive theoretical framework for analyzing information propagation through
deep neural networks by modeling them as dynamical systems that transform input data through
successive nonlinear transformations. The key insight is to characterize how information content
evolves as it flows through the network’s computational path.

3.1.1 CONTINUOUS FLOW REPRESENTATION

For a neural network fθ : X → Y with parameters θ, we represent its computations as a continuous
trajectory:

T(s) = fθ(x, s), s ∈ [0, 1], (1)
where:

• s = 0 corresponds to the input layer;
• s = 1 corresponds to the output layer;
• intermediate s values represent hidden transformations.

The differential change captures the instantaneous information flow:

ϕ(s) =
dT

ds
(s) = lim

∆s→0

T(s+∆s)−T(s)

∆s
. (2)

This formulation offers several important advantages. First, it establishes a connection to dynamical
systems theory, providing a solid mathematical foundation for analyzing information flow. Second,
it enables a unified treatment of both discrete and continuous architectures. Finally, it naturally
accommodates residual connections.

3.1.2 FLOW DIVERGENCE MEASURE

We define flow divergence to quantify information dissipation/concentration:

D(s) = d2T

ds2
(s) ·

(
dT

ds
(s)

)⊤

. (3)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Visualization of information flow through network depth. Arrows represent derivative-
based flow measurements at different depth coordinates s.

For practical computation in discrete networks with L layers:

Dl =
∥Tl+1 −Tl∥2
∥Tl∥2 + ϵ︸ ︷︷ ︸
Relative change

· |∥Wl+1Tl∥2 − ∥WlTl−1∥2|︸ ︷︷ ︸
Weighted transformation difference

, (4)

where ϵ = 10−6 prevents numerical instability. This approximation preserves derivative-based
interpretation and remains computationally tractable. It also captures both magnitude and directional
changes.

We also provide an extension of the flow divergence measure through variance-based normalization
(see Section A.1), which improves interpretability and robustness compared to exponential nor-
malization. Furthermore, we present a formal treatment of the key mathematical properties of the
introduced divergence measure (see Section A.2), including scale invariance and additive composi-
tion.

Now we formalize a two-stage (the order and mechanics of the stages are determined empirically
according to our experiments) algorithm IDAP++. At the first stage, we eliminate insignificant fil-
ters, and at the second stage, we remove insignificant layers. In this case, the criteria of significance
are determined through the above-introduced concept of divergence of the information flow inside
the neural network (Fig. 1).

3.2 COMPRESSION STAGE 1: FILTERS REDUCTION

Building upon the flow divergence framework established in Section 3.1, we now present the first
stage of our compression pipeline: structured filter pruning guided by information flow analysis.
This stage operates at the granularity of individual filters or attention heads, removing those that
contribute minimally to the network’s information throughput while preserving critical pathways.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

To begin with, we formalize the concept of divergence for the most fundamental types of layers in
neural networks (Section B).

For fully connected layers, we define divergence in terms of the Jacobian sensitivity, activation
norm, and weight norm, showing how their interaction reflects both the responsiveness and struc-
tural importance of the layer (Section B.1). For convolutional layers, we extend the formulation to
activation tensors and convolutional kernels, incorporating normalization by activation volume and
demonstrating adaptability to architectural variations (Section B.2). For self-attention layers, we de-
rive both single-head and multi-head divergence measures, decomposing the role of query/key/value
projections and attention patterns, and proving additive composition across heads (Section B.3).

Within the scope of this study, we formulate the principles of divergence computation for different
neural network architectures comprising various types of layers. All related materials are presented
in a dedicated section C, which includes step-by-step algorithms for divergence computation, accom-
panied by an analysis of their algorithmic complexity and an assessment of computational overhead.
In particular, separate subsections address fully connected architectures (see C.1), convolutional
architectures (see C.2), and attention-based architectures (see C.3).

Now, let us introduce a generalized pruning methodology that systematically removes network
parameters while preserving information flow characteristics in the Iterative Divergence-Aware
Pruning (IDAP) technique. A step-by-step detailed procedure is presented in Section D (Algo-
rithm 5).

The method exhibits several key features. First, it employs progressive sparsification, where the
pruning ratio ρk increases non-linearly with iteration k, controlled by a scaling parameter α. Sec-
ond, the pruning process is guided by divergence, removing weights with the highest flow divergence
scoresD. Additionally, the procedure incorporates a performance-aware termination criterion, ceas-
ing further pruning when the drop in validation accuracy exceeds a predefined threshold τ . Finally,
the algorithm is capable of automatically selecting the optimal pruning ratio ρ∗ from among the
tested configurations.

The implementation relies on layer-specific divergence computations as described in Sec-
tions C.1–C.3. Fine-tuning is performed using the original training schedule but with a reduced
learning rate to stabilize the pruned model. The pruning aggressiveness is governed by the parame-
ter α, which is typically selected from the range 0.5 to 2.0.

3.3 STAGE 2: FLOW-GUIDED LAYER TRUNCATION

After filter pruning, our method eliminates layers strategically via information flow analysis, remov-
ing those with minimal contribution to information propagation while maximizing error reduction.
The step-by-step procedure is outlined in the corresponding Section E (Algorithm 6).

The proposed method relies on two core components: information flow scoring and an adaptive
replacement strategy.

Information Flow Scoring quantifies the relative contribution of each layer l by computing its nor-
malized flow divergence across the validation set:

Dl =
1

|Dval|
∑

x∈Dval

∥Tl+1(x)−Tl(x)∥2
∥Tl(x)∥2 + ϵ

,

where Tl(x) denotes the output of layer l for input x.

Adaptive Replacement Strategy ensures that structurally important components are preserved while
enabling architectural simplification. It combines identity and projection mappings to maintain di-
mensional compatibility (denoted as Identity* Mapping), applies local fine-tuning to adjacent layers
for stability, and uses error-driven selection to prioritize replacements that yield the greatest reduc-
tion in validation loss, denoted δE.

3.4 IDAP++: UNIFIED TWO-STAGE COMPRESSION FRAMEWORK

IDAP++ Algorithm 1 implements a two-stage compression methodology that progressively removes
redundant components while preserving information flow.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

The proposed framework exhibits several key features. It ensures a seamless transition from filter
pruning to layer removal by incorporating intermediate recomputation of information flow. Both
stages rely on a unified flow metric, using a consistent divergence measure:

Dl = Ex∼Dval

[
∥Tl+1(x)−Tl(x)∥2
∥Tl(x)∥2 + ϵ

]
.

The method also introduces adaptive budget allocation, automatically distributing the total accuracy
degradation budget ∆max equally between the two pruning phases, with dynamic adjustment based
on actual performance outcomes. Finally, the framework employs compression-aware fine-tuning,
which includes local tuning of candidate layers during removal, intermediate rebalancing following
filter pruning, and global fine-tuning at the final stage to restore performance.

The theoretical validity of this method is supported by the theorem presented below.

Theorem 1. For any network N0 compressed with IDAP++, the compressed network N ∗ satisfies:

∥N0(x)−N ∗(x)∥2
∥N0(x)∥2

≤ ∆max ∀x ∈ Dval, (5)

while achieving maximal sparsity under the given constraints.

Algorithm 1 Integrated IDAP++ Compression Pipeline
Require:

1: • Initial network N0 with parameters Θ
• Validation dataset Dval

• Target accuracy drop ∆max

• Pruning hyperparameters α, β
Ensure: Compressed network N ∗

2: Initialize compression tracker: C ← {}
3: Compute initial flow: D ← ComputeFlowDivergence(N0,Dval)
4: Phase 1: Adaptive Filter Pruning
5: for iteration t← 1 Tfilter do
6: Determine pruning threshold: τt ← Percentile(D, p0(1 + t/Tfilter)

α)
7: Generate pruning mask: Mt ← I[D > τt]
8: Evaluate compressed network: Nt ← Nt−1 ⊙Mt Acct ← Validate(Nt,Dval)
9: if Acc0 − Acct > ∆max/2 then

10: Revert to Nt−1

11: break
12: end if
13: Update compression tracker: C ← C ∪ {(t, ∥Mt∥0)}
14: end for
15: Phase Transition: Flow Rebalancing
16: Ninter ← IntermediateFineTune(Nt)
17: Recompute flow: D′ ← RecomputeFlowDivergence(Ninter,Dval)
18: Phase 2: Strategic Layer Removal
19: for layer l in SortLayersByFlow(D′) do
20: Create candidate network: Ncand ← ReplaceLayer(Ninter, l, Identity)
21: Local fine-tuning: Ncand ← AdaptiveFineTune(Ncand,Neighborhood(l))
22: if Acc0 − Validate(Ncand,Dval) < ∆max then
23: Accept removal: Ninter ← Ncand
24: Update tracker: C ← C ∪ {Removed l}
25: end if
26: if Acc0 − Validate(Ninter,Dval) > ∆max then
27: break
28: end if
29: end for
30: return N ∗ ← GlobalFineTune(Ninter,Dval), C

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Comparison of pruning methods under 50-80% sparsity.

4 EXPERIMENTAL SETUP AND RESULTS

As part of this study, we developed a comprehensive experimental platform designed for an evalu-
ation of the proposed iterative pruning method for neural networks, incorporating information flow
characteristics into the optimization process. The platform provides a unified environment for ob-
jective comparison of optimization results across diverse model architectures and datasets and for
assessing the impact of progressive parameter removal on key performance indicators.

The experimental infrastructure consists of three interconnected functional components. The first
component is a module for calculating flow characteristics, which automatically determines the
contribution of each network layer to information transmission and transformation. This serves as
the basis for informed structural simplification decisions. The second component is an intelligent
optimization mechanism that implements stepwise reduction of neural network parameters with dy-
namic control over the impact of pruning on model accuracy. The third component is a standardized
testing module that ensures reproducibility and comparability of experiments across various neural
architectures, including classical convolutional networks and modern transformer-based models.

To comprehensively evaluate the proposed approach, we selected a range of widely used neu-
ral network architectures from computer vision. Our experiments included classification models
such as ResNet-50 (He et al., 2015), EfficientNet-B4 (Tan & Le, 2019b), ViT-Base/16 (Dosovit-
skiy et al., 2021), MobileNetV3-Large (Howard et al., 2019), DenseNet-121 (Huang et al., 2017),
ConvNeXt-Small (Liu et al., 2022), VGG19-BN (Simonyan & Zisserman, 2014), and ShuffleNet
V2 x2.0 (Ma et al., 2018). We also used object detection and image segmentation models, including
Faster R-CNN (Ren et al., 2015), YOLOv4 (Bochkovskiy et al., 2020), DETR (Carion et al., 2020),
FCN (Long et al., 2015), U-Net (Ronneberger et al., 2015), and SegFormer (Xie et al., 2021). Fur-
thermore, we tested generative architectures such as DCGAN (Radford et al., 2015), VQGAN (Esser
et al., 2021), and Stable Diffusion v1.5 (Rombach et al., 2022).

To validate the generality of our pruning method, we extended the evaluation to other modalities,
specifically natural language processing (NLP), using BERT Base (Devlin et al., 2019), GPT-2
Base (Radford et al., 2019), and T5 Base (Raffel et al., 2020).

Testing was performed on various benchmark datasets representing a diverse range of computer
vision and NLP tasks: ImageNet (Deng et al., 2009), CIFAR-10 (Krizhevsky et al., 2009), CIFAR-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

100 (Krizhevsky et al., 2009), Stanford Cars (Krause et al., 2013), Flowers-102 (Nilsback & Zis-
serman, 2008), iNaturalist (Van Horn et al., 2018), Food101 (Bossard et al., 2014), Oxford-IIIT
Pet (Parkhi et al., 2012), Fashion MNIST (Xiao et al., 2017), FER2013 (Carrier & Courville, 2013),
Pascal VOC (Everingham et al., 2010), COCO 2017 (Lin et al., 2014), COCO-Stuff (Caesar et al.,
2018), MNLI-m (Wang et al., 2018), SQuAD 1.1 (Rajpurkar et al., 2016) and other datasets.

For each combination of architecture and dataset, the system automatically calculates layer-specific
flow metrics, followed by iterative pruning with a nonlinear increase in pruning intensity. This
approach allows precise control over the trade-off between model simplification and preservation of
functional performance. At each pruning step, the compressed model’s performance is validated, and
the process continues until the predefined threshold for acceptable accuracy degradation is reached.

Throughout the experiments, four key metrics are recorded: the percentage of removed weights
relative to the original parameter count, the remaining model accuracy on the test set, the abso-
lute accuracy drop compared to the baseline model, and the estimated reduction in computational
complexity, expressed through floating-point operation counts (FLOPs).

A detailed comparison of pruning results across different architectures and datasets is provided in
Table 1 and Fig. 2. The results demonstrate that IDAP++ achieves significant computational reduc-
tions, with FLOPs typically decreasing by 57–75% and model parameters by 67-69% for language
models. While accuracy drops were generally moderate for vision models (mostly within 1–4%),
generative models and language models exhibited more pronounced sensitivity, with FID scores
increasing by 7–9% and accuracy dropping by 4–5%. For example, on image classification tasks,
ViT-Base/16 on CIFAR-10 retained 97.0% accuracy with a 75% FLOPs reduction. In contrast, ar-
chitectures like ShuffleNetV2 and language models like BERT and GPT-2 showed greater sensitivity
to pruning.

Additionally, Fig. 2 provides a comparative analysis of the proposed pruning method against state-
of-the-art alternatives on different tasks and benchmarks. IDAP++ consistently outperformed the
most common state-of-the-art architectures, including LTH (Frankle & Carbin, 2019), RigL (Evci
et al., 2020), GraNet (Wang et al., 2023), PDP (Cho et al., 2023), Retraining Free Pruning (Kwon
et al., 2022), and MvP (Sanh et al., 2020) under 50-80% sparsity.

Table 1: Pruning results for different architectures using IDAP++

Architecture Dataset Metric Model Size
Name Base Pruned ∆% Name Base Pruned ∆%

ResNet-50 ImageNet Acc@1 76.1 74.6 -2.0 GFlops 4.1 1.5 -63
EfficientNet-B4 CIFAR-100 Acc@1 90.1 88.1 -2.3 GFlops 4.2 1.5 -65
ViT-Base/16 CIFAR-10 Acc@1 98.6 97.0 -1.6 GFlops 17.5 4.3 -75
Faster R-CNN
(ResNet-50) Pascal VOC mAP 78.4 76.7 -4.1 GFlops 150 62 -59

YOLOv4
(ShuffleNetV2) Pascal VOC mAP 77.5 75.8 -4.1 GFlops 52 22 -58

DETR
(ViT-Base/16) COCO 2017 mAP 42.0 40.5 -3.6 GFlops 87 36 -57

FCN
(VGG19-BN) Cityscapes mIoU 70.2 68.9 -1.9 GFlops 213 83 -61

U-Net
(ResNet-50) Pascal VOC mIoU 75.8 74.2 -2.1 GFlops 170 62 -64

SegFormer
(ViT-Base/16) COCO 2017 mIoU 47.0 45.1 -4.0 GFlops 163 63 -61

DCGAN CIFAR-10 FID 24.1 25.9 +6.9 GFlops 12.2 4.8 -61
VQGAN COCO-Stuff FID 18.5 20.1 +8.0 GFlops 18.3 7.5 -59
Stable
Diffusion v1.5 MS-COCO FID 12.3 13.5 +8.9 GFlops 86 34 -60

BERT Base MNLI-m Acc 84.5 82.5 -5.4 Params (M) 110 37 -67
GPT-2 Base SQuAD 1.1 F1 86.3 82.6 -4.3 Params (M) 117 36 -69
T5 Base MNLI-m Acc 87.1 83.7 -3.9 Params (M) 220 71 -68

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

We have also included some complementary experimental results in Section F. Table 3 demonstrates
the dynamics of model compression applied to ResNet-50 over 35 pruning iterations on CIFAR-10.
The gradual pruning reduced GFLOPs from 4.09 to 1.14 (a nearly 72% decrease), while Top-1 accu-
racy decreased from 98.20% to 95.98%. The table highlights that accuracy remained above 97% for
more than 25 pruning steps, with sharper drops only in the final layer truncation stages. This high-
lights the robustness of IDAP++ in maintaining high performance under aggressive compression.

A separate comparison of inference time for the aforementioned architectures was conducted, with
the results presented in Table 4. Pruning achieved notable acceleration across all models, with
speedups ranging from 1.50× (GPT-2 Base) to 2.16× (MobileNetV3-L). Lightweight architectures
such as ShuffleNetV2 and MobileNetV3 benefited the most, while heavier models like ViT and
ConvNeXt showed more modest gains.

It should also be noted that repeated application of the algorithm did not preserve acceptable accu-
racy while significantly reducing the number of model parameters.

We have made our implementation publicly available on GitHub (Author, 2025) to ensure repro-
ducibility and facilitate further research. More detailed and comprehensive results of pruning vari-
ous architectures across different modalities and benchmarks using IDAP++ are also available in the
GitHub repository (Author, 2025).

5 DISCUSSIONS AND CONCLUSION

The growing need to reduce parameters and simplify neural network topologies while preserving
information semantics has intensified interest in compression techniques. This work introduces a
theoretically grounded, two-stage framework addressing redundancy at both filter and architecture
levels. Central to our approach is the formalization of information flow dynamics, a metric quanti-
fying signal evolution across layers and bridging information theory with practical compression.

Our method builds on the tensor flow divergence concept, adapted from continuum mechanics for
discrete graphs. Experiments across a wide spectrum of models (from convolutional networks and
vision transformers to generative models and natural language processing architectures like BERT
and GPT-2) confirm that many parameters are redundant and can be safely removed. Notably, filter
pruning (Stage 1) and layer truncation (Stage 2) act complementarily: width reduction simplifies
depth optimization by eliminating noisy pathways. The flow divergence metric also shows task-
robust consistency across different modalities.

Beyond performance, the framework provides theoretical insight. The derivative-based flow formu-
lation (dT/ds) suggests neural networks behave as learnable PDEs, where transformation smoothness
outweighs parameter count. This explains why our method preserves information coherence where
conventional approaches degrade. Still, challenges remain: irregular topologies (e.g., neural ODEs,
hypernetworks) and dynamic inputs may require adaptive divergence measures and thresholds. De-
signing architectures with built-in compressibility emerges as a promising direction.

Practically, our method enables major efficiency gains. On CIFAR-10, ResNet-50 achieves ∼80%
FLOPs reduction with only ∼2% accuracy drop, reclaiming 70–85% of computational budgets typ-
ical for large models. For language models, the method achieved a parameter reduction of 67–69%,
demonstrating its significant potential for deploying large-scale NLP applications in resource-
constrained environments. Such results highlight that efficiency stems not from parameter volume
but from the organization of information pathways.

Looking ahead, two research paths are most promising: (i) integration of flow-aware pruning with
quantization, and (ii) hardware-sensitive divergence metrics for co-design.

In conclusion, reframing neural networks as information flow systems reveals their essential com-
putational skeletons. The successful application of our method to both vision and language tasks
underscores the broad applicability of the information flow principle. This work contributes not just
a compression tool but a conceptual framework where efficiency follows from fundamental laws of
signal propagation, paving the way for accessible, sustainable, and high-performance AI.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Unknown Author. Idap++: Advancing divergence-aware pruning with joint filter and layer opti-
mization. https://github.com/user534440/idap_plus_plus, 2025.

Shipeng Bai, Jun Chen, Xintian Shen, Yixuan Qian, and Yong Liu. Unified data-free compres-
sion: Pruning and quantization without fine-tuning, 2023. URL https://arxiv.org/abs/
2308.07209.

Luciano Baresi and Giovanni Quattrocchi. Training and Serving Machine Learning Models at Scale,
pp. 669–683. 11 2022. ISBN 978-3-031-20983-3. doi: 10.1007/978-3-031-20984-0 48.

Liane Bernstein, Alexander Sludds, Ryan Hamerly, Vivienne Sze, Joel Emer, and Dirk Englund.
Freely scalable and reconfigurable optical hardware for deep learning. Scientific Reports, 11, 02
2021. doi: 10.1038/s41598-021-82543-3.

Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. Yolov4: Optimal speed and
accuracy of object detection. arXiv preprint arXiv:2004.10934, 2020.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer vision–ECCV 2014: 13th European conference, zurich,
Switzerland, September 6-12, 2014, proceedings, part VI 13, pp. 446–461. Springer, 2014.

Samir Brahim Belhaouari and Insaf Kraidia. Efficient self-attention with smart pruning for sustain-
able large language models. Scientific Reports, 15, 03 2025. doi: 10.1038/s41598-025-92586-5.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, and Dario Amodei. Language models are few-shot learners, 05
2020.

M.A. Burhanuddin. Efficient hardware acceleration techniques for deep learning on edge devices:
A comprehensive performance analysis. KHWARIZMIA, 2023:1–10, 08 2023. doi: 10.70470/
KHWARIZMIA/2023/010.

Holger Caesar, Jasper Uijlings, and Vittorio Ferrari. Coco-stuff: Thing and stuff classes in context.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 1209–
1218, 2018.

Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Haotian Tang, Hanrui Wang, Ligeng Zhu, and Song Han.
Enable deep learning on mobile devices: Methods, systems, and applications. ACM Transactions
on Design Automation of Electronic Systems, 27(3):1–50, March 2022. ISSN 1557-7309. doi:
10.1145/3486618. URL http://dx.doi.org/10.1145/3486618.

James Cameron, Alexandra Sala, Georgios Antoniou, Paul Brennan, Holly Butler, Justin Conn,
Siobhan Connal, Tom Curran, Mark Hegarty, Rose McHardy, Daniel Orringer, David Palmer,
Benjamin Smith, and Matthew Baker. Multi-cancer early detection with a spectroscopic liquid
biopsy platform, 05 2022.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and
Sergey Zagoruyko. End-to-end object detection with transformers. In European conference on
computer vision, pp. 213–229. Springer, 2020.

Pierre-Luc Carrier and Aaron Courville. Fer-2013 dataset. https://www.kaggle.com/
datasets/msambare/fer2013, 2013.

Li Chen, Penghao Wu, Kashyap Chitta, Bernhard Jaeger, Andreas Geiger, and Hongyang Li. End-
to-end autonomous driving: Challenges and frontiers. IEEE Trans. Pattern Anal. Mach. Intell.,
46(12):10164–10183, December 2024. ISSN 0162-8828. doi: 10.1109/TPAMI.2024.3435937.
URL https://doi.org/10.1109/TPAMI.2024.3435937.

10

https://github.com/user534440/idap_plus_plus
https://arxiv.org/abs/2308.07209
https://arxiv.org/abs/2308.07209
http://dx.doi.org/10.1145/3486618
https://www.kaggle.com/datasets/msambare/fer2013
https://www.kaggle.com/datasets/msambare/fer2013
https://doi.org/10.1109/TPAMI.2024.3435937

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Hongrong Cheng, Miao Zhang, and Javen Qinfeng Shi. A survey on deep neural network pruning:
Taxonomy, comparison, analysis, and recommendations. IEEE Trans. Pattern Anal. Mach. Intell.,
46(12):10558–10578, December 2024. ISSN 0162-8828. doi: 10.1109/TPAMI.2024.3447085.
URL https://doi.org/10.1109/TPAMI.2024.3447085.

Ting-Wu Chin, Ruizhou Ding, Cha Zhang, and Diana Marculescu. Towards efficient model com-
pression via learned global ranking. pp. 1515–1525, 06 2020. doi: 10.1109/CVPR42600.2020.
00159.

Minsik Cho, Saurabh Adya, and Devang Naik. Pdp: Parameter-free differentiable pruning is all you
need. Advances in Neural Information Processing Systems, 36:45833–45855, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Yogita Desai. Diagnosis of medical images using convolutional neural networks. Journal of Elec-
trical Systems, 20:2371–2376, 05 2024. doi: 10.52783/jes.3220.

Tim Dettmers and Luke Zettlemoyer. The case for 4-bit precision: k-bit inference scaling laws, 12
2022.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pp. 4171–4186, 2019.

Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis, 2021. URL
https://arxiv.org/abs/2105.05233.

Seán Dineen. The Divergence Theorem, pp. 179–191. Springer London, London, 2014. ISBN
978-1-4471-6419-7. doi: 10.1007/978-1-4471-6419-7\ 15.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale. In Proceedings of the 9th International Conference on Learning Representations (ICLR),
2021. URL https://openreview.net/forum?id=YicbFdNTTy.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-
tion, pp. 12873–12883, 2021.

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International conference on machine learning, pp. 2943–2952.
PMLR, 2020.

Mark Everingham, Luc Van Gool, Christopher KI Williams, John Winn, and Andrew Zisserman.
The pascal visual object classes (voc) challenge. International journal of computer vision, 88(2):
303–338, 2010.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neu-
ral networks. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.
net/forum?id=rJl-b3RcF7.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot, 2023. URL https://arxiv.org/abs/2301.00774.

Shangqian Gao, Feihu Huang, Yanfu Zhang, and Heng Huang. Disentangled Differentiable Network
Pruning, pp. 328–345. 11 2022. ISBN 978-3-031-20082-3. doi: 10.1007/978-3-031-20083-0 20.

11

https://doi.org/10.1109/TPAMI.2024.3447085
https://arxiv.org/abs/2105.05233
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=rJl-b3RcF7
https://openreview.net/forum?id=rJl-b3RcF7
https://arxiv.org/abs/2301.00774

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Amir Gholami, Sehoon Kim, Dong Zhen, Zhewei Yao, Michael Mahoney, and Kurt Keutzer. A
Survey of Quantization Methods for Efficient Neural Network Inference, pp. 291–326. 01 2022.
ISBN 9781003162810. doi: 10.1201/9781003162810-13.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, et al. The llama 3 herd of models, 2024.
URL https://arxiv.org/abs/2407.21783.

Klaus Greff, Rupesh Srivastava, Jan Koutnı́k, Bas Steunebrink, and Jürgen Schmidhuber. Lstm: A
search space odyssey. IEEE transactions on neural networks and learning systems, 28, 03 2015.
doi: 10.1109/TNNLS.2016.2582924.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: low-rank adapters are secretly gradient com-
pressors. In Proceedings of the 41st International Conference on Machine Learning, ICML’24.
JMLR.org, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. CoRR, abs/1512.03385, 2015. URL http://arxiv.org/abs/1512.03385.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural net-
works. In 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1398–1406,
2017. doi: 10.1109/ICCV.2017.155.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020. URL
https://arxiv.org/abs/2006.11239.

Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun
Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Searching for mobilenetv3. In Pro-
ceedings of the IEEE/CVF international conference on computer vision, pp. 1314–1324, 2019.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021. URL https:
//arxiv.org/abs/2106.09685.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 4700–4708, 2017.

Giorgos Iacovides, Thanos Konstantinidis, Mingxue Xu, and Danilo Mandic. Finllama: Llm-based
financial sentiment analysis for algorithmic trading. In Proceedings of the 5th ACM International
Conference on AI in Finance, ICAIF ’24, pp. 134–141, New York, NY, USA, 2024. Associa-
tion for Computing Machinery. ISBN 9798400710810. doi: 10.1145/3677052.3698696. URL
https://doi.org/10.1145/3677052.3698696.

Andrey Ignatov, Radu Timofte, Shuai Liu, Chaoyu Feng, Furui Bai, Xiaotao Wang, Lei Lei, Ziyao
Yi, Yan Xiang, Zibin Liu, Shaoqing Li, Keming Shi, Dehui Kong, Ke Xu, Minsu Kwon, Yaqi
Wu, Jiesi Zheng, Zhihao Fan, Xun Wu, and Mingxuan Cai. Learned Smartphone ISP on Mobile
GPUs with Deep Learning, Mobile AI AIM 2022 Challenge: Report, pp. 44–70. 02 2023. ISBN
978-3-031-25065-1. doi: 10.1007/978-3-031-25066-8 3.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Yu Jiang, Wei Wang, and Chunhui Zhao. A machine vision-based realtime anomaly detection
method for industrial products using deep learning. In 2019 Chinese Automation Congress (CAC),
pp. 4842–4847, 2019. doi: 10.1109/CAC48633.2019.8997079.

12

https://arxiv.org/abs/2407.21783
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/2006.11239
https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2106.09685
https://doi.org/10.1145/3677052.3698696
https://arxiv.org/abs/2401.04088

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žı́dek, Anna Potapenko, Alex Bridgland,
Clemens Meyer, Simon Kohl, Andrew Ballard, Andrew Cowie, Bernardino Romera-Paredes,
Stanislav Nikolov, Rishub Jain, Jonas Adler, and Demis Hassabis. Highly accurate pro-
tein structure prediction with alphafold. Nature, 596:583–589, 07 2021. doi: 10.1038/
s41586-021-03819-2.

Swatantra Kafle, Geethu Joseph, and Pramod K. Varshney. One-bit compressed sensing using gen-
erative models, 2025. URL https://arxiv.org/abs/2502.12762.

Rakhee Kallimani, Krishna Pai, Prasoon Raghuwanshi, Sridhar Iyer, and Onel Alcaraz López.
Tinyml: Tools, applications, challenges, and future research directions. Multimedia Tools and
Applications, 09 2023. doi: 10.1007/s11042-023-16740-9.

Kitae Kim, Soohyun Cho, and Woojin Chung. Hd map update for autonomous driving with crowd-
sourced data. IEEE Robotics and Automation Letters, PP:1–1, 02 2021. doi: 10.1109/LRA.2021.
3060406.

Yusik Kim, Ian Castro, and Zheng-Tong Xie. Divergence-free turbulence inflow conditions for
large-eddy simulations with incompressible flow solvers. Computers and Fluids, 84, 09 2013.
doi: 10.1016/j.compfluid.2013.06.001.

Volodymyr Kindratenko, Robert Wilhelmson, Robert Brunner, Todd Martinez, and Wen-mei Hwu.
High-performance computing with accelerators. Computing in Science Engineering, 12:12 – 16,
09 2010. doi: 10.1109/MCSE.2010.88.

Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained
categorization. In Proceedings of the IEEE international conference on computer vision work-
shops, pp. 554–561, 2013.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning
for large language models. pp. 4163–4181, 01 2022. doi: 10.18653/v1/2022.emnlp-main.279.

Eldar Kurtic, Elias Frantar, and Dan Alistarh. Ziplm: inference-aware structured pruning of lan-
guage models. In Proceedings of the 37th International Conference on Neural Information Pro-
cessing Systems, NIPS ’23, Red Hook, NY, USA, 2023. Curran Associates Inc.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gho-
lami. A fast post-training pruning framework for transformers. Advances in Neural Information
Processing Systems, 35:24101–24116, 2022.

JunKyu Lee, Lev Mukhanov, Amir Sabbagh Molahosseini, Umar Minhas, Yang Hua, Jesus Mar-
tinez del Rincon, Kiril Dichev, Cheol-Ho Hong, and Hans Vandierendonck. Resource-efficient
convolutional networks: A survey on model-, arithmetic-, and implementation-level techniques.
ACM Comput. Surv., 55(13s), July 2023. ISSN 0360-0300. doi: 10.1145/3587095. URL
https://doi.org/10.1145/3587095.

Baolin Li, Siddharth Samsi, Vijay Gadepally, and Devesh Tiwari. Clover: Toward sustainable ai
with carbon-aware machine learning inference service. pp. 1–15, 11 2023. doi: 10.1145/3581784.
3607034.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and H.P. Graf. Pruning filters for efficient
convnets. 08 2016. doi: 10.48550/arXiv.1608.08710.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European
conference on computer vision, pp. 740–755. Springer, 2014.

Yang Lin, Tianyu Zhang, Peiqin Sun, Zheng Li, and Shuchang Zhou. Fq-vit: Fully quantized vision
transformer without retraining, 11 2021.

13

https://arxiv.org/abs/2502.12762
https://doi.org/10.1145/3587095

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Yixin Liu, Kai Zhang, Yuan Li, Zhiling Yan, Chujie Gao, Ruoxi Chen, Zhengqing Yuan, Yue
Huang, Hanchi Sun, Jianfeng Gao, Lifang He, and Lichao Sun. Sora: A review on back-
ground, technology, limitations, and opportunities of large vision models, 2024a. URL https:
//arxiv.org/abs/2402.17177.

Zechun Liu, Changsheng Zhao, Forrest Iandola, Chen Lai, Yuandong Tian, Igor Fedorov, Yunyang
Xiong, Ernie Chang, Yangyang Shi, Raghuraman Krishnamoorthi, Liangzhen Lai, and Vikas
Chandra. Mobilellm: Optimizing sub-billion parameter language models for on-device use cases,
2024b. URL https://arxiv.org/abs/2402.14905.

Zhenhua Liu, Yunhe Wang, Kai Han, Siwei Ma, and Wen Gao. Post-training quantization for vision
transformer, 2021. URL https://arxiv.org/abs/2106.14156.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 11976–11986, 2022.

Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional networks for semantic
segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 3431–3440, 2015.

Artur Lopes and Rafael Ruggiero. Nonequilibrium in thermodynamic formalism: the second law,
gases and information geometry, 03 2021.

Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European conference on computer vision
(ECCV), pp. 116–131, 2018.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models, 2023. URL https://arxiv.org/abs/2305.11627.

Bennert Machenhauer and E. Rasmussen. On the integration of the spectral hydrodynamical equa-
tions by a transform method. 01 1972.

Gary Marcus, Ernest Davis, and Scott Aaronson. A very preliminary analysis of dall-e 2, 2022.
URL https://arxiv.org/abs/2204.13807.

Scott McKinney, Marcin Sieniek, Varun Godbole, Jonathan Godwin, Natasha Antropova, Hutan
Ashrafian, Trevor Back, Mary Chesus, Greg Corrado, Ara Darzi, Mozziyar Etemadi, Floren-
cia Garcia-Vicente, Fiona Gilbert, Mark Halling-Brown, Demis Hassabis, Sunny Jansen, Alan
Karthikesalingam, Christopher Kelly, Dominic King, and Shravya Shetty. Addendum: Interna-
tional evaluation of an ai system for breast cancer screening. Nature, 586:E19–E19, 10 2020. doi:
10.1038/s41586-020-2679-9.

Amil Merchant, Simon Batzner, Samuel Schoenholz, Muratahan Aykol, Gowoon Cheon, and Ekin
Cubuk. Scaling deep learning for materials discovery. Nature, 624:1–6, 11 2023. doi: 10.1038/
s41586-023-06735-9.

Santiago Miret, N M Anoop Krishnan, Benjamin Sanchez, Marta Skreta, Vineeth Venugopal, and
Jennifer Wei. Perspective on ai for accelerated materials design at the ai4mat-2023 workshop at
neurips 2023. Digital Discovery, 3, 05 2024. doi: 10.1039/d4dd90010c.

Ari S. Morcos, David G. T. Barrett, Neil C. Rabinowitz, and Matthew Botvinick. On the impor-
tance of single directions for generalization, 2018. URL https://arxiv.org/abs/1803.
06959.

Yao Mu, Shoufa Chen, Mingyu Ding, Jianyu Chen, Runjian Chen, and Ping Luo. Ctrlformer:
Learning transferable state representation for visual control via transformer, 2022. URL https:
//arxiv.org/abs/2206.08883.

Parfait Munezero, Mattias Villani, and Robert Kohn. Dynamic mixture of experts models for online
prediction, 09 2021.

14

https://arxiv.org/abs/2402.17177
https://arxiv.org/abs/2402.17177
https://arxiv.org/abs/2402.14905
https://arxiv.org/abs/2106.14156
https://arxiv.org/abs/2305.11627
https://arxiv.org/abs/2204.13807
https://arxiv.org/abs/1803.06959
https://arxiv.org/abs/1803.06959
https://arxiv.org/abs/2206.08883
https://arxiv.org/abs/2206.08883

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over a large number
of classes. In 2008 Sixth Indian conference on computer vision, graphics & image processing, pp.
722–729. IEEE, 2008.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, and Barret Zoph. Gpt-4 technical report, 03 2023.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud Assran, Nico-
las Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan Misra, Michael
Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jegou, Julien Mairal, Patrick Labatut, Ar-
mand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual features without supervision,
2024. URL https://arxiv.org/abs/2304.07193.

Joshua Osondu. Red ai vs. green ai in education: How educational institutions and students can lead
environmentally sustainable artificial intelligence practices, 01 2025.

Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios
Tzimiropoulos, and Brais Martinez. EdgeViTs: Competing Light-Weight CNNs on Mobile Devices
with Vision Transformers, pp. 294–311. 11 2022. ISBN 978-3-031-20082-3. doi: 10.1007/
978-3-031-20083-0 18.

Omkar M Parkhi, Andrea Vedaldi, et al. Cats and dogs. CVPR, 2012. URL https://www.
robots.ox.ac.uk/˜vgg/data/pets/.

David Patterson, Joseph Gonzalez, Urs Hölzle, Quoc Le, Chen Liang, Lluı́s-Miquel Munguı́a,
Daniel Rothchild, David So, Maud Texier, and Jeffrey Dean. The carbon footprint of machine
learning training will plateau, then shrink, 02 2022.

Federico Nicolás Peccia and Oliver Bringmann. Embedded distributed inference of deep neural
networks: A systematic review, 2024. URL https://arxiv.org/abs/2405.03360.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with gpt-4, 2023. URL https://arxiv.org/abs/2304.03277.

David Perrella, Nathan Duignan, and David Pfefferlé. Existence of global symmetries of divergence-
free fields with first integrals. Journal of Mathematical Physics, 64, 05 2023. doi: 10.1063/5.
0152213.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents, 2022. URL https://arxiv.org/abs/
2204.06125.

Nikhila Ravi, Valentin Gabeur, Yuan-Ting Hu, Ronghang Hu, Chaitanya Ryali, Tengyu Ma, Haitham
Khedr, Roman Rädle, Chloe Rolland, Laura Gustafson, Eric Mintun, Junting Pan, Kalyan Va-
sudev Alwala, Nicolas Carion, Chao-Yuan Wu, Ross Girshick, Piotr Dollár, and Christoph Fe-
ichtenhofer. Sam 2: Segment anything in images and videos, 2024. URL https://arxiv.
org/abs/2408.00714.

15

https://arxiv.org/abs/2304.07193
https://www.robots.ox.ac.uk/~vgg/data/pets/
https://www.robots.ox.ac.uk/~vgg/data/pets/
https://arxiv.org/abs/2405.03360
https://arxiv.org/abs/2304.03277
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2408.00714
https://arxiv.org/abs/2408.00714

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. Advances in neural information processing systems, 28,
2015.

Albert Reuther, Peter Michaleas, Michael Jones, Vijay Gadepally, Siddharth Samsi, and Jeremy
Kepner. Ai accelerator survey and trends. pp. 1–9, 09 2021. doi: 10.1109/HPEC49654.2021.
9622867.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows, 2016.
URL https://arxiv.org/abs/1505.05770.

Vladimir Rodriguez-Caballero and Mauricio Villanueva-Domı́nguez. Predicting cryptocurrency
crash dates. Empirical Economics, 63:1–19, 03 2022. doi: 10.1007/s00181-022-02229-1.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In 2022 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 10674–10685, 2022. doi: 10.1109/
CVPR52688.2022.01042.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. CoRR, abs/1505.04597, 2015. URL http://arxiv.org/abs/
1505.04597.

Tara Sainath, Brian Kingsbury, Vikas Sindhwani, Ebru Arisoy, and Bhuvana Ramabhadran. Low-
rank matrix factorization for deep neural network training with high-dimensional output targets.
pp. 6655–6659, 10 2013. doi: 10.1109/ICASSP.2013.6638949.

Tim Salzmann, Elia Kaufmann, Jon Arrizabalaga, Marco Pavone, Davide Scaramuzza, and Markus
Ryll. Real-time neural mpc: Deep learning model predictive control for quadrotors and agile
robotic platforms. IEEE Robotics and Automation Letters, 8(4):2397–2404, April 2023. ISSN
2377-3774. doi: 10.1109/lra.2023.3246839. URL http://dx.doi.org/10.1109/LRA.
2023.3246839.

Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter, 10 2019.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by fine-
tuning. In Advances in Neural Information Processing Systems, volume 33, pp. 20378–20389,
2020. URL https://arxiv.org/abs/2005.07683. arXiv:2005.07683.

Andrew Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan Tracey,
and David Cox. On the information bottleneck theory of deep learning. 02 2018.

Divya Saxena, Jiannong Cao, Jiahao Xu, and Tarun Kulshrestha. Rg-gan: dynamic regenerative
pruning for data-efficient generative adversarial networks. In Proceedings of the Thirty-Eighth
AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative Applica-
tions of Artificial Intelligence and Fourteenth Symposium on Educational Advances in Artificial
Intelligence, AAAI’24/IAAI’24/EAAI’24. AAAI Press, 2024. ISBN 978-1-57735-887-9. doi:
10.1609/aaai.v38i5.28271. URL https://doi.org/10.1609/aaai.v38i5.28271.

Ruoxi Shi, Hansheng Chen, Zhuoyang Zhang, Minghua Liu, Chao Xu, Xinyue Wei, Linghao Chen,
Chong Zeng, and Hao Su. Zero123++: a single image to consistent multi-view diffusion base
model, 2023. URL https://arxiv.org/abs/2310.15110.

Kyuhong Shim, Iksoo Choi, Wonyong Sung, and Jungwook Choi. Layer-wise pruning of trans-
former attention heads for efficient language modeling, 2021. URL https://arxiv.org/
abs/2110.03252.

Yeou-Ren Shiue, Ken-Chun Lee, and Chao-Ton Su. Real-time scheduling for a smart factory using
a reinforcement learning approach. Computers Industrial Engineering, 125, 03 2018. doi: 10.
1016/j.cie.2018.03.039.

16

https://arxiv.org/abs/1505.05770
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597
http://dx.doi.org/10.1109/LRA.2023.3246839
http://dx.doi.org/10.1109/LRA.2023.3246839
https://arxiv.org/abs/2005.07683
https://doi.org/10.1609/aaai.v38i5.28271
https://arxiv.org/abs/2310.15110
https://arxiv.org/abs/2110.03252
https://arxiv.org/abs/2110.03252

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Hayk Shoukourian, Torsten Wilde, Detlef Labrenz, and Arndt Bode. Using machine learning for
data center cooling infrastructure efficiency prediction. pp. 954–963, 05 2017. doi: 10.1109/
IPDPSW.2017.25.

Ravid Shwartz-Ziv. Information flow in deep neural networks, 2022. URL https://arxiv.
org/abs/2202.06749.

Taylor Simons and Lee Dah-Jye. A review of binarized neural networks. Electronics, 8:661, 06
2019. doi: 10.3390/electronics8060661.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Varun Sundar and Rajat Dwaraknath. [reproducibility report] rigging the lottery: Making all tickets
winners, 03 2021.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works, 05 2019a.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. ArXiv, abs/1905.11946, 2019b. URL https://api.semanticscholar.org/
CorpusID:167217261.

Yehui Tang, Kai Han, Jianyuan Guo, Chang Xu, Chao Xu, and Yunhe Wang. Ghostnetv2: enhance
cheap operation with long-range attention. In Proceedings of the 36th International Conference on
Neural Information Processing Systems, NIPS ’22, Red Hook, NY, USA, 2022. Curran Associates
Inc. ISBN 9781713871088.

Gemini Team, Google, and Oana David. Gemini: A family of highly capable multimodal models.
12 2023. doi: 10.48550/arXiv.2312.11805.

Gemini Team et al. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of
context, 2024. URL https://arxiv.org/abs/2403.05530.

Gemini Team et al. Gemini: A family of highly capable multimodal models, 2025. URL https:
//arxiv.org/abs/2312.11805.

Max Tran. Evidence for maxwell’s equations, fields, force laws and alternative theories of classical
electrodynamics. European Journal of Physics, 39, 09 2018. doi: 10.1088/1361-6404/aadf9b.

Charles Edison Tripp, Jordan Perr-Sauer, Jamil Gafur, Amabarish Nag, Avi Purkayastha, Sagi Zis-
man, and Erik A. Bensen. Measuring the energy consumption and efficiency of deep neural
networks: An empirical analysis and design recommendations, 2024. URL https://arxiv.
org/abs/2403.08151.

Shikhar Tuli and N.K. Jha. Acceltran: A sparsity-aware accelerator for dynamic inference with
transformers, 02 2023.

Kalim Ullah, Hisham Alghamdi, Ghulam Hafeez, Imran Khan, Safeer Ullah, and Sadia Murawwat.
A swarm intelligence-based approach for multi-objective optimization considering renewable en-
ergy in smart grid. pp. 1–7, 07 2024. doi: 10.1109/ICECET61485.2024.10698431.

Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,
Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8769–8778,
2018.

Nur Vanu, Salma Akter, and Md Faruque. Legal and ethical frameworks for regulating artificial
intelligence in business. Journal of Business Venturing, AI and Data Analytics, pp. 1, 08 2024.
doi: 10.63471/jbvada24001.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

17

https://arxiv.org/abs/2202.06749
https://arxiv.org/abs/2202.06749
https://api.semanticscholar.org/CorpusID:167217261
https://api.semanticscholar.org/CorpusID:167217261
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2403.08151
https://arxiv.org/abs/2403.08151

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Haowen Wang, Wanhao Niu, and Chungang Zhuang. Granet: A multi-level graph network for 6-
dof grasp pose generation in cluttered scenes. In 2023 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 937–943. IEEE, 2023.

Juliana Wang. Training a convolutional neural network for exoplanet classification with transit
photometry data. Scientific Reports, 15, 05 2025. doi: 10.1038/s41598-025-98935-8.

Pengyu Wang, Yufan Cheng, Qihang Peng, Binhong Dong, and Shaoqian Li. Low-bitwidth convo-
lutional neural networks for wireless interference identification. IEEE Transactions on Cognitive
Communications and Networking, 8:557–569, 06 2022. doi: 10.1109/TCCN.2022.3149092.

Felix Wong, Erica Zheng, Jacqueline Valeri, Nina Donghia, Melis Anahtar, Satotaka Omori, Alicia
Li, Andres Cubillos-Ruiz, Aarti Krishnan, Wengong Jin, Abigail Manson, Jens Friedrichs, Ralf
Helbig, Behnoush Hajian, Dawid Fiejtek, Florence Wagner, Holly Soutter, Ashlee Earl, Jonathan
Stokes, and James Collins. Discovery of a structural class of antibiotics with explainable deep
learning. Nature, 626:177–185, 12 2023. doi: 10.1038/s41586-023-06887-8.

Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng,
Gloria Chang, Fiona Aga, James Huang, Charles Bai, Michael Gschwind, Anurag Gupta, Myle
Ott, Anastasia Melnikov, Salvatore Candido, David Brooks, Geeta Chauhan, Benjamin Lee,
Hsien-Hsin Lee, and Kim Hazelwood. Sustainable ai: Environmental implications, challenges
and opportunities, 10 2021.

Haixu Wu, Jialong Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Flowformer: Linearizing
transformers with conservation flows, 02 2022.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models, 11 2022.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmark-
ing machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez, and Ping Luo. Seg-
former: Simple and efficient design for semantic segmentation with transformers. Advances in
neural information processing systems, 34:12077–12090, 2021.

Hui Yang, Sifu Yue, and Yunzhong He. Auto-gpt for online decision making: Benchmarks and
additional opinions, 2023. URL https://arxiv.org/abs/2306.02224.

Fanghua Yu, Jinjin Gu, Jinfan Hu, Zheyuan Li, and Chao Dong. Unicon: Unidirectional information
flow for effective control of large-scale diffusion models, 2025. URL https://arxiv.org/
abs/2503.17221.

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat. Prune once for all:
Sparse pre-trained language models, 11 2021.

Anita Zarghami. Role of artificial intelligence in surgical decision-making: A comprehensive re-
view: Role of ai in sdm. Galen Medical Journal, 13:e3332, 03 2024. doi: 10.31661/gmj.v13i.
3332.

Jinjin Zhang, Qiuyu Huang, Junjie Liu, Xiefan Guo, and di Huang. Diffusion-4k: Ultra-high-
resolution image synthesis with latent diffusion models, 03 2025.

18

https://arxiv.org/abs/2306.02224
https://arxiv.org/abs/2503.17221
https://arxiv.org/abs/2503.17221

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A FLOW DIVERGENCE MEASURE EXTENSIONS

A.1 NORMALIZATION VIA SAMPLE VARIANCE

We compute flow statistics using a validation setDval = {xi}Ni=1 with variance-based normalization:

D̂l =
1

N

N∑
i=1

Dl(xi) ·
(
1 +

Var(Tl)

σ2
max

)−1

. (6)

where:

• Var(Tl) is the activation variance across samples;
• σ2

max is the maximum observed variance (for scaling).

This approach offers three benefits over exponential normalization: it provides more interpretable
variance scaling, is robust to outlier activations, and preserves layer-wise sensitivity.

A.2 KEY PROPERTIES OF THE INTRODUCED DIVERGENCE MEASURE

The divergence measure satisfies two fundamental properties, which are formulated as correspond-
ing lemmas.
Lemma 2 (Scale Invariance). For any α > 0:

Dl(αTl, αTl+1) = Dl(Tl,Tl+1). (7)

Lemma 3 (Additive Composition). For sequential transformations:

Dl→l+2 = Dl · Dl+1 +O(∥∆T∥3). (8)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

B DETAILED DIVERGENCE FORMULATION FOR DIFFERENT LAYER TYPES

B.1 DIVERGENCE EXPLICIT REPRESENTATION FOR FULLY CONNECTED LAYERS

Let us first consider the mathematical formulation. For a fully connected layer l with weight matrix
Wl ∈ Rnl×nl−1 and activation vector hl ∈ Rnl , the layer-wise divergence D(l)

FC is computed as:

D(l)
FC(x) = ∥J(hl)∥F︸ ︷︷ ︸

Activation sensitivity

· ∥hl∥2︸ ︷︷ ︸
Activation magnitude

· ∥Wl∥F .︸ ︷︷ ︸
Weight importance

(9)

We now proceed to examine the constituent components of the formulation in greater detail. Acti-
vation Jacobian J(hl) represents the local sensitivity of the activation function:

J(hl) =
∂σ(zl)

∂zl

∣∣∣∣
zl=Wlhl−1+bl

. (10)

For ReLU It takes the J(hl) = diag(I[zl > 0]) form. And the Frobenius norm ∥ · ∥F aggregates all
partial derivatives.

Activation Norm ∥hl∥2 measures the Euclidean norm of post-activation outputs:

∥hl∥2 =

√√√√ nl∑
i=1

(hi
l)

2, (11)

and it also captures the overall signal strength through the layer.

Weight Matrix Norm ∥Wl∥F computes the Frobenius norm of the weight matrix:

∥Wl∥F =

√√√√ nl∑
i=1

nl−1∑
j=1

(wl
ij)

2, (12)

and it also serves as a structural importance measure for the layer.

We now turn to the Computation Process in more detail. The evaluation proceeds through the five
steps for each input x:

1. Forward Pass:
zl = Wlhl−1 + bl. (13)

2. Activation Computation:
hl = σ(zl). (14)

3. Jacobian Evaluation:

J(hl) =

{
σ′(zl) (element-wise)
I[zl > 0] (for ReLU).

(15)

4. Norm Calculations:

∥J(hl)∥F =

√√√√ nl∑
i=1

(σ′(zil))
2, (16)

∥hl∥2 =
√
h⊤
l hl, (17)

∥Wl∥F =
√

tr(W⊤
l Wl). (18)

5. Layer Divergence:
D(l)

FC = ∥J(hl)∥F · ∥hl∥2 · ∥Wl∥F . (19)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

The product form captures three critical aspects of information flow:

D(l)
FC ∝ Sensitivity︸ ︷︷ ︸

J

× Signal Strength︸ ︷︷ ︸
hl

× Parameter Significance︸ ︷︷ ︸
Wl

(20)

Let us also highlight some important properties. Firstly, the scale invariant: D(l)
FC(αhl) = D(l)

FC(hl)

for α > 0. Secondly, the non-negativity: D(l)
FC ≥ 0 with equality only for zero activations. And

lastly, the composability. It states that total network divergence is the sum across layers:

DFC(x) =

L∑
l=1

D(l)
FC(x). (21)

B.2 DIVERGENCE EXPLICIT REPRESENTATION FOR CONVOLUTIONAL LAYERS

Let us once again begin with the mathematical formulation. For convolutional layer l with input
X ∈ RHl−1×Wl−1×Cl−1 , the flow divergence is computed as:

D(l)
conv(X) =

1

|Ωl|︸︷︷︸
Normalization

· ∥Al∥F︸ ︷︷ ︸
Activation magnitude

· ∥Wl∥F ,︸ ︷︷ ︸
Weight significance

(22)

where:

• Ωl = Hl ×Wl × Cl represents the activation volume with:
– Hl,Wl: Spatial dimensions of output feature maps;
– Cl: Number of output channels.

• Al = σ(Wl ∗X+ bl) denotes the post-activation tensor where:
– ∗: Convolution operation with padding and stride;
– σ: Element-wise activation function;
– Wl ∈ Rk×k×Cl−1×Cl : 4D convolution kernel;
– bl ∈ RCl : Bias vector.

• ∥ · ∥F : Frobenius norm computing the root-sum-square of all elements.

We now proceed to the details of computational mechanics. The evaluation process involves Forward
Pass Calculation in the form: Zl = Wl ∗ X + bl (pre-activation). It also includes the Activation
Transformation: Al = ϕ(Zl) (where ϕ is ReLU, sigmoid, etc) and the Normalized Divergence
Computation:

D(l)
conv =

1

|Ωl|

√√√√ Hl∑
i=1

Wl∑
j=1

Cl∑
k=1

|aijk|2 ·

√√√√ k∑
m=1

k∑
n=1

Cl−1∑
p=1

Cl∑
q=1

|wmnpq|2. (23)

Additional characteristics and clarifications for the Convolutional Divergence Computation Param-
eters are provided in Table 2.

Table 2: Convolutional divergence computation parameters
Symbol Dimension Interpretation
k Scalar Convolution kernel size
Hl ×Wl Spatial Output feature map dimensions
Cl Channels Number of output filters
Wl k × k × Cl−1 × Cl 4D weight tensor
Al Hl ×Wl × Cl 3D activation tensor

The convolutional divergence measure possesses several important properties. It is scale-invariant,
meaning that uniform scaling of activations and weights does not affect the value of the divergence,
as expressed by

D(l)
conv(αAl, βWl) = D(l)

conv(Al,Wl) ∀α, β > 0. (24)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

The measure is also adaptable to architectural variations, automatically accounting for factors such
as strided convolutions by adjusting output dimensions, dilated convolutions through the effective
receptive field, and grouped convolutions via per-group computation. Furthermore, it is memory-
efficient, as it requires only a single forward pass per layer to compute.

B.3 DIVERGENCE EXPLICIT REPRESENTATION FOR SELF-ATTENTION LAYERS

We now consider the case of Single-Head Attention Divergence. For a basic self-attention mecha-
nism, the divergence is computed as:

Dsingle
attn (X) =

1

n
∥A∥F · (∥WQ∥F + ∥WK∥F + ∥WV ∥F) , (25)

where:

• X ∈ Rn×dmodel is the input sequence matrix (n tokens, dmodel dimensions);
• WQ,WK ,WV ∈ Rdmodel×dk are learned projection matrices;

• A = softmax
(

XWQ(XWK)⊤√
dk

)
XWV is the attention output;

• ∥ · ∥F denotes the Frobenius norm, measuring the ”energy” of transformations;
• The 1

n term normalizes by sequence length.

We now examine the extension to Multi-Head Attention. The multi-head formulation generalizes
this by considering H parallel attention heads:

Dmulti
attn (X) =

H∑
h=1

1

n
∥Ah∥F ·

(
∥Wh

Q∥F + ∥Wh
K∥F + ∥Wh

V ∥F
)
. (26)

It is worth separately noting a few additional remarks. Firstly, each head h has independent projec-
tions Wh

Q,W
h
K ∈ Rdmodel×dk , Wh

V ∈ Rdmodel×dv . Secondly,

Ah = softmax

(
XWh

Q(XWh
K)⊤

√
dk

)
XWh

V (27)

represents head-specific attention. Lastly, the sum over heads captures total information transforma-
tion.

We consider the four steps of the Derivation Process:

1. Single-Head Basis. Start with the basic attention divergence:

Dbase
attn =

∥Attention(X)∥F
n

· ∥θ∥F , (28)

where θ contains all projection parameters.
2. Parameter Decomposition. Separate the Frobenius norms by projection type:

∥θ∥F → ∥WQ∥F + ∥WK∥F + ∥WV ∥F . (29)

3. Multi-Head Expansion. In the case of H heads, the measure becomes additive, as each
head operates on an independent subspace, the concatenated output preserves dimensional
scaling, and the 1

n normalization remains valid for each head individually.
4. Residual Consideration. In practice, we account for

Dfinal
attn = Dmulti

attn + λ∥WO∥F , (30)

where WO is the output projection and λ balances terms.

The multi-head divergence measure has three key aspects:

1. Attention Pattern Term (∥Ah∥F) measures how strongly inputs are transformed by the
attention weights.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

2. Projection Importance Term (
∑
∥Wh

∗∥F) captures the magnitude of learned
query/key/value transformations.

3. Normalization Factor (1
n) ensures comparability across varying sequence lengths.

The following theorem serves as the theoretical justification for the formulation presented above.
Theorem 4 (Additive Composition). For independent attention heads, the total divergence equals
the sum of head-specific divergences:

Dmulti
attn (X) =

H∑
h=1

Dh
attn(X). (31)

Proof. Follows from the linearity of the Frobenius norm and the block-diagonal structure of multi-
head projections.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

C DIVERGENCE COMPUTATION FOR DIFFERENT LAYER TYPES

C.1 DIVERGENCE EVALUATION ALGORITHM FOR FULLY CONNECTED ARCHITECTURES

Let us consider the algorithms for calculating divergence using the above layer types as an example.
Firstly, let us take a look at fully connected networks. The information flow can be quantified using
Algorithm 2, which tracks how signal transformations evolve across successive layers.

Algorithm 2 Measuring Divergence of Information Flow in FC Networks
Require: Input vector x, weight matrices {Wl}, biases {bl}
Ensure: Total information divergence DFC

1: Initialize divergence accumulator: DFC ← 0
2: Set initial activation: h0 ← x
3: for each layer l = 1 to L do
4: Compute pre-activation: zl ←Wlhl−1 + bl

5: Apply nonlinearity: hl ← σ(zl)
6: Measure layer transformation: δl ← ∥hl∥2 · ∥Wl∥F
7: Accumulate divergence: DFC ← DFC + δl
8: end for
9: return DFC

From a computational perspective, the time complexity is dominated by matrix-vector products and
scales as O

(∑L
l=1 nlnl−1

)
, while the space complexity is determined by the need to store layer

activations, requiring O
(∑L

l=1 nl

)
memory.

It also should be mentioned that ReLU activations simplify the divergence measure to:

δReLU
l = ∥max(0, zl)∥2 · ∥Wl∥F , (32)

while the Frobenius norm ∥Wl∥F serves as an automatic importance weighting for each layer’s
contribution.

C.2 DIVERGENCE EVALUATION ALGORITHM FOR CONVOLUTIONAL ARCHITECTURES

For convolutional networks, Algorithm 3 measures how spatial feature representations transform
across the network depth.

Algorithm 3 Measuring Divergence of Information Flow in Convolutional Networks
Require: Input tensor X, convolution kernels {Wl}, biases {bl}
Ensure: Total spatial divergence Dconv

1: Initialize divergence measure: Dconv ← 0
2: Set input features: A0 ← X
3: for each conv layer l = 1 to L do
4: Compute convolution: Zl ←Wl ∗Al−1 + bl

5: Apply activation: Al ← σ(Zl)
6: Get tensor dimensions: (Hl,Wl, Cl)← shape(Al)

7: Compute normalized divergence: δl ← ∥Al∥F ·∥Wl∥F

HlWlCl

8: Update total: Dconv ← Dconv + δl
9: end for

10: return Dconv

The complexity analysis reveals that the time complexity for k × k convolutions is
O
(∑L

l=1 HlWlClCl−1k
2
)

, while the memory requirements for storing feature maps amount to

O
(∑L

l=1 HlWlCl

)
.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Implementation-wise, strided operations require appropriate dimension adjustments, while batch
normalization layers can be seamlessly integrated by modifying the pre-activation computation.
Pooling layers, although part of the computational path, contribute zero parameter divergence.

C.3 DIVERGENCE EVALUATION ALGORITHM FOR ATTENTION-BASED ARCHITECTURES

Self-attention mechanisms require specialized flow measurement as detailed in Algorithm 4, captur-
ing both feature transformation and attention pattern evolution.

Algorithm 4 Measuring Divergence of Information Flow in Attention-Based Networks
Require: Input sequence X ∈ Rn×dmodel , projection weights {Wh

Q,W
h
K ,Wh

V }
Ensure: Total attention divergence Dattn

1: Initialize divergence: Dattn ← 0
2: for each head h = 1 to H do
3: Project queries: Qh ← XWh

Q

4: Project keys: Kh ← XWh
K

5: Project values: Vh ← XWh
V

6: Compute attention: Sh ← softmax(Qh(Kh)⊤/
√
dk)

7: Transform features: Oh ← ShVh

8: Measure head divergence: δh ← ∥Ah∥F

n ·
∑

P∈{Q,K,V } ∥Wh
P ∥F

9: Accumulate: Dattn ← Dattn + δh
10: end for
11: return Dattn

The computational requirements for the attention mechanism include a time complexity of
O(Hn2dk + Hnd2v), which accounts for both attention score computation and value transforma-
tions, and a space complexity of O(Hndv) for storing the attention outputs.

The analysis reveals that multi-head processing requires per-head divergence computation, while
layer normalization and residual connections affect information flow and must be handled accord-
ingly. The measure captures both attention dynamics and value transformations, with total trans-
former block divergence decomposing into attention and feed-forward components:

Dblock = Dattn +Dffn. (33)

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D ITERATIVE DIVERGENCE-AWARE PRUNING ALGORITHM

Algorithm 5 Iterative Divergence-Aware Pruning (IDAP)
M0: Initial trained model
V: Validation dataset
τ : Maximum allowable performance degradation
K: Number of pruning iterations
ρ0: Base pruning ratio
α: Aggressiveness coefficient
M∗: Optimally pruned model
W∗: Final weight configuration

1: Initialize:
2: D ← ComputeDivergence(M0) ▷ Sec. C.1-C.3
3: w← SortWeights(M0.params,D)
4: P ← {} ▷ Pruning history archive
5: for k ← 1K do
6: Determine current pruning ratio:

ρk ← ρ0 · (1 + k/K)α

7: Compute divergence threshold:

θk ← Quantile(w, ρk)

8: Generate pruning mask:
mk ← I[D > θk]

9: Evaluate pruned model:

Perfk ← Evaluate(M0 ⊙mk,V)

10: if Perf0 − Perfk > τ then
11: Revert to mk−1

12: exit loop
13: else
14: P ← P ∪ (ρk, Perfk)
15: end if
16: end for
17: Select optimal configuration:

ρ∗ ← max{ρ ∈ P | Perf0 − Perf(ρ) ≤ τ}

18: Apply final mask:
M∗ ← FineTune(M0 ⊙m∗)

returnM∗,W∗

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

E LAYER REMOVAL BASED ON INFORMATION FLOW DIVERGENCE
ANALYSIS

Algorithm 6 Layer Removal Based on Information Flow Divergence Analysis
Require:

1: • Pruned network N ′ from Stage I
• Validation set Dval

• Target error reduction ratio γ

• Maximum layer removal budget Rmax
Ensure:

2: • Optimally compressed network N ∗

• Set of removed layers Lremoved
3: Initialize removal candidate set: Lcandidates ← SortLayersByFlow(N ′)
4: Initialize error reduction tracker: ∆E ← 0
5: Initialize removal counter: r ← 0
6: while r < Rmax and ∆E < γ do
7: Select layer with minimal flow: l∗ ← argminl∈Lcandidates

Dl

8: Perform Layer Replacement:
9: Create temporary network: Ntemp ← N ′

10: Replace l∗ with identity mapping: Ntemp.l
∗ ← Identity*()

11: Fine-tune replacement: Ntemp ← FineTune(Ntemp,Dval)
12: Evaluate Impact:
13: Compute error reduction: δE ← E(N ′)− E(Ntemp)
14: if δE > 0 then
15: Accept removal: N ′ ← Ntemp
16: Update candidates: Lcandidates ← Lcandidates \ {l∗}
17: Record removal: Lremoved ← Lremoved ∪ {l∗}
18: Update metrics: ∆E ← ∆E + δE, r ← r + 1
19: else
20: Mark layer as essential: Lcandidates ← Lcandidates \ {l∗}
21: end if
22: end while
23: return N ∗ ← FinalFineTune(N ′),Lremoved

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

F DETAILED RESULTS

Table 3: Model compression dynamics of ResNet-50 on CIFAR-10 using the two-stage IDAP++
framework

Pruning Step Stage Params (M) GFlops Top-1 Acc. (%) Top-5 Acc. (%) ∆ Top-1 Acc.
1 Baseline 23.53 4.09 98.20 99.86 0.00
2 Filter Prune 22.27 3.89 97.66 99.85 -0.54
3 Filter Prune 21.20 3.66 97.23 99.84 -0.97
4 Filter Prune 19.89 3.46 96.99 99.73 -1.21
5 Filter Prune 18.78 3.31 97.11 99.89 -1.09
6 Filter Prune 17.54 3.13 97.74 99.89 -0.46
7 Filter Prune 16.45 2.90 97.62 99.84 -0.58
8 Filter Prune 15.50 2.73 97.93 99.87 -0.27
9 Filter Prune 14.62 2.61 98.09 99.76 -0.11

10 Filter Prune 14.14 2.52 98.05 99.75 -0.15
11 Filter Prune 13.50 2.37 97.87 99.77 -0.33
12 Filter Prune 12.98 2.26 97.85 99.81 -0.35
13 Filter Prune 12.37 2.15 97.84 99.77 -0.36
14 Filter Prune 11.82 2.08 97.77 99.79 -0.43
15 Filter Prune 11.26 1.98 97.70 99.76 -0.50
16 Filter Prune 11.02 1.94 97.85 99.80 -0.35
17 Filter Prune 10.77 1.89 97.56 99.81 -0.64
18 Filter Prune 10.53 1.85 97.50 99.79 -0.70
19 Filter Prune 10.28 1.81 97.42 99.80 -0.78
20 Filter Prune 10.04 1.77 97.35 99.78 -0.85
21 Filter Prune 9.79 1.73 97.28 99.75 -0.92
22 Filter Prune 9.55 1.68 97.50 99.77 -0.70
23 Filter Prune 9.30 1.49 97.52 99.78 -0.68
24 Filter Prune 9.05 1.45 97.08 99.77 -1.12
25 Filter Prune 8.81 1.40 97.50 99.80 -0.70
26 Filter Prune 8.56 1.34 97.40 99.81 -0.80
27 Filter Prune 8.32 1.30 96.91 99.79 -1.29
28 Filter Prune 8.07 1.26 97.25 99.78 -0.95
29 Filter Prune 7.83 1.22 97.52 99.80 -0.68
30 Filter Prune 7.57 1.19 97.63 99.81 -0.57
31 Layer Trunc 6.73 1.17 97.22 99.39 -0.98
32 Layer Trunc 6.67 1.16 96.78 98.94 -1.42
33 Layer Trunc 6.62 1.15 96.42 98.57 -1.78
34 Layer Trunc 6.56 1.14 95.57 98.03 -2.63
35 Final Fine-Tune 6.56 1.14 95.98 98.12 -2.22

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Table 4: Inference time summary by architecture (RTX 3060, batch size = 1, FP32)

Architecture Inference Time Speedup
Base (ms) Pruned (ms) x

ResNet-50 8.5 4.3 1.98
EfficientNet-B4 8.8 4.6 1.91
ViT-Base/16 33.2 20.3 1.64
MobileNetV3-L 4.1 1.9 2.16
DenseNet-121 6.2 3.3 1.88
ConvNeXt-Small 17.5 10.5 1.67
VGG19-BN 38.2 18.0 2.12
ShuffleNetV2 x2.0 3.5 1.8 1.94
Faster R-CNN (ResNet-50) 48.0 28.0 1.71
YOLOv4 (ShuffleNetV2) 12.5 6.8 1.84
DETR (ViT-Base/16) 75.0 48.0 1.56
FCN (VGG19-BN) 52.0 26.5 1.96
U-Net (ResNet-50) 28.0 15.5 1.81
SegFormer (ViT-Base/16) 65.0 41.0 1.59
BERT Base 45.0 28.0 1.61
GPT-2 Base 120.0 80.0 1.50
T5 Base 95.0 62.0 1.53

29

	Introduction
	Problem Statement
	Proposed Solution
	Information Flow Dynamics in Deep Neural Networks
	Continuous Flow Representation
	Flow Divergence Measure

	Compression Stage 1: Filters Reduction
	Stage 2: Flow-Guided Layer Truncation
	IDAP++: Unified Two-Stage Compression Framework

	Experimental Setup and Results
	Discussions and Conclusion
	Flow Divergence Measure Extensions
	Normalization via Sample Variance
	Key Properties of the Introduced Divergence Measure

	Detailed Divergence Formulation for Different Layer Types
	Divergence Explicit Representation for Fully Connected Layers
	Divergence Explicit Representation for Convolutional Layers
	Divergence Explicit Representation for Self-Attention layers

	Divergence Computation for Different Layer Types
	Divergence Evaluation Algorithm for Fully Connected Architectures
	Divergence Evaluation Algorithm for Convolutional Architectures
	Divergence Evaluation Algorithm for Attention-Based Architectures

	Iterative Divergence-Aware Pruning Algorithm
	Layer Removal Based on Information Flow Divergence Analysis
	Detailed Results

