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ABSTRACT

Graph Transformers have emerged as a promising alternative to Graph Neural
Networks (GNNs), offering global attention that mitigates oversmoothing and
oversquashing issues. However, their success critically depends on how structural
information is encoded, especially for graph-level tasks such as molecular property
prediction. Existing positional and structural encodings capture some aspects of
topology, yet overlook the diverse and interacting substructures that shape graph
behavior. In this work, we introduce Gisty Intersection Signature Trait (GIST), a
structural encoding based on the intersection cardinalities of k-hop neighborhoods
between node pairs. GIST provides a permutation-invariant representation that is
theoretically expressive, while remaining scalable through efficient randomized
estimation. Incorporated as an attention feature, GIST enables Graph Transformers
to capture fine-grained substructures together with node-pairwise relationships that
underlie long-range interactions. Across diverse and comprehensive benchmarks,
GIST maintains a uniformly strong performance profile: head-to-head evaluations
consistently favor GIST, underscoring its role as a simple and expressive structural
feature for Graph Transformers.

1 INTRODUCTION

Graph-level task is a foundational problem in machine learning with broad impact across chemistry,
biology, and drug discovery (Dwivedi et al., 2022a;d; Irwin et al., 2012; Wu et al., 2017): It advances
molecular property prediction, reveals complex biological interactions, and supports the discovery
of new therapeutics. For these tasks, Graph Neural Networks (GNNs) (Kipf & Welling, 2017;
Han et al., 2022) have been the primary choice, learning node- and graph-level representations via
neighborhood aggregation. Yet their local message passing mechanism unfavorably carries well-know
drawbacks including oversmoothing (Keriven, 2022), oversquashing (Black et al., 2023), and limited
expressivity (Wang & Zhang, 2024).

Transformers (Vaswani et al., 2017) offer a compelling alternative for graph representation learning:
global attention can connect distant nodes and model complex interactions, yielding strong perfor-
mance on graph classification benchmarks (Ying et al., 2021). Nonetheless, adapting Transformers to
graphs is nontrivial. Unlike sequential or image data, node indices exist but are arbitrary and carry
no semantic meaning, so attention cannot rely on positional order or raw IDs to tell nodes apart.
Without explicit structural priors, e.g., topology-aware positional/structural encodings or bias terms,
the attention mechanism struggles to capture the complex relationships ubiquitous across all graphs.

In response, prior works have attempted to improve Transformers with graph structural inductive bias
by integrating positional or structural features, such as shortest path distances (Ying et al., 2021),
Laplacian eigenvector-based encodings (Kreuzer et al., 2021), and random walk-based features (Ram-
pášek et al., 2022; Ma et al., 2023). While these methods provide some structural context, they either
fail to capture comprehensive substructural information essential for distinguishing complex
graph patterns (Rampášek et al., 2022) or focus predominantly on a limited set of substructures
while neglecting higher-order structural relationships (Wollschlager et al., 2024). The challenge
remains to identify a more expressive and comprehensive set of structural features and devise efficient
methods for encoding them within the Transformer’s self-attention mechanism.

In this work, we introduce Gisty Intersection Signature Trait (GIST), a novel structural feature
characterizing the inherent substructures within a graph with k-hop node-pairwise neighborhood
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intersections. Our approach is grounded in the theoretical understanding that the cardinality of
the intersection between two nodes’ k-hop neighborhoods can serve as an expressive permutation-
invariant feature for substructure characterization. Used as a structural encoding, GIST enhances the
Transformer’s capability to comprehend complex graph patterns and their interactions. In contrast
to prior works (Ma et al., 2023; Geisler et al., 2024; Rampášek et al., 2022) that focus on learning
representations by aggregating similar substructures, GIST, to the best of our knowledge, is the first to
promote aggregation across heterogeneous substructures by capturing higher-order relationships
among them. We adopt an efficient randomized algorithm to estimate GIST, ensuring its scalability
to a large (number of) graphs. Baseline-to-baseline comparisons across a comprehensive set of graph-
level benchmarks consistently favor GIST, yielding non-marginal average gains and a uniformly
strong performance profile.

Our key contributions are as follows:

• We introduce GIST, an expressive structural encoding based on pairwise k-hop substructure
vectors, computed efficiently via randomized estimation of the intersection cardinality between the
k-hop neighborhoods of node pairs.

• We incorporate GIST into the attention mechanism as a learnable structural feature, and provide
both theoretical and empirical evidence for its expressiveness and effectiveness.

• We conduct comprehensive evaluations on standard graph-level benchmarks, observing consistently
strong improvements over competitive baselines.

Taken together, GIST contributes to the advancement of structural encoding for Graph Transformers,
enabling simpler yet more effective graph-level prediction.1

2 MOTIVATION

Transformers, originally designed for sequential data, lack an inherent mechanism to capture the
structural biases of graph data as highlighted in Ying et al. (2021); Rampášek et al. (2022). Without a
well-designed structural bias (structural encoding), they treat all nodes as equally related, failing to
utilize the relational dependencies critical for graph tasks (Ying et al., 2021; Brody et al., 2022).

(a) (u, v1) from the same 6-ring substructure (b) (u, v2) from different substructures

Figure 1: k-hop Substructure Vector Visualization (Def. 3.1) of ZINC molecule. The substructures
of node pairs in the form of intersection cardinality of their common neighborhood at different
distances from u and v are “GIST”-ed into the Substructure Vector. Specifically, each cell (ku, kv)
in the Substructure Vector denotes the number of nodes that are exactly ku hops from u and kv hops
from v. The variations in the Substructure Vector help the self-attention mechanism distinguish struc-
tural differences between node pairs, such as (u, v1) and (u, v2). For example, the pair (u, v1), which
belongs to the same 6-ring substructure, has intersection cardinalities I(2,2)(u, v1) = I(4,2)(u, v1) =
I(2,4)(u, v1) = 1. In contrast, the pair (u, v2), where u and v2 belong to different substructures (a
6-ring and a 2-path), has I(2,2)(u, v2) = I(4,2)(u, v2) = I(2,4)(u, v2) = 0.

Challenge 1. Capturing Graph Substructures in Structural Encoding. The first key challenge in
designing effective structural encodings for Graph Transformers is capturing the substructures within
a graph, as these substructures often represent critical local patterns, or fragments that define the

1The code will be made publicly available upon publication.
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graph’s overall characteristics (Ying et al., 2021; Ma et al., 2023; Wollschlager et al., 2024). While
many early-stage structural encoding methods, such as shortest path distance (SPD) (Ying et al.,
2021), provide a notion of proximity between nodes, they often struggle to effectively capture and
represent substructures.

Challenge 2. Aggregating Diverse Substructures Information. As highlighted in Wollschlager
et al. (2024), it is equally important for structural encodings to enable the aggregation of information
across diverse substructures, rather than restricting it to similar or localized patterns. Graphs, such
as molecules, often exhibit a variety of substructures that interact in complex ways, and limiting
information flow to nodes in different structures can hinder the model’s ability to capture global
dependencies and cross-pattern interactions. This is particularly important in domains like chemistry,
biology, and social networks, where functional or structural properties often arise from specific
subgraph arrangements & interactions (i.e., rings and bonds in molecules) rather than the global graph
structure alone (Yang et al., 2018; Yu & Gao, 2022). Many recent structural biases, such as shortest
path distance (Ying et al., 2021) or those based on random walks (Rampášek et al., 2022; Ma et al.,
2023), are effective at capturing simple substructures like cycles but tend to focus predominantly on
these patterns, neglecting the interactions between different substructures (Wollschlager et al.,
2024). For example, in Figure 2, it is more beneficial for u to aggregate information from the 6-ring,
X-shape, and 2-path substructures rather than solely focusing on another 6-ring that mirrors its own
structural pattern. This highlights the need for a structural encoding that not only enables attention
mechanisms to effectively learn substructural patterns, but also allows nodes to distinguish their own
substructures from those of others, guiding attention based on different structural relationships.

Figure 2: Node Clustering via Spec-
tral Clustering Using Learned GIST
Features in Graph Transformers
on ZINC molecule graph. Nodes
within the same local substruc-
tures are clustered together: 6-
rings (purple), 2-path (cyan), and
X-shape (light blue).

Observation 1: Intersection Cardinality as a Discriminative
Subgraph Feature. Empirically, we observe that the intersec-
tion cardinality of common neighborhoods between two nodes
(u, v) can serve as a powerful and discriminative feature encod-
ing the k−hop subgraph structures. As illustrated in Figure 1,
the intersections of common neighborhoods at different hop dis-
tances provide a structured way for u to differentiate between
the ring structure containing v1 and the 2-path structure contain-
ing v2, based on the differences in the in-between graph struc-
tures. Specifically, for (u, v1), which belongs to the same 6-ring
substructure, the intersection cardinality values I(2,2), I(4,2),
and I(2,4) are all nonzero. In contrast, (u, v2), which belongs
to different substructures (a 6-ring and a 2-path), lacks these
intersection values but instead exhibits nonzero intersection car-
dinality in positions such as I(3,2) and I(2,3), which are absent
for (u, v1). This contrast highlights how different substructure
compositions lead to distinct intersection patterns, enabling
the model to effectively distinguish between structurally
similar and dissimilar node pairs, guiding the self-attention
mechanism based on higher-order relationships.

Observation 2: Intersection Cardinality Enhances Struc-
tural Awareness in Self-Attention Mechanisms. Moreover, our empirical results show that using
intersection cardinality as an attention bias helps the attention mechanism effectively identify distinct
substructures within the graph. In Figure 2, we train a Transformer architecture on the ZINC dataset
(Dwivedi et al., 2022a), introducing only the intersection cardinality (formally defined in Section 4
as GIST) as a bias in the attention scores. After training the model, we apply Spectral Clustering
to group nodes based on the learned GIST features. The GIST features facilitate representation
aggregation across structurally similar regions, allowing node u to integrate information from another
ring structure. This effect is evident as nodes from both rings are grouped into the same clusters,
marked in dark blue and cyan. Furthermore, certain nodes positioned at the boundaries of these
substructures act as “information exchange points”, facilitating communication between distant
regions of the graph. For example, the cyan-colored node within the "X" substructure is assigned
to the same cluster as the ring nodes, effectively facilitating representation aggregation between
two different substructures—an ability that current GNNs and Graph Transformers often lack, as
they tend to favor aggregation among structurally similar components. We note that this is not a

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

cherry-picked example; rather, this phenomenon consistently occurs across multiple samples of
the trained Transformer on ZINC.

3 GIST: GISTY INTERSECTION SIGNATURE TRAIT

In this section, we formally introduce the Gisty Intersection Signature Trait (GIST). We begin with
how to encode the k-hop substructure of a node pair (u, v) based on the k-hop common neighborhood
between them. Next, we introduce how to use encoded k-hop substructures in a graph to form GIST.
Finally, we show how to efficiently compute GIST with randomized hashing algorithms.

Notation: We denote an undirected graph G = (V, E), which contains a set V of n nodes (vertices)
and a set E of m edges (links). Each node v ∈ V is associated with a dn-dimensional feature
xv ∈ Rdn , while each edge eu,v ∈ E connecting node pair (u, v) is associated with a de-dimensional
edge feature yu,v ∈ Rde (yu,v = 0de if there is no edge between u and v). For every node v ∈ V , we
denote its k-hop neighborhoods as Nk(v): it consists of all the vertices whose shortest path distances
from v are less than or equal to k. Additionally, we define the k-hop common neighborhood of a
node pair (u, v) as Cku,kv

(u, v) = Nku
(u) ∩Nkv

(v), which is the set of nodes in the graph that are
within ku-hop from u and with kv-hop from v, respectively.

3.1 ENCODING k-HOP SUBSTRUCTURE OF A NODE PAIR

Following (Chamberlain et al., 2022), we encode the k-hop substructure of a node pair (u, v) by a
vector. This vector is computed based on the k-hop common neighborhood Cku,kv (u, v).
Definition 3.1 (k-hop substructure vector). Given a pair of nodes (u, v) ∈ G, we propose to capture
the k-hop graph structure between u and v with two types of features computed by k-hop common
neighborhood Cku,kv

(u, v) as follows. For all 1 ≤ ku, kv ≤ k, let

• Iku,kv
(u, v) (internal node counts): the cardinality of common neighborhoods that are exactly ku

hops from node u and kv hops from node v, computed as:

Iku,kv (u, v) = |Cku,kv (u, v)| −
∑

1≤x≤ku , 1≤y≤kv

(x,y)̸=(ku,kv)

Ix,y(u, v),

where I1,1(u, v) = |C1,1(u, v)| for u and v.
• Bku,>k(u, v) (boundary node counts): the cardinality of nodes that are exactly ku hop from vertex
u and greater than k hop from v (and vice-versa for Bkv,>k(v, u)), computed as:

Bku,>k(u, v) = |Nku
(u)| −

k∑
kv=1

Iku,kv
(u, v)

For any ordered node pair (u, v), there are k2 entries of Iku,kv (u, v), k entries of Bku,>k(u, v), and k
entries of Bkv,>k(v, u). Finally, we encode the k-hop graph substructure for every ordered node pair
(u, v) as a (k2 + 2k)-dimensional vector2 Sk(u, v): the first k2 components of Sk(u, v) are entries
of Iku,kv

(u, v) for every pair of 1 ≤ ku, kv ≤ k; we then fill the remaining dimension in Sk(u, v)
with Bku,>k(u, v) for each ku ≤ k hop and Bkv,>k(v, u) for each kv ≤ k hop.

3.2 GIST: GISTY INTERSECTION SIGNATURE TRAIT

With k-hop substructure encoding Sk(u, v) for every ordered node pair (u, v) ∈ V × V , we define
our new Gisty Intersection Signature Trait (GIST) encoding of every node u ∈ V and subsequently
the entire graph G.
Definition 3.2 (Gisty Intersection Signature Trait (GIST)). Let G = (V, E) be a graph with n nodes
(|V| = n), and k > 0 be an integer. For any ordered node pair (u, v) ∈ V × V , let Sk(u, v) be the

2If we add an additional entry B>k,>k(u, v) =⊥ (or any other special symbol), then one may view these
k2 entries of Iku,kv (u, v), 2k entries of Bku,>k(u, v) and Bkv,>k(v, u), together with the extra entry, form a
(k + 1)× (k + 1) distance matrix. Then Sk(u, v) is just a vectorization of this distance matrix with the extra
entry removed.
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k-hop graph substructure encoding of (u, v) defined in Definition 3.1. Then the GIST feature vector
(or coloring) of any node u ∈ V is defined as

χu = hash ({{Sk(u, v) : v ∈ V}}) ,

where {{...}} denotes a multiset.

The GIST encoding of graph G is then defined by χ(G) = {{χu : u ∈ V}}.

In fact, one may alternatively view the GIST encoding of a graph G = (V, E) as a three-dimensional
tensor x(G) ∈ Rn×n×(k2+2k). A fixed-length representation of each multiset Sk(u, v) is obtained by
imposing a consistent ordering (e.g., lexicographic) on its elements; if in addition a length-preserving
hash function is applied to compute node feature vectors, then every xu is a matrix of dimension
n× (k2+2k). It follows that the encoding of G, x(G), is a 3-tensor of dimension n×n× (k2+2k).

Unlike Chamberlain et al. (2022) sketching the subgraph between a node pair, GIST provides a
compact representation of a graph’s structural properties, encoding its topology and connectivity
patterns by capturing higher-order relational dependencies among nodes and substructures. This
encoding enables the differentiation of substructures, offering a detailed understanding of complex
higher-order relationships, as illustrated in Figure 2 and Section 2. We would like to note one
component of this representation: the diagonal entry Sk(u, u), which essentially encodes the k-hop
neighborhood surrounding a node u ∈ V . This local structure provides a positional reference that
differentiates nodes based on their placement within the global graph topology, enabling the model to
capture long-range dependencies beyond direct connectivity.

3.3 ON THE EXPRESSIVENESS OF GIST: A THEORETICAL PERSPECTIVE

We now compare the expressive power of GIST with some other popular graph invariants. In the
following, we use GIST(k) to denote our GIST encoding with hop-neighborhood radius k.

Recently, Zhang et al. (2023b) proposed the Generalized Distance Weisfeiler-Leman Test (GD-WL)
— a graph isomorphism test based on incorporating the distances between a node with all other nodes
in the graph into the encoding of that node. Let G = (V, E) be a graph, d(u, v) denotes a distance
between nodes u and v. Then the GD-WL encoding of a node u ∈ V is defined as

χ(u) = hash (χ0(u), {{d(u, v) : v ∈ V}}) ,

where χ0(u) denotes the initial coloring of vertex u. Zhang et al. (2023b) analyze a Graph Trans-
former architecture that uses d(u, v) as a relative positional encoding. They show that choosing
d(u, v) as the shortest-path distance dSPD(u, v) allows the model to solve edge biconnectivity. This
corresponds to the Shortest-Path-Distance Weisfeiler–Leman variant (SPD-WL). Likewise, using the
resistance distance dRD(u, v) enables the model to solve vertex biconnectivity. This corresponds to
the Resistance-Distance Weisfeiler–Leman variant (RD-WL).

Let A ∈ {0, 1}n×n be the adjacency matrix of a graph G = (V, E) with n nodes, and let D be the
diagonal degree matrix, i.e. Du,v = δ(u, v)

∑
x∈V A(u, x), where δ(u, v) is the Kronecker delta

function. Define M = D−1A, and note that Mu,v is the probability that u hops to v in one step of a
simple random walk. More generally, Mk

u,v is the probability that a simple random walk of length k
starting from node u ends at node v. Let k be a fixed positive integer, then for each pair of nodes
(u, v) ∈ V × V , define:

P k
u,v =

(
Iu,v,Mu,v,M

2
u,v, . . . ,M

k−1
u,v

)
where I is the identity matrix. The so-called relative random walk probabilities (RRWP(k)) positional
encoding, extensively studied in e.g. Dwivedi et al. (2022c); Ma et al. (2023), is defined by, for every
u ∈ V ,

χ(u) = hash
(
χ0(u), {{P k

u,v : v ∈ V}}
)
,

where, once again, χ0(u) denotes the initial coloring of vertex u.
Theorem 3.3. For the expressive power of GIST, we have the following:

• GIST(n− 1) is more expressive than SPD-WL.

• There exists a pair of graphs such that GIST(n− 1) distinguishes them while RD does not.
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• There exist a pair of graphs such that GIST distinguishes them while RRWP does not.

The proof of Theorem 3.3 as well as definitions of related concepts can be found in Appendix C.

Table 1: Performance on GNNBenchmark datasets and ZINC-full.

Model ZINC-full (MAE ↓) ZINC (MAE ↓) MNIST (Accuracy ↑) CIFAR10 (Accuracy ↑)
GCN (Kipf & Welling, 2017) 0.113± 0.002 0.367± 0.011 0.907 ± 0.002 0.557 ± 0.004
GIN (Xu et al., 2018) 0.088± 0.002 0.526± 0.051 0.965 ± 0.003 0.553 ± 0.015
DS-GNN (Bevilacqua et al., 2023) - 0.087± 0.003 - -
GNN-SSWL (Zhang et al., 2023a) 0.026± 0.001 0.082± 0.003 - -
GNN-SSWL+ (Zhang et al., 2023a) 0.022 ± 0.001 0.070± 0.005 - -
GatedGCN-LSPE (Dwivedi et al., 2022d) - 0.090± 0.001 0.973 ± 0.001 0.673 ± 0.003

Subgraphormer (Bar-Shalom et al., 2024) 0.023± 0.001 0.063± 0.001 - -
FragNet (Wollschlager et al., 2024) 0.024 0.078± 0.005 - -
GRIT (Ma et al., 2023) 0.023± 0.001 0.059± 0.002 0.981 ± 0.001 0.765 ± 0.009
GraphGPS (Rampášek et al., 2022) - 0.070± 0.004 0.980 ± 0.001 0.723 ± 0.004
TIGT (Choi et al., 2024) 0.014 ± 0.001 0.057 ± 0.002 0.982 ± 0.001 0.739 ± 0.004
SPSE (Airale et al., 2025) - 0.059± 0.001 0.983 ± 0.001 0.770 ± 0.004
CSA (Menegaux et al., 2024) - 0.056 ± 0.002 - -
Graphormer (Kreuzer et al., 2021) 0.052± 0.005 0.122± 0.006 - -
Graphormer-GD (Kreuzer et al., 2021) 0.025± 0.004 0.081± 0.009 - -

GIST (ours) 0.019 ± 0.002 0.050 ± 0.002 0.990 ± 0.001 0.781 ± 0.003

3.4 EFFICIENTLY COMPUTE GIST WITH RANDOMIZED HASHING

In this section, we show how to efficiently compute GIST by reducing the time complexity from
O(k2n4) to O(k2n2). It is not hard to see that computing GIST S(G) can be done in O(k2n4) time.
Indeed, note that for a node pair (u, v), the exact computation of their k-hop common neighborhood
Cku,kv

(u, v) incurs a cost of O(n2), while calculating Su,v(G) requires O(k2n2). Consequently,
computing Su,v(G) for n2 node pairs in a graph G results in an overall complexity ofO(k2n4). Exact
intersection calculations are computationally expensive, making them impractical for large graphs.
Adopting methods in Chamberlain et al. (2022); Le et al. (2024), we efficiently and unbiasedly
estimate the cardinality of k-hop common neighborhood Cku,kv

(u, v) by decomposing it as:
|Cku,kv (u, v)| = Jku,kv (u, v) · Uku,kv (u, v) (1)

Here, Jku,kv
(u, v) represents the Jaccard similarity between ku-hop neighborhoods Nku

(u) and
kv-hop neighborhoods Nkv

(v). Uku,kv
(u, v) denotes the cardinality of the union Nku

(u) ∪Nkv
(v).

Next, we can estimate Jku,kv
(u, v) with the constant-time collisions of the MinHash signatures

of Nku
(u) and Nkv

(v). We note that MinHash provides an unbiased estimator to the Jku,kv
(u, v)

since the collision probability between the MinHash signatures of Nku
(u) and Nkv

are equal to
Jku,kv

(u, v) We can also estimate Uku,kv
(u, v) with the mergeable HyperLogLog signatures. We

note that HyperLogLog also provides an unbiased estimator to Uku,kv (u, v).

Finally, we multiply the estimated J̃ku,kv
(u, v) and Ũku,kv

(u, v) together and form an unbiased
estimator to |Cku,kv

(u, v)|. This unbiased estimation can serve as an efficient alternative to exact
computation for |Cku,kv (u, v)|. With MinHash and HyperLogLog, we reduce the computation time
for Su,v(G) from O(k2n2) to O(k2), leading to O(k2n2) time for GIST computation(see Appendix
D for the detailed randomized algorithms used for these estimations in constant time)

4 GRAPH TRANSFORMERS GET THE GIST

We now show that GIST can be naturally integrated into Graph Transformers for graph structural
encoding in the self-attention mechanism. As a result, we introduce the GIST attention for graph
transformers.
Definition 4.1. Let G = (V, E) denote a graph with n nodes (|V| = n). We view a node representation
(or coloring) of graphs as a map χ : G 7→ χG, such that χG : V (G)→ C assign every vertex v of G
a color χG(v) from the set of colors C. A node representation (or coloring) is said to be isomorphism
invariant if for any pair of isomorphic graphs G and H with f being any isomorphism from G to H ,
we have χH(f(v)) = χG(v) for all vertex v of G. Similarly, an edge representation (or coloring)
χG : V (G) × V (G) → C is said to be isomorphism invariant if for every isomorphism f from a
graph G to a graph H , we have χH(f(u), f(v)) = χG(u, v) for every edge (u, v) in G.
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Definition 4.2 (GIST attention). Let G = (V, E) denote a graph with n nodes (|V| = n). Let
xu ∈ Rdn denote some initial isomorphism invariant representation of node u ∈ V . Let yu,v ∈ Rde

denote some initial isomorphism invariant representation of edge between nodes u, v ∈ V . Let
wv ∈ Rdn×dn and we ∈ Rdn×d denote the model weight. Let Sk(u, v) denote the k-hop GIST
encoding computed from G (see Definition 3.1). We define the GIST attention as a transform
ψ : Rdn → Rdn on every node feature xu as:

ψ(xu) =
∑
v∈V
Au,v · (wvxv + weÂu,v).

Here Âu,v ∈ Rd and attention score Au,v ∈ R are computed as follows:

eu,v = ϕy(yu,v) + ϕS(Sk(u, v))

Au,v = σ
(
⟨wQxu + wKxv + wb, eu,v⟩

)
, Âu,v = (wQxu + wKxv + wb)⊙ eu,v,

where ϕy : Rde → Rd and ϕS : Rk2+2k → Rd are MLP networks that align the representations
of edge and GIST (see Definition 3.2) into vectors of the same dimension d for addition, and
wQ, wK ∈ Rd×dn and wb ∈ Rd are model weights and bias, respectively. σ is any non-linear
activation function.

5 EXPERIMENT

We rigorously evaluate the effectiveness of GIST by addressing the following key research questions
and providing corresponding insights:

• RQ 1: How strong and consistent is the performance on graph representation learning of Graph
Transformer with GIST as a structural encoding?

• RQ 2: To what extent does GIST enable long-range dependencies in Graph Transformers?
• RQ 3: How sensitive is GIST to different hyperparameter settings?
• RQ 4: How well does GIST generalize to beyond graph-level task?

5.1 SETTINGS

We evaluate the proposed method on three benchmark suites comprising a total of 14 datasets, span-
ning small-scale to large-scale settings: the Long-Range Graph Benchmark (LRGB) (Dwivedi et al.,
2022d), MoleculeNet (Wu et al., 2017), GNNBenchmark Dataset (Dwivedi et al., 2022a), and ZINC-
full (Irwin et al., 2012). These datasets are curated to emphasize challenges in structural encoding
and long-range dependency modeling, with diverse applications in domains such as chemistry.

Baselines. We benchmark the performance of our method against recent state-of-the-art baselines,
including Graph Transformers, GNNs and hybrid models, as well as pretrained graph models:
GraphGPS (Rampášek et al., 2022), GRIT (Ma et al., 2023), Subgraphormer (Bar-Shalom et al.,
2024), FragNet (Wollschlager et al., 2024), TIGT (Choi et al., 2024), SPSE (Airale et al., 2025),
CSA (Menegaux et al., 2024), GatedGCN (Dwivedi et al., 2022d), SAN (Kreuzer et al., 2021),
Graphormer (Ying et al., 2021), Graphormer-GD (Zhang et al., 2023b), GCN (Kipf & Welling, 2017),
GIN (Xu et al., 2018), DS-GNN (Bevilacqua et al., 2022), DSS-GNN (Bevilacqua et al., 2022),
GNN-SSWL(Zhang et al., 2023a), GraphMVP (Liu et al., 2022), MGSSL (Zhang et al., 2021), and
GraphFP (Luong & Singh, 2023).

Experimental Settings. For each dataset, we train our method on the training split and select the
epoch that achieves the best validation performance. The corresponding test results are then reported.
All results for our method (and baselines reproduction) are averaged over five runs with different
random seeds and presented as mean ± standard deviation. Baseline performance is taken from
original publications when available or reproduced using their reported best hyperparameters. Top-3
Results Highlighted in Red, Blue, and Orange. (see Appendix E for details)

Hyperparameters. Particularly for our method, we perform a grid search to find the optimal
hyperparameter combination for each dataset whenever feasible. The intersection features are within
[1,2,3,4,5,6]-hops of each node, the batch size is chosen among [32, 64, 128, 256], the number of
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layers is chosen among [2, 4, 6, 8], the number of heads is chosen among [2, 4, 8, 16, 32], the
number of hidden dimensions is chosen among [16, 32, 64, 128], and learning rate is chosen among
[0.0001, 0.0003, 0.0005, 0.002]. The chosen optimizer is AdamW. Our model is trained at 200 epochs
for all datasets, except for MUV and HIV, where it is trained for 100 epochs. All model training
and evaluations were conducted on NVIDIA A100 GPUs with 80G memory. Appendix E provides
additional details on the experimental settings, including dataset statistics.

5.2 LONG-RANGE GRAPH BENCHMARK (LRGB)

Table 2: Performance of GIST on Peptides datasets.

Model Peptides-struct Peptides-func
MAE ↓ AP ↑

GCN (Kipf & Welling, 2017) 0.2460± 0.0007 0.6860± 0.0050
GIN (Xu et al., 2018) 0.3547± 0.0045 0.5498± 0.0079
Subgraphormer (Bar-Shalom et al., 2024) 0.2494± 0.0020 0.6415± 0.052
FragNet (Wollschlager et al., 2024) 0.2462± 0.0021 0.6678 ± 0.0050
GatedGCN+RWSE (Dwivedi et al., 2022d) 0.2477± 0.0009 0.6765± 0.0047
GRIT (Ma et al., 2023) 0.2460± 0.0012 0.6988± 0.0082
GraphGPS (Rampášek et al., 2022) 0.2509± 0.0012 0.6534± 0.0041
TIGT (Choi et al., 2024) 0.2485± 0.0015 0.6679± 0.0074
SPSE (Airale et al., 2025) 0.2449± 0.0018 0.6945 ± 0.0113
SAN+LapPE (Kreuzer et al., 2021) 0.2683 ± 0.0043 0.6384 ± 0.0121
SAN+RWSE (Kreuzer et al., 2021) 0.2545± 0.0012 0.6439± 0.0075
GNN-SSWL+ (Zhang et al., 2023a) 0.2570± 0.006 0.5847± 0.0050

GIST (ours) 0.2442 ± 0.0011 0.6983 ± 0.0087

We evaluate the ability of our proposed
GIST to learn long-range dependencies us-
ing two graph classification datasets from
LRGB (Dwivedi et al., 2022d): Peptides-
func and Peptides-struct. These datasets
provide a robust benchmark for assess-
ing graph classification methods in han-
dling long-range dependencies and address-
ing structural challenges such as over-
squashing and over-smoothing of many
GNNs. As shown in Table 2, GIST sig-
nificantly enhances the capability of Trans-
formers, achieving strong performance on
Peptides-struct while maintaining competitive result against recent SOTA baselines. Regarding
RQ2, our results demonstrate that GIST effectively captures long-range dependencies by encoding
structural relationships beyond local neighborhoods, leading to improved long-range graph-level task
performance.

5.3 GNNBENCHMARK AND ZINC-FULL

We evaluate GIST on two molecular property prediction benchmarks(ZINC (Dwivedi et al., 2022a)
& ZINC-full (Irwin et al., 2012)) and two graph classification datasets (MNIST & CIFAR10) from
Dwivedi et al. (2022a). ZINC datasets are widely used to assess a model’s ability to learn chemically
meaningful representations from molecular graphs. ZINC features constrained molecular structures
and well-defined tasks, making it a standard testbed for evaluating how well models capture local
substructures associated with specific chemical properties. ZINC-full extends this to a larger and
more diverse chemical space, testing generalization across broader molecular variations. As shown in
Table 1, GIST significantly improves Transformer performance by enabling more effective modeling
of chemically relevant substructures and their complex interaction.

5.4 MOLECULENET BENCHMARK

To further assess the effectiveness of GIST in molecular representation learning, we evaluate it on the
MoleculeNet benchmark (Wu et al., 2017), a comprehensive suite of molecular property prediction
tasks. MoleculeNet covers diverse real-world applications—ranging from drug discovery to toxicity
prediction. As shown in Table 3, GIST consistently outperforms, or matches, state-of-the-art pre-
trained graph models and Graph Transformers across multiple tasks.

Table 3: Performance on MoleculeNet: Top-3 Results Highlighted in Red, Blue, and Orange.

Model BBBP Tox21 Toxcast Sider Clintox Bace MUV HIV Avg. AUC
AttrMasking (Hu et al., 2020a) 64.3 ± 2.8 76.7 ± 0.4 64.2 ± 0.5 61.0 ± 0.7 71.8 ± 4.1 79.3 ± 1.6 74.7 ± 1.4 77.2 ± 1.1 71.2
GRIT (Ma et al., 2023) 69.9 ± 1.3 75.9 ± 0.6 65.6 ± 0.4 60.3 ± 1.2 85.9 ± 2.9 84.4 ± 1.2 77.1 ± 1.7 77.3 ± 1.5 74.8
GraphGPS (Rampášek et al., 2022) 56.2 ± 4.4 71.4 ± 0.7 60.6 ± 1.0 60.2 ± 1.1 79.2 ± 3.6 71.5 ± 6.0 65.2 ± 1.6 66.0 ± 9.4 66.3
GraphLoG (Xu et al., 2021) 67.8 ± 1.9 75.1 ± 1.0 62.4 ± 0.2 59.5 ± 1.5 65.3 ± 3.2 80.2 ± 3.5 73.6 ± 1.2 73.7 ± 0.9 69.7
GraphCL (You et al., 2020) 69.7 ± 0.7 73.9 ± 0.7 62.4 ± 0.6 60.5 ± 0.9 76.0 ± 2.7 75.4 ± 1.4 69.8 ± 2.7 78.5 ± 1.2 70.8
G-Motif (Rong et al., 2020) 66.9 ± 3.1 73.6 ± 0.7 62.3 ± 0.6 61.0 ± 1.5 77.7 ± 2.7 73.0 ± 3.3 73.0 ± 1.8 73.8 ± 1.2 70.2
G-Contextual (Rong et al., 2020) 69.2 ± 3.0 75.0 ± 0.6 62.8 ± 0.7 58.7 ± 1.0 60.6 ± 5.2 79.3 ± 1.1 72.1 ± 0.7 76.3 ± 1.5 69.3
GPT-GNN (Hu et al., 2020b) 64.5 ± 1.4 74.9 ± 0.3 62.5 ± 0.4 58.1 ± 0.3 58.3 ± 5.2 77.9 ± 3.2 75.9 ± 2.3 65.2 ± 2.1 67.2
GraphFP (Luong & Singh, 2023) 72.0 ± 1.7 74.0 ± 0.7 63.9 ± 0.9 63.6 ± 1.2 84.7 ± 5.8 80.5 ± 1.8 75.4 ± 1.9 78.0 ± 1.5 74.0
MGSSL (Zhang et al., 2021) 68.9 ± 2.5 74.9 ± 0.6 63.3 ± 0.5 57.7 ± 0.7 67.5 ± 5.5 82.1 ± 2.7 73.2 ± 1.9 75.7 ± 1.3 70.4
GraphMVP (Liu et al., 2022) 68.5 ± 0.2 74.5 ± 0.4 62.7 ± 0.1 62.3 ± 1.6 79.0 ± 2.5 76.8 ± 1.1 75.0 ± 1.4 74.8 ± 1.4 71.7

GIST (ours) 73.6 ± 1.8 77.2 ± 0.4 67.3 ± 0.9 61.3 ± 2.7 88.2 ± 2.2 86.0 ± 1.9 75.5 ± 3.2 77.0 ± 0.2 75.8
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5.5 ABLATION STUDY ON HYPERPARAMETERS

In order to analyze the impact of different hyperparameter settings on GIST, we conduct an ablation
study on three key components: the number of k-hops, the number of MinHash functions, and the
p parameter of the HyperLogLog data structure. These experiments are performed across three
datasets: ZINC, Peptides-struct, and Peptides-func. The k value determines the extent of local
versus long-range structural information captured, while the number of MinHash functions and the
HyperLogLog p parameter control the error of GIST’s randomized cardinality estimation.

Table 4: Ablation study on different values of k-hops

k-hops 1 2 3 4 5
ZINC 0.100 0.058 0.050 0.065 0.063
Peptides-struct 0.2832 0.2471 0.2442 0.2478 0.2518
Peptides-func 0.6446 0.6420 0.6790 0.6754 0.6953

As shown in Table 4, GIST exhibits strong robustness to variations in the maximum hop distance k.
Performance improves as k increases from 1 to 3, reflecting GIST’s ability to capture richer structural
dependencies. Beyond k = 3, the changes in performance are minimal, and any decline is marginal,
suggesting that GIST balances local expressiveness and global aggregation effectively without being
overly sensitive to neighborhood size.

Table 5: Ablation study on different values of MinHash functions

# MinHash Functions 32 64 128 256
ZINC 0.071 0.069 0.069 0.049
Peptides-struct 0.2511 0.2538 0.2442 0.2444
Peptides-func 0.6502 0.6418 0.6519 0.6987

Table 5 examines the effect of varying the number of MinHash functions. While fewer hash functions
(e.g., 32 or 64) can lead to slight variability in performance, increasing the number to 128 or 256
provides more stable and accurate intersection cardinality estimation. Notably, GIST performs well
across a wide range of values, indicating tolerance to different trade-offs between estimation accuracy
and computational overhead. Similarly, Table 6 shows that GIST is robust to different values of the
HyperLogLog precision parameter p. While increasing p generally improves cardinality estimation,
the performance gains are modest, and all tested values yield competitive results. This suggests that
GIST’s randomized estimation pipeline remains reliable even under coarse-grained settings, enabling
efficient scaling without sacrificing accuracy, answering RQ3.

Table 6: Ablation study on HyperLogLog data structurs with different values of p

p 4 6 8 10
ZINC 0.065 0.065 0.049 0.062
Peptides-struct 0.2566 0.2545 0.2442 0.2466
Peptides-func 0.6170 0.6124 0.6957 0.6771

5.6 GIST’S GENERALIZATION AND SCALABILITY

While GIST is primarily developed for graph-level tasks, we demonstrate its strong generalization and
scalability across a broader range of settings, answering RQ4. We evaluate GIST on two node-level
prediction benchmarks—Pattern and Cluster (Dwivedi et al., 2022a)—as well as the large-scale
graph regression dataset PCQM4Mv2 (Hu et al., 2021). As shown in Table 13, GIST maintains
competitive or even superior performance across all three tasks. These results suggest that its ability
to model meaningful substructures and their higher-order interactions remains effective across varying
scenarios. In addition, GIST scales efficiently to large graphs, benefiting from its efficient randomized
estimation algorithm (Sec. 3.4).
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Regarding RQ1, we conduct comparative evaluations against a broad set of methods across a
comprehensive suite of graph-level benchmarks, so close runners inevitably arise in each individual
settings. However, in pairwise comparisons carried out across all datasets, no baseline demonstrates
a comparably consistent level of strong performance to GIST (see Table 14 and Table 15). The
observed gaps indicate non-marginal, general-scale gains, reflecting that GIST delivers strong and
competitive performance across diverse benchmarks.

6 RELATED WORKS

Recent work in graph representation learning emphasizes substructure modeling and Transformer-
based architectures. Traditional GNNs struggle with complex structures due to over-smoothing and
over-squashing. Alternatives like motif-based models, WL kernels, and spectral features improve
expressiveness but face scalability or adaptability issues. Graph Transformers address these limits
using self-attention, positional encodings, and structure-aware mechanisms to better capture graph
topology.

Chamberlain et al. (2022) propose using MinHash and HyperLogLog to sketch local node-centric
subgraphs for the purpose of resolving the automorphic node problem in link prediction. Although we
adopt the same estimators for efficiency, GIST targets a fundamentally different structural quantity:
k-hop intersection patterns between all node pairs. GIST is designed as a global structural feature
for Graph Transformers. As such, GIST captures higher-order relationships among heterogeneous
substructures rather than summaries of local subgraphs, which differentiates both its intent and its
use within attention. We refer the readers to Appendix B for a detailed discussion of related works.

7 CONCLUSION

This paper presents Gisty Intersection Signature Trait (GIST), a novel approach that enhances Graph
Transformers by explicitly encoding graph structures. GIST captures substructures through pairwise
node intersection estimates and incorporates this information as an attention bias, enabling more
effective modeling of structural relationships. Our theoretical analysis and empirical evaluations
demonstrate that GIST preserves key structural information essential for graph-level task. Across
diverse benchmark datasets, Graph Transformers augmented with GIST maintains a consistently
strong performance profile. These results underscore the value of structure-aware attention in
advancing graph representation learning and fostering more robust and interpretable models for
scientific applications.

ETHICS STATEMENT

Given the technical focus of this work on algorithmic improvements for structural encoding in
Graph Transformers, we do not identify specific limitations that require emphasis within the scope
of our methodology. The design and evaluation of GIST are grounded in theoretical analysis and
controlled benchmarking, and the method demonstrates robust performance across diverse graph-
level tasks. Regarding societal impact, this work does not introduce novel data, application-specific
deployments, or user-facing components. As such, there are no direct negative societal consequences
inherent to the algorithm itself. Any potential downstream effects would depend on the specific
applications in which GIST is integrated—for example, in domains like drug discovery or social
network analysis—where ethical considerations may vary by context. We encourage responsible
usage aligned with domain-specific best practices.

REPRODUCIBILITY STATEMENT

We facilitate reproducibility through multiple artifacts and detailed documentation. A repository will
be released in the future host source code, experiment scripts, and configuration files. . Experiment
details and method details for implementation are included in Section 3, Section 4, Section 5, and
Appendix E.
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Public release of the code is temporarily deferred to comply with institutional policies governing the
dissemination of software and research artifacts (including reviews for IP ownership, confidentiality,
and third-party licensing). We are securing the necessary authorizations and access credentials for an
open-source release. Upon the paper’s publication, we will promptly make the repository available
under an appropriate license.
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APPENDIX

A USAGE OF LARGE LANGUAGE MODELS

Large language models were used exclusively for minor text refinements, such as paraphrasing
and improving fluency. All outputs were reviewed and corrected by the authors, and the scientific
contributions remain fully original and author-driven.

B RELATED WORKS

Graph Substructures Modeling. Modeling graph substructures is crucial for capturing fine-grained
structural patterns and improving representation learning in graph-based tasks. However, GNNs
remain fundamentally constrained by their reliance on localized message passing, which limits their
ability to capture long-range dependencies and effectively model complex substructure interactions,
due to over-smoothing and over-squashing issues (Xu et al., 2018; Alon & Yahav, 2021). To address
this, later works have introduced spectral features (Balcilar et al., 2021), motif-based methods (Rong
et al., 2020; Zhang et al., 2021; Bar-Shalom et al., 2024; Wollschlager et al., 2024), and Weisfeiler-
Lehman (WL) kernel-based approaches (Morris et al., 2019) to improve graph representation learning
by explicitly capturing local and global structural patterns. While motif-based methods improve
expressivity by incorporating recurring substructures, they often depend on predefined motifs, re-
stricting their adaptability to unseen graph patterns. Similarly, WL kernel-based approaches enhance
structural discrimination but struggle with distinguishing graphs that are structurally different yet WL-
equivalent. Furthermore, spectral features capture global graph properties but introduce additional
computational complexity, making them less practical for large-scale applications. These limitations
underscore the need for alternative architectures that can more effectively integrate structural biases
while maintaining both scalability and expressiveness in graph learning.

Graph Transformers. Transformers have demonstrated remarkable success in natural language
processing and computer vision by leveraging self-attention to model long-range dependencies
effectively (Vaswani et al., 2017). More recently, their adaptation to graph-structured data has led
to the emergence of Graph Transformers, where self-attention replaces traditional message-passing
mechanisms to enable more flexible and expressive learning (Zhang et al., 2020; Dwivedi & Bresson,
2021). However, a fundamental challenge in applying Transformers to graphs is the absence of
a natural node ordering, making it difficult to encode structural information directly. To address
this, positional encodings have been introduced to assign meaningful node representations within
the graph topology. Among these, Laplacian eigenvector-based encodings (LapPE) (Dwivedi et al.,
2022a) and random walk positional encodings (RWPE) (Dwivedi et al., 2022b) inject global structural
awareness, enhancing the model’s ability to differentiate nodes with similar local neighborhoods.
Beyond positional encodings, researchers have explored incorporating structural biases into self-
attention to ensure that Graph Transformers respect the underlying graph topology. GPS (Rampášek
et al., 2022) combines message passing with attention, allowing models to capture both local and
global dependencies within the graph. More recently, GRIT (Ma et al., 2023) introduced a fully
Transformer-based framework that eliminates explicit message passing and embeds structure-aware
attention with RRWP, while Airale et al. (2025) introduces a new structural encoding method with
estimation on the number of simple paths between nodes. These advancements reflect a growing shift
toward pure Transformer architectures that effectively incorporate graph-specific inductive biases,
paving the way for more scalable and expressive models in graph representation learning.
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C PROOFS

C.1 GIST EXPRESSIVENESS

We first recall some relevant definitions. Let G = (V, E) be an undirected graph. We use dSP(u, v)
to denote the shortest path distance from node u to node v. For every node u ∈ V , we write N (u)
for its direct neighbors in G, and denote its k-hop neighborhoods as Nk(u): it consists of all nodes
whose shortest path distances from u are less than or equal to k. Additionally, we define the k-hop
common neighborhood of a node pair (u, v) as Cku,kv

(u, v) = Nku
(u) ∩Nkv

(v), which is the set of
nodes in the graph that are within ku-hop from u and with kv-hop from v, respectively. The diameter
of G, D(G) = maxu,v d

SP(u, v), is the maximum shortest path distance between any pair of nodes.

G is called distance-regular if for all 1 ≤ i, j ≤ D(G) and for all nodes u, v, x, y ∈ V with
dSP(u, v) = dSP(x, y), we have |Ci,j(u, v)| = |Ci,j(x, y)|. In other words, for any two nodes u
and v, the number of nodes at distance i from u and at distance j from v depends only on i, j,
and the distance between u and v. It follows immediately that, for all u, v ∈ V and 1 ≤ i ≤
D(G), |Ni(u)| = |Ni(v)|, i.e., the number of i-hop neighbors is the same for all nodes. We
thus can define κ(G) = (k1, . . . , kD(G)) as the k-hop-neighbor array where ki := |Ni(u)| for
every u ∈ V . Furthermore, the intersection array of a distance-regular graph G is defined by
ι(G) = (b0, . . . , bD(G)−1; c1, . . . , cD(G)) which, for every 1 ≤ j ≤ D(G) and every pair of nodes
u, v ∈ V with dSP(u, v) = j, specifies that |N (u) ∩Nj+1(v)| = bj and |N (u) ∩Nj−1(v)| = cj .

The effective resistance distance between a pair of node u, v ∈ V is defined as follows. Identify
G = (V, E) with an electrical network on n nodes in which each edge corresponds to a link of unit
conductance. If we inject a unit of current into u and extract a unit of current from v, then the induced
voltage difference between nodes u and v is defined as the effective resistance between these two
nodes, denoted dRD(u, v). One can show that effective resistance indeed defines distance metric on
V × V: dRD(·, ·) is non-negative, semidefinite, symmetric, and satisfies the triangle inequality. It
is well-known that the n × n resistance distance matrix, whose (u, v)-entry is dRD(u, v), can be
computed by the Moore-Penrose inverse of the Laplacian of G, see e.g. Theorem E.1 in Zhang et al.
(2023b).

(a) Graph G1 (b) Graph G2

Figure 3: Graph pair that GIST can distinguish while RD-WL and (truncated) RRWP can’t

Theorem C.1 (Restatement of Theorem 3.3). For the expressive power of GIST, we have the
following:

1. GIST(n− 1) is more expressive than SPD-WL.

2. There exists a pair of graphs such that GIST(n− 1) distinguishes them while RD-WL does
not.

3. There exist a pair of graphs such that GIST distinguishes them while RRWP does not.

Proof. Item 1. To see that GIST(n− 1) is as expressive as SPD-WL, observe that when k = n− 1,
Iku,kv

(u, v) encodes the counts of all nodes in V indexed by their distance from u and v. In particular,
dSP(u, v) can be read out readily as dSP(u, v) = 1 +mini{I1,i(u, v) > 0}, as I1,i(u, v) counts the
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number of nodes at distance 1 from u and at distance i from v, and if dSP(u, v) = i+1, then any node
on the shortest path between u and v whose distance is 1 from u satisfies this condition. Therefore,
by aggregating the counts of this method over all vertices v ∈ V , we can easily get from GIST the
shortest path counts encoded in SPD-WL. To see that GIST(n− 1) is more expressive than SPD-WL,
we employ a theorem proved in Zhang et al. (2023b) (Theorem C.58), which states that SPD-WL can
distinguish two distance-regular graphs G and H if and only if their k-hop-neighbor arrays differ, i.e.
κ(G) ̸= κ(H). Note that for distance regualr graphs, GIST encodes both the k-hop-neighbor arrays
and the intersection array. Consequently, as demonstrated in Zhang et al. (2023b), SPD-WL fails to
distinguish between the Dodecahedron graph and the Desargues graph while GIST can.

Item 2. We conjecture that there are some graphs that RD-WL can distinguish while GIST(n− 1)
can’t, i.e. these two encoding schemes are incomparable. We present a graph pair for which
GIST(n− 1) is more expressive than RD-WL. Such a graph pair is shown in Fig. 3. One can verify
that 2-WL (or equivalently 1-FWL) would color the 20 nodes of both graphs into seven color classes.
As demonstrated in Table 9, augmenting with resistance distance fails to distinguish between graphs
G1 and G2. On the other hand, as shown in Table 7 and Table 8, the GIST node signatures of node
class [3, 10] are distinct for graphs G1 and G2.

Item 3. We use the graph pair in Fig. 3 again. As shown in Table 10, if we use a truncated RRWP
(specifically by setting k = 3), RRWP(3) can not distinguish between G1 and G2. On the other hand,
as shown in Item 2, GIST can successfully distinguish between these two graphs. As the diameter of
both graphs is 6, our example thus shows that GIST(6) is more expressive than RRWP(3) for certain
class of graphs.

Table 7: GIST-Signature-to-Node Mapping on Graph G1

GIST Signature (Sk(u, v), count) Node IDs
{((0,0,1,0,1,2,1,2,5),5), ((0,1,1,1,2,2,1,4,4),3), ((1,1,1,1,1,1,4,4,4),1), ((0,0,0,0,0,1,0,2,3),2), ((0,0,0,0,0,1,0,1,2),4), ((0,0,0,1,1,1,1,4,4),1),
((0,0,1,0,1,2,2,3,5),1), ((0,0,0,0,0,0,0,0,2),2)}

[1, 12, 14, 20]

{((0,1,1,3,4,4,3,10,10),1), ((0,1,1,1,2,4,1,4,6),4), ((0,0,1,0,1,2,1,2,5),4), ((0,0,0,0,0,2,0,1,3),2), ((1,1,2,1,3,4,4,6,10),2), ((0,1,1,0,1,4,0,1,4),1),
((0,1,1,2,3,4,2,7,8),1), ((1,1,2,1,3,4,2,4,10),1), ((0,1,1,1,2,4,1,2,4),1), ((0,0,1,0,2,3,1,3,8),2)}

[2, 11, 13, 19]

{((0,2,2,1,3,7,1,4,8),2), ((1,1,4,1,3,6,3,5,10),2), ((1,1,4,1,1,4,1,1,4),2), ((0,0,2,0,1,3,1,2,5),2), ((2,2,4,2,6,8,4,8,14),1), ((1,1,4,1,3,6,1,3,10),2),
((0,3,3,3,6,10,3,10,14),2), ((0,1,1,1,2,4,1,3,5),4), ((0,3,3,1,4,10,1,4,10),2)}

[3, 10]

{((0,2,2,1,3,7,1,4,8),2), ((1,1,4,1,3,6,2,4,10),4), ((0,0,2,0,1,3,1,2,5),2), ((0,3,3,0,3,10,0,3,10),1), ((0,3,3,2,5,10,2,5,10),1), ((2,2,4,2,6,8,4,8,14),1),
((1,1,4,1,2,5,1,2,5),2), ((0,3,3,3,6,10,3,10,14),2), ((0,1,1,1,2,4,1,2,4),4)}

[4, 9]

{((0,1,1,1,2,4,1,4,6),4), ((0,0,1,0,1,2,1,2,5),4), ((0,2,2,0,2,5,0,2,5),2), ((0,0,0,0,0,2,0,1,3),2), ((1,1,3,1,3,5,1,3,10),1), ((0,2,2,3,5,5,3,10,10),1),
((0,1,1,2,3,4,2,7,8),1), ((1,1,3,1,3,5,4,6,10),2), ((0,0,1,0,2,3,1,3,8),2)}

[5, 8]

{((0,1,1,1,2,3,1,4,5),3), ((1,1,1,1,2,2,1,2,5),1), ((0,0,1,0,1,2,1,2,5),4), ((1,1,1,1,2,2,4,5,5),1), ((0,0,0,0,0,1,0,2,3),2), ((0,0,0,0,0,1,0,1,2),4),
((0,0,0,2,2,2,2,5,5),1), ((0,0,1,0,1,2,2,3,5),1), ((0,0,0,0,0,0,0,0,2),2)}

[6, 7, 16, 17]

{((0,0,0,3,3,3,3,10,10),1), ((0,1,1,1,2,4,1,4,6),4), ((1,1,1,1,3,3,3,5,10),1), ((1,1,1,1,3,3,4,6,10),2), ((0,0,1,0,1,2,1,2,5),4), ((0,0,0,0,0,2,0,1,3),2),
((0,1,1,1,2,4,1,3,5),2), ((0,1,1,2,3,4,2,7,8),1), ((0,0,1,0,2,3,1,3,8),2)}

[15, 18]

Table 8: GIST-Signature-to-Node Mapping on Graph G2

GIST Signature (Sk(u, v), count) Node IDs
{((0,0,1,0,1,2,1,2,5),5), ((0,1,1,1,2,2,1,4,4),3), ((1,1,1,1,1,1,4,4,4),1), ((0,0,0,0,0,1,0,2,3),2), ((0,0,0,0,0,1,0,1,2),4), ((0,0,0,1,1,1,1,4,4),1),
((0,0,1,0,1,2,2,3,5),1), ((0,0,0,0,0,0,0,0,2),2)}

[1, 12, 14, 20]

{((0,1,1,3,4,4,3,10,10),1), ((0,1,1,1,2,4,1,4,6),4), ((0,0,1,0,1,2,1,2,5),4), ((0,0,0,0,0,2,0,1,3),2), ((1,1,2,1,3,4,4,6,10),2), ((0,1,1,0,1,4,0,1,4),1),
((0,1,1,2,3,4,2,7,8),1), ((1,1,2,1,3,4,2,4,10),1), ((0,1,1,1,2,4,1,2,4),1), ((0,0,1,0,2,3,1,3,8),2)}

[2, 11, 13, 19]

{((0,2,2,1,3,7,1,4,8),2), ((1,1,4,1,1,4,1,1,4),2), ((0,0,2,0,1,3,1,2,5),2), ((0,1,1,1,2,4,1,2,4),2), ((0,1,1,1,2,4,1,3,5),2), ((2,2,4,2,6,8,4,8,14),1),
((1,1,4,1,3,6,3,5,10),1), ((0,3,3,3,6,10,3,10,14),2), ((1,1,4,1,3,6,2,4,10),2), ((1,1,4,1,3,6,1,3,10),1), ((0,3,3,1,4,10,1,4,10),2)}

[3, 10]

{((0,2,2,1,3,7,1,4,8),2), ((0,0,2,0,1,3,1,2,5),2), ((0,3,3,0,3,10,0,3,10),1), ((0,3,3,2,5,10,2,5,10),1), ((0,1,1,1,2,4,1,2,4),2), ((0,1,1,1,2,4,1,3,5),2),
((2,2,4,2,6,8,4,8,14),1), ((1,1,4,1,3,6,3,5,10),1), ((1,1,4,1,2,5,1,2,5),2), ((1,1,4,1,3,6,2,4,10),2), ((0,3,3,3,6,10,3,10,14),2), ((1,1,4,1,3,6,1,3,10),1)}

[4, 9]

{((0,1,1,1,2,4,1,4,6),4), ((0,0,1,0,1,2,1,2,5),4), ((0,2,2,0,2,5,0,2,5),2), ((0,0,0,0,0,2,0,1,3),2), ((1,1,3,1,3,5,1,3,10),1), ((0,2,2,3,5,5,3,10,10),1),
((0,1,1,2,3,4,2,7,8),1), ((1,1,3,1,3,5,4,6,10),2), ((0,0,1,0,2,3,1,3,8),2)}

[5, 8]

{((0,1,1,1,2,3,1,4,5),3), ((1,1,1,1,2,2,1,2,5),1), ((0,0,1,0,1,2,1,2,5),4), ((1,1,1,1,2,2,4,5,5),1), ((0,0,0,0,0,1,0,2,3),2), ((0,0,0,0,0,1,0,1,2),4),
((0,0,0,2,2,2,2,5,5),1), ((0,0,1,0,1,2,2,3,5),1), ((0,0,0,0,0,0,0,0,2),2)}

[6, 7, 16, 17]

{((0,0,0,3,3,3,3,10,10),1), ((0,1,1,1,2,4,1,4,6),4), ((1,1,1,1,3,3,3,5,10),1), ((1,1,1,1,3,3,4,6,10),2), ((0,0,1,0,1,2,1,2,5),4), ((0,0,0,0,0,2,0,1,3),2),
((0,1,1,1,2,4,1,3,5),2), ((0,1,1,2,3,4,2,7,8),1), ((0,0,1,0,2,3,1,3,8),2)}

[15, 18]

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 9: Resistance Distance Signature-to-Node Mapping on Graph G1 and G2

Resistance Distance Signature (value, count) Node IDs
{((4.0,), 3), ((3.75,), 4), ((2.75,), 2), ((2.0,), 1), ((1.0,), 1), ((5.0,), 2), ((3.0,), 2), ((4.75,), 4)} [1, 12, 14, 20]

{((1.0,), 2), ((2.0,), 2), ((3.0,), 3), ((2.75,), 4), ((1.75,), 2), ((3.75,), 4), ((4.0,), 2)} [2, 11, 13, 19]

{((1.75,), 4), ((1.0,), 3), ((2.75,), 4), ((0.75,), 2), ((2.0,), 4), ((3.0,), 2)} [3, 4, 9, 10]

{((2.0,), 2), ((2.75,), 4), ((1.0,), 3), ((3.0,), 2), ((1.75,), 2), ((3.75,), 4), ((4.0,), 2)} [5, 8]

{((2.0,), 2), ((4.75,), 4), ((2.75,), 2), ((1.0,), 1), ((5.0,), 2), ((4.0,), 2), ((3.0,), 2), ((3.75,), 4)} [6, 7, 16, 17]

{((2.0,), 2), ((2.75,), 4), ((1.75,), 2), ((1.0,), 1), ((3.0,), 4), ((3.75,), 4), ((4.0,), 2)} [15, 18]

Table 10: RRWP with (truncated) k Signature-to-Node Mapping on Graph G1 and G2

RRWP Signature (vector, count) Node IDs
{((0.0, 0.0, 0.5), 1), ((0.0, 1.0, 0.0), 1), ((0.0, 0.0, 0.0), 17)} [1, 12, 14, 20]

{((0.0, 0.0, 0.125), 3), ((0.0, 0.0, 0.0), 14), ((0.0, 0.5, 0.0), 2)} [2, 11, 13, 19]

{((0.0, 0.0, 0.125), 3), ((0.0, 0.0, 0.0), 8), ((0.0, 0.0, 0.0625), 4), ((0.0, 0.25, 0.0), 4)} [3, 10]

{((0.0, 0.0, 0.0625), 4), ((0.0, 0.0, 0.0), 8), ((0.0, 0.0, 0.083333), 2), ((0.0, 0.0, 0.125), 1), ((0.0, 0.25, 0.0), 4)} [4, 9]

{((0.0, 0.0, 0.0), 13), ((0.0, 0.0, 0.083333), 3), ((0.0, 0.333333, 0.0), 3)} [5, 8]

{((0.0, 0.0, 0.333333), 2), ((0.0, 1.0, 0.0), 1), ((0.0, 0.0, 0.0), 16)} [6, 7, 16, 17]

{((0.0, 1.0, 0.0), 1), ((0.0, 0.0, 0.25), 3), ((0.0, 0.0, 0.0), 15)} [15, 18]

C.2 GIST INVARIANCE

Proposition C.2. Let G = (V, E) denote a graph with n nodes (|V| = n). Let Sk(u, v) ∈ Rk2+2k

denote the k-hop GIST encoding of every ordered node pair (u, v) (see Definition 3.2). Then the GIST
attention as defined in Definition 4.2, {{ψ(xu) : u ∈ V}}, is invariant under graph isomorphism.

Proof. This follows directly from the fact that both the initial node representation {xu : u ∈ V} and
the initial edge representation {yu,v : (u, v) ∈ E} are isomorphism invariant, together with the fact
that, since its encoding Sk(u, v) only counts the number of nodes of various distances from u and v,
GIST representation {Sk(u, v) : (u, v) ∈ V × V} is also isomorphism invariant. It follows that if
f is any isomorphism between graph G and H, we have that for every u ∈ V (G), xf(u) = xu and
for any node pair (u, v) ∈ V (G)× V (G), yf(u),f(v) = yu,v and Sk(f(u), f(v)) = Sk(u, v), hence
ψ(xf(u)) = ψ(xu) for every u ∈ V (G).

C.3 ESTIMATION VARIANCE OF GIST WITH HASHING

We approximate the k-hop common neighborhood size |Cku,kv (u, v)| using MinHash and Hyper-
LogLog sketches. For a fixed node pair (u, v) and hops (ku, kv), recall that∣∣Cku,kv

(u, v)
∣∣ = Jku,kv

(u, v) · Uku,kv
(u, v),

where Jku,kv
(u, v) is the Jaccard similarity between Nku

(u) and Nkv
(v), and Uku,kv

(u, v) =
|Nku

(u) ∪Nkv
(v)|. For brevity we write

J := Jku,kv
(u, v), U := Uku,kv

(u, v), C := |Cku,kv
(u, v)| = J U.

We estimate J with MinHash using m hash functions, and U with HyperLogLog using precision
parameter p and mHLL = 2p registers. Let Ĵ and Û denote the corresponding estimators and define

Ĉ := Ĵ Û

as the estimator of C.
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Unbiasedness. Standard properties of MinHash and HyperLogLog yield

E[Ĵ ] = J, Var[Ĵ ] =
J(1− J)

m
,

E[Û ] = U, Var[Û ] = U2α2
p,

where αp = Θ(1/
√
mHLL) is the usual HyperLogLog constant.

Since MinHash and HyperLogLog use independent hash functions, Ĵ and Û are independent, so

E[Ĉ] = E[Ĵ Û ] = E[Ĵ ]E[Û ] = J U = C.

Thus Ĉ is an unbiased estimator of |Cku,kv
(u, v)|.

Variance bound. We first record an elementary identity for the variance of a product of independent
random variables.

Lemma C.3 (Variance of a product). Let X and Y be independent random variables with finite
second moments. Then

Var(XY ) = E[X2] Var(Y ) + E[Y ]2 Var(X).

Proof. By definition,
Var(XY ) = E[X2Y 2]−

(
E[XY ]

)2
.

Independence implies E[X2Y 2] = E[X2]E[Y 2] and E[XY ] = E[X]E[Y ], so

Var(XY ) = E[X2]E[Y 2]− E[X]2E[Y ]2.

We add and subtract E[X2]E[Y ]2:

Var(XY ) = E[X2]
(
E[Y 2]− E[Y ]2

)
+ E[Y ]2

(
E[X2]− E[X]2

)
= E[X2] Var(Y ) + E[Y ]2 Var(X),

as claimed.

We apply Lemma C.3 with X = Ĵ and Y = Û :

Var(Ĉ) = Var(Ĵ Û)

= E[Ĵ2] Var(Û) + E[Û ]2 Var(Ĵ).

Using the variance identity E[Ĵ2] = Var[Ĵ ] + (E[Ĵ ])2 and E[Û ] = U , we obtain

Var(Ĉ) =
(
Var[Ĵ ] + (E[Ĵ ])2

)
Var[Û ] + U2 Var[Ĵ ]

=

(
J(1− J)

m
+ J2

)
U2α2

p + U2 J(1− J)
m

= U2
[
J2α2

p +
J(1− J)

m
(1 + α2

p)
]
.

Since 0 ≤ J ≤ 1 and J(1− J) ≤ 1/4, we have the simple upper bound

Var(Ĉ) ≤ U2

[
α2
p +

1 + α2
p

4m

]
.

Because αp = Θ(1/
√
mHLL), this shows

Var(Ĉ) = O

(
U2

[
1

mHLL
+

1

m

])
,

so increasing either the number of MinHash functions m or the HLL precision p reduces the variance.
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Corollary C.4 (Relative error of the GIST estimator). Assume J > 0 (i.e., the k-hop common
neighborhood is non-empty). Then the squared coefficient of variation of Ĉ is

Var(Ĉ)

C2
=

Var(Ĉ)

J2U2
= α2

p +
(1− J)(1 + α2

p)

mJ
≤ α2

p +
1 + α2

p

mJ
,

and hence

CV(Ĉ) :=

√
Var(Ĉ)

C
≤ αp +

√
1 + α2

p

mJ
.

In particular, for any fixed J > 0 we have

CV(Ĉ) = O

(
1

√
mHLL

+
1√
m

)
,

so the relative error of the GIST estimator decreases at the standard Monte Carlo rate in both the
number of MinHash functions and the number of HyperLogLog registers.

This formalizes that the GIST estimator Ĉku,kv
(u, v) is unbiased and admits a controllable relative

error.
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D GIST ESTIMATION ALGORITHM

We present the GIST estimation algorithm in Algorithm 1 and Algorithm 2.

Algorithm 1 Algorithm for computing intersection cardinality |Cku,kv
(u, v)|

Input: Graph G = (V, E), max hops k, hops ku, kv, m MinHash functions H = {h1, . . . , hm},
HyperLogLog parameter p and regularizer constant αp

Output: Intersection cardinality |Cku,kv
(u, v)|

{Step 1. Pre-compute MinHash signatures}
for v ∈ V, hj ∈ H do
Mv[j, 0]← hj(v) {Initialize MinHash signatures}

end for
for i = 1 to k do

for v ∈ V, hj ∈ H do
Mv[j, i]← min

u∈N (v)

(
Mu[j, i− 1],Mv[j, i− 1]

)
end for

end for
{Step 2. Pre-compute HyperLogLog sketches}
m← 2p

for v ∈ V do
Compute k-hop HyperLogLog sketch Hv ∈ Rm×k

end for
{Step 3. Compute intersection cardinality}
for (u, v) ∈ V × V do
J̃ku,kv

(u, v)← JACCARD-EST(ku, kv,m,Mu,Mv)
Ũku,kv (u, v)← HLL-EST(ku, kv, Hu, Hv)
|Cku,kv

(u, v)| ← J̃ku,kv
(u, v) · Ũku,kv

(u, v)
end for
return |Cku,kv

(u, v)|

Function: JACCARD-EST(ku, kv,m,Mu,Mv)
Input: hops ku, kv , number of MINHASH functions m, and k−hop MinHash values Mu,Mv

Output: Jaccard similarity J̃ku,kv
(u, v)

J̃ku,kv (u, v)← 0
for j = 1 to m do

if Mu(j, ku) =Mv(j, kv) then
J̃ku,kv

(u, v)← J̃ku,kv
(u, v) + 1

end if
end for
J̃ku,kv

(u, v)← J̃ku,kv
(u, v)/m

return J̃ku,kv (u, v)
EndFunction

Function: HLL-EST(ku, kv, Hu, Hv)
Input: hops ku, kv , HyperLogLog sketches Hu, Hv

Output: Union cardinality Ũku,kv
(u, v)

Hku,kv
← 0m

for j = 1 to m do
Hku,kv

[j]← max
(
Hu[j, ku], Hv[j, kv]

)
end for
Ũku,kv (u, v)← αpm

2(
∑m

i=0 2
−Hku,kv [i])−1

return Ũku,kv
(u, v)

EndFunction
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Algorithm 2 Computation of GIST structural encoding (using precomputed |Cku,kv
(u, v)|)

Input: Graph G = (V, E), max hops k,
intersection cardinalities Ĉku,kv

(u, v) for all (u, v) ∈ V × V and 1 ≤ ku, kv ≤ k,
computed once by Alg. 1

Output: Pairwise GIST tensor Sk ∈ R|V|×|V|×(k2+2k) and/or node-wise summaries {χu}u∈V

{Step 1. Get k-hop neighborhood sizes from diagonal Ct,t(u, u)}
for u ∈ V do

for t = 1 to k do
du,t ← Ĉt,t(u, u) {Since Ct,t(u, u) = Nt(u) by definition}

end for
end for

{Step 2. Compute internal and boundary counts}
for (u, v) ∈ V × V do

Initialize Iku,kv
(u, v)← 0 for all 1 ≤ ku, kv ≤ k

{(a) Internal counts via inclusion–exclusion (Def. 3.1)}
for ku = 1 to k do

for kv = 1 to k do
S ← 0
for x = 1 to ku do

for y = 1 to kv do
if (x, y) ̸= (ku, kv) then
S ← S + Ix,y(u, v)

end if
end for

end for
Iku,kv

(u, v)← Ĉku,kv
(u, v)− S

end for
end for
{(b) Boundary counts from u- and v-sides}
for ku = 1 to k do
Bku,>k(u, v)← du,ku

−
∑k

kv=1 Iku,kv
(u, v)

end for
for kv = 1 to k do
Bkv,>k(v, u)← dv,kv

−
∑k

ku=1 Iku,kv
(u, v)

end for

{Step 3. Form the GIST substructure vector Sk(u, v)}
Sk(u, v) ∈ Rk2+2k ← concatenate:

(i) {Iku,kv (u, v)}1≤ku,kv≤k in a fixed order
(ii) {Bku,>k(u, v)}kku=1

(iii) {Bkv,>k(v, u)}kkv=1
end for

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

E EXPERIMENT SETTINGS

Dataset Statistics. We provide the statistics of 12 datasets used in our experiments to evaluate the
performance of our proposed GIST in Table 11.

Table 11: Datasets’ Statistics

Dataset # Graphs Avg. # nodes Avg. # edges Prediction task Metric

BBBP 2,050 23.9 51.6 binary classification ROC-AUC
Tox21 7,831 18.6 38.6 12-task classification ROC-AUC
Toxcast 8,597 18.7 38.4 617-task classification ROC-AUC
Sider 1,427 33.6 70.7 27-task classification ROC-AUC
Clintox 1,484 26.1 55.5 2-task classification ROC-AUC
Bace 1513 34.1 73.7 binary classification ROC-AUC
MUV 93,087 24.2 52.6 17-task classification ROC-AUC
HIV 41,127 25.5 54.9 binary classification ROC-AUC

Peptides-func 15,535 150.94 307.30 10-task classification Avg. Precision
Peptides-struct 15,535 150.94 307.30 11-task regression Mean Abs. Error

Zinc Subset 12,000 23.2 49.8 regression Mean Abs. Error
Zinc Full 249,456 23.2 49.8 regression Mean Abs. Error

Baselines. For each baseline, we either report the best results from existing literature or reproduce
them using the official implementations with the hyperparameter settings specified in their respective
papers. Specifically, for the MoleculeNet benchmark, we evaluate GRIT and GraphGPS across 8
datasets using their hyperparameters optimized for Peptides-struct, following Ma et al. (2023), which
demonstrates that their performance is robust to different hyperparameter choices across datasets.

LRGB Settings. We follow the clear standard of benchmarking adopted in prior works like Ma et al.
(2023); Bar-Shalom et al. (2024): for each dataset in the LRGB benchmark, we train our proposed
method on the training split and select the model checkpoint that achieves the best validation
performance. The corresponding test performance is then reported. Updated results of GCN(Kipf &
Welling, 2017), GraphGPS(Rampášek et al., 2022), and GatedGCN(Dwivedi et al., 2022d) are taken
directly from (Tonshoff et al., 2023).

ZINC & ZINC-Full Settings. We follow the common evaluation protocol established in prior works
such as Dwivedi et al. (2022a); Ying et al. (2021): for both ZINC and ZINC-Full datasets, we train
our model on the training split and select the checkpoint with the best validation performance. The
test performance corresponding to this checkpoint is then reported.

MoleculeNet Settings. Following prior works such as (Luong & Singh, 2023; Liu et al., 2022), we
adopt the scaffold-based splitting protocol provided by MoleculeNet for all datasets. Our model is
trained on the training split, and the best checkpoint is selected based on validation performance. The
corresponding test performance is then reported. Baseline results are either obtained directly from
the original publications (e.g. (Luong & Singh, 2023; Liu et al., 2022)) or reproduced using their
official code and best-reported hyperparameters (e.g. (Ma et al., 2023) or (Rampášek et al., 2022)).
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F GIST ATTENTION EMPIRICAL STUDY

To better understand how GIST aids in distinguishing substructures within a graph and facilitates
effective representation aggregation across them, we visualize the attention scores of Graph Trans-
formers with and without GIST as the structural encoding. We further perform node clustering via
spectral clustering using the learned GIST features on ZINC molecule graphs to examine whether
structurally meaningful groupings emerge. The results indicate that, after integrating GIST, the
attention mechanism tends to focus on coherent substructures—such as functional groups—rather
than attending uniformly to individual nodes. This structured attention behavior highlights GIST’s
role in promoting both intra-substructure coherence and inter-substructure interaction, which are
critical for accurate graph representation learning.

(a) Without GIST (b) With GIST

Figure 4: Clustering of Attention Scores on Graph 1
To quantify how effectively GIST facilitates representation aggregation within and across substruc-
tures, we analyze model attention on ZINC under a controlled backbone and evaluation protocol.

Using the same Graph Transformer backbone, we train three variants: (i) vanilla (no structural
encoding), (ii) GRIT, and (iii) GIST. We then sample 1,000 graphs from the ZINC test set. For each
graph, we partition nodes into substructures via the Louvain algorithm.

We define three complementary attention categories at the node–pair level after partitioning each
graph into substructures. Let C(u) denote the substructure (community) containing node u and
s(u, v) denotes if there exists an edge between u and v. For any ordered pair (u, v), let a(u, v) be the
attention score from u to v, We then bucketize attention score into three categories:

Within-substructure: Awithin =
1

|{(u, v) : C(u) = C(v)}|
∑

(u,v):C(u)=C(v)

a(u, v),

Cross-substructure: Across =
1

|{(u, v) : C(u) ̸= C(v)}|
∑

(u,v):C(u)̸=C(v)

a(u, v).

Neighborhood: Aneighbor =
1

|{(u, v) : s(u, v)}|
∑

(u,v): s(u,v)

a(u, v).

Here, Awithin captures how strongly attention between pair of nodes from the same substructures,
Acrosscaptures attention allocated between different substructures and serves as a proxy for modeling
higher-order interactions, whereas Aneighbor captures how focusing the attention mechanism is on
direct neighbors.

The community labelC(·) is computed once per graph from topology alone and is held fixed across all
methods. The designation “within-substructure” is defined per graph by the equality C(u) = C(v);
across different graphs, communities need not coincide as node sets to be regarded as comparable
substructures—what matters is their structural form (e.g., isomorphic or structurally similar). Unless
otherwise noted, self-pairs are excluded, and attention is aggregated by summing over heads and
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Table 12: Attention Score of Within- vs. Cross-substructure and Neighbor among three different
variants of Graph Transformer architecture

Variant Awithin Across Aneighbor

Vanilla 0.50 0.44 0.71
GRIT 0.81 0.10 0.43
GIST 0.65 0.29 0.37

averaging across layers. For each model, we compute Awithin, Across, and Aneighbor on each of the
1,000 graphs and report their means in Table 12.

Findings. The vanilla Graph Transformer exhibits limited substructure awareness: its attention score
is distributed nearly uniformly across node pairs while disproportionally attending to nearest neigh-
bors, yielding negligible separation between within- and cross-substructure attention. GRIT displays
the opposite pattern, concentrating attention predominantly on nodes with the same substructures
(high within-substructure, low cross-substructure). By contrast, GIST maintains a balanced profile,
allocating substantial attention both within substructures and across substructures—consistent with
its design to capture substructures within a graph and their higher-order relationships.

Figure 5: Clustering of Attention Scores with GIST

Figure 6: Clustering of Attention Scores with GIST
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Figure 7: Clustering of Attention Scores with GIST

G ADDITIONAL EXPERIMENT RESULTS

G.1 NODE-LEVEL AND LARGE-SCALE TASKS

We present the performance of GIST on Cluster, Pattern, and PCQM4Mv2 datasets in Table 13.

Table 13: Performance of GIST on Cluster, Pattern, and PCQM4Mv2

Datasets Cluster Pattern PCQM4Mv2
GIST (ours) 0.8196 0.8893 0.079
GPS (Rampášek et al., 2022) 0.7802 0.8668 0.094
SAN (Kreuzer et al., 2021) 0.7669 0.2486 -
GRIT (Ma et al., 2023) 0.8003 0.8720 0.086
Exphormer (Shirzad et al., 2023) 0.7807 0.8674 -
SPSE (Airale et al., 2025) 0.7957 0.8723 0.083
CSA (Menegaux et al., 2024) 0.7918 0.8701 0.085
TIGT (Choi et al., 2024) 0.7803 0.8668 0.083

G.2 FULL-VERSION OF BASELINES’ PERFORMANCE COMPARISON

Table 14: Performance on ZINC and Peptides Datasets. Reported as "Absolute Gap (Propotional
Improvement %) between GIST’s performance and the respective baseline’s performance." + indicates
GIST is better.

Model ZINC ZINC-full Peptides-struct Peptides-func
GRIT +0.009 (+15.2) +0.004 (+17.4) +0.0018 (+0.7) -0.0005 (-0.07)
GPS +0.020 (+28.6) - +0.0067 (+2.7) +0.0449 (+6.9)
FragNet +0.028 (+35.9) +0.005 (+19.8) +0.0020 (+0.8) +0.0305 (+4.6)
Subgraphormer +0.013 (+20.6) +0.004 (+17.4) +0.0052 (+2.1) +0.0568 (+8.9)
TIGT +0.007 (+12.3) -0.005 (-26.3) +0.0043 (+1.7) +0.0304 (+4.6)
CSA +0.006 (+10.7) - - -
SPSE +0.009 (+15.3) - +0.0007 (+0.3) +0.0038 (+0.006)
GNN-SSWL+ +0.020 (+28.6) +0.003 (+13.6) - -
GCN +0.317 (+86.4) +0.094 (+83.2) +0.0018 (+0.7) +0.0123 (1.8)
Gated-GCN +0.040 (+44.4) +0.003 (+13.6) +0.035 (+1.4) +0.0218 (+3.2)
DS-GNN +0.037 (+42.5) - - -
Graphormer +0.072 (+59.0) +0.033 (+63.5) - -
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Table 15: Performance on Molecular Datasets. Reported as "Absolute Gap (Propotional Improvement
%) between GIST’s performance and the respective baseline’s performance." + indicates GIST is
better.

Model BBBP Tox21 Toxcast Sider Clintox Bace MUV HIV
GRIT +3.7 (+5.3) +1.3 (+1.7) +1.7 (+2.6) +1.0 (+1.7) +2.3 (+2.7) +1.6 (+1.9) -1.6 (-2.0) -0.3 (0.0)
GPS +17.4 (+31.0) +5.8 (+8.1) +6.7 (+11.1) +1.2 (+1.8) +9.0 (+11.4) +14.5 (+20.3) +10.3 (+15.8) +11 (+15.8)
Subgraphormer - - - - - +1.6 (+3.4) - -3.4 (-4.1)
GraphFP +1.6 (+2.0) +3.2 (+4.3) +3.4 (+5.3) -2.3 (-3.6) +3.5 (+4.1) +5.5 (+6.8) +0.1 (+0.1) -1.0 (-1.0)
GraphMVP +5.1 (+7.4) +2.7 (+3.6) +4.6 (+7.3) -1.0 (-1.6) +9.2 (+11.6) +9.2 (+12.0) +0.5 (+0.7) +2.2 (+2.9)
DS-GNN - - - - - +7.59 (+9.7) - -2.13 (-2.7)

H GIST EFFICIENCY

We present an efficiency experiment on training time in Table 16, which shows that GIST’s training
time is comparable to—or even lower than—that of other Graph Transformers. Notably, unlike many
pre-trained graph models, GIST does not rely on extensive pretraining, yet still outperforms most of
them on the MoleculeNet benchmarks.

We also analyze the one-time computation overhead of GIST features (Table 16). As emphasized in
Section 3.4, this overhead is incurred only once at the beginning of training and remains minimal. Our
method employs a lightweight randomized estimation procedure using MinHash and HyperLogLog to
approximate k-hop substructure intersections with a constant number of operations. Both theoretical
analysis and empirical evidence (Table 16) confirm that GIST achieves efficient computation without
compromising structural expressiveness.

Table 16: One-time pre-computation and Training time of GIST (hour:min)

Datasets ZINC ZINC-full Peptides-struct Peptides-func
GIST precomputation 00:03 01:08 00:12 00:12
GIST Training Time 11:09 55:21 05:40 05:30
GRIT Training + Precomputation Time 16:30 104:57 07:15 06:42
GraphGPS Training + Precomputation Time 13:30 - - -
SAN Training + Precomputation Time 32:15 - - -
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