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Abstract

As people communicate on social media dur-
ing COVID-19, it can be an invaluable source
of useful and up-to-date information. How-
ever, the large volume and noise-to-signal ratio
of social media can make this impractical. We
present a prototype dashboard for the real-time
classification, geolocation and interactive visu-
alization of COVID-19 tweets that addresses
these issues. We also describe a novel L2 clas-
sification layer that outperforms linear layers
on a dataset of respiratory virus tweets.

1 Introduction

As the COVID-19 pandemic continues to rapidly
evolve on a global scale, members of the public and
crisis managers alike need access to digestible, use-
ful, and up-to-date information. Such information
is crucial in enabling informed and responsive deci-
sion making that minimizes risk and mitigates harm
caused by the virus. Throughout crises, social me-
dia platforms in particular have been invaluable to
crisis managers as they provide unparalleled situa-
tional awareness through grassroots citizens report-
ing (Burns and Shanley, 2012). Furthermore, var-
ious organizations and individuals share the most
recent and relevant information on social media:
enabling affected people to stay informed, and cri-
sis managers to measure outreach effectiveness (Jin
et al., 2014).

However, just as social media can empower the
effective dissemination of useful information, it
also enables the spread of harmful misinforma-
tion. In fact, the signal-to-noise ratio of information
shared on social media is a well-known problem
(Imran et al., 2016), and misinformation has been a
pervasive problem throughout the COVID-19 pan-
demic (Brennen et al., 2020). Extracting up-to-date,
useful, and digestible information from social me-
dia platforms also has its own challenges:

• Digestible: the sheer volume of posts shared
on social media can make it an impractical
source of information (e.g. Banda et al. (2020)
report 4 million COVID-19 tweets per day);

• Useful: different people in different places
need different information, what is useful to
a student in Montreal may not be useful to a
crisis manager in Beijing;

• Up-to-date: due to the large velocity of social
media posts and the speed at which a situation
can evolve, the most up-to-date information
may rapidly change.

To address these challenges, we built a prototype
dashboard that classifies and geolocates COVID-19
tweets in real-time, making it easier to explore use-
ful and up-to-date information in a digestible and
intuitive way (Figure 1). The primary components
of our system are:

• Text-based geolocation of tweets: Filtering
information by location is an important first
step in ensuring its usefulness and digestibil-
ity. Unfortunately, less than 1% of tweets are
geotagged (Marciniec, 2019). We use named
entity-recognition and a gazetteer to address
this issue;

• L2 classification of tweets: Categorizing
tweets can also improve their usefulness and
digestibility. We fine-tune BERT on res-
piratory virus tweet classification using a
novel metric-learning inspired L2 classifica-
tion layer that outperforms linear layers;

• Interactive map: Our tweet geolocation
and classification allows us to organize and
present useful information on an interactive
map that emphasizes the most up-to-date
tweets and makes it easier to navigate the large
volume of information in an intuitive way.

https://github.com/mirandrom/CrisisTweetMap


Figure 1: screenshot of dashboard showcasing global scale of COVID-19 information shared on social media.

Class Description

Disease signs or symptoms Reports of symptoms such as fever, cough, diarrhea, and shortness of breath or questions related to these symptoms
Disease transmission Reports of disease transmission or questions related to disease transmission
Disease Prevention Questions or suggestions related to the prevention of disease or mention of a new prevention strategy
Disease Treatment Questions or suggestions regarding the treatments of the disease
Death reports Reports of deaths due to the disease
Affected people Reports of affected people due to the disease
Other useful information Other useful information that is related to the disease
Not related or irrelevant Unrelated to the situation or irrelevant

Table 1: Class descriptions provided to annotators of the MERS 2014 tweet dataset.

2 System Overview

2.1 Tweet Streaming

To collect relevant tweets in real-time, we used the
Twitter statuses/filterAPI with the follow-
ing search terms: coronavirus, covid19,
covid-19, covid, filtering english tweets. In
Banda et al. (2020), over 80% of COVID-19 tweets
are retweets (i.e. the same content shared by dif-
ferent people), therefore we also filter out retweets
to reduce the volume of information and make it
more digestible.

2.2 Tweet Classification

2.2.1 Training Data
To automatically classify COVID-19 tweets
into useful categories, we fine-tune a pooled
bert-base-cased pretrained language model
(Devlin et al., 2018) on a dataset of labeled tweets
from the 2014 Middle-Eastern Respiratory Syn-
drome (MERS) outbreak (Imran et al., 2016). Class
descriptions are shown in Table 1 while class

counts are shown in Table 2. The dataset was split
into a stratified train-test split. To address the issue
of class imbalance during training, we oversample
elements of every class until the same number of
elements as the majority class is reached.

2.2.2 L2 Classification

Traditional linear classification layers that map D-
dimensional embeddings to N logits via a D ×N
matrix multiplication are performing metric learn-
ing in the inner product space (Chen et al., 2018).
However, inner product similarity has a bias against
rare classes which have low-norm embeddings
(Demeter et al., 2020) and prevents the use of
learned representations in downstream tasks which
use L2 distance, e.g. K-means clustering. We pro-
pose a novel classification layer that computes neg-
ative L2 distances as logits instead. The latency of
our model is comparable to that of a traditional lin-
ear classification layer, observing inference speeds
of 400-750ms on a consumer-grade machine with
a 2080Ti GPU and an i5-8600K CPU.



Our approach obtains a best validation accuracy
of 76.84%, compared to 76.35% for the traditional
inner-product based method after 20 epochs of
training with a batch size of 16, an adamw opti-
mizer, and a learning rate of 1e−5, taking evalua-
tion metrics from the epoch with the best validation
loss. Despite the limited increase in accuracy, we
find that our approach significantly improves the
F1 score of rare classes suggesting it addresses the
bias of inner product similarity (Table 2).

Count F1
Class Train Test IP L2

affected people 559 140 68.36 72.71
other useful information 554 139 66.56 75.50
disease transmission 199 50 61.43 76.04
disease signs or symptoms 124 32 73.32 74.12
prevention 69 18 71.57 79.63
treatment 60 15 77.63 86.15
not related or irrelevant 23 6 73.20 84.46
deaths reports 23 6 84.66 87.64

Table 2: Class counts and per-class validation % F1
scores for IP (inner product) and L2 classification lay-
ers on the MERS 2014 dataset.

Following reviewer feedback, we also evaluate
our approach on tweets from the 2014 Pakistan
Floods (Imran et al., 2016) to more rigorously ver-
ify this hypothesis. However we find our approach
does not consistently improve F1 scores (Table 3),
indicating there are other factors at play beyond the
bias of inner product similarity.

Count F1
Class Train Test IP L2

other useful information 558 140 52.08 47.84
donation needs or offers or volunteering 423 106 70.80 66.56
injured or dead people 207 52 78.82 78.28
sympathy and emotional support 101 26 76.81 72.39
missing trapped or found people 93 24 53.17 56.98
displaced people and evacuations 84 22 62.76 59.63
infrastructure and utilities damage 75 19 71.24 73.05
caution and advice 44 12 77.74 72.31
not related or irrelevant 21 6 76.21 73.85

Table 3: Class counts and per-class validation % F1
scores for IP (inner product) and L2 classification lay-
ers on the 2014 Pakistan Flood dataset.

2.2.3 Text-based geolocation
To geolocate tweets from their text content, we
use the named entity recognizer from Honnibal
and Montani (2017) to extract name places, then
match them to the GeoNames gazetteer to extract
geo-coordinates (Halterman, 2017). We divide ge-
olocations into those extracted from user-provided

tweet geo-tags, as well as cities and countries ex-
tracted from tweet texts and from user bio texts.
We then allow users to filter their preferred types
of geolocation. Tweets with multiple geolocations
(e.g. a Canadian in the UK tweeting about France)
are duplicated on the map.

2.2.4 Visualization

Classified and geolocated tweets are mapped in
real-time. While the geolocation allows users to in-
tuitively navigate geographically relevant content,
tweets are also color-coded along their different
categories to make it easier for users to find tweets
relevant to them. The opacity of a tweet is also
proportional to its recency, such that more recent
tweets pop out on the map and allow users to eas-
ily track the most up-to-date information. Lastly,
the dashboard makes it easy to filter tweets along
different categories, timespans or keywords, and to
visualize a tweet’s text by hovering over it.

3 Related Work

The real-time visualization of classified and geolo-
cated tweets on an interactive map has been demon-
strated before. For example, Sankaranarayanan
et al. (2009) use a Naive Bayes classifier to iden-
tify tweets about news, and statistical NER com-
bined with a gazetteer to geoparse tweets by ex-
tracting and resolving location names (toponyms)
from their content.

Middleton et al. (2014) apply a similar geop-
arsing approach to tweets from natural disasters,
as they find less than 1% of tweets are geotagged.
However, due to the highly local nature of natu-
ral disasters, they eschew NER in favor of simple
string matching with a predetermined set of valid
toponyms. Furthermore, they do not perform tweet
classification.

In contrast, Benitez et al. (2018) classify tweets
by disaster type, but do not perform geoparsing,
relying on geotagged tweets instead. Similar other
works classify, geoparse, and map tweets in real-
time during various crises (Choi and Bae, 2015;
Mao et al., 2018; Avvenuti et al., 2018; Anbalagan
and Valliyammai, 2016; Hernandez-Suarez et al.,
2019).

To the best of our knowledge, we are the first to
combine, in a real-time tweet mapping interface,
both neural NER geoparsing and multi-class classi-
fication for a single event type of global scale.



4 Conclusion

We present a prototype dashboard for the real-time
classification, geolocation and interactive visual-
ization of COVID-19 information shared on social
media. We design our system to make it as easy
as possible for users to find useful and up-to-date
information in a digestible format, addressing fun-
damental issues in extracting valuable information
from social media during crises.

More specifically, we leverage natural language
processing to geolocate a portion of the large
amount of non-geotagged tweets we capture, help-
ing users find geographically relevant information.
We also fine-tune a novel L2 classification layer
to categorize tweets in useful labels, helping users
structure and navigate the large volume of tweets
we capture.

Lastly, we also show our novel L2 classification
layer surpasses traditional linear layers in terms
of accuracy and per-class F1 scores on a dataset
of respiratory virus tweets. However, following
reviewer feedback we find that this improvement
is not consistent on other datasets, suggesting the
need for future research to better understand the
factors at play.

5 Future Work

Our dashboard prototype has several opportunities
for improvement. These make interesting poten-
tial avenues for future research in natural language
processing and include:

• Automatic term seeding for capturing a
greater proportion of relevant tweets through
the Twitter API;

• Better geoparsing to capture provinces and
reduce false positives from place-like names;

• Unsupervised or human-in-the-loop tweet-
clustering to dynamically capture novel fine
grained topics not present in past labeled data;

• Identification of misinformation and first-
person narratives in tweets to better assist cri-
sis managers and affected people;
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